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ABSTRACT 

We show how to generalize the coupling of 

n=l super-Haxwell theory and n=3. supergravity in . 

10-dimensions to the case Df a non-abelian gauge 

group. We find that the supergravity 2-form 

potent ia l a i s coupled t.D the Yang-Mills gauge 

potent ia l A via the Chern-Simons 3-form. 
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It has recently been demonstrated [lr2J that realistic 
theories of quarks and leptons and their interactions can be 
derived by dimensional reduction of E„ gauge theories defined 
on certain 10-dimensional spaces. Since the fenrtions are 
assigned to the adjoint 248 representation of E g r these theor.^s 
would be supersymmetric in flat 10-dimensional spacetime. It 
happens, however, that the 6-dimensional space of extra 
dimensions must be a compact coset space [1]. To maintain the 
supersymmetry of the 10-dimensional gauge theory, it therefore 
seems necessary to introduce supergravity, which restores 
supersymmetry as a local invariance [3]. 

The problem of how to unify supersymmetric Yang-Mills 
theory and supergravity in 4-dimensions was solved some time 
ago [4], but to our knowledge a solution for.10-dimensional 
spacetime has not yet appeared. However, the unification of 
supersymmetric Maxwell theory and simple (n=l) supergravity in 
10-dimensions has been achieved I5J, and our results and notation 
are based on this work. One of the interesting features of the 
Maxwell-supergravity theory is that a gauge transformation of 
the Maxwell potential a must be accompanied by a transformation 
of the 2-form supergravity potential a. u, in order that the 
Lagranqian be gauge invariant. 

In this note we show how to generalize the Maxwell-super-
gravity couplings to obtain a unification of n=l supergravity 
and n=l supersymmetric Yang-Mills theory in 10-^dimensions. The 
lagrangian is invariant both under local supersymmetry transv 
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formations and local non-abelian gauge transformations. We 
again find that a gauge transformation must be accompanied by a 
transformation of the supergravity potential a . 

The n=l, D=10 supergravity multiplet is (e™, to , a , X, $Vr 
respectively a zehnbein, Rarita-Schwinger field, 2-forni potential, 
Dirac field, and a scalar. The supergravity Lagrangian is [5,6]: 

L S G _ = - J e R ( e , W ( e ) ) - J e ^ r p p a D p (m(e)) ^ 

-K 3 / 2 fpuv f P l J V-^\^ ( e )^ 

+ g e r 3 / 4 f a g Y ( ^ r u a e Y V 6 ^ r V - ^ T / a B T r ^ ) 

+ 4-fermion couplings. (1) 

The first term is the Einstein Lagrangian, except that the 
connection io involves some torsion, e denotes det e . The 
2-form potential a appears only through the 3-form field 
fpyv = S [ p a

u v ] ' s o t h e transformation a ^ a ^ + 3 [ y * v ] has no 
physical effect. The antisymmetrization, here and elsewhere, 
is with weight one. Multi-index T matrices denote antisymmetrized 
products of Dirac matrices; e.g. • T p , J V=r ̂ pr pr v'. Because of the 
anti-commutation relations, Tpvv=TprvTv, if p, v, v are all 
different. 

in the Maxwell-supergravity theory, one defines a new 
3-form field 

F(Ab) £ f _ < a f (2) 
PPV P)JV J 2 [p uv] 
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to effect the couplinq of a to the gauae potential a . Here 
f =3 a -3 a and K is the 10-diroensional aravitational |iv u _v v V> 
coupling constant. F is gauge invariant if one postulates 
that a gauge transformation 8a =3 A is accompanied by a 

* ' p p " 
transformation 5a =-7yAf - The Maxwell-supergravity Lagrangian 
is obtained from the pure supergravity Lagrangian by adding a 
number of manifestly gauge invariant terms and making the replace­
ment f + F ( A b ) [see ref 5]. 

PViv ppv 
Now consider the supersymmetry transformation 

6a ==-fi , (3a) 
u 2 u 

and the part of the supersymmetry transformation of a which 
involves a : 

V 

Sa =-TKilr a , . (3b) 
pv 72 [p v] 

3/0 
Here U =^> ' zV %, where 0( is the Dirac field of the super-
symmetric Maxwell theory and E is the supersymmetry parameter. 
Under these transformations the change in the field strength 
F(Ab) 
PUV 

6F ( A b )= --4flr £ . . . (4) 
Pliv 72 Lp pv] 

Since the r.h.s. of (4) is gauge invariant, we expect that 
both the non-abelian generalization of F and its order K 
supersymmetry variation should be gauge invariant too. 

One might guess that to generalize the D=10 Maxwell-
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supergravity theory to the non-abelian case one would simply 
introduce traces wherever products of fields carrying an internal 
symmetry index appear, replace derivatives g • by covariant 
derivatives D-=3 -+g[A »•], and replace the Maxwell field 
tensor f by its non-abelian countermart F =3 A -3 A +g[A ,A ]. 
However, this is not quite correct. The appropriate generali­
zation of F' 'in the Yang-Mills case is 

F< Y M )=f K , (5) 
pyv py v 72 *pyv 

where v is the Chern-Simons 3-form: Apyv 

X =Tr(Ar F ,-|qA. A A . ) . Apyv [p yv] 3 ̂  [p y v] 

It has the property that 

3 . Y ,= -TrCF. F .) , [a*pyv] 2 [op Mv] ' 

where the r.h.s. is the second Chern form. In the abelian case 
one has 

3[o ap fyv]~2 f[op fyv]' 

which shows that a r f , is the abelian Chern-Simons form. It lp y W 
is therefore plausible that Y should be the non-abelian 
generalization of a, f ,. ^ [p yv] 

Under an infinitesimal gauge transformation 

6A g=D v jA, (6) 
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the Chern-Simons form X changes. However if we postulate an 
accompanying transformation 

5a p v=/TKTr(A9 [ uA v ]), (7) • 

then S F ' Y M ^ = 0 . We show below that F ' Y M' is also invariant under 
finite gauge transformations, which is non-trivial in the non-
abelian case. The supersymmetry transformations analogous to 
(3a) and (3b) are 

<$A -hi , 6a c-Sj-Trtn, A , ) , (8) 

where fl is the same as before, except that "x is now a Difac 
field in the adjoint representation of the gauge group. tJnder 
these transformations 

The r.h.s. of (9) is gauge invariant and has the same fori" as 
(4) with F replacing f 

These results suggest that the Lagrangian unifying y^ng-
Mills theory and supergravity for D=10 can be obtained fr<?m the 
Maxwell-supergravity theory by replacing F\• ' by F ' in 
addition to making the usual changes from an abelian to a non-
abelian gauge theory mentioned before. The supersymmetry 
transformation laws in the Yano-Mills case should differ from 
those in the abelian case only to the extent that F i^ 
replaced by F ( 'and f by F , The proposed Lagrangian and • 
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t r a n s f o r m a t i o n s a r e 

L = L S . G . ( w i t h F p y v r e P ! ^ e d by F !

p ™ } ) 

- i e * - 3 / 4 T r < F y v F ^ ) 

- 2 - e T r ( x 0 ( ^ ) X > 

- 1 »* _ 3 / 8 Tr <xr^° ( F p a + F p a )) (Vnr^V* 

^ e ^ W ^ ^ F ™ 

^ K

2 e T r ( X r a B Y X ) A r a e ^ ; 

3/4 

(10) 

<5 a = ^V2<f (ET K> - £ T * - i v T e r X) + y / 2 " « j ) 3 / 8 £ r r T r ( X A , ) , yv 4 U v v r y 2 \iv I [\i A v] 

6X = - | ^ ( ^ ) c 4 ^ / 4 r ^ e p ( ™ j + T ^ / 2 . T r ( x r - % ) r „ 0 ^ ) CXBY 12x36 

« * y = D p ( ^ e . , ) ) e + ^ ^ - ^ ( r / ^ - 9 < , ^ ) £ F ^ 

- 16532 < C ^ ^ W 

aBY 

+ — /2 96 '*" ^ r ™ n X , r ' m c + ( A r

n a i E ) r , I i a V 2 ( * U A , E " 2 ( A E ) * P + 4 ( * l . r m e ' r m A 

^ < T r r x r a ^ x ) ( r u a e Y - 5 g y a r B Y ) £ , 256 

6 \ = * * V 8 E V ' 
6 x _ 1 ^ - 3 / 8 ^ ; ^ 

i /2<j3(x x , £ - | c x r ^ x ) ^ , - ^ u r ^ x K ^ e J . (in 
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The caret symbol over a field denotes the supercovariant 
generalization of that field. For the exact formula, see ref. 5 

Our proof that the Lagrangian (10) is supersymmetric 
depends on showing that all terms occuring in the variation of 
the Lagrangian under a supersymmetry transformation have 
essentially the same gauge covariant form in the non-abelian and 
abelian cases. Since in the abelian theory the net variation 
vanishes [5], the same will be true in the non-abelian theory. 
Becquse the Lagrangian and supersymraetry transformations, when 
expressed in terms of F ' and F ( Y ' respectively, have the 
same, form in both cases, it is clear that at the algebraic 
lev^i the variations of the Lagrangian do too. However, this 
argijment may not be sufficient since many terms in the variation 
of I involve partial derivatives of the field variations, and it 
is riot obvious that these occur in the required gauge covqriant 
combinations. 

Instead, we use the general result that if L depends on a 
number of fields <)>. then 

6L = ^ - S h > (13) • 

IT 
where -j-r—= 0 would be a classical field equation. A number of °<Pi 
integrations by parts are necessary to obtain (12) and thereby 
eliminate all derivatives of 5*.. With the exception of fi^ 

i - yv 

all the field variations are algebraic in z, so this formalism 
is Convenient for comparing the non-abelian and abelian cases. 
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It is clear from eqs. (10) and (11) that almost all terms 
in the field equations and field variations will be manifestly 
covariant and of the same form in the abelian and non-abelian 
cases. The possible exceptions are those terms arising from 
variations of F ''(orF } with respect to A (or a ) and a . 
To see what happens for these terms, consider the simplified 
Lagrangian 

£ = -*Tr(F F ^ , 3 F(Y M) F(yM)p Vv 

and the partial variations 6A and 6a given by (8). In this 
case, eq. (12) becomes 

6L = i-Tr!<D F H P + 3 £ F
( Y M ) P I J V F )J2 ) , (14) 

which is covariant; the non-covariant terms proportional to 
(d F [ ' p p v ) & A which occur in the separate variations with P y v 
respect to A and a cancel. Eq. (14) can also be derived by 

\i JJV 

using eq. (9) to compute the variation of the second term in 

(13), and then non-covariant terms never appear. 

The abelian case is quite analogous. If 
£ = _ 1 f f i v _ 3 _ F ( A b ) F ( A b ) p p v 

4 yv 4 pyv 

and 6a and 6a are given by (3a) and (3b) then 

S? - i. ft fPP. 3K F(Ab)pyv f ,„ 6L - 2 Byf +-72-F V V 

which is of the same form as (14). This result extends easily 
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t o t f a f u l l Lag rang i an and supersytranetry t r a n s f o r m a t i o n s and 

c o m p l e t e s ou r a rgument t h a t t h e supersyiranetry of t h e Maxwell-

s u p e r g r a v i t y t h e o r y i m p l i e s t h e supersymmetry of t h e Yang-Mi l l s 

g e n e r a l i z a t i o n , e q . ( 1 0 ) . 

One r e m a i n i n g q u e s t i o n abou t t h e y a n g - M i l l s - s u p e r g r a v i t y 

t h e o r y i s w h e t h e r t h e L a g r a n g i a n i s i n v a r i a n t under f i n i t e 

gauge t r a n s f o r m a t i o n s . The answer i s y e s , a s can be seen a s 

f o l l o w s . Under a f i n i t e gauge t r a n s f o r m a t i o n , A changes t o 

A h = h _ 1 A h + - h - 1 3 h 
V V g U 

and t h e Chern-Simons form X D U V c h a n g e s t o 

v h = X - - 3 , Tr (S h h _ 1 A , ) A p u v *puv g [p u •u] 

2 - ^ - T r 
3g 

J O j p h J h ' ^ O ^ h J h 1 { 3 v ] h ) h " 1 

S i n c e b o t h 3 , v , and 3 , Y ,i a r e e q u a l t o t h e gauge 

i n v a r i a n t q u a n t i t y 2 T r ( F [ a p F p v ] 5 ' x p u v " X p g v i s a c l o s e d 3-form. 

I f t h e 1 0 - d i m e n s i o n a l s p a c e t i m e h a s t h e t o p o l o g y o f R , t h e n 

Y -V i s a l s o e x a c t ; i . e . t h e r e e x i s t s a 2- form J , such t h a t 
A pyv Apviv Viv 

v h = V + 3 , J , . (15) 

I f we p o s t u l a t e t h a t 

a = a + -rs-J . (16) 
uv uv 72 vv ' 

then the 3-form F and hence the complete Lagrangian (10) is 
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gauge invariant. 
It is customary to assume that all fields in a gauge theory 

decay rapidly at spatial infinity in which case R is effectively 
9 1 compactified to S xR , and gauge transformations h(x) tend 

rapidly to 1 at infinity. With this topology y ~X y * s s t i H 
9 

exact, since the relevant cohomology group H,(S ) is trivial. 
The interpretation of this result is that when h+1 at infinity, 
J can be chosen to vanish sufficiently rapidly at infinity 
that its surface integrals there are zero. 

Suppose now that h(x) is a gauge transformation homotopic 
to the identity. Then there exists a continuous family of gauge 
transformations h(x,r), 0<T<1, such that h{x,0)=l and h(x,l)=h(x). 
In this case we can give an explicit formula for J : 

\v= - | T r ( 8 [ u
h h " \ ] ) 

+ > /i^Ku™" 1 ar t'vj™"1'" dT. (17) 

This formula was derived from a more general formula of Chern's 
[7], If h(x)=l+gA(x), with A infinitesimal, then the natural 
choice h(x,T)=l+gtA(x) gives J =2Tr(A, 9 ,A). Substituting 
this expression into (.16) leads to a transformation law for a 
which differs from (7) only by a physically irrelevant curl. 

If the gauge transformation is not homotopic to the identity 
then formula (17) cannot be used; however J still exists and 
formulae (15) and (16) give the transformation laws for X D U V 
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and a 
W 
To summarize, we have generalized the Maxwell-supergravity 

theory in 10-dimensions and obtained the Yang-Mills-supergravity 
theory. The appearance of the Chern-Simons 3-form is the most 
novel feature. This form has appeared before in gauge theories, 
notably in the analysis of the axial anomaly [8], and also as 
a mass term in 3-dimensional Yang-Mills theory [9]. 

It is conceivable that Chern-Simons forms, or some general­
ization to include fermionic fields, may play a much larger 
role in supergravity theories. Recall that part o.f the 11-
dimensional supergravity Lagrangian is YEF-^F^A, where A is a 
3-fornt potential and F=dA [10]. Y is a Chern-Simons form, 
because in dimension 12 or greater dY=F~F~F, and integrals of 
F"F/lF over closed 12-manifolds are topological invariants. 

It would be most interesting to consider the dimensional 
reduction of the Yang-Mills-supergravity theory to 4-dimensions. 
If one used the conventional method, where all fields are 
simply assumed to be independent of the six extra coordinates, 
one should obtain an N=4 supergravity theory coupled to six 
N=4 vector multiplets as well as to an N=4 Yang-Mills multiplet. 
This theory has been predicted to be finite to all orders in 
perturbation theory by Kallosh [11]. On the other hand, one 
could use the more sophisticated dimensional reduction procedure 
[12], where the extra dimensions form a compact coset space. 
This would extend the models discussed in refs. 1 and 2 to 
include gravity. The resulting 4-dimensional theories would 
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have less than N=4 supersymmetry and might be more realistic 
phenomenolocrically. 

it is interesting that the present theory has the same 
zero mass particle content in 10-dittiensions as the theory of 
interacting uroriented supersymmetric strings [13]. However, 
our theory is not the zero slope limit of the string theory 
and the dimensional reduction just referred to can be carried 
out without assuming that the scale size of the space of extra 
dimensions is extremely small. 
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