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ABSTRACT

We show how to generalize the coupling of
n=1 super-laxwell theory and n=1 supergravity in
lo;dimensions to the case of a non-abelian gauge
group. We find that the supergravity 2-form
pc’tentia}_lau\J is coupled tp the Yang-Mills gauge

potential Au via the Chern~-Simons 3-form.
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Tt has recently besen demonstrated [1,2} that realistic
theories of gquarks and leptons and their interactions canvbe
derived by dimensional reduction of Eg gauge theories defined
on certain l0-dimensional spaces, Since the fermions are
assigned to the adjoint 248 representation of Egr these theor. :s
would be supersymmetric in flat l0-dimensional spacetime. It
happens, however, that the 6-dimensional space of extra
dimensions must be a compact coset space [1l]. To maintain the
supersymmetry of the 10-dimensional gauge theory, it therefore
seems necessary to introduce supergravity, which restores
supersymmetry as a local invariance {3].

The problem of how to unify supersymmetric Yang-Mills
theory and supergravity in 4-dimensions was solved some time
ago [4j, but to our knowledge a solution for,lo—dimensionaf
spacetime has not yet apveared. However, the unification of
subeisymmetrié<Maxwell theory and simple (n=1) supergravity in,
10-dimensiong has been achieved [5], and our results and notatioﬁ
are based on this work. One of the interesting features of the
Maxwell-supergravity theory is that a gauge transformation of
the Maxwell potential a, must be accompanied by a transformation
of the 2-form supergravity potential ayr in orgder that the
Lagrangian be gauge invariant.

In this note we show how to generalize the Maxwell-super-
‘'gravity couplings to obtain a unification of n=1 supergravity
and n=1 superéyﬁmetric Yang-Mills theory in l10-dimensions, The

Lagrangian is invariant both under local supersymmetry trans-
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formations and local non-abelian gauge transformations. We
again find that a gauge transformation must Be accompanied by a
transférmation of the supergravity potential a e

The n=1, D=10 supergravity multiplet is {er, wu, au“, A, ¢};

respectively a zehnbein, Rarita-Schwinger field, 2-form potential,

Dirac field, and a scalax. The supergravity Lagrangian is [5,6]:

Lg g.= - 3eRle,u(e)) = 77, I"*%D (wie))y,
3 ..-3/2 puv_ 1 _—_u
-3¢ fpuvf - 3eAT Du(m(e))l
- Tee (3,0/9) % - 22T, (7o/9 TV

Y2 -3/4 — _poByv 0B Y_ 5T ~aBynu
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+ 4-fermion couplings. (1)

The first term is the Einstein Laograngian, exzcent that the
. . . m
connection w involves some torsion. e denotes det.eu._The

2-form potential a appears only through the 3-form field

MY

= ' format i + has n
puv a[pauv]' so the transformation auv*auv 3[u¢v] [o3

physical effect. The antisymmetrization, here and elsewhere,

f

is with weight one. Multi-index T matrices denote antisymmetrized
products of Dirac matrices; e.g.-Fp““=P[pF"FUt Because of the

angi-commutation relations, T°”v=rpF“FU, if p, ¥, v are all

different.

In the Maxwell-supergravity theory, one defines a new

. ]
_3-form field ’ |
: f

i

(Ab) ..

K
puv - Eopv vZ 8 fpfuv] (2)
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to effect the coupling of auv to the gaucge potential a,- Here
ua\)--avau and k is the 10-dimensional gravitational
coupling constant. Fﬁ??

that a gauge transformation 6au=8uA is accompanied by a

fuv=a

is gauge invariant if one postulates

transformation Ba _s—u
uv V2
is obtained from the p

Afuv' The Maxwell-superqravity Lagrangian
ure supergravity Lagrangian by adding a
number of manifestly gauge invariant terms and making the replace-
p (Bb) '
puv

ment f [see ref 5].

pUV
Now consider the supersymmetry transformation

' (3a)

.. _1
Ga —iﬂu

1]

and the part of the supersymmetry transformation of a, which

involves au:

¥
6auv=7-zﬂ [uav]. (Bb),

Here Qu5¢3/8?rux, where % is the Dirac field of the super-
symmetric Maxwell theory and ¢ is the supersymmetry parameter.

Under these transformations the change in the field strength

{Ab) .
Fouy 1is
(2b)_ _ «
SF opy 759[pqu]' (4)

Since the r.h.s. of (4) is gauge invariant, we exvect that

(Ab)
puv

supersymmetry variation should be gauge invariant too.

both the non-adbelian generalization of F and its order «

One might guess that to generalize the D=10 Maxwell-



supergravity theory to the non-abelian case one would simply
introduce traces wherever products of fields carrying an internal
symmetf& index appear, replace derivatives au- by covariant
derivatives Dﬂ=au.+g[Au"]' and replace the Maxwell field

tensor fu\J by its non-abelian counternart FquBuAv-avAu+g[Au'Av]'

However, this is not quite correct. The avoropriate generali-~

zation of 5’?&3 in the Yang-Mills case is
F M) _ K ' (5)
F = -
puv ~Topv” V2 Xopv

where Xouy is the Chern-Simons 3-form:

2
SoA A A ).

xpquTr (A[QFU\J]— {7y vl

It has the property that

=1
I ta¥opvi= 2T FrgpF vy

where the r.h.s. is the second Chern form, In the abelian case

one has

_1
£ _T'Z-f[opf

aloap uv] uv]’

which shows that a[pfuv] is the abelian Chern-Simons form. It
is therefore plausible that xpuv should be the non-abelian
eneralizati £ a .

gen ion o [pfuv]

Under an infinitesimal gauge transformation

GAU=DUA, (6)

T




the Chern-Simons form Xp changes. However if we postulate an

T
accompanying transformation

6auv=¢7kTr(A3 (7) -

[uAv]] !

(M) _
puv

finite gauge transformations, which is non-trivial in the non-

0. We show below that F(YM)
[SRTRY

then 8F is also invariant under
abelian case. The supersymmetry transformations analogous to

{3a) and (3k) are
— o - K
8B =39, Sa = xTriRp A, (8)

where Qu is the same as befare, except that ¢ is now a Dirac
field in the adjoint representation of the gauge group. Under

these transformations

(YM)_ _ «
SF ouv = 75 Tr m[pFuv})' (9

The r¥.h.s. of (9) is gauge invariant and has the same form as

i i f
(4) w1Fh va replacing uve

These results suggest that the Lagrangian unifying Yang-

Mills theory and supergravity Zor D=10 can be obtained from the

Maxwell-supergravity theory by replacing Fﬁﬁﬁ} by P‘Sﬂf? in

~addition to making the usual changes from an abelian to a non-

abelian gauge thecry mentioned before. The supersymmetry

transformation laws in the Yane~Mills case should differ from

those in the abelian case only to the extent that F(Ab) is

puv
(YM) :
. 4
ouv and fuv by Fu The proposed Lagrangian an

replaced by F v



T T T T o T T I s e e L T T T S e T L ST PR O TR £ e b R e e x e

6
transformations are
L= Ly g, With F_ . replaced by F ‘Fxff)))
- %‘-e¢_3/4Tr(Fquuv)
- FeTr (XB (5)X)
- g ket Prr RIVTPO(r +E | )) (b +ixVIT )
+ll—6/f|<e¢—3/4Tr (_)?TUBY)()F (aYBD{y)
16x96 VZic? eTr (XT, x)%mr“”r”ar”l‘““)x
- 573 <o Tr (4T g )T EY3,; (10
éet - %Er“‘wu, 6¢=~1§ VI E NG,
Sa, = %m,a“ (BT w, - €T ¥, -3 V2 E ru\,AH%/ﬁ‘m”SEr[uTr(xAv]).
5) = _—/‘(p¢/¢)e+ o 3/4r0BY ngMlz}lme ﬁKTr(Er“BYx)raﬁye.
§9, = D (Ble,)) e+ o5 24 (r *Y ~952r ATy cr (20
- Teaz | ru“BYasagrBY)JraBYA
+ %/‘ [(w »yrm E+(AI‘ £ rm¢u+2(ﬁu>\)e—2(7&:)xbu+4 (Wurme)l"ml]
- aageTr P (1o 59, To e,
ﬁAu = %: 3/BEI‘ e
§x = _}_¢-3/8rmn§,mn
+ El_iﬁn[s(rx)s—g (Yr“ﬂx)rnﬁa—zig (Tr“Bde)raByﬁsJ. (11)




The caret symbol over a field denotes the supercovariant
generalization of that field. For the exact formula, see ref, 5.
Our proof that the lagrangian (10) is supersymmetric

depends on showing that all terms occuring in the variation of

the Lagrangian under a supersymmetry transformation have

essentially the same gauge covariant form in the non-abelian and
abeljan cases. Since in the abelian theory the net variation
vanishes [5), the same will be true in the non-~abelian theory.
Becayse the Lagrangian and supersymmetry transformations, when

expressed in terms of F(Ab) and F(YM)
PUV pPUV

respectively, have the
same form in both cases, it is clear that at the algebraic

level the variations of the Lagrangian do too. However, this
ardument may not be sufficient since many terms in the variation
of I, involve partial derivatives of the field variations, and it
is not obvious thgt these occur in the required gauge cévariant
combinations.

Instead, we use the general result that if L depends on a

numbher of fields ¢; then

_ 8L
i
where §%§= 0 would be a classical field equation. A numbear of
1 .

integrations by parts are necessary to obtain (12) and thareby
eliminate all derivatives of §¢,. With the exception of a¢u
all the field variations are algebraic in e, so this formalism

is convenient for comparing the non-abelian and abelian cases.



It is clear from egs. (10} and (11) that almost all terms
in the field equations and field variations wiil be manifestly
covariant and of the same form in the abelian and non—abélian
cases. The possible exceptions are those terms arising from
variations of F(YM)&nrﬁAb)) with respect to Au(or au) and a -

oUv - ouv
To see what happens for these terms, consider the simplified

Lagrangian

L= -%Tr(Fu\)Fuv)—%F(DY‘:M\))F(YM)OU\) NG )
and the partial variations GAu and 6auv given by (8). 1In this
case, eq. (12) becomes

st = %‘—Tr{ (Duy“p+}§F‘YM)°“"Fme}, | a4)

which is covariant; the non-covariant terms proportional to
(BDF(YM)puv)QUAv which occur in the separate variations with
respect to A“ and auv cancel, Eg. (14) can also be derived by
using eq. (9) to compute the variation of the second term in

{13), and then non-covariant terms never appear.

The abelian case is gquite analogous. If

= __l_f gHv_ 3 o (Ab) L (Ab) puv
4 Tuv 4" puv

and da_ and dau\J are given by (3a) and (3b) then

=

r.o 1l up, 3k - (Ab}puv
oL = 3 (Buf + 55 F fw)no

which is of the same form as (14). This result extends easily

ERRCI R A—!\-ﬂl»‘mﬂﬂ
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to tle full Lagrangian and supersymmetry transformations and
completes our argument that the supersymmetry of the Maxwell-
supergravity theory implies the supersymmetry of the Yang-Mills
generalization, eq. {(10).

One remaininé question about the Yang-Mills-supergravity
theory is whether the Lagrangian is invariant under finite
gauge transformations. The answer is yes, as can be seen as

follows. Under a finite gauge transformation, Au changes to

h

R | 1,-1
u

A h+=h""3 h
v g "

and the Chern~-Simons form Xouv changes to

h
pUY

2 -1
8[ Tr(Buhh Au])

X puv_ g

= ¥ 0

2 -1 -1 -1
?Tr[(alph)h (3 h)h " {3 ;) ]

and 3 are equal to the gauge

Since both a,cx h

ouv] (o*puvl

. . . 1 h -
invariant quantity §TI(F[oprv])’ xpuv —xpuv is a closed 3-form.
I1f the l0~dimensional spacetime has the topology of Rlo, then
h . . .
)(wv-—)(m“J is also exact; i.e, there exists a 2-form JUV such that
x D o=x w8, . (15)
puv puv Lo™ v} .
If we postulate that
h (16)

K
A Tyt 7293 ¢

(¥M)

Py and hence the complete Lagrangian (18) is

then the 3-form F
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gauge invariant.
it is customary to assume that all fields in a gauge theory

decay rapidly at spatial infinity in which case Rlo

is effectively
compactified to ngRl, and gauge transformations h(x) tend

rapidly to 1 at infinity. With this topology is still.

Xouv Xpuy
exact, since the relevant cohomology group H3(59) is trivial.
The interpretation of this result is that when h+1 at infinity,
Juv can be chosen to vanish sufficiently rapidly at infinity
that its surface integrals there are zero.

vSuppose now that h(x) is a gauge transformation homotopic
to the identity. Then there exists a continuous family of gaige
transformations k(x,r), 0<1<1l, such that ﬁ(x,0)=l and ﬁ(x,l)=h(x).

In this case we can give an explicit formula for JH :

Vv
_ L2 -1 )
SIS Emr(a[uhh Al
1
2 -1 a -1
+é?_-I0TI[afuﬁﬁ 5t (avlﬁﬁ )]dT. 17

This formula was derived from a more general formula of Chern's
“[71. If hix)=1l+gA{x), with A infinitesimal, then the natural
choice ﬁ(x,f)=1+gTA(x} gives Juu=2Tr(A[qu]A). Substituting
this expression into (16} lez2ds to a transformation law for Ay
which differs from (7) only by a physically irrelevant'Curl.
'If the gauge transformation is not homotopic to the idantity

then formula (17} cannot be used: however Juu still exists and

formulae (15) and (16} give the transformation laws for Xppv
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and a__.
uv

To summarize, we have generalized the Maxwell-supergravity
theqry.in l10-dimensions and obtained the Yang-Mills-supergravity
theory. The appearance of the Chern—simoﬁs 3-form is the most
novel feature. This form has appeared before in gauge theories,
notably in the analysis of the axial anomaly [8], and also as
a mass term in 3-dimensional Yang-Mills theory [9].

it is conceivable that Chern-Simons forms, or some general~
ization to‘include fermionic fields, may play a much larger
role in supergravity theories. Recall that vart of the 1l1-
dimensional supergravity Lagrangian is Y=F~F~A, where A is a
3~-form potential and F=dA [10]. Y is a Chern-Simons form,
because in dimension 12 or greater dY=F~F~F, and integrals of
F~F~F over closed 12-manifolds are topological invariants.

It would be most interesting to consider the dimensiocnal
reduction of the Yang-Mills-suvergravity theory to 4-dimensions.
If one used the conventional method, where all fields are
simply assumed to be independent of the six extra coordinates,
one should obtain an N=4 supergravity theory coupled to six
N=4 vector multiplets as well as to anbN=4 Yaﬁg—Mills multiplet.
This theory has been predicted to be finite to all_orders.in
perturbation theory by Kallosh [11]. On the other hand, one
could use the more sophisticated dimensional reduction procedure
[12], where the extra dimensions form a compact coset space.
This would extend the models discussed in refs. 1 and 2 to

include gravity. The resulting 4-dimensional theories would

Sl T Dl LT
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have less than N=4 supersymmetry and might be more realistic
phenomenologically.
It is interesting that the present theory has the same

zero mass particle content in 10-dimensions as the theory of

interacting uroriented supersymmetric striﬁgs [13). However, 5

our theory is not the zero slope limit of the string theory
and the dimensional reduction just referred to can be carried
out without assuming that the scale size of the space of extra

dimensions is extremely small.
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