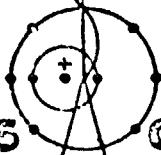


CONF - 780337-2

TITLE: A SIMPLE EMPIRICAL METHOD FOR ESTIMATING THE PERFORMANCE OF A PASSIVE SOLAR HEATED BUILDING OF THE THERMAL STORAGE WALL TYPE


AUTHOR(S): J. D. Balcomb and R. D. McFarland

SUBMITTED TO: 2nd National Passive Solar Conference,
Philadelphia PA, March 16-18, 1978

By acceptance of this article for publication, the publisher recognizes the Government's (license) rights in any copyright and the Government and its authorized representatives have unrestricted right to reproduce in whole or in part said article under any copyright secured by the publisher.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the USERDA.

MASTER

Los Alamos
scientific laboratory
of the University of California
LOS ALAMOS, NEW MEXICO 87545

An Affirmative Action/Equal Opportunity Employer

Form No. 8-6
St. No. 2629
1/75

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

UNITED STATES
ENERGY RESEARCH AND
DEVELOPMENT ADMINISTRATION
CONTRACT W-7405-ENG-36

A SIMPLE EMPIRICAL METHOD FOR ESTIMATING
THE PERFORMANCE OF A PASSIVE SOLAR HEATED*
BUILDING OF THE THERMAL STORAGE WALL TYPE*

by

J. D. Balcomb and R. D. McFarland
Los Alamos Scientific Laboratory
Los Alamos, NM 87545

ABSTRACT

Two methods are presented for estimating the annual solar heating performance of a building utilizing a passive thermal storage wall of the Trombe wall or water wall type with or without night insulation and with or without a reflector. The method is accurate to $\pm 3\%$ as compared with hour-by-hour computer simulations.

INTRODUCTION

A simple procedure has been devised for predicting the performance of solar heated structures. It has been determined that reasonable estimates ($\pm 3\%$) can be made based on monthly values of solar radiation, heating degree days, and the thermal loss and solar gain characteristics of the building. The method was originally developed for studying active systems¹ but proves to be even more accurate for the analysis of passive systems. The correlations are based on a very comprehensive set of calculations which have been made using the hour-by-hour computer simulation analysis techniques developed at Los Alamos for passive systems. Several hundred year-long calculations were made for 29 different cities and for 6 different building loads in each city. The simplified method relies on the use of an appropriate correlating parameter (the Solar Load Ratio) and an empirical fit to this large ensemble of results.

The method is presented in two options. Method A, which is the simplest to use, is described first. Temperature and solar radiation are compacted into a single coefficient called the Load Collector Ratio given for 84 cities. These tabulated values have been derived from the more general Method B, which is the Monthly Solar Load Ratio technique.

The designer may wish to use Method B for any of the following reasons.

1. The location of interest is not in Table 1.
2. The building load is more complex than a simple conductance. For example, accounting for internal heat generation in the building would require using Method B.
3. The user wishes to obtain an estimate of month-by-month distribution of heating load and solar heating contribution.

Both methods are quite constraining. They only apply to the specific systems which were studied: a Trombe wall and a water wall with and without night insulation. An extension of the technique to apply to cases utilizing a horizontal reflector, located in front of the collector wall, is presented in the last section.

Although the data sets which were used to generate the correlations are from the United States, Southern Canada, and three other cities, it is believed that the method can be used for most climates throughout the world. In order to obtain the best estimates possible, however, it is desirable to use the best technique available for calculating the solar radiation transmitted through the glazing. For latitudes outside the

* Work performed under the auspices of the U. S. Department of Energy, R&D Branch for Heating and Cooling, Assistant Secretary for Conservation and Solar Energy Projects.

U. S. range, it is recommended that the correlations developed for calculating the ratio of vertical radiation transmitted to horizontal not be used. The monthly solar load ratio curves, however, should be usable at any location.

The definition of load is confusing and the user should be alert to handle this correctly. The auxiliary energy required is unambiguous and is accurately estimated by both methods.

METHOD A

In order to obtain an estimate of the solar heating fraction and auxiliary energy required for any location listed in Table 1, perform the following steps.

Step 1

Estimate the Building Loss Coefficient (BLC) in BTU/degree-day. This is the sum of the building skin conductance plus infiltration. It is the extra energy required (BTU) per day for each additional one °F increase in temperature difference between the building interior and outside. It can be calculated from the sum of the UxA values for the exterior areas of the building plus infiltration. IMPORTANT--in calculating the Building Loss Coefficient, the passive thermal storage wall should not be included in the load.

Step 2

Calculate the building Load Collector Ratio (LCR) defined as follows:

$$\text{Load Collector Ratio} = \frac{\text{Building Loss Coefficient (BTU/DD)}}{\text{Solar Collection Area (ft}^2\text{)}}$$

In calculating the Load Collector Ratio the solar collection area used should be the net glazed area (the actual solar collection aperture) and not the gross area of the solar wall.

Step 3

Go to Table 1 and locate the city of interest and the wall type of interest. If the Load Collector Ratio determined in Step 2 corresponds exactly to one of the values listed in the Table under 0.25 or 0.75 Solar Heating Fraction (SHF), then this is the desired answer. If not, one needs to interpolate in the table. The meaning of a Solar Heating Fraction is ambiguous when applied to a passive solar building. What is the building being compared with? As used herein, the SHF is the fraction of the degree-day load (in the product of the degree-days times the Building Loss Coefficient which is supplied by the

solar wall. The wall is not credited with the heat used to supply its own steady-state load since a "normal" south wall would presumably have a much lower loss coefficient and would inevitably benefit from solar gains, even if they are unintentional.

The auxiliary used is a less ambiguous peg point, leaving the basis of comparison up to the user.

Step 4

The annual auxiliary energy required to maintain the building at a minimum temperature of 65°F can be estimated from the following equation:

$$\text{Auxiliary Energy} = (1-\text{SHF}) \left(\frac{\text{Annual Heating Degree-Days}}{\text{BTU/yr}} \right) \left(\frac{\text{Building Loss Coefficient, BTU/Degree-Day}}{\text{Degree-Days}} \right)$$

Example

A 72' x 24' building in Dodge City, Kansas is to be constructed with a 309 sq ft water wall on the south side. The water wall will contain 45 lbs of water per sq ft of south glazing for a total of 13,500 lbs of water or 1618 gallons. The wall is double glazed with normal sealed glass units which have a net transmittance of 0.74 for sunlight striking the glass perpendicularly. Other than the thermal storage wall, the building is of light frame construction with little additional mass. It is desired to estimate the annual solar heating contribution.

(Step 1) The Building Loss Coefficient is estimated as follows:

Skin Conduction:

Surface Type	Area ft ²	U-Value BTU/ft ² °F hr	UxA BTU/°F hr
Water Wall	309	(not included in BLC)	
Opaque Walls	1107	0.07	77.5
Windows (E,W,N)	120	0.55	66.0
Roof	1728	0.05	86.4
Floor	1728	0.05	86.4

$$\text{Building Skin Conductance} = 316.3$$

Infiltration:

$$(12320 \text{ ft}^3)(1/2 \text{ ACH})(0.018) = 110.9$$

$$\text{Total: Building Loss Coefficient} = 427.2 \text{ BTU/hr}^{\circ}\text{F}$$

$$= 10250 \text{ BTU/DD}$$

J. D. Balcomb
Paper #3, Page 2

The building is tightly sealed and equipped with an air-lock entry and thus the infiltration can probably be held to the minimum recommended level of 1/2 air change per hour.

(Step 2) The building south wall is glazed with 18 standard patio door size sealed double glass units each with a net effective exposed area of 75 x 33 in. for a total of 309 sq ft of collection area. Thus the Load Collector Ratio is $10250/309 = 33.2 \text{ BTU/degree-day-sq ft}$.

(Step 3) In the table for Dodge City, Kansas we find the following entries for the case of a water wall without night insulation:

SHF	0.30	0.40	0.50	0.60
LCR	61	43	31	23

Our Load Collector Ratio of 33.2 lies between the two values of 0.40 and 0.50 Solar Heating Fraction. By interpolation we obtain:

$$\text{SHF} = 0.48$$

The energy saved by the installation of the solar wall is estimated as $(0.48)(10250)(4986) = 24.5 \text{ MBTU/yr}$. The energy actually supplied by the solar wall will be greater than this as discussed in the last section of the paper.

(Step 4) The auxiliary energy can be estimated as:

$$\text{Auxiliary Energy} = (1-0.48)(10250)(4986) = 26.6 \text{ MBTU/yr.}$$

METHOD B

The values listed in Table I for use in Method A were derived using the Monthly Solar Load Ratio Method. This method provides an empirical means of estimating the monthly solar auxiliary energy requirements based on the Monthly Solar Load Ratio (SLR). The Monthly Solar Load Ratio is a dimensionless correlation parameter defined as follows:

$$\text{SLR} = \frac{\text{monthly solar energy absorbed on the thermal storage wall surface}}{\text{monthly building load (including the wall steady-state losses in the absence of solar gains)}}$$

The numerator is equal to the product of the total solar collection wall area times the monthly solar energy transmitted through one square foot of south glazing times the wall absorptance. The denominator is equal to the building loss coefficient (including the steady state conduction through the south solar collection wall) times the monthly heating degree days.

The SLR can be expressed as follows:

$$\text{SLR} = \frac{\text{Monthly Solar Energy}}{\text{Modified Building Loss Coefficient}} \frac{\text{Transmitted through the Glazing}}{\text{Wall Area} \times \text{Absorptance}}$$

$$\text{SLR} = \frac{\text{Monthly Solar Energy}}{\text{Modified Building Loss Coefficient}} \frac{\text{Transmitted}}{\text{Wall area} \times \text{Absorptance}} \frac{1}{\text{Monthly Degree Days}}$$

$$\text{SLR} = \frac{\text{Solar Capability Index}}{\text{Modified Load Collector Ratio}}$$

The SLR is given by the ratio of two different terms, the Solar Capability Index, which depends only on the weather for the locality and a Modified Load Collector Ratio (MLCR) which depends only on the building construction.

Step 1

Determine the Building Loss Coefficient in the same manner as in Step 1 of Method A. Compute a Modified Building Loss Coefficient by adding the term $24 \times (\text{Solar Wall Area}(U_w))$ where U_w is taken from the following table:

<u>BTU/hr°F ft²</u>	<u>Plain Double Glazed</u>	<u>With R9 Insulation added from 5:00 p.m. to 8:00 a.m.</u>
Water Wall	0.33	0.18
18" Trombe Wall	0.22	0.12

The value of U_w is the steady-state conduction coefficient of the combined wall, glazing, and insulation, averaged over the day.

Step 2

Determine the SLR for each month of the year. Solar radiation values generally available in tables are measured on a horizontal surface, whereas the values required in order to determine the SLR are the actual solar radiation transmitted through the vertical south facing surface. The values of solar radiation in the ASHRAE tables for clear-day conditions are not applicable. The use of a cloudiness factor, which is an approach sometimes used, is not accurate enough. Thus it is necessary to provide a simple method of making a transformation.

Hour-by-hour calculations were made for one month periods for the 29 locations for each month of the year. The hourly transformation from the horizontal to the vertical was made using the correlation

technique developed by Boes,² for separating diffuse from direct beam radiation. A ground reflectance of 0.3 was assumed. The fraction of the incident energy which is actually transmitted through the glazing was then calculated using the Fresnel relationship for the hourly angles of incidence and the absorption coefficient of ordinary double strength glass. The hourly values were summed in order to determine monthly integrals. It was found that the results could be correlated quite well using the following parameter

$$L-D = \text{Latitude} - \text{Solar Declination at Mid-Month}$$

The solar declination at mid-month should be estimated from the following equation:

$$D = 23.3^\circ \cos(30^\circ M - 187^\circ)$$

$$M = \text{month (i.e., June = 6)}$$

This plotting parameter, L - D is equal to the noon-time angle between the vertical and the sun. A plot of the results is shown in Fig. 1. The solid line plotted on Fig. 1 is a least-squares fit through the data given by the following equation:

$$\begin{aligned} \text{Monthly Solar Energy} \\ \text{Transmitted through} \\ \text{South Double Glazing} &= 0.2260 - .002512(L-D) \\ \text{Monthly Solar Energy} &+ .0003075(L-D)^2 \\ \text{Incident on Horizontal-} \\ \text{tal Surface} \end{aligned}$$

The errors which would be incurred by using the least-squares fit rather than the actual values of solar radiation transmitted do not significantly increase the error in Monthly Solar Heating Fraction indicating that the two errors are uncorrelated.

If the building does not face due south, then this equation cannot be used as is. It will be necessary to make another correction for building orientation. LASL has not yet devised a separate series of correlations for different tilts and orientations. It is felt, however, that a correction factor based on the ASHRAE clear-day tables would probably be a reasonable estimate. These tables provide values for the clear day conditions for southwest and southeast orientations as well as due south, as a function of latitude. For the time being, a straight proportional correction factor based on these tables is recommended. Note that a separate correction factor will be required for each month.

Step 3

Determine the Monthly Solar Heating Fraction for each month of the year based on the values of SLR computed in Step 2. Plots of the function for the four different cases of Trombe wall and water wall with and without night insulation are given in Fig. 2.

Step 4

Compute the auxiliary energy required each month from the following equation:

$$\text{Auxiliary Energy} = (1-SHF)(\text{Degree Days})(\text{Modified Building Loss Coefficient})$$

Step 5

Compute the sum of the monthly auxiliary energy requirements. This is the annual auxiliary energy. The annual solar heating fraction can then be determined from the following equation:

$$\text{Annual SHF} = 1 - \frac{\text{Annual Auxiliary Energy}}{\left(\frac{\text{Annual Degree Days}}{\text{Building Loss Coefficient (Unmodified)}} \right)}$$

Example

The same building in Dodge City, Kansas will now be used as an example for Method B. The Building Loss Coefficient has already been determined as 10250 BTU/degree-day. The latitude of Dodge City is 38°. Following through these steps, one by one, results in the table on the next page.

The small error observed between the auxiliary energy calculated by Method A and that by Method B in this example is attributed to the slight error in interpolating in the table and the round-off of the numbers listed in Table I.

If the user desires to calculate values of the collector load ratio similar to those listed in Table I, but for a different locality or a different set of values of solar radiation or heating degree-days, he can easily do so by carrying through the five steps of Method B for various values of the Load Collector Ratio. In this manner as many points as are desired can be filled in to the table for various values of Solar Heating Fraction. It will be necessary to iterate in order to determine an exact value of Solar Heating Fraction.

The values of heating degree-days and solar radiation incident on a horizontal surface which were used to compute Table I are the standard values

Dodge City	DD	Modified Monthly Load, MBTU/Mo.	Horizontal Solar Radiation BTU/Mo. ft ²	L-D	Solar Radiation Absorbed MBTU/Mo.	SLR	SHF	Auxiliary MBTU/Mo.
Oct.	251	3.19	41180	47.1	10.05	3.15	.972	.09
Nov.	666	8.46	28560	56.6	9.43	1.11	.631	3.12
Dec.	939	11.92	25050	61.1	9.45	.79	.474	6.77
Jan.	1051	13.35	27910	59.4	10.02	.75	.450	7.34
Feb.	840	10.67	33270	57.0	9.53	.89	.529	5.03
Mar.	719	9.13	47590	40.8	9.34	1.02	.592	3.73
Apr.	354	4.50	58230	28.9	7.38	1.64	.797	.91
May	124	1.57	65320	19.4	5.91	3.76	.992	.01
Total	4944							27.00

The column labeled Modified Load is calculated with a Modified Building Loss Coefficient of 12700 BTU/DD. The added loss is $(309 \text{ ft}^2)(.33)(24) = 2450 \text{ BTU/DD}$ to account for the steady state solar wall loss coefficient. The Solar Heating Fraction is calculated from the (unmodified) Building Loss Coefficient as follows:

$$\text{SHF} = 1 - \frac{27.0 \times 10^6}{(10250)(4944)} = 0.47$$

which have been listed in the literature. Revised values of solar radiation will probably be generated to reflect better knowledge of pyranometer calibrations and other factors. As these numbers become available, more accurate values for Table I can be generated. It should be noted however, that the accuracy of the Solar Load Ratio Method itself does not depend on the accuracy of the solar radiation data used, since there was complete consistency between the values of the hourly solar radiation used and the monthly integrals of solar radiation.

EFFECT OF INTERNAL GENERATION IN THE BUILDING

Heat generated in the building, by people, lights and equipment is effective in reducing the monthly load. This reduces both the auxiliary energy requirements and the monthly solar contribution.

The original basis for defining the degree-day base at 65°F was on the assumption that these internal energy sources would raise the building temperature from 65°F up to the accepted comfort standard of 72°F. This assumption can still be made in using the results from this section, namely, that the actual building temperature would be several degrees greater than the 65°F to 75°F band assumed in the analysis.

However, experience has been that most people now set their thermostat at lower levels. This is especially true of people who live in passive

solar homes because the effect of the warm surrounding surfaces of these buildings increases the mean radiant temperature within the space so that one can be comfortable at a reduced air temperature. In any case, a 65°F thermostat setting seems more consistent with actual practice in the winter than the ASHRAE standard value of 72°F.

The hour-by-hour analysis used to determine the Monthly Solar Load Ratio curves did not provide any internal energy in the building to account for that generated by people, lights and equipment. The user of the method can correct for this by subtracting the estimated internal energy generation from the monthly loads prior to computing the monthly Solar Load Ratio. The effect of this would be to increase the Solar Load Ratio, increase the Monthly Solar Heating Fraction, and decrease the auxiliary energy requirements.

VARIATIONS FROM THE ASSUMED REFERENCE SYSTEMS

The monthly solar load ratio curves which have been determined are for very specific reference systems as defined in Table II. If it is desired to estimate the performance of the system which is different than one of these reference systems, then it is necessary to make a correction. The most reliable way of doing this is to refer to results of hour-by-hour calculations which are made for a specific system varying only the parameter of interest. Quite a few such calculations have been made by LASL and have been published.^{3,4} These describe the effect of water mass in a water wall, the effect of using or not using the vents in the

Trombe wall, the effect of thickness of a Trombe wall, and the effect of different thermal conductivities of the material.

The recommended procedure is to make a calculation for the reference case and then to adjust that value up or down.

EFFECT OF A REFLECTOR

A tremendous performance advantage can be achieved through the use of a reflector to increase the total amount of solar radiation on the solar collection wall. A combination of a reflector and night insulation was demonstrated by Steve Baer in his Corrales home using water walls. He used a fold-down door hinged at the base with a reflective surface on the inner side. The door was insulated so that when it was raised it would reduce nighttime heat loss. When lowered during the day, the reflector augmentation increased performance.

LASL has calculated the performance increase to be expected from the reflector, and has determined that the estimating procedure can accurately be separated into two steps. The first step is to estimate the increase in solar radiation transmitted through the south facing glazing. The second step is to use this information in Monthly Solar Load Ratio calculation to determine monthly performance.

The reflector geometry which was studied is as follows: The size of the reflector is exactly equal to that of the solar collection wall. It is positioned horizontally in front of the solar collection wall so that the edge of the reflector is against the base of the wall (as if it were folded down from the wall, hinged at the bottom). The end effects were calculated assuming that the width of both the wall and the reflector is equal to five times the height of the wall. The reflectance of the material of the reflector was assumed to be 0.8, equivalent to that of the best commercial reflective materials available. (Reflectance of normal shop-grade aluminum is approximately 0.6.)

The method used to calculate the reflector enhancement achieved was similar to that used to calculate the ratio of vertical energy transmitted to horizontal energy as described in Step 2 of Method B. Hour-by-hour calculations were made for the 12 months of each year for 10 locations. The angular effects were calculated each hour as well as the effect of the modified incidence angle on the collection wall of the reflected beam. The energy transmitted through the glazing was decreased by the amount which would have been reflected

from a diffuse foreground with a reflectance of 0.3, which is the assumption which had been made for all of the preceding calculations.

The ratio of the total monthly solar energy transmitted with the reflector to that without the reflector is plotted in Fig. 3. Again it was found that the parameter $L - D$ was an effective correlating parameter for this ratio. A least-squares fit of these data is given by the following equation:

$$\begin{aligned} \text{Enhancement} = & 1.0083 - .01787(L-D) + .001916(L-D)^2 \\ & - 4.031 \times 10^{-5} (L-D)^3 \\ & + 2.466 \times 10^{-7} (L-D)^4 \end{aligned}$$

which is the solid line shown on the figure.

If a reflector is used with a reflectance other than 0.8, the enhanced values of solar radiation can be computed from the above equation by assuming that the difference between unity and the calculated enhancement is proportional to the reflectance.

DERIVATION OF THE CORRELATIONS

The method is based on a brute-force empirical curve fitting approach using appropriate correlating parameters (the solar load ratio and monthly degree-days) based on detailed hour-by-hour computer simulation analyses from a wide variety of climates and building loads. Thus far, the method has been developed only for four types of passive solar heating buildings all of which fall in the category of thermal storage walls.

The method was first applied to active systems.¹ In an active system the load is a separable quantity unconnected to the solar heat supply. However, in most passive systems the thermal load and the solar heat supply are inter-related. It was determined, by trial and error, that if the load were calculated to include the steady-state load associated with the collector wall, then the Solar Load Ratio (SLR) is an effective correlating parameter. Consistent results were only obtained by using this approach.

The basic assumption of the method is that the monthly Solar Heating Fraction can be expressed as a unique function of the SLR, independent of either location or time of year. This is a rather brash assumption considering the variability of the weather in various locations and clearly one cannot expect exact answers from such a broad-brush approach.

In order to test the hypothesis, hour-by-hour computer simulation analyses were run for 29 different cities scattered throughout the U. S., Southern Canada, and three foreign locations. Six different values of the Load/Collector Ratio were chosen for each city so that the total of 174 year-long calculations were made altogether, representing a total of 1390 months during the heating season. A plot of all these results is shown on Fig. 4 for the case of a Trombe wall.

In order to make such a calculation the system had to be completely defined. A reference system was chosen as indicated in Table II.

The data of Fig. 3 show a relatively good correlation between Monthly Solar Heating Fraction and Monthly Solar Load Ratio. The individual plotting symbols shown on Fig. 4 identify the city for which the calculation was made. A list of those cities and their associated plotting parameters are given in Table III.

The reason for the scatter in Fig. 4 is that the assumption made is not quite correct. Two months may have the same Monthly Solar Load Ratio and yet actually have a different load, a different amount of sunshine incident on the wall and furthermore, the distribution of sunny and cloudy days within the two months may be entirely different. However, given these disparities, it is encouraging to note the total range of monthly solar heating fractions is as small as observed.

A least squares fit could have been made through the data of Fig. 4. Such a fit would give a minimum rms error in the predicted Monthly Solar Heating Fraction. However, it was desired to obtain a minimum error in the annual Solar Heating Fraction, not the monthly values. In order to do this, a functional form was chosen for the relationship between Monthly Heating Fraction and Monthly Solar Load Ratio as follows:

$$\text{SHF} = a_1(\text{SLR}) \quad \text{SLR} < R$$

$$\text{SHF} = a_2 - a_3 e^{-a_4(\text{SLR})} \quad \text{SLR} > R$$

such that the values are equal at $\text{SLR} = R$. The values of the parameters in the function were chosen to give a minimum least square error in the annual solar heating fraction for the 174 sample years calculated. The resulting function for a Trombe wall is shown plotted on Fig. 4; the results on Fig. 5.

The values of the least-squares coefficients and the standard deviation of annual SHF are as follows:

Case	R	a_1	a_2	a_3	a_4	σ
WW	0.8	0.5995	1.0149	1.2600	1.0701	.028
WWNI	0.7	0.7642	1.0102	1.4027	1.5461	.026
TW	0.1	0.4520	1.0137	1.0392	0.7047	.024
TWNI	0.5	0.7197	1.0074	1.1195	1.0948	.023

Discussion of Loads

Two coefficients have been used to describe the heat loss characteristics of the building: a Building Loss Coefficient, used in Method A, and a Modified Building Loss Coefficient, used to determine the Solar Load Ratio in Method B. The difference is the steady-state or static loss coefficient of the solar wall in the absence of solar gains, $24 \times A_w \times U_w$. The Modified BLC was introduced only to facilitate the calculation of the Solar Load Ratio, as discussed above.

Monthly heating degree-day values were used in the correlation procedure because they are the only indicators of heating load that are readily available in most localities. The actual annual auxiliary heating values used in calculating the abscissa of Fig. 4 were the sum of the hour-by-hour requirements from the simulation. Thus the auxiliary will be accurately estimated provided the user is consistent in calculating loads in the same way that was used to determine the correlations.

The Modified Monthly Load, which is the product of the monthly degree-days times the Modified Building Loss Coefficient, has no accurate physical meaning. It is simply a convenient intermediate parameter used in the calculation.

It is possible to distinguish between two solar heat contributions from the solar wall: 1) the energy saved, and 2) the energy supplied. The difference is explained in the following paragraphs. In this paper the energy saved is used to define the solar heating fraction even though it gives a lower value.

Since the auxiliary energy is only required during periods when the temperature inside the room is actually at 65°F, the auxiliary energy requirements determined by the simplified method will be a good estimate.

The actual solar energy supplied by the solar collection wall will be greater than that estimated by taking the difference between the annual degree-day load and the auxiliary energy. The extra solar heat is the amount used to maintain the building above 65°F during a significant portion of the year. Since it is the actual auxiliary

energy required which is the most important number to be estimated, it was felt that the approach used was best.

In reality, the solar heated building will generally be warmer than the non-solar heated building, assuming that the thermostat is set at 65°F in both cases. The non-solar heated building will frequently rise above that value and occasionally to 75°F, at which time it is assumed that any additional energy is dumped (presumably by opening a window).

REFERENCES:

1. J. D. Balcomb and J. C. Hedstrom, "A Simplified Method for Calculating Required Solar Collector Array Size for Space Heating," Proceedings, 1976 ISES Annual Meeting, Vol. 4, Winnipeg, Canada, Aug. 15-20, 1976. See also: ERDA's Pacific Regional Solar Heating Handbook, Nov. 1976.
2. E. C. Boes, et al., "Distribution of Direct and Total Solar Radiation Availabilities for the USA." Proceedings of the 1976 ISES Annual Meeting, Vol. 1, Winnipeg, Canada, Aug. 15-20, 1976.
3. J. D. Balcomb, et al., "Simulation Analysis of Passive Solar Heated Buildings--Preliminary Results," Solar Energy, Vol. 19, pp 277-282 (1977).
4. J. D. Balcomb, J. C. Hedstrom, and R. D. McFarland, "Passive Solar Heating of Buildings." Printed in SAND-77-1204 and also Solar Architecture, Ann Arbor Science (1977).

TABLE III
WEATHER DATA USED FOR CORRELATIONS

City	Symbol (Figs. 3-4)
Los Alamos, NM	1
El Paso, TX	2
Fort Worth, TX	3
Madison, WI	4
Albuquerque, NM	5
Phoenix, AZ	6
Lake Charles, LA	7
Fresno, CA	8
Medford, OR	9
Bismarck, ND	Ü
New York, NY	A
Tallahassee, FL	B
Dodge City, KS	C
Nashville, TN	D
Santa Maria, CA	E
Boston, MA	F
Charleston, SC	G
Los Angeles, CA	H
Seattle, WA	I
Lincoln, NE	J
Boulder, CO	K
Vancouver, BC	L
Edmonton, ALB	M
Winnipeg, MAN	N
Ottawa, ONT	P
Frederickton, NB	Q
Hamburg	R
Denmark	S
Tokyo	T

TABLE II
REFERENCE PASSIVE SOLAR SYSTEMS USED FOR CORRELATIONS

Assumptions for both Method A and Method B:

Thermal Storage = 45 BTU/°F ft² of glazing
Trombe wall has vents with backdraft dampers
Double Glazing (normal transmittance = 0.747)
Temperature Range in Building: 65°F to 75°F
Building Mass is Negligible
Night Insulation (when used) is R9;
5:00 p.m. to 8:00 a.m.
Wall to room conductance = 1.0 BTU/hr °F ft²
Trombe wall properties k = 1.0 BTU/ft hr °F
 $\rho_c = 30 \text{ BTU/ft}^3 \text{ °F}$

Additional Assumptions for Method A:

Vertical, south-facing glass
Wall absorptance = 1.0
Ground reflectance = 0.3

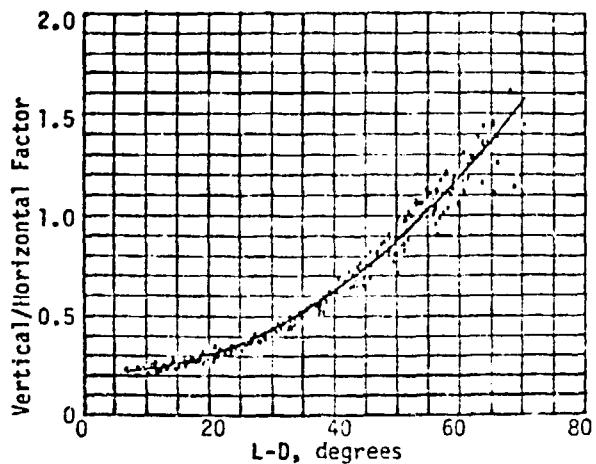


Fig. 1. The vertical/horizontal factor is the ratio of the monthly solar radiation transmitted through vertical south-facing double glazing to the monthly total horizontal solar radiation. L-D is the latitude minus the solar declination at mid-month. Ground reflectance is 0.3 and is diffuse.

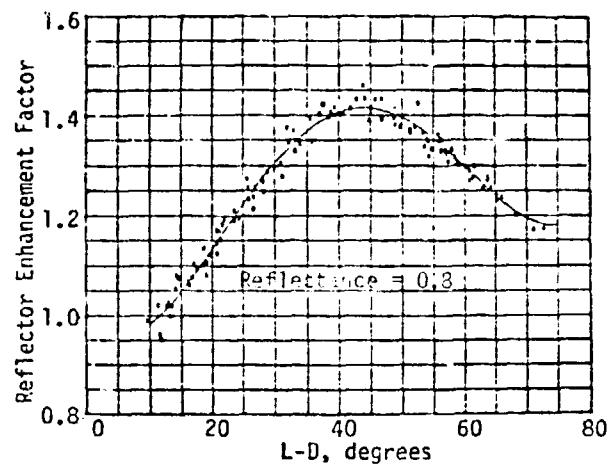


Fig. 3. The reflector enhancement factor is the ratio of the monthly solar radiation transmitted through vertical south facing double glazing with a reflector to that without a reflector. The reflector size is equal to the window size and is horizontal in front of the window. Reflectance is 0.8 and is specular.

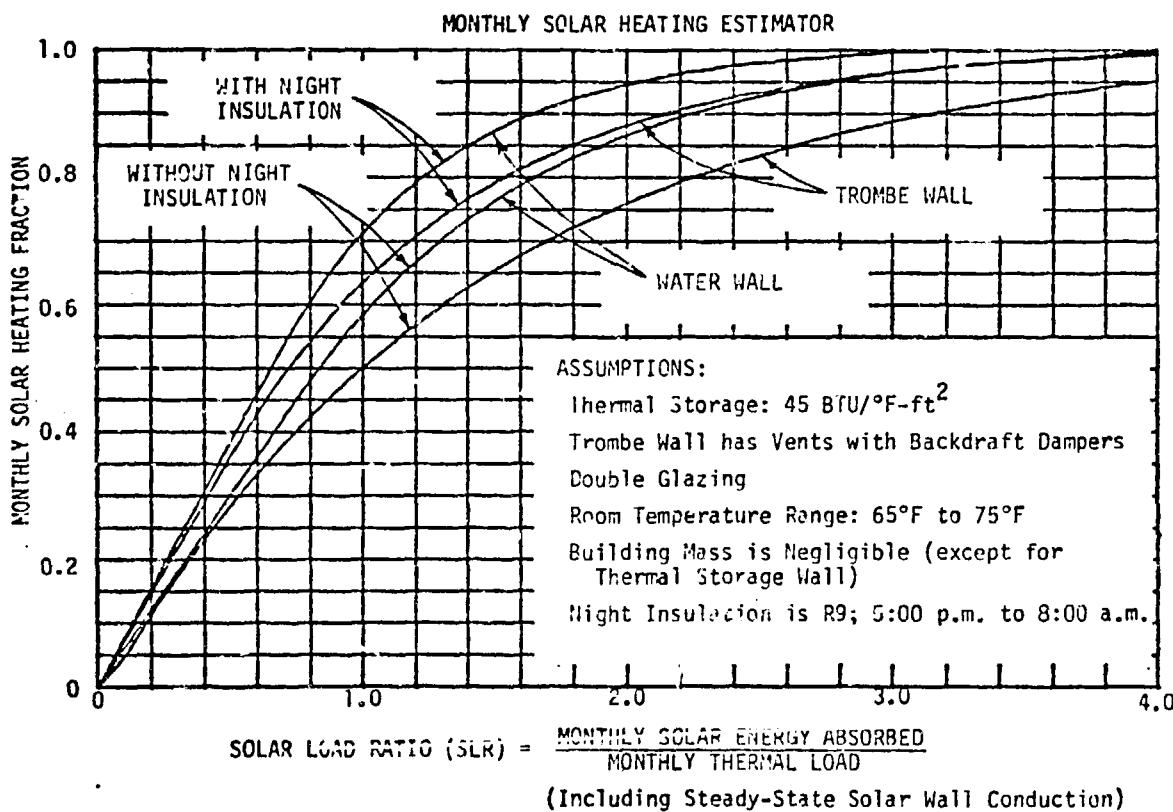


Fig. 2. Least-square monthly solar load ratio curves for thermal storage walls.

Fig. 4

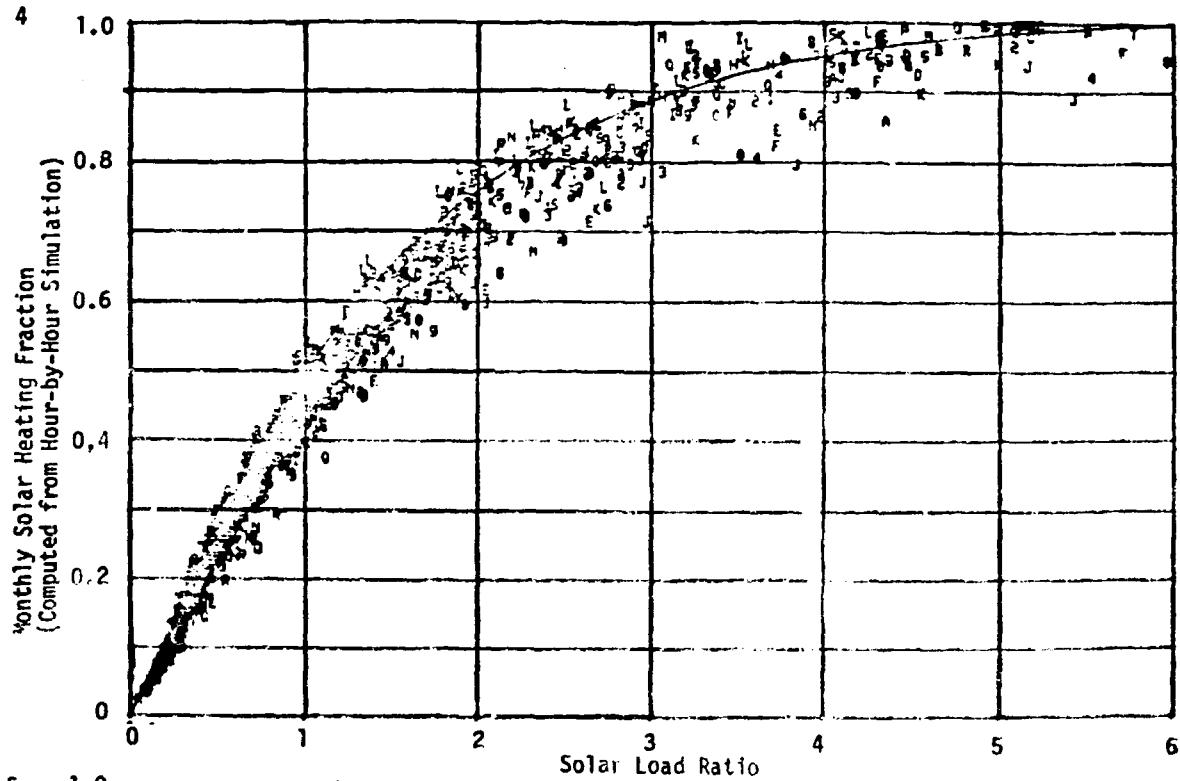
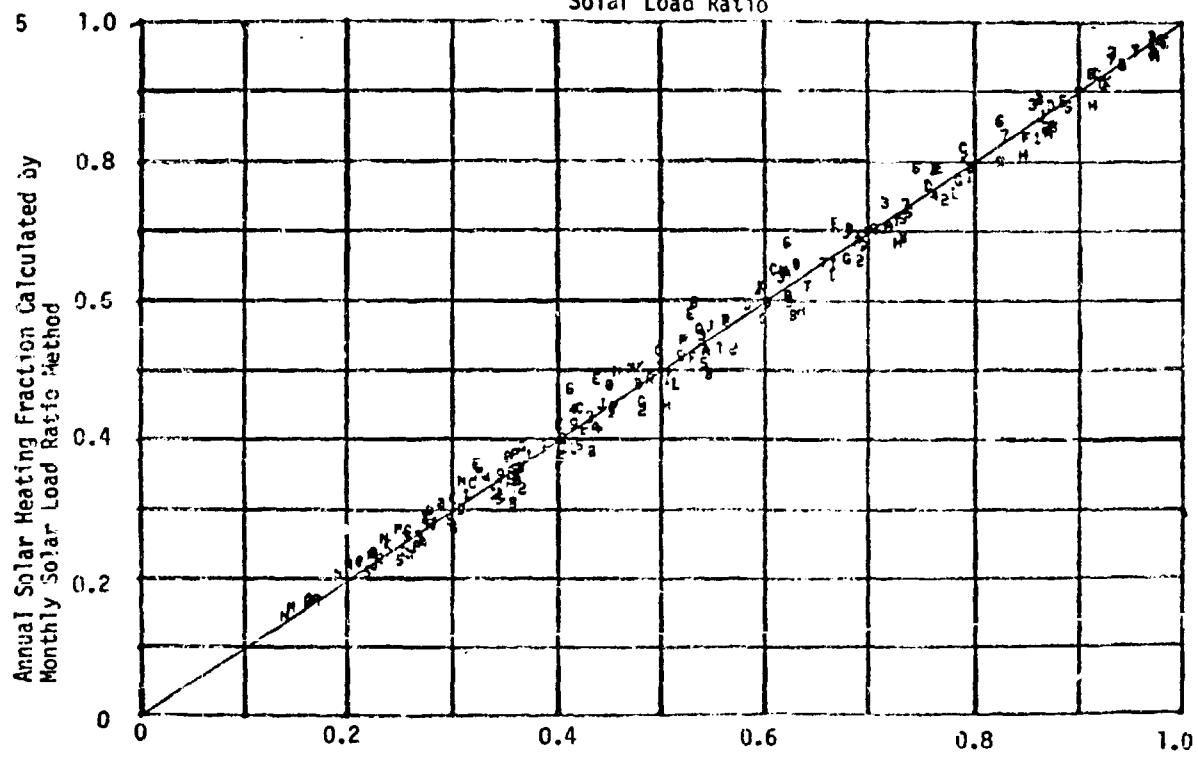



Fig. 5

Annual solar heating fraction calculated by hour-by-hour simulation.

See Table III to identify plotting symbols on Figs. 4 and 5.

J. D. Balcomb
Paper #3, Page 10

TABLE I: PERFORMANCE PARAMETERS FOR PASSIVE SOLAR HEATING SYSTEMS USING THERMAL STORAGE WALLS
Load Collector Ratio (BTU/DD-ft²) for particular values of Solar Heating Fraction (SHF)

Page, Arizona	SHF	Apache Junction, Arizona										Tucson, Arizona									
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.1	0.2
6632 DD	WW	198	88	54	37	27	19	13	7	1308 DD	WW	700	322	204	145	110	85	65	48	32	53
	WWNI	312	145	91	65	49	38	29	22	15	WWNI	956	444	231	223	155	123	97	75	53	32
37°N	TW	195	94	56	37	25	17	11	6	1459 DD	TW	835	313	134	133	95	70	51	36	24	
	TWNI	304	141	89	63	46	35	26	18	12	TWNI	906	240	256	159	142	108	82	61	42	
Phoenix, Arizona	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Gainesville, Florida	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1785 DD	WW	626	294	188	135	102	78	60	44	1239 DD	WW	731	337	212	152	115	80	63	51	35	
	WWNI	853	407	261	139	145	114	90	69	1459 DD	WWNI	1000	457	292	211	152	129	102	79	55	
33°N	TW	577	287	179	123	68	64	47	33	12	TW	662	326	251	139	103	73	54	39	25	
	TWNI	819	346	247	176	132	101	76	56	38	TWNI	943	435	273	197	113	113	85	64	44	
Tucson, Arizona	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Tallahassee, Florida	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1800 DD	WW	631	291	184	132	100	77	59	43	1485 DD	WW	621	235	179	123	97	75	57	42	23	
	WWNI	871	403	256	185	142	112	89	68	1485 DD	WWNI	857	397	219	130	133	9	87	67	43	
32°N	TW	578	284	176	121	87	63	46	33	21	TW	563	279	172	111	84	61	45	32	21	
	TWNI	825	383	243	173	130	93	75	56	38	TWNI	809	376	237	133	127	97	73	54	37	
Little Rock, Arkansas	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Tampa, Florida	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
3219 DD	WW	239	108	66	46	33	24	17	11	683 DD	WW	1147	573	374	272	210	166	129	99	69	
	WWNI	365	172	107	75	57	44	35	26	18	WWNI	1529	750	559	375	283	227	182	141	102	
35°N	TW	232	112	67	44	30	21	14	9	683 DD	TW	1059	548	351	245	179	134	100	73	43	
	TWNI	356	165	103	73	54	40	30	22	14	TWNI	1443	717	457	332	248	199	152	114	80	
Davis, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Atlanta, Georgia	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2502 DD	WW	409	187	115	79	57	42	30	21	11	2961 DD	WW	301	136	83	58	43	31	23	15	8
	WWNI	585	272	170	120	89	68	52	39	25	WWNI	443	207	129	91	69	54	42	32	22	
39°N	TW	378	183	111	74	51	36	25	16	9	TW	286	138	83	55	38	27	13	12	7	
	TWNI	556	259	161	112	82	61	45	32	21	TWNI	431	198	123	87	64	48	36	26	17	
El Centro, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Bolise, Idaho	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1458 DD	WW	1028	482	301	214	161	125	97	72	50	5809 DD	WW	185	83	48	31	20	12	6		
	WWNI	1375	649	407	290	221	175	139	107	77	WWNI	299	139	86	59	43	31	23	16	10	
33°N	TW	916	458	284	194	140	103	77	54	36	44°N	TW	182	86	53	31	20	12	6		
	TWNI	1294	608	382	270	202	154	117	87	60	TWNI	290	135	83	56	40	29	21	14	8	
Fresno, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Lemont (ANL), Illinois	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2492 DD	WW	405	186	113	77	55	40	29	19	10	6155 DD	WW	120	51	29	18	11				
	WWNI	577	271	168	117	87	66	50	37	25	WWNI	219	100	61	42	31	24	18	13	8	
37°N	TW	370	181	109	72	49	34	24	15	8	TW	129	59	33	20	12	7				
	TWNI	550	257	159	110	79	59	43	31	20	TWNI	216	99	61	42	30	22	16	11	7	
Inyokern, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Indianapolis, Indiana	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
3528 DD	WW	453	209	129	90	66	50	37	26	16	5699 DD	WW	136	58	33	21	14	7			
	WWNI	641	300	188	132	100	77	60	46	32	WWNI	239	109	67	45	34	26	19	14	9	
36°N	TW	419	264	124	84	59	42	30	20	12	TW	142	65	37	23	14	8				
	TWNI	613	284	177	124	92	69	52	38	25	TWNI	235	107	66	45	33	24	17	12	7	
Los Angeles, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Ames, Iowa	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2061 DD	WW	763	362	225	158	118	91	70	52	35	6588 DD	WW	117	50	29	18	11				
	WWNI	1032	498	370	219	165	131	103	80	57	WWNI	215	99	61	42	31	23	18	12	8	
34°N	TW	687	344	213	145	103	75	55	39	26	TW	127	58	34	20	12	6				
	TWNI	979	464	291	205	143	116	88	65	45	TWNI	213	98	60	41	30	22	16	11	7	
Riverside, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Dodge City, Kansas	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1803 DD	WW	767	356	224	160	121	94	72	53	36	4986 DD	WW	214	99	61	43	31	23	16	10	
	WWNI	1039	488	308	221	159	134	106	82	58	4986 DD	WWNI	335	160	101	72	54	42	33	25	17
34°N	TW	692	344	214	146	105	77	56	40	25	TW	214	104	63	41	28	20	13	8		
	TWNI	984	459	290	207	155	118	90	67	46	TWNI	327	154	97	69	51	38	29	21	14	
Santa Maria, California	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Manhattan, Kansas	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2967 DD	WW	544	272	176	126	96	74	56	41	27	5182 DD	WW	165	74	44	30	21	14	8		
	WWNI	752	375	247	179	137	108	86	66	45	5182 DD	WWNI	274	128	80	56	42	32	25	18	12
35°N	TW	514	254	167	115	83	61	44	31	20	TW	169	80	47	32	20	13	8			
	TWNI	720	358	231	166	124	94	73	54	36	TWNI	259	125	73	54	40	30	22	15	10	
Granby, Colorado	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Lexington, Kentucky	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5524 DD	WW	196	90	56	39	28	20	14	8	1480 DD	WW	143	63	36	26	16	10	5			
	WWNI	313	146	94	67	51	40	31	23	15	1480 DD	WWNI	246	114	70	49	36	28	21	15	10
40°N	TW	197	96	58	38	26	18	12	7	15	TW	143	70	40	25	16	10	5			
	TWNI	303	143	91	65	48	36	27	19	13											

TABLE I: PERFORMANCE PARAMETERS FOR PASSIVE SOLAR HEATING SYSTEMS USING THERMAL STORAGE WALLS (Cont.)
Load Collector Ratio (BTU/DD-ft²) for particular values of Solar Heating Fraction (SHF)

City, State	SHF	Load Collector Ratio (BTU/DD-ft ²)									City, State	SHF	Load Collector Ratio (BTU/DD-ft ²)								
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Caribou, Maine	WW	43	34	17	8						Albuquerque, New Mexico	WW	278	133	83	59	44	43	24	16	9
9769 DD	WWNI	172	78	48	33	24	17	13	8		4348 DD	WW	414	201	128	92	70	55	43	33	21
47°N	TM	97	43	23	12	5					WWNI	271	135	83	56	39	28	19	13	7	
	TMNI	172	79	48	33	23	17	12	8		402	193	123	87	65	49	37	27	18		
Portland, Maine	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Los Alamos, New Mexico	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
7511 DD	WW	125	54	31	20	13	7				WW	179	84	52	36	26	18	12	7		
WWNI	223	103	64	45	33	25	19	14	8	6604 DD	WW	258	139	89	64	48	37	29	21	14	
TM	133	62	35	22	14	8				WWNI	183	89	54	36	24	16	11	6			
44°N	TMNI	221	102	63	44	32	23	17	12	7	36°N	WW	253	136	86	61	45	34	25	18	12
Boston, Massachusetts	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Ithaca, New York	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5634 DD	WW	137	60	35	23	15	9			WW	93	36	18	9							
WWNI	241	110	63	48	36	27	21	11	9	6914 DD	WW	189	83	50	34	24	18	13	9	5	
TM	145	67	39	24	15	9	5			WWNI	106	46	24	13	6						
42°N	TMNI	231	108	67	47	34	25	18	12	8	42°N	WW	183	83	50	34	24	17	12	8	4
East Lansing, Michigan	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	New York City, New York	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
6909 DD	WW	111	46	35	15	8				WW	147	64	38	25	17	11	5				
WWNI	208	94	57	39	29	22	16	11	7	4871 DD	WW	250	117	72	51	38	29	22	16	10	
TM	120	54	30	18	10	4				WWNI	152	71	42	25	17	11	6				
43°N	TMNI	206	93	57	39	28	20	15	10	6	41°N	WW	247	114	71	49	36	27	20	14	9
Sault St. Marie, Michigan	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Saville, L.I., New York	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
9048 DD	WW	100	40	21	11					WW	165	74	45	30	21	14	9				
WWNI	193	87	53	36	26	19	13	9	5	4811 DD	WW	272	129	80	57	43	33	25	18	12	
TM	110	49	26	15	7					WWNI	169	81	48	31	20	13	8	4			
44°N	TMNI	192	87	53	36	25	18	13	8	4	41°N	WW	268	125	78	55	40	30	22	16	10
St. Cloud, Minnesota	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Schenectady, New York	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
8879 DD	WW	96	39	21	11					WW	34	34	18	9							
WWNI	189	85	52	36	26	19	14	9	5	6650 DD	WW	174	79	48	33	24	18	13	9	5	
TM	108	48	26	15	7					WWNI	98	43	23	13	6						
44°N	TMNI	189	86	52	36	25	18	13	8	5	43°N	WW	175	79	49	33	24	17	12	8	5
Columbia, Missouri	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Greensboro, North Carolina	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5044 DD	WW	179	77	46	31	21	14	8		WW	237	107	66	46	33	24	17	11			
WWNI	26	133	82	57	43	33	25	18	12	3805 DD	WW	367	173	107	75	57	44	35	26	18	
TM	177	83	49	31	20	13	8			WWNI	211	112	67	44	30	21	14	9			
39°N	TMNI	281	129	80	55	41	30	22	15	10	36°N	WW	354	163	103	72	54	40	30	22	14
Glasgow, Montana	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Matteras, North Carolina	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
8916 DD	WW	168	75	44	29	19	12	6		WW	412	189	118	82	61	46	34	24	15		
WWNI	277	130	81	56	41	31	23	17	10	2612 DD	WW	588	274	173	123	93	73	57	43	30	
TM	171	80	47	30	19	12	7			WWNI	381	167	115	77	54	39	28	19	11		
44°N	TMNI	272	126	78	54	39	29	21	14	9	35°N	WW	580	261	164	115	86	65	49	36	24
Great Falls, Montana	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Paleigh, North Carolina	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
7750 DD	WW	143	63	37	23	14	8			WW	256	117	71	50	37	27	19	12	7		
WWNI	246	115	71	49	36	27	20	14	8	3393 DD	WW	391	182	114	80	61	48	37	28	19	
TM	149	69	40	25	15	9				WWNI	249	120	72	48	33	23	16	10	5		
43°N	TMNI	243	112	69	48	34	25	18	12	7	36°N	WW	378	175	109	77	57	43	32	23	15
Lincoln, Nebraska	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Bismarck, North Dakota	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
5864 LU	WW	175	77	45	30	21	14	8		WW	111	46	25	16	6						
WWNI	288	133	82	57	42	33	25	18	12	3351 DD	WW	208	94	57	39	28	21	15	10	6	
TM	176	83	48	31	20	13	8			WWNI	120	54	30	17	9						
41°N	TMNI	280	129	79	55	40	30	22	16	10	47°N	WW	207	94	57	39	27	20	14	9	5
Ely, Nevada	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Cleveland, Ohio	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
7733 DD	WW	172	80	50	35	25	13	12	6	WW	103	41	22	12							
WWNI	182	134	85	61	47	36	28	21	14	6351 DD	WW	202	89	53	36	26	20	14	10	6	
TM	178	84	52	34	23	16	10	6		WWNI	114	50	27	15	8						
39°N	TMNI	277	131	83	59	44	33	25	13	11	41°N	WW	200	89	53	36	26	19	13	9	5
Las Vegas, Nevada	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Columbus, Ohio	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
2709 DD	WW	448	209	130	92	68	52	32	28	17	5111 DD	WW	120	51	29	18	11				
WWNI	632	300	188	134	102	80	63	48	33	5796 DD	WW	218	100	61	47	31	23	17	12	7	
TM	414	205	126	85	60	43	31	21	13	5796 DD	WW	128	59	33	20	12	6				
36°N	TMNI	603	284	179	126	94	71	53	39	26	40°N	WW	216	99	61	42	30	22	16	11	6
Reno, Nevada	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Put-in-Bay, Ohio	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
6332 DD	WW	192	88	54	37	26	16	12	6		WW	102	39	20	9						
WWNI	307	145	91	65	49	37	26	21	13	5796 DD	WW	199	88	52	35	25	18	13	8		
TM	192	93	55	36	24	16	10	5		WWNI	112	50	25	14	6						
39°N	TMNI	298	141	89	62	46	34	23	18	10	42°N	WW	199	87	52						

TABLE I: PERFORMANCE PARAMETERS FOR PASSIVE SOLAR HEATING SYSTEMS USING THERMAL STORAGE WALLS (Cont.)
 Load Collector Ratio (BTU/DD-ft²) for particular values of Solar Heating Fraction (SHF)

City, State	SHF	SHF										SHF											
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.1	0.2		
Astoria, Oregon	WW	207	98	59	39	26	17	9	19	11	6929	00	170	79	48	33	23	16	10	5	170	79	
51°00' DD	WWNI	322	158	99	69	50	37	27	19	11	WWNI	277	132	84	60	45	35	27	20	13	277	132	
46°N	TWN	205	99	59	38	25	15	9	19	11	41°N	272	129	82	58	43	32	23	17	11	173	84	
45°N	TWN	315	152	95	65	47	34	24	16	9	TWN	272	129	82	58	43	32	23	17	11	272	129	
Corvallis, Oregon	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Flaming Gorge, Utah	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
4726 DD	WW	224	96	57	37	24	16	9	18	11	6052	00	192	86	52	35	24	16	10	5	WW	192	86
45°N	WWNI	352	158	97	67	48	36	26	18	11	TW	106	143	90	63	45	35	27	19	12	WWNI	106	143
42°N	TW	217	100	58	36	24	15	9	19	11	41°N	190	91	54	34	23	15	9	4	TW	190	91	
42°N	TWN	341	153	93	63	45	33	23	16	9	TWN	299	140	87	60	44	32	24	17	10	299	140	
Medford, Oregon	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Burlington, Vermont	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
5008 DD	WW	188	83	49	31	20	12	7	16	9	8269	00	80	30	15	17	10	8	4	WW	80	30	
48°N	WWNI	306	139	86	60	43	32	23	16	9	TW	171	75	46	31	23	17	12	8	WWNI	171	75	
42°N	TW	188	87	50	31	20	12	6	19	11	44°N	94	41	21	11	7	4	4	TW	94	41		
42°N	TWN	296	136	83	57	40	29	21	14	8	TWN	172	87	46	31	22	16	11	7	TWN	172	87	
State College, Pennsylvania	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Pullman, Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
5934 DD	WW	117	50	28	18	11	7	12	17	11	5542	00	178	78	44	27	17	9	8	WW	178	78	
41°N	WWNI	214	98	61	42	31	23	17	12	7	TW	291	134	82	56	40	29	21	14	8	WWNI	291	134
41°N	TW	126	58	33	20	12	6	16	11	6	47°N	175	81	53	35	25	18	10	7	TW	175	81	
41°N	TWN	213	97	60	41	30	22	16	11	6	TWN	282	130	79	53	37	27	19	13	TWN	282	130	
Newport, Rhode Island	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Richland, Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
5804 DD	WW	150	66	40	27	19	12	7	17	11	5941	00	179	77	43	25	15	7	7	WW	179	77	
41°N	WWNI	256	118	74	52	39	30	23	17	11	TW	293	133	81	54	38	27	19	13	7	WWNI	293	133
41°N	TW	156	74	43	27	18	11	7	19	11	47°N	176	80	45	27	16	9	4	TW	176	80		
41°N	TWN	251	116	72	51	37	28	20	14	9	TWN	285	130	78	52	36	26	18	12	TWN	285	130	
Charleston, South Carolina	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Seattle, Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
2033 DD	WW	442	204	127	90	67	52	39	28	18	4424	00	219	93	52	32	20	11	9	9	WW	219	93
33°N	WWNI	624	295	184	132	100	79	63	48	34	TW	346	154	93	62	44	31	22	15	9	WWNI	346	154
33°N	TW	407	202	124	84	59	43	31	21	13	48°N	211	95	54	33	20	12	6	4	TW	211	95	
33°N	TWN	594	279	176	124	93	71	53	39	27	TWN	333	149	89	59	41	29	20	13	8	TWN	333	149
Rapid City, South Dakota	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Spokane, Washington	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
7345 DD	WW	149	67	40	26	18	11	6	16	10	6655	00	149	63	34	20	10	6	6	WW	149	63	
44°N	WWNI	253	118	74	52	39	30	22	16	10	TW	255	116	70	47	33	23	17	11	6	WWNI	255	116
44°N	TW	155	73	43	27	17	11	6	19	11	48°N	151	68	38	22	13	8	4	TW	151	68		
44°N	TWN	249	116	72	59	37	27	20	14	9	TWN	251	114	68	45	32	22	16	10	5	TWN	251	114
Nashville, Tennessee	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Madison, Wisconsin	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
3578 DD	WW	227	99	59	40	28	20	13	8	15	7863	00	108	44	24	14	7	6	6	WW	108	44	
36°N	WWNI	355	161	98	68	51	39	30	23	15	TW	206	92	56	38	28	21	16	11	6	WWNI	206	92
36°N	TW	219	123	61	39	26	18	11	7	12	43°N	119	53	29	17	10	20	14	10	6	TW	119	53
36°N	TWN	343	155	95	66	48	36	27	19	12	TWN	204	92	56	38	27	20	14	10	6	TWN	204	92
Cat Ridge, Tennessee	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Lander, Wyoming	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
3617 DD	WW	204	90	54	36	26	18	12	6	14	7870	00	163	75	47	32	22	15	9	12	WW	163	75
34°N	WWNI	325	149	92	64	48	37	29	21	14	TW	267	129	82	58	44	34	26	19	12	WWNI	267	129
34°N	TW	201	95	56	36	24	16	6	16	11	43°N	168	81	49	32	21	14	9	4	TW	168	81	
34°N	TWN	313	145	89	62	46	34	25	18	11	TWN	264	126	80	56	41	31	21	16	10	TWN	264	126
Brownsville, Texas	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Laramie, Wyoming	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
600 DD	WW	1052	526	348	254	194	151	117	88	60	7381	00	157	72	44	31	22	15	10	13	WW	157	72
28°N	WWNI	1399	700	465	342	265	209	165	127	90	TW	263	124	79	55	43	33	26	19	13	WWNI	263	124
28°N	TW	976	506	324	226	165	123	91	66	44	41°N	164	79	47	31	21	14	9	4	TW	164	79	
28°N	TWN	1330	664	435	315	238	183	140	104	71	TWN	259	122	77	57	41	31	23	16	TWN	259	122	
El Paso, Texas	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Edmonton, Alberta	SHF	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	SHF	0.1
2700 DD	WW	431	205	129	92	69	52	39	28	18	10268	00	93	34	18	31	20	13	8	4	WW	93	34
32°N	WWNI	608	295	167	134	103	60	63	48	34	TW	184	83	48	31	20	13	8	4	WWNI	184	83	
32°N	TW	402	202	125	85	60	44	31	22	13	54°N	102	42	20	13	8	4	4	TW	102	42		
32°N	TWN	582	279	178	126	94	72	54	40	27	TWN	134	83	48	31	20	14	9	5	TWN	134	83</td	