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ABSTRACT

A simple model is adopted to study the hose instability of an intense
relativistic electron beam in a partiaf]y neutralized, low density ion channel
(ion focused regime). Equations of motion for the beam and the channel -e
derived and linearized to obtain an approximate dispersion relation. The
non-1inear equations of motion are then solved numerically and the results

compared to linearized data.
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I. Introduction

An intense relativistic electron neam will propagate through a gas in
self-pinch equilibrium if the gas is ionized and a sufficient number of free
electrons can escape from the region of the beam so that the radial electric
field of the heam i$ neutralized. When this occurs, the self-magnet: pinch
force of the beam can exceed the combination of the outward directed radial
electrostatic force and the transverse beam partic]e}temperature (emitt ince)
and 5 transverse steady state is established. Briggs and Yu1 have recently
examined two limiting extremes of this charge neutralization process which
they term the "local cond'uctivity approximation" (LCA) and the “jon focused
regime“ (IFR}. Ip LCA the mean free path of plasma electrons is very shor:”
and the usual collisional concept of conductivity is valid. In the IFR,
however, gas density is very low so that secondary electrons produced by
primary impact ionization of the background gas by beam electrons are expelled
radially causing insignificant ionization. For this case, the approximation -
can often be made that these electrons leave instantaneously. When valid,
this assumption greatly simplifies the theory.

» Interest in the IFi hos evolved chiefly from the experimental observation
that within a certain pressure range, typically 20 - 50 microns in hydrogen, a
5 MeV, 300 amp electron beam exhibits stable propagation over considerable
distances. This "low pressure window” has great potential as a propagating
enyironment for certain applications including beaw pulse conditioning cells

and long distance beam transport.
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In the typical IFR experiment, the beam is introduced into an unionized
low density gas. Ionization builds up due to collisions petween'beam elec-
trons and gas atoms and by avalanche ionization in the gas due to thé very
strong radial electric (space charge} and axial electric (inductive) fields
associated with the pulse head. 1In this report, however, we consider a %
situation in‘which the gas is ifonized to some fraction fn of the beam
current just prior to the entry of the beam. This is accomplished by some
external means such as another particle beam or a laser. The beam then
sees a cylindrical channel of charge neutral gas, fonized to a fraction of
fn = ny/ny where n, s the ion density and n, is the beam electron
density. Plasma electraons immediately leave the channel when the beam enters
due to the radial electric field E. and the massive ions remain behind

partially neutralizing the space charge of the beam particles.

II. A Simple #odel

If we assume that the background ion density is less than the beam
density, n; < n, = Ib/ a2 (fn < 1) where a is the beam radius, that the
beam itself contributes insignificant further ionization, and that the plasma

electrons move far away from the beam/channel system before colliding with

vackground gas, a simpie one-dimensional model of transverse beam dynamics can

be applied.
We now look av a system comprised of an azimuthally symmetric beam of
current Ib, which contains Nb = Ib/ec particles per unit length, and an

azimuthally symmetric channel of ions which number anb per unit length.
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The beam particles, here relativistic electrons, have a mass Ym, vhere y

is the usual relativistic factor and Me is the electron mass, while the ions
have a mass m;. The transverse position of the beam and channel are allowed
to vary and are measured with respect to the origiral coaxial position of the
beam/channel system. We have depicted the beam and the channel in cross
section belaw with d representing the transverse displacement of the channel

and y - denoting the transverse displacement of the beam.
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For simplicity, we take the radius of both the beam and the channel to be a
and note that initially d = y = 0.
The beam and the channel will, of course, attract one another since they
_are of opposite sign, the precise force law depending on the radial profile,
Certain features of the force law, however, will be common to most physically
reasonable profiles {monotonically dacreasing with increésing r and zero
siope at r = 0), If, for instance, the beam and channel are separated by a

2

distance 4 that is small, A << 2a2, and transverse profiles of the beam

and channel are the same, then the force law can be shown to be

2
lforce/unit lengthl = l§ J% . (1)
¢

a



where [ is the beam current and ¢ is the speed of light. On the other

hand, if A2 >> 2a% the force law is

L

(2)
C2

=re

force/unit length

which is just the force law for two 1ine charges. A simple function which has

these two limiting values is

‘force/unit length| = 45 . (3)
+

Since we are interested in the qualitative features of beam/channel motion
rather than features specific to a particular profile, Equation {3) will be
taken as our force Taw for this study.

The equations of motion for the beam and the channel then follow
immediately as

b ly-a) @

¢ a + By - d)?

» I -
ity & = ¢ S d Y (5)

¢ a? + y(y - d)°

ymgNy ¥ o= - fy

respectively. We now introduce a variable x = ct - z where z 1is the
distance that the beam travels in the direction of its propagation. Note
that x may be used to label a particle or woving beam segment since it
(times c) is metmeofiﬁxtmnatz=0(vz=ch For the

transformation we have the identities
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If we further define
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we immediately obtain the dimensiontess equations of motion

a° y = - (-0 “(6)

o2 14y - )2

2

A, p - =D : (7
ax 1+ %(Y - D)2

Note that Y =D = 0 is jdentically a solution and will constitute an

equilibrium propagation state.

I1I. Low Frequency Hose

We first consider the system's response to a transverse displacement of
the beam with respect to the channel. If this displacement is very small,

D, Y << 1, then Equations (6) and (7) can be Tinearized to obtain
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2
3—2Y=D-Y (8)
oz
&, 0.=VY-0 . (9)
ax

If we then assume a form for Y and D
Y~ Do~ exp [-(iKK + i97) |
then Equations (8) and (9) yield a dispersion relation
ek = (- B -k) -1s0 | o)

where & and K ~are dimensionless wave numbers. From this dispersion
relation, taking K to be real, we see that a resonance appears at K =1
and that instability occurs far K < 1. This is the simple hose instability
in which transverse oscillations of the beam and the channel couple and grow.
The instability is convective since the point of maximum growth is not
stationary in either the beam or the channel frame, but moves w1th a

dimensionless group velocity

dg K o
= 2 .
® el )

We are most interested in finding s the growth rate of the instability in its

own frame which can be obtained from the iinpulse response of the system

i(KX + 07)

1 e
ﬁg-[.dﬂ‘[hK TR

= %?Idnde exp [1kx +02) - an pj.

G(X,2)

(12)
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Explicit calculation of this integral is difficult, but we can easily evaluate
the asymptotic form of the growih by performing a saddie point calculation.

First, let us cal) the exponent in Equation (12) g(%,K). The saddle then

gccurs where

- 0 and & = ¢

an K
ar
. b . 3D _
iD-35 = 0 and XD - I = O . {13)
We define V = X/Z and obtain from (13)
D, - Vo, = 0 , (14)

K 2

where the subscript denotes partial differentiation with respect to the
subscripted variable. If we now solve Equations (14) and (I0] for @ and X
the growth can he found as

G(X,2) exp [Im (n- KV)Z] . _ (15)

A more rigorous derivation of Equation (15) has been done by E. Lee using

Lagrange multiplier formalism.3

Now in our case, Equations (14) and (10) yield

2/3
2 . Z
K= = 1+ (} 7:)
2/3
2 X
Q 1+ (} 7) s

which can be simplified if we restrict ourselves to Z/X >> 1, i.e., long

propagation distances.



Then
1/3 2/3
-~ z 1 X
2/3
~ 1 X
~ 1 + ? (- 2—) N

' i/3
sy en| B )|, (16)

and finally

Ciear iy the vnstabiirTty grows witfout bound with imecreasing X and 7, a
cansequence of the rigid beam/channel madeling of Equations (4} and (5) and
the infinite resonance that resuits. The assumption of rigidity while %
simplifying the analysis is quite unphysical except at low freguencies and as ‘ '

we see in the next section, it obscures important physical phenomena,-

IV. Spread Mass Modeling

As outlined in reference 2, there is compe]]ihg evidence tp the
introduction of a large spread in betatron freduencies. Physically, this
spread deriyes from the fact that the transverse potential well which contains
beam particles is anharmonic. Particles localized near the axis oscillate
with a frequency greater than particles which are able to move to the outer
edge of the profile. This spread has the effect of introducing a maximum
frequency above which the instability is damped. To incorporate hetatron
frequency spreading into our model, we adopt the spread mass model of

E. P. Lee.2
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The real beam is considered to behave as if each longitudinal segment is
composed of many rigid disks having the same transverse charge density profile
as the beam, but with varying mass. The same arguments can be made for the
channel ions since we have previocusly assumed that the channel and beam
profiles are the same. A continuous variable n is defined which serves as a
subscrfpt label for the disks within a segment such that 0 <n<1. To
proceed we must select the radial form for the transverse charge density

profile. Selecting the Bennett profile

1

Ir) = — , (17
(r) TT (17)

then Qmax = 2 1in normalized units corresponds to the betatron frequency
of particles near the axis. A1l other particles have smaller betatron

frequencies which are distributed as

Qn = nR max = 2n . (18) i

The displacement of a beam segment is the weighted mean of all of the disks
[ :

Y = | dnw(n) LN : (19)
0

2

Lee has shown® that the normalized weighting function w{n) that is

appropriate to the Bennett is

win) = 6n(1-n) . (20)
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Adopting these ideas, we can modify the linearized Equations {8) and (9) to get

2
N -
4. ¥y = 2.{(D-Y) (21)
2 n -

2 .
e = v -

2 ug 2g (V- 0g) (22)

Note here that we have explicitly spread the mass of the channel (with index £ )
as well as the beam {with index n). For the channel, the mean displacement B
is calculated exactly as Equation {13} with the weigliting function of Equation
(20). Using the same form of perturbation as before, the new dispersion

relation becomes

1 - f dewle) —Lop [ dnwn) —El . (23)
{2n -0%)

It is easy to see that using a single disk approximation where w(a) = &(¢ - %)
reproduces Equation {10}. To compute the integrals of Ewquation (23) we '

substitute relation (20} for w{n) to obtain
|
6 j’ du u2 H
0
1+ 3¢ - Gu Jl- {1 -a) [n1+zn( )]

noting that the imaginary component arises from the pale at u =a.

I(w)

dispersion relation is finmally

1= 1 (%) 1 @iy . (28)
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This expression is difficult to analyze in general, so we shall study the

character of the instability by numerically solving Equations (21) and (22).

V. Linearized Computational Model

A simple code has been constructed to solve numerically Equations (21)
and (22), The continuum of beam disks {indexedn ) and the continuum of
channel disks (indexed £) have been repiaced by a set of N disks evenly spaced

in the variable n and €. The equations are then differenced and become

cnEk o on-h -
Ui - Ui = 2ipl Wy (0 - Yi)/N
n+1 n n+k
Yi - Yi = A7 Ui
(25)
m+% m-4% _
vy - Y = 2§ wy (Y - Dy)/N
m+ 1 m m+ %
. - Db, = -
DJ Dy aX VJ .

where n is the index assigned tc the Z-step and m is the index denoting the

X-step. The averaged quantities are defined as

_ N
T = ¥ 50 , (26)
=1
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where in all of the above
i-%
R
(27)
-1
1 6
and f, = 1+—-—~) =owe (1 -w,) .
i ( 2N2 NS i
2

The spread mass model is nearly identical to that originally due to E. P. Lee

which has the feature that

M=
-
)
n
-

-
n
—

3+¢0 (NZ) .

N
_7..1 fiw;

The feature new to this work js that both the channel and the beam have mass
spreading with the number of disks the same for each. '

The code was run for N = 50 and the results are not qualitatively
dissimilar to previous codes. First we note that Y =T = canst, U? = V? =0
is a solution showing that spatial invariance is retained. This provides an
important numerical check. If we let Ug = Vg = DG =0 and perturb TG

with a step function H or
TX) = HX - X)) (28)

then the results are as depicted in Figure 1 where Xp = 2. The perturbation
of the initial disk damps away with increasing Z due to phase mixing. At
Targer values of X the perturbation inittaily grows, reaches a maximum, and

then damps away reflecting the convective nature of the jnstability. It is

IR T TS e Ut Ty PUTUAY Jor Yy ¢ ¥
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characteristic that as % increases, the saturated growth increases and the
position Z of the saturation also increases. If one plots Vmax as a
function of X one obtains Figure 2 showing pure exponential growth of the

form

T p(X - X)) ‘
Ymax“e 0 (29)

where XD is the point in X at which the perturbation is applied. From
Figure 2 we calculate p = 1.54. The position Z at which the saturation
occurs is obtained from Figure 3 where we have plotted z(?max) vs. XK. A

group velocity may be calculated to be
BX ‘
AT 379 . (30)

It is useful to rewrite Equation (29) in un-normalized coordinates for the

length in x required for e-folding

o\ %
= 17 i '
X - X0 = .65 a (’E(kA) 'm—e) . (31)

This distance is independent of beam energy and ion density and only
weakly dependent on beam current. The instability is convective so that to
obtain the propagated distance (z - zp) for e-folding, we .ust apply the

group velocity (30).

(z-2) = 268 [= L} (x-x)
p m, fn 0 _ .
1.71 a [

=
e

—if =
T [~
?’i{

%
) FT;] . (32) .



~15-

Note carefully that the length of pulse required for an e~-folding contains the
1.

mass ratio (mi/me) ? >>1 while the required propagation distance does

not. Hence, a long pulse propagated in the IFR will saturate at a very low

level of hose but that saturated level will be reached very quickly in z.-

VI. Non-Linear Development

Using the computational model of Section V, we may esasily observe the
non-linear bekavior of the hose when the beam becomes displaced from the
channel by a distance of order the beam radius (Y = 0{1) ). We do this by
returning to Equations (6) and {(7) and applying the spread mass model. The

result is that the first and third equations of set (25) are repiaced by

nt n- . _ 1 -0
U1 - Ui = 21AZwi (D - Yi)/ 1+ 5 (Yi -D)°IN
(33)
s m-% _ 1 >
vj - Vj = 2jAij {Y ~ Di)/ 1+ §-(Y - Di) N].
Using the same initial conditions as before but with a perturbation
YO(x) = 0.005 H(X - %) (34)

the results appear as in Figure 4, The initial perturbation has been chosen
to lie well within the linear vegime and, as expected, early growth appears as
before. As Y reaches unity, however, growth slows and the wavelength in Z
becomes very long. The reason for this is that the restoring force for the
beam has become very non-linear and the system falls out of resonance. The

instability, in effect, moves itself intoc a saturated regime by leaving the

y
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vicinity of the channel. This is further dramatized by Figure 5 where Ymax
has been plotted as a function of X for the perturbation of Equation [34).
The upper curve results from the iinearized Equations (25) and again shows
pure expanential growth. The lower curve results from Equations {33) and
shows the expected exponential growth in the linear regime with a later
transition to saturated growth where Y~ 3. Each beam segment of X > 8
would grow to this maximum Y and then damp away. At this displacement,
however, the beam is mostly outside the channel so that other external forces

(e.g., magnetic fields) may play an important role.

VII. Summary

The hose instability between a relativistic particle beam and an
initially coaxial channel of un-neutralized ions has been examined. Analytic
analysis of the rigid beam/rigid channel system shows absolute instability
growing at a rate proportional %o (xzz)]la. If mass spreading is applied‘
to both the beam and the channel, the instability takes on a convective nature
whose saturated growth can be described in the form exp lp(x - xo)]. Finally,
the non-linear equations of motion were solved numerically and we find that
hose growth saturates when the beam is displaced from the channel by a distance
of the order of a beam radius. At this distance, the forces between beam and

channel are weak and gther forces can be important.
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If one inserts typical values into Equations (31} and (32) one concludes
that the ion hose instability as analyzed here should have been obgerved in
‘ETA and ASTRON experiments where none was apparent. In fact, however, we have
assumed that the channel has been totally ionized prior to the insertion of
the beam so that the heam does no jonization itself. If this is not the case,
as with a beam injected into cold gas, an ionization gradient exists from beam
head to tail creating an additional spreading of betatran frequenc{es which
detune the hose.

Finally, we may examine the experiment proposed by Fawley and ’rosn1t24
in which the beam from ETA (5 kA, 0.3 cm radius, v = 10) is injected into one
Micron of Benzene in which a 5% neutralization has been created by i]iumination
by a Krf laser. For this case the Tength of pulse required for one e-folding
75 135. cm and the propagation distance for saturation is 18.2 cm. txcept for
Self ionization effects, the jon hose should be readily discernable during the

experiment. -
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Fig. 1. Plotof ¥ versus X for saturated growth of IFR hose
instability. Data poirts taken from numerical solution of linearizeq
equations of motion. ’
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£iy 2. Plot of position in z versus position in X of saturated value of
Y+ Data points taken from numerical solution of linearized equations
of motion. Group velocity AX/AY = 0.379,
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Fig. 3. Plots of ¥ versus z at fixed values of X with perturbation applied at X = 2. \nitial
disc {X=2.2) shows no growth while following dises show initial growth and then a
saturation and decay. Results obtained from linearized eguations of motion.
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Fig. 4, Plots of Y versus z at fixed values ; of X using non-tinear equations of mation. Note
wavelength of instability grows longer as Y approaches unity.
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Fig. 5. Plot of ¥, versus X for kinearized (top) and non-inesr_
(bottom} equations of motion. Growth rate approaches zero as ¥
approaches order unity due to non-linear effects of finite beam and

channel size.



