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ABSTRACT 

A simple model is adopted to study the hose instability of an intense 
relotivistic electron beam in a partially neutralized, low density ion channel 
(ion focused regime). Equations of motion for the beam and the channel -e 
derived and linearized to obtain an approximate dispersion relation. The 
non-linear equations of motion are then solved numerically and the results 
compared to linearized data. 
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I. Introduction 

An intense relativistic electron nearo will propagate through a gas in 
self-pinch equilibrium if the gas is ionized and a sufficient number of free 
electrons can escape from the region of the beam so that the radial electric 
field of the beam is neutralized. Hhen this occurs, the self-magnet-, pinch 
force of the beam can exceed the combination of the outward directed radial 
electrostatic force and the transverse beam particle temperature (emittmce) 
and a transverse steady state is established. Briggs and Yu have recently 
examined two limiting extremes of this charge neutralization process whic^ 
they term the "local conductivity approximation" (LCA) and the "ion focused 
regime" (IFR), In LCA the mean free path of plasma electrons is very snor" 
and the usual collisional concept of conductivity is valid. In the IFR, 
however, gas density is very low so that secondary electrons produced by 
primary impact'ionization of the background gas by beam electrons are expelled 
radially causing insignificant ionization. For this case, the approximation 
can often be made that these electrons leave instantaneously. When valid, 
this assumption greatly simplifies the theory. 

Interest in the IFU has evolved chiefly from the experimental observation 
that within a certain pressure range, typically 20 - 50 microns in hydrogen, a 
5 MeV, 300 amp electron beam exhibits stable propagation over considerable 
distances. This "low pressure window" has great potential as a propagating 
environment for certain applications including bea.n pulse conditioning cells 
and long distance beam transport. 
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In the typical IFR experiment, the beam is introduced into an unionized 
low density gas. Ionization builds up due to collisions between beam elec­
trons and gas atoms and by avalanche ionization in the gas due to the very 
strong radial electric (space charge) and axial electric (inductive) fields 
associated with the pulse head. In this report, however, we consider a 
situation in which the gas is ionized to some fraction f of the beam 
current just prior to the entry of the beam. This is accomplished by some 
external means such as another particle beam or a laser. The beam then 
sees a cylindrical channel of charge neutral gas, ionized to a fraction of 
f n = n i/n b where n̂  is the ion density and n b is the beam electron 
density. Plasma electrons immediately leave the channel when the beam enters 
due to the radial electric field Ef and the massive ions remain behind 
partially neutralizing the space charge of the beam particles. 

II. A Simple Model 

I f we assume that the background ion density is less than the beam 

density, n i < n^ = 1^/ a (f < 1) where a is the beam radius, that the 

beam i tse l f contributes insignif icant further ionization, and that the plasma 

electrons move far away from the beam/channel system before col l iding with 

uackground gas, a simple one-dimensional model of transverse beam dynamics can 

be applied. 

We now look at a system comprised of an azimuthally symmetric beam of 

current l^, which contains N b = I^/ec particles per unit length, and an 

azimuthally symmetric channel of ions which number f J h per unit length. 
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The beam particles, here relativistic electrons, have a mass ym where y 

is the usual relativistic factor and m is the electron mass, while the ions 
have amass m.. The transverse position of the beam and channel are allowed 
to vary and are measured with respect to the original coaxial position of the 
beam/channel system. We have depicted the beam and the channel in cross 
section below with d representing the transverse displacement of the channel 
and y denoting the transverse displacement of the beam. 

ion channel 
mass = m-jN.f 

beam 
mass = ym eN b 

For simplicity, we take the radius of both the beam and the channel to be a 
and note that initially d = y = 0. 

The beam and the channel will, of course, attract one another since they 
are of opposite sign, the precise force law depending on the radial profile. 
Certain features of the force law, however, will be common to most physically 
reasonable profiles {monotonically decreasing with increasing r and zero 
slope at r = 0). If, for instance, the beam and channel are separated by a 

? ? distance A that is small, £ « 2a , and transverse profiles of the beam 
and channel are the same, then the force law can be shown to be 

force/unit length! 
c a (1) 
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where I is the beam current and c is the speed of l ight . On the other 
? ? 

hand, i f A >> 2a the force law is 

force/unit length „2 A (2) 

which is just the force law for two line charges. A simple function which has 

these two l imit ing values is 

-,-2 
force/unit length 

+ \ A 2 J - (3) 

Since we are interested in the qual i tat ive features of beam/channel motion 

rather than features specific to a particular pro f i le , Equation (3) w i l l be 

taken as our force law for this study. 

The equations of motion for the beam and the channel then follow 

immediately as 

YmeNb y 

n i b d 

- f V 
n c 2 

( y - d ) 
a 2 + *a(y - d) 2 J 

1 / + My - d)zJ 

(4) 

(5) 

respectively. We now introduce a variable x = ct - z where z is the 

distance that the beam travels in the direction of i ts propagation. Note 

that x may be used to label a part ic le or moving beam segment since i t 

(times c) is the time of injection at z = 0 (v = c) . For the 

transformation we have the identi t ies 
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a a 
at z 

= c §7 

2_ - £ 
SZ t 3Z X ax 

I f we fur ther define 

1 
a ° - ! •> h - ^ 

Z 2 = f — — 
n a 2 *A 

2L JL S. 
a 2 m i rA 

we immediately obtain the dimensionless equations of motion 

2 S Y 
l + hVt - o ) 2 

(6) 

SX'1 1 + J|(Y - D)^ 

Note that Y = D = 0 is iden t i ca l l y a solut ion and wi11 const i tu te an 

equi l ibr ium propagation state. 

I I I . Low Frequency Hose 

We f i r s t consider the system's response to a transverse displacement of 

the beam with respect to the channel. I f th i s displacement is very smal l , 

D, Y << 1 , then Equations (6) and (7) can be l inear ized to obtain 
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2 
3-, Y = D - Y (8) 

2-, D . = Y - D . (9) 

If we then assume a form for Y and D 

Y -N, D m. exp [- (iKX + i«Z) ] , 

then Equations (8) and (9) yield a dispersion relation 

D(fl,K) = (1 - n2)(l - K 2) - 1 = 0 , (10) 

where it and K are dimensionless wave numbers. From this dispersion 
relation, taking K to be real, we see that a resonance appears at K = 1 
and that instability occurs for K < 1. This is the simple hose instability 
in which transverse oscillations of the beam and the channel couple and grow. 
The instability is convective since the point of maximum growth is not 
stationary in either the beam or the channel frame, but moves with a 
dimensionless group velocity 

d A - 2 K 0 M i l 
W ~ 9~ ' • t i l J 
d K {1 + KZ) 

We are most interested in finding is the growth rate of the ins tab i l i ty in i ts 

own frame which can be obtained from the impulse response of the system 

i(KX + £2) 

G(X,Z) = ±~ I dfl f dK 

ijj- I dU fdK exp [i(KX + HZ) - m o ] . 

0 UK) 
(12) 
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Explicit calculation of this integral is d i f f i cu l t , but we can easily evaluate 

the asymptotic form of the growth by performing a saddle point calculation. 

F i rs t , let us call the exponent in Equation (12) g(£2,K). The saddle then 

occurs where 

-jS- = 0 and |& = 0 

iZD - | 2 = 0 and iXD - | £ = 0 . (23) 

We define V = X/Z and obtain from (13) 

DK - VDfi = 0 , (14) 

where the subscript denotes partial differentiation with respect to the 

subscripted variable. I f we now solve Equations (14) and (10) for SI and K 

the growth can be found as 

G(X,Z) exp [im (fl - KV)z] . (15) 

A more rigorous derivation of Equation (15) has been done by E. Lee using 

Lagrange multiplier formalism. 

Now in our case, Equations (14) and (10) yield 

K 2 = 1 + 

SI = 1 + (-0 
which can be simplified if we restrict ourselves to Z/X >> 1, i.e., long 
propagation distances. 
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Then 

(-ir['*u-ow] 
K-O1 2/3 

1 + t " 
and f i na l l y 

G(X.Z) exp ^ (X 2 Z)" . (16) 

Cfearfy tfie instability grows wftnout bound wftrt fnrreas"frnj # ana" I , a 

consequence of the r ig id beam/channel modeling of Equations (4) and (5) and 

the in f in i te resonance that results. The assumption of r i g i d i t y while 

simplifying the analysis is quite unphysical except at low frequencies and as 

we see in the next section, i t obscures important physical phenomena. 

IV. Spread Mass Modeling 

As outlined in reference 2, there is compelling evidence to the 
introduction of a large spread in betatron frequencies. Physically, this 
spread derives from the fact that the transverse potential well which contains 
beam particles is anharmonic. Particles localized near the axis oscillate 
with a frequency greater than particles which are able to move to the outer 
edge of the profile. This spread has the effect of introducing a maximum 
frequency above which the instability is damped. To incorporate betatron 
frequency spreading into our model, we adopt the spread mass model of 
E. P. Lee. 2 
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The real beam is considered to behave as if eacfi longitudinal segment is 
composed of many rigid disks having the same transverse charge density profile 
as the beam, but with varying mass. The same arguments can be made for the 
channel ions since we have previously assumed that the channel and beam 
profiles are the same. A continuous variable n is defined which serves as a 
subscript label for the disks within a segment such that 0 < n < 1. To 
proceed we must select the radial form for the transverse charge density 
profile. Selecting the Bennett profile 

j(r) „ 1 , (1?) 
(I + rV 2T a 

then n _ a x = 2 in normalized units corresponds to the betatron frequency 
of particles near the axis. All other particles have smaller betatron 
frequencies which are distributed as 

a. = n a ^ = 2n . (18) . 

The displacement of a beam segment is the weighted mean of all of the disks 
f 

= J dn w(n) Y n , (19) 
0 

Lee has shown that the normalized weighting function w{n) that is 
appropriate to the Bennett is 

w(n) = 6n(l - n ) . (?0) 
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Adopting these ideas, we can modify the linearized Equations (8) and (9) to get 

J. 
az 2 'n Y„ = 2 n (D - VJ (21) 

n 

-S-? D = 2c (V - 0.) . (22) 
ax41 £ 

Note here that we have explicitly spread the mass of the channel (with index O 
as well as the beam (with index n). For the channel, the mean displacement 0 
is calculated exactly as Equation (19) with the weighting function of Equation 
(20). Using the same form of perturbation as before, the new dispersion 
relation becomes 

1 = / d?w(?) — I S - ? - f dn w 
J (25 - n J 

fo) ^ 2- • f 2 3) (25 - K') J (2n •!]') 
0 0 

It is easy to see that using a single disk approximation where w(a) = 6 (a - —) 

reproduces Equation (10). To compute the integrals of Eouation (23) we 

substitute relation (20) for w(ri) to obtain 

l 

«<* - 6 / dU "' fc$ 
0 

= l + 3 a - 6 a 2 [ l - ( 1 - a ) fTri + Jin ( ~ ^ ) ] [ . 

noting that the imaginary component arises from the pole at u = a . The 

dispersion relation is finally 

1 = I (K2/2) I (S12/2) . (24) 
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This expression is d i f f i c u l t to analyze in general, so we shal l study the 

character of the i n s t a b i l i t y by numerically solving Equations (21) and (22). 

V. Linearized Computational Model 

A simple code has been constructed to solve numerically Equations (21) 

and (22) . The continuum of beam disks (indexed!-)) and the continuum of 

channel disks ( indexed?) have been replaced by a set of N disks evenly spaced 

in the var iable n and C. The equations are then dif ferenced and become 

n + \ n - h 
\ix - U i = 2iAZ w. [0 - Y ^ / N 

n + 1 n n + h 
Y1 - Y. = AZU j 

(25) 
m + h n> - k 

Vj - Yj = 2 j M Wj (Y - D j ) /N 

ra + 1 m m + h 

where n is the index assigned tc the Z-step and m is the index denoting the 

X-step. The averaged quant i t ies are defined as 

<} = I ^ Qn- , (26) 
1=1 
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in a l l of the above 

5 - h 
w i N 

(27) 

and f i = ( 1 + i ? ) _ 1 * " 1 ( 1 - ^ * 
The spread mass model is nearly identical to that or iginal ly due to E. P. Lee 

which has the feature that 

N 
I u - i 

1=1 

N 2 

£ fj/w. =3+0 (ff) . 
1=1 

The feature new to this work is that both the channel jnd_ the beam have mass 
spreading with the number of disks the same for each. 

The code was run for N = 50 and the results are not qualitatively 
dissimilar to previous codes. First we note that Y = "5 = const, U? = 1/9 = 0 
is a solution showing that spatial invariance is retained. This provides an 
important numerical check. If we let In = V^ = D° = 0 and perturb 7 
with a step function H or 

T°W = H(X - X 0) , (28) 

then the results ar& as depicted in Figure 1 where X = 2. The perturbation 
of the initial disk damps away with increasing Z due to phase mixing. At 
larger values of X the perturbation initially grows, reaches a maximum, and 
then damps away reflecting the convective nature of the instability. It is 
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cnaracteristic that as X increases, the saturated growth increases and the 
position Z of the saturation also increases. If one plots 7 „ v as a 
function of X one obtains Figure 2 showing pure exponential growth of the 
form 

V m a x . e ^ X - V (29) 

where X Q is the point in X at which the perturbation is applied. From 
Figure 2 we calculate p = 1.54. The position 2 at which the saturation 
occurs is obtained from Figure 3 where we have plotted Z{Y ) vs. X. A 
group velocity may be calculated to be 

f$ = .379 . (30) 

I t is useful to rewrite Equation (29) in un-normali2ed coordinates for the 

length in x required for e-folding 

\ y k A ) v 
This distance is independent of beam energy and ion density and only 

weakly dependent on beam current. The instability is convective so that to 
obtain the propagated distance (z - z ) for e-folding, we ,nust apply the 
group velocity (30). 

h 

= i.7i a Hrro n f- - 02) 
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Note carefully that the length of pulse required for an e-folding contains the 

mass rat io (m./m.) ' J >>1 while the required propagation distance does 

not. Hence, a long pulse propagated in the IFR w i l l saturate at a very low 

level of hose but that saturated level w i l l be reached very quickly in z. 

VI. Non-Linear Development 

Using the computational model of Section V, we may easily observe the 

non-linear behavior of the hose when the beam becomes displaced from the 

channel by a distance of order the beam radius (Y = 0(1) ). We do this by 

returning to Equations (6) and (7) and applying the spread mass model. The 

result is that the f i r s t and third equations of set (25) are replaced by 

(33) 

U p = 2 i#w. (D - Y.) / [ l + \ (Y. - D) 2 j N 

Vj - Vj - 2JfltWj (Y - D,)/ | l + | (Y - D f r N] • 

Using the same i n i t i a l conditions as before but with a perturbation 

Y°(X) = 0.005 H(X - XQ) , (34) 

the results appear as in Figure 4. The initial perturbation has been chosen 
to lie well within the linear regime and, as expected, early growth appears as 
before. As T reaches unity, however, growth slows and the wavelength in Z 
becomes very long. The reason for this is that the restoring force for the 
beam has become very non-linear and the system falls out of resonance. The 
instability, in effect, moves itself into a saturated regime by leaving the 
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vicinity of the channel. This is further dramatized by Figure 5 where Y 
has been plotted as a function of X for the perturbation of Equation (34). 
The upper curve results from the "linearized Equations (25) and again shows 
pure exponential growth. The lower curve results from Equations (33) and 
shows the expected exponential growth in the linear regime with a later 
transition to saturated growth where ?•« 3. Each beam segment of X >, 8 
would grow to this maximum 7 and then damp away. At this displacement, 
however, the beam is mostly outside the channel so that other external forces 
(e.g., magnetic fields) may play an important role. 

VII. Summary 

The hose instability between a relativistic particle beam and an 
initially coaxial channel of un-neutralized ions has been examined. Analytic 
analysis of the rigid beam/rigid channel system shows absolute instability 

? 1/3 
growing at a rate proportional to (x z) . If mass spreading is applied 
to both the beam and the channel, the instability takes on a convective nature 
whose saturated growth can be described in the form exp [p(x - x

n)]« Finally* 
the non-linear equations of motion were solved numerically and we find that 
hose growth saturates when the beam is displaced from the channel by a distance 
of the order of a beam radius. At this distance, the forces between beam and 
channel are weafc and other forces can be important. 

C 
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If one inserts typical values into Equations (31) and (32) on^ concludes 
that the ion hose instability as analyzed here should have been observed in 
ETA and ASTRON experiments where none was apparent. In fact, however, we have 
Assumed that the channel has been totally ionized prior to the insertion of 
the beam so that the beam does no ionization itself. If this is not the case, 
as with a beam injected into cold gas, an ionization gradient exists from beam 
head to tail creating an additional spreading of betatron frequencies which 
detune the hose. 

Finally, we may examine the experiment proposed by Fawley and Vosnitz^ 
in which the beam from ETA (5 kA, 0.3 cm radius, y = 10) is injected into one 
micron of Benzene in which a 5% neutralization has been created by illumination 
by a KrF laser. For this case the length of pulse required for one> e-folding 
is 135. cm and the propagation distance for saturation is 18.2 cm. Except for 
Self ionization effects, the ion hose should be readily riiscernable during the 
experiment. 
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Pig. 1. Plot of Y m a x versus X for saturated growth of IFR hose 
instabil i ty. Data points taken f rom numerical solution of linearized 
equations of mot ion. 
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Fig 2. Plot of position in z versus position in X of saturated value of 
Y m w . Data points taken from numerical solution of linearized equations 
of motion. Group velocity AX/AY = 0.379. 



-21-

10 20 30 
X = 2.200E+00 

10 20 3D 
X = 5.000E+00 

40 

10 20 30 
X = 7.400E+00 

40 10 20 30 

X = 9.800E+00 
40 

Fig. 3. Plots of Y versus z at fixed values of X with perturbation applied at X = 2. Initial 
disc (X * 2.2) shows no growth while following discs show initial growth and then a 
saturation and decay. Results obtained from linearized equations of motion. 
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Fig. 4, Plots of 7 versus z at fixed values of X using nonlinear equations of motion. Note 
wavelength of instability grows longer as Y approaches unity. 
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Fig. 5. Plot of Y m a x versus X for linearized (top) and non-Hnear_ 
(bottom) equations of motion. Growth fate approaches zero as Y 
approaches order unity due to non-linear effects of finite beam and 
channel size. 


