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ABSTRACT 

Taylor series for the first four moments of the 
coefficients of variation in sampling from a 
2-parameter Weibull density are given: they are 
taken as far as the coefficient of n~ . From 
these a four moment approximating distribution is 
set up using summatory techniques on the series. 
The shape parameter is treated in a similar way, 
but here the moment equations are no longer 
explicit estimators, and terms only as far as 
those in n~^^ are given. The validity of assessed 
moments and percentiles of the approximating dis­
tributions is studied. Consideration is also 
given to properties of the moment estimator for 
1/c. 

1. INTRODUCTION 

The 3-parameter distribution function is 

F(t) = l-exp{-(t-s)Vb'^} (t>s,c,b>0) (1) 

where s is the origin, b, and c the scale and 
shape parameters respectively. 

In one form or another (the parameter 1/b is 
sometimes used) the density has widespread appli­
cation, the precise reason for its use not being 
clear always (it has a slight advantage in the 
simplicity of its distribution function, but this 
is a minor point in the face of computers of one 
sort or another). However, it seems well suited 
to situations involving breaking strengths (Barlow 
et al., 1979; Cain and Knight, 1981, for example), 
survival times (Peto and Lee, 1973, for example), 
etc. It has been used as a model for wind speed 
(Stewart and Essenwanger, 1978), a main attraction 
here being the interest in wind power, which is 
proportional to the cube of wind speed; this 
translates into changing the value of c in the 
Weibull model. 

Our interest is in the nature of series for the 
mean, variance, etc., of moment estimators for the 
parameters in the 3-parameter case. However, the 
complications here are such as to confine atten­
tion more or less to basic asymptotics (a partial 
study of the situation has so far produced the 
first 12 terms in the moments of the skewness). 
Although it is quite likely that properties of 
estimators in the 3-parameter case will differ 
considerably from those in the 2-parameter case, 
the study of the latter should bring out some of 
the difficulties. The only previous study of the 
series in this case (Newby, 1980) goes no further 
than basic asymptitics, and these were not free 
from error. 

1.1 What do we expect from a study of estimators? 
Of course, a study of estimation problems should 
at least have a better than fuzzy aim. Basically 
estimates of parameters survive only if they lead 
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to passing a satisfactory goodness of fit test. 
It seems reasonable to assume that refinements 
predicated on methods of estimation pale in com­
parison to model selection. Again it is always 
tempting to base decisions on narrow choices of 
criteria. Since sample size plays only a minor 
role in basic asymptotic assessments of variances 
(and biases), we are deceiving ourselves when 
decisions are based on asymptotic comparisons. In 
addition, it is all too easy to introduce a caveat 
invoking "a large enough sample," a transparent 
circularity digression. 

When we pay some attention to what comes after the 
first order asymptotic in means and variances, for 
example, we find a change of attitude to the 
asymptote, for we may be confronted with a few 
decreasing terms followed by one or more surges 
and variegated sign patterns. It is surely time 
we became aware of the existence of higher order 
terms and studied ways of using the information 
they contain. The statistics community seems to 
be half a century behind the times in this respect 
and completely unaware of advances and studies due 
to a school of theoretical physicists (see for 
example, the preface to Baker and Gammel, 1970). 

1.2 Problems with the 3-parameter Weibull and 
aims of this stuJy^ Moments of the maximum like-
lihood estimators in this case probably do not 
exist and other procedures are needed. Fitting by 
moments is quite straightforward, using the skew­
ness to fix the shape parameter c, then the 
variance to fix b, and lastly, the mean to fix the 
start s. But properties of the distribution of 
these estimatorss presents formidable mathematical 
difficulties, although a computer assisted 
approach is feasible. The 2-parameter case has 
already been studied; Bowman and Shenton (1981) 
have given details for the first four moments of 
the coefficient of variation, using summatory 
algorithms on the series (carried out to terms of 
order n"^**, n being the sample size). Here we 
discuss characteristics of these series and series 
for the first four moments of the moment estimator 
(c*). Having the four moments for v* and c* we 
can compare the percentage points of the one 
against the other using a four moment approximat­
ing distribution. Questions of validity are 
considered. Lastly, some general comments are 
added concerning the information in (what appear 
to be) divergent series. 

2. LEVIN'S ALGORITHM AND v* MOMENTS WHEN c = 1.5 

2.1 The series (Table 1) alternate in sign and 
diverge faster than the single factorial series 
(l-l!/n+2!/n^-...) but not as fast as the double 
factorial series (l-2!/n+4!n - . . . ) . We think the 
Levin algorithm (Levin, 1973) using 

[TABLE 1 about here] 
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a 
3=0 0 r+1 

ĵn 

j=o -• "^^ 

where for the series ao + ai/n +., 

T=r 
(2.1) 

^^1 
ao + ai/n + ... + a./n'̂ , (j = 0,1,...) 

applied to certain divergent series is divergent 
itself, but there exists a best member of the 
sequence (or stopping point). Now a peculiar 
aspect of series for statistical moments is that, 
for small n, we can often derive exact results 
using dimension reducing transformations or quad­
rature; the latter poses problems when n exceeds 
five or so. In the present case exact results 
have been found for n=2, and 4 using quadrature. 
Details for the first four moments for these 
values of n are given in Table 2. 

TABLE 2. Levin's t-algorithm and the moments 
series for v*, n=2,3,4. (Entries are 
"r-l* c=1.5) 

r yi(v*) P2(v*) y3(v*) y4(v*) 

n=2 6 .40486185 
7 .39979784 
8 .39479750 
9 .39044492 
10 .38694110 
11 .38417228 
12 .38196432 
13 .38020300 
14 .37885619 
15 .37795504 
16 .37759054 
17 .37788403 
18 .37899629 
19 .38106947 
20 .38395273 

.06017495 

.06217180 

.06467342 

.06727881 

.06965979 

.07149851 

.07259348 

.07280097 

.07204075 

.07018375 

.06714841 

.06275753 

.05713638 

.05199600 

.05679861 

-.01056879 
-.00907002 
-.00534255 
-.00085487 
.00356697 
.00729993 
.01022352 
.01228739 
.01412681 
.01586526 
.01863328 
.02126346 
.01761667 

-.02680927 
-.15955086 

.04307018 

.03302390 

.02057064 

.01098028 

.00954210 

.01515748 

.02266028 

.02792580 

.02847297 

.02370270 

.01337855 
-.00030514 
-.01086268 
.00972894 
.09882317 

True .382657 .06360 .00649 .008786 

Ml(v*) H2(v*) Vsi^*) yit(v*) 

n=3 6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

.49557302 

.49355822 

.49189084 

.49068668 

.48986117 

.48928991 

.48888579 

.48859966 

.48840697 

.48829599 

.48826233 

.48830396 

.48842022 

.48860605 

.05132049 

.05191633 

.05253079 

.05309256 

.05353657 

.05382896 

.05397361 

.05398413 

.05388140 

.05367738 
,05338954 
.05302404 
.05261345 
.05229469 

.00150823 

.00191748 

.00265513 

.00340504 

.00403855 

.00449792 

.00481116 

.00500293 

.00516034 

.00529306 

.00548973 

.00564607 

.00540456 

.00304165 

.01928206 

.01525018 

.01097594 

.00837420 

.00793691 

.00862812 

.00943739 

.00990738 

.00989262 

.00946541 

.00870570 

.00784777 

.00730647 

.00850647 

True .488905 .052842 .0047611 .008096 



TABLE 1 . Moments of 

y;(v*) y2(^'*) 

0 6.7896869309735 -01 
-5 .6132013492859 - 0 1 

1.6557176844808 - 0 1 
-1 .8474620536721 00 

2.1922586200894 01 
5 -4 .3580645232247 02 

1.2140053990087 04 
-4 .4319272510179 05 

2.0203579868046 07 
-1 .1120346826810 09 

0 7.2096574734542 10 
-5 .4024459971249 12 

4.6095483370065 14 
-4 .4246256616307 16 

4.7306820232839 18 
5 -5 .5869875796767 20 

7.2369947493057 22 
-1 .0219131662144 25 

1.5647248801081 27 
-2 .5858544423711 29 

0 4.5932258200979 31 
-8 .7373158431193 33 

1.7739714027278 36 
-3 .8328687301095 38 

4 8.7887933193700 40 

2.6772673984050 -01 
-6.2527413386551 -01 
2.8054197020753 00 

-3.1740301673027 01 
6.1698213591867 02 

-1.6985660574568 04 
6.1568194941015 05 

-2.7938852616884 07 
1.5329655502103 09 

-9.9160099223580 10 
7.4175948216140 12 

-6.3204220814912 14 
6.0603265024852 16 

-6.4738200315179 18 
7.6400548503158 20 

-9.8902833121783 22 
1.3958391428942 25 

-2.1362971186825 27 
3.5290314664515 29 

-6.2663989110185 31 
1.1916385088463 34 

•2.4187672237888 36 
5.2247417831321 38 

-1.1977722473854 41 

(v* = /m^/mj, where m^ is the second central 

V*; 0 = 1.5. 

P3(v*) 

3. 
-2. 
3. 

-5. 
1. 

-5. 
2. 

-1. 
9. 

-7. 
6. 

-5. 
6. 

-7, 
9. 

-1, 
2, 

-3, 
6. 

-1, 
2. 

-5. 
1. 

.2420881596408 

.8812804441747 

.0748070794268 

.8538726736417 

.6234033676654 

.9254772698640 
,7053438277634 
,4920295848592 
,6926666881294 
,2765971642972 
,2191074550240 
,9786222434405 
,4007815420352 
,5684964011259 
,8142882027352 
,3871913557010 
,1258940610359 
,5160392107693 
,2500388332982 
,1896832619930 
,4169335423533 
,2249959528916 
,1987171388092 

-01 
00 
01 
02 
04 
05 
07 
09 
10 
12 
14 
16 
18 
20 
22 
25 
27 
29 
31 
34 
36 
38 
41 

y,(v*) 

2.1503282167687 -01 
1.0502505615668 -01 
-1.5448458389139 01 
3.6415327254464 02 

-1.1056445045515 04 
4.2823776889988 05 

-2.0334982988104 07 
1.1530923018020 09 

-7.6471743602422 10 
5.8332256542299 12 

-5.0490312473491 14 
4.9040292832800 16 

-5.2953093012828 18 
6.30650928-3133 20 
-8.2281468998640 22 
1.1691746931915 25 

-1.8000727655091 27 
2.9892767600516 29 
-5.3328414511363 31 
1.0183630563144 34 

-2.0748600181908 36 
4.4971880275419 38 
-1.0341841311369 41 

of the sample, and m\ the mean.) 



TABLE 2—(Continued) 

yi(v*) y2(v*) vsi^*) yit(v*) 

n=4 6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

True 

.54117667 

.54021557 

.53952911 

.53909662 

.53883094 

.53866334 

.53855483 

.53848469 

.53844185 

.53841989 

.53841484 

.53842363 

.53844390 

.53847285 

.53850428 

.5385352 

.04353539 

.04376028 

.04396895 

.04414201 

.04426374 

.04433463 

.04436501 

.04435465 

.04434288 

.04430541 

.04425801 

.04420338 

.04414778 

.04410983 

.04415703 

.0441541 

.00327633 

.00341579 

.00363020 

.00382233 

.00396656 

.00405987 

.00411736 

.00414895 

.00417348 

.00419236 

.00421892 

.00423718 

.00420655 

.00395035 

.00336182 

.0041379 

.01095807 

.00900337 

.00727274 

.00643290 

.00631124 

.00645609 

.00660624 

.00668134 

.00667184 

.00660458 

.00650020 

.00639565 

.00633948 

.00647756 

.00689265 

.0064037 

(True given in an appendix on small sample 
results.) 

The "boxed" entries are those closest to the true 
value. In the case of the variance there is not 
much to choose between r=8 and r=17. The consis­
tency of the stopping point as n increases is 
noteworthy. In Table 3 we show the sequences for 
n=5 and n=10. 

TABLE 3. Levin's t-algorithm and the moments 
series for v*, n=5,10; c=1.5 

r yi(v*) y2(v*) y3(v*) y4(v*) 

n=5 7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

r 

n=10 7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

.56809277 

.56776951 

.56758617 

.56748250 

.56742171 

.56738511 

.56736316 

.56735080 

.56734505 

.56734405 

.56734644 

1 

Pl(v*) 

.62353379 

.62351206 

.62350304 

.62349912 

.62349733 

.62349649 

.62349610 

.62349594 

.62349589 

.62349589 

.62349591 

.03766328 

.03774945 

.03781515 

.03785700 

.03787906 

.03788745 

.03788679 

.03788075 

.03787145 

.03786056 

.03784916 

y2(v*) 

.02206202 

.02206626 

.02206853 

.02206957 

.02206996 

.02207006 

.02207003 

.02206996 

.02206988 

.02206981 

.02205976 

.00331170 

.00339003 

.00345310 

.00349608 

.00352147 

.00353590 

.00354316 

.00354857 

.00355242 

.00355762 

.00356077 

y3(v*) 

.00161832 

.00162092 

.00162229 

.00162297 

.00162328 

.00162341 

.00162346 

.00162349 

.00162351 

.00162353 

.00162353 

.00605289 

.00527773 

.00496769 

.00492982 

.00497093 

.00500903 

.00502583 

.00502246 

.00500770 

.00498707 

.00496833 

u^(v*) 

.00179863 

.00176415 

.00175653 

.00175610 

.00175668 

.00175704 

.00175714 

.00175709 

.00175701 

.00175593 

.00175688 



2.2 Another algorithm (a modified Borel-Pade 
described in Shenton and Bowman, 1977a) basically 
considers 
S(n) - eo + ei/n + ... (2.2) 

oo 

- J e"^t^~Mko+l<i(h/n)t+k2(h/n)^t2+...}dt 
0 (a>0;h>0) 

leading to the summation formula (to be referred 
to as 2cB) ^_^ 
F^(n;a,h) = N E K (a,h) $ (N;a) (N = n/h) (2.3) 

^ s=0 ^ ^ 
s e 

where K (a,h) = M ^ j "^ 
S ^-n^' u2 r=0 ' h^r(a+2r) 

~ ^-t^.a+2s-l .̂. 
* (N;a) = / ̂  * ^̂  

$ (•) can either be calculated by quadrature or 
s 0 (Nn2)S+l 

cal 

using the recurrence 
2 (2.4) 

4s(s+l)45^.^(N;a)= z G^Og_^(N;a), (s=2,3,...) 

with Go = 2s(6s+2a-3), 
Gi = -{l2s^+8s(a-3)+a^-7a+12+N}, 
G2 = (2s+a-3) (2s+a-4); 

00 

and *o(N;a) = / e"H^"-^(N+t^)"-^dt, 
0 

*i(N;a) = i a $o(N;a)- i $o(N;a+l), 

*2(N;a) = {(4a+6)$i(N;a)-(a^+a+N)$o(N;a) 
+r(a)}/8. 

Actually these indicate that $ (••) is a linear 

function of the basic functions *o(**), and $i(") 
and indeed 
*jN;a) = N 4°^(N)+4^hN)$o(N;a)+n(2^(N)$i(N;a) 
b b2 bQ b2 

Where s, = [s-i-l)/2], i = 1,2,3^^-^^ ^^'^^ 
and n; '(•) are real polynomials. 

î 

Results are given in Table 4, and whereas there 
are slight discrepancies for n=5 and the Levin 
values (Table 3), the agreement is quite satisfac­
tory. One should notice the reduction in the 
sizes of the first differences for each moment as 
n increases. This characteristic also applies to 
the Levin sequences provided the differences 
relate to a neighborhood of the best stopping 
point. It could be that the Borel sequences con­
verge, whereras as noted earlier those for Levin 
do not. 

Our preferred values for the four moments are: 

n yi(v*) y2(^*) y3(v*) yi»(v*) 
5 0.568 0.0378 0.0035 0.0049 
in n K?qfi n.n??n7 0.00162 0.00175 



TABLE 4. Borel-Pade Sequences for the moments 
series for v* when c = T.5, n = 5,10 

yi(v*) y2(v*) y3(v*) y^(v*) 

n=5 

n=10 

21 
22 
23 
24 
25 
S3 
Ss 

r 

21 
22 
23 
24 
25 
S3 
Ss 

.573267 

.572835 

.572446 

.572094 

.571774 

.568643 

.567936 

yl(v*) 

.624125 

.624057 

.623999 

.623947 

.623903 

.623586 

.623529 

.037860 

.037874 

.037886 

.037894 

.037900 

.037912 

.037896 

y2(v*) 

.022069 

.022070 

.022070 

.022070 

.022070 

.022070 

.022070 

.003306 

.003312 

.003318 

.003325 

.003332 

.003016 

.003470 

y3(v*) 

.001618 

.001618 

.001619 

.001619 

.001619 

.001635 

.001622 

.004785 

.004771 

.004760 

.004752 

.004746 

.004731 

.005021 

y4(v*) 

.001754 

.001754 

.001753 

.001753 

.001753 

.001752 

.001760 

[Entries are F (n;l,l); see (2.3) S3,S5 refer to 

(1955) extrapolate on F23, F2it, F25 and 
25' Indeed 

S = (F23.F25-F24)/^^F24. and 

Shanks' 
F21. F22. F23> ^Zki ^25 

F21 

AF21 

A^Fzi 

F22 

AF22 

A F22 

F23 

AF23 

A^F23 

1 

AF21 

A^F2l 

1 

AF22 

A2F22 

1 

AF23 

A^F23 

Ss = 

These extrapolates are to be used with caution; 
sometimes they reverse a trend throwing suspicion 
on the process.) 

2.3 We now assume that for higher values of n the 
stopping rule for the Levin sequences holds. It 
is possible, in view of the conjectured diver­
gency, that each n has its own best stopping point 
for each moment. However, the sequence values 
become lightly packed for larger n; for example 
for c=1.5, n=50, we have for var(v*), 

aio = 5.1231738-03 â e = 5.1231117-03 

ail = 5.1231473-03 aiy = 5.1231104-03 

5.1231320-03 a^Q = 5.1231096-03 
5.1231228-03 aig 

5.1231173-03 

5.1231138-03 

and ai6 is the best value flagged from earlier 
cases. It seems reasonable to take 5.12311-03 as 
the preferred value. Of course, increasing n 
still further and choosing a best value would have 
to take into account the basic accuracy of the 
moment series coefficients. 

"12 

"13 
ai4 

«15 

= 5.1231090-03 

020 = 5.1231087-03 

021 = 5.1231085-03 

2.4 A further set of comparisons for c=2.0 (Table 
5) shows that conclusions similar to those drawn 
for c=1.5 hold. 

2.5 A summary of the characteristics of the 
moment series for v* is given in Table 6. It will 
be noticed that divergency is pronounced for small 
c, corresponding to marked skewness (and long-
tailed) in the Weibull density. The divergency 
becomes less severe as c increases, but now there 
is a disruption in the alternating sign pattern. 



Levin and Borel (modified) 

n Mi(v*) y2(^'*) y3(v*) Vki^*) 

2 L .306971 11 .047562 9 .006066 7 .006613 5 
T .306853 .047434 .006883 .006036 
DS .312 .0573 .0120 .00183 

3 L .388759 11 .037496 9 .003423 7 .004547 5 
T .388807 .037349 .003626 .004275 
DS .3848 .0395 .00453 .00635 

4 L .425847 11 .029815 .002288 7 .002972 5 
T .425863 .029785 .002340 .00288 
DS .4262 .0293 .00263 .00338 

5 L .446871 11 .024596 9 .001640 7 .002040 5 
2cB* .446913 .024645 .001608 .002047 
DS .44702 .02441 .00177 .002170 

10 L .486309 11 .013020 9 .000519 7 .000559 5 
2cB* .486309 .013021 .000518 .000559 
DS .486299 .013030 .000510 .000563 

20 L .5049 .006696 .000146 .000143 
Si .5048 .006708 .000152 .000144 
S2 .5044 .006675 .000140 .000141 

[L is the Levin t-algorithm, the parenthetic entry 
referring to the best approximant a^. T refers 
to values commuted by quadrature. 2cB refers to 
the Borel-Pade algorithm effectively using all the 
available coefficients (see expression (2.3)); for 
y'l we have used a=2, h=l with terms up to n'** 
truncated, and for ^2. y3. and M^ we have used 
a=l, h=l with the n~^ term omitted for y2 and no 
truncations for v^ and y^. DS refers to the 
direct sum of the series stopping at the first 
numerically smallest term. Si and S2 refer to 
simulations of 10^ cycles each, the s.d. of the 
mean being 0.0003 approx.) 



TABLE 6. Magnitudes and sign patterns occurrtng 
in the first four moment series for the 
coefficient of variation v*, as affected 
by the shape parameter c. 

Moment 

c 

0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.8 
3.0 
3.2 
3.5 
3.8 
4.0 

1 

yi 

1 (1) V2^/ 

2.9 
8.6 
4.2 
1.5 
2.5 
1.2 
1.3 
2.6 
7.9 
3.1 
1.3 
3.7 
2.4 
5.7 
1.6 
3.2 
1.2 
5.6 
1.2 
6.0 
1.8 
3.4 
7.3 
2.6 

(V*) 

(1), 
vo 

67 
60 
55 
51 
47 
44 
41 
38 
35T 
33T 
31T 
28T 
26 
25B 
25B 
26B 
26B 
25B 
25B 
25B 
26B 
26B 
26B 
27B 

y2( 

1 ^2), 
V2H/ 

4.6 
1.7 
1.0 
4.2 
7.4 
3.8 
4.5 
9.4 
3.0 
1.2 
5.0 
1.5 
9.6 
2.5 
6.7 
1.3 
4.7 
2.3 
4.9 
2.4 
7.3 
1.3 
2.7 
9.6 

V*) 

(2), 
Vl 

67 
61 
56 
51 
47 
44 
41 
38 
36 
34 
31 
29 
26L 
26B 
25B 
27B 
26B 
26B 
25B 
26B 
26B 
27B 
27B 
27B 

y3( 

1 (31 
V24/ 

6.3 
3.6 
3.0 
1.7 
4.0 
2.6 
3.7 
9.2 
3.4 
1.6 
7.4 
2.4 
1.7 
5.4 
1.4 
2.3 
1.0 
5.3 
1.2 
6.0 
1.9 
3.4 
6.7 
2.4 

V*) 

(3), 
V2 

66 
60 
55 
51 
47 
44 
41 
38 
36 
34 
31 
29 
27L 
26B 
26B 
27B 
27B 
26B 
26B 
26B 
27B 
27B 
27B 
28B 

yj 

, (4) 
V24 

2.3 
1.1 
7.4 
3.5 
6.9 
3.9 
4.9 
1.1 
3.5 
1.4 
6.1 
1.9 
1.2 
3.5 
8.8 
1.6 
5.9 
2.9 
6.1 
3.0 
8.9 
1.6 
3.2 
1.1 

V*) 

/ (4)| 
/V2 

67A 
61A 
55A 
51A 
47A 
44A 
41A 
39A 
36A 
34A 
31A 
29A 
27L 
26B 
25B 
27B 
26B 
26B 
25B 
26B 
26B 
27B 
27B 
28B 

[Introduction of letters of T, L, and B indicate 
disruption of alternating sign pattern. Disrup­
tion occurs at the top (T) of the series, bottom 
(L), and both top and bottom (B). A refers to a 
sign pattern with alternation except for the first 
two terms. In the moment columns each second 
column refers to the power of ten used as a 

multiplier. V2it/v , i = 1,2,3,4 refer to 

coefficients in the series.) 

anomolies creeping in for both the initial terms 
and those for the highest coefficients 
(n"^'*,n"^^, etc.). It will be recalled that the 
density itself tends towards symmetry with c 
slightly larger than three and thereafter achieves 
negative skewness. We have not carried out 
extensive studies of the series for c > 4.0. 
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aoo = 
aoi = 

ao2 = 

aio = 
an = 
320 = 

-0.02586359654 

0.1368685508 

0.1941632032 

0.9555907114 

-0.2097962308 

-0.2918002479 

2.6 Moment ^sessments for c = Q^ (0.1), 2.6 
W2), 3.2, 3.5, 3.8, 4.0 and n = 13(1)50(5)100 
have been tabulated; for yi(v*), y2(v*), y3(v*), 
vii{y^) we used 13, 18, 12, and 11 coefficients of 
the corresponding series. A selection is given in 
Table 7. From these it will be seen that for a 
sample of n known to come from a Weibull density 
with parameter c (which fixes v) the estimate v* 
of V is expected to underestimate the true v. 
Using a least squares procedure on the tabulated 
values, we have derived the unbiased c, given v* 
and n, namely 

[TABLE 7 about here] 

c - {l+boi/n+bo2/n^+v*(bio+bii/n)+v*2b2o}/ (2.6) 

{aoo+aoi/n+ao2/n^+^^*(aio+an/n)+v*a2o} 
(0<v*<l) 

boo = 1-0 

boi = -0.03224982824 

bo2 = -0.05540306547 

bio = -0.4528195583 

bii = -0.9542316494 

b2o = 0.08948942647, 

the errors being numerically less than 0.5%. The 
grid of values used was 
n=10(l)20,22,25(5)50(10)100 and 0.8 <_ c <̂  4 
involving 575 points. 

In a similar way if we need a quick, fairly 
accurate solution to the equation 

illliM_ = 1 + v2. (2.7) 
r^d+i/c) 

1/c = ClV + C2V^ + C3V^ ̂  C.v'̂  (2.8) 
1 + div + d2v^ + dsv^ 

where 

Ci = 0.779960622 di = 0.188028602 

C2 = 0.587095391 d2 = 0.609555293 

C3 = 0.471569800 63 = 0.00282363508 
c^ = -0.0382146209 

The error in the approximation to c is 0.0004% or 
less for 0.6 < c < 6.6 (0.178 <̂  v < 1.758). 

If we replace v by v* then the moment estimator of 
c is the real solution of 

r(l+2/c*)/r2(l+l/c*) = 1 + v*2 (2.8) 

showing that the distribution of c* is a function 
of c only, V* being scale free (this is also 
evident from the tabulated moments of v* which do 
not involve b). 

3. THE DISTRIBUTION OF c* 

3.1 Moment series. It will be evident from the 
equation for c* that the Taylor series for its 
moments^will be more cotnpHeated. However, we use 
a two-stage process, expressing c* in terms of v*, 

and V* in terms of the m.oments m'l and m2. Thus we 
set 
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TABLE 7. Moments of v* using the Levin sequences. 

C i . O 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 
n V 1 . 0 0 0 0 . 6 7 9 0 . 5 2 3 J . 4 2 8 0 . 3 6 3 0 . 3 1 6 0 . 2 8 1 

15 Ml 0 . 9 1 4 0 . 6 4 2 0 . 4 9 9 0 . 4 0 9 0 . 3 4 8 0 . 3 0 3 0 . 2 6 8 
O 0 . 2 0 0 0 . 1 2 5 0 . 0 9 4 0 . 0 7 7 0 . 0 6 7 0 . 0 5 9 0 . 0 5 3 
• e i 0 . 7 8 0 0 . 4 5 7 0 . 3 0 0 0 . 2 3 6 0 . 2 1 7 0 . 2 1 9 0 . 2 3 1 
Ba 4 . 2 7 8 3 . 5 3 3 3 , 2 2 7 3 . 1 1 0 3 . 0 5 8 3 . 0 3 6 3 . 0 2 6 

20 y'l 0 . 9 3 4 0 . 6 5 1 0 . 5 0 5 0 . 4 1 4 0 . 3 5 2 0 . 3 0 6 0 . 2 7 2 
o 0 . 1 8 2 0 . 1 1 0 0 . 0 8 2 0 . 0 6 7 0 . 0 5 8 0 . 0 5 1 0 . 0 4 6 
/Bi 0 . 7 7 9 0 . 4 2 1 0 . 2 6 6 0 . 2 0 5 0 . 1 8 6 0 . 1 8 6 0 . 1 9 5 
62 4 . 3 3 5 3 . 4 6 0 3 . 1 8 1 3 . 0 8 6 3 . 0 4 6 3 . 0 2 6 3 . 0 1 9 

25 U'l 0 . 9 4 6 0 . 6 5 7 0 . 5 0 8 0 . 4 1 7 0 . 3 5 4 0 . 3 0 8 0 . 2 7 3 
o 0 . 1 6 8 0 . 0 9 9 0 . 0 7 3 0 . 0 6 0 0 . 0 5 2 0 . 0 4 6 0 . 0 4 1 
/Bi 0 . 7 6 6 0 . 3 9 2 0 . 2 4 1 0 . 1 8 4 0 . 1 6 5 0 . 1 6 4 0 . 1 7 2 
B2 4 . 3 3 2 3 . 4 0 2 3 . 1 5 0 3 . 0 7 0 3 . 0 3 7 3 . 0 2 1 3 . 0 1 5 

30 Uj 0 . 9 5 4 0 . 6 6 0 0 . 5 1 1 0 . 4 1 9 0 . 3 5 6 0 . 3 1 0 0 . 2 7 5 
a 0 . 1 5 7 0 . 0 9 1 0 . 0 6 7 0 . 0 5 5 0 . 0 4 7 0 . 0 4 2 0 . 0 3 8 
/Bi 0 . 7 5 0 0 . 3 6 7 0 . 2 2 2 0 . 1 6 8 0 . 1 5 0 0 . 1 4 9 0 . 1 5 6 
62 4 . 3 0 4 3 . 3 5 6 3 . 1 2 8 3 . 0 5 9 3 . 0 3 1 3 . 0 1 8 3 . 0 1 2 

35 Hi 0 . 9 6 0 0 . 6 6 3 0 . 5 1 3 0 . 4 2 0 0 . 3 5 7 0 . 3 1 1 0 . 2 7 5 
o 0 . 1 4 8 0 . 0 8 5 0 . 0 6 2 0 . 0 5 1 0 . 0 4 4 0 . 0 3 9 0 . 0 3 5 
•̂ Bi 0 . 7 3 2 0 . 3 4 7 0 . 2 0 7 0 . 1 5 6 0 . 1 3 9 0 . 1 3 7 0 . 1 4 3 
B2 4 . 2 6 6 3 . 3 1 9 3 . 1 1 2 3 . 0 5 1 3 . 0 2 7 3 . 0 1 6 3 . 0 1 0 

40 v; 0 . 9 6 5 0 . 6 6 5 0 . 5 1 4 0 . 4 2 1 0 . 3 5 8 0 . 3 1 2 0 . 2 7 6 
o 0 . 1 4 0 0 , 0 8 0 0 . 0 5 8 0 . 0 4 7 0 . 0 4 1 0 . 0 3 6 0 . 0 3 3 
•'Bi 0 . 7 1 4 0 , 3 2 9 0 . 1 9 5 0 . 1 4 6 0 . 1 2 9 0 . 1 2 8 0 . 1 3 4 
Bi 4 . 2 2 4 3 . 2 8 9 3 . 0 9 9 3 . 0 4 5 3 . 0 2 4 3 . 0 1 4 3 . 0 0 9 

4 5 u; 0 . 9 6 9 0 . 6 6 7 0 . 5 1 5 0 , 4 2 2 0 . 3 5 8 0 . 3 1 2 0 . 2 7 7 
o 0 . 1 3 4 0 . 0 7 5 0 . 0 5 5 0 . 0 4 5 0 . 0 3 8 0 . 0 3 4 0 . 0 3 1 
/61 0 . 6 9 7 0 . 3 1 4 0 . 1 8 5 0 , 1 3 7 0 , 1 2 2 0 . 1 2 0 0 . 1 2 5 
B2 4 . 1 8 2 3 . 2 6 5 3 , 0 8 9 3 . 0 4 0 3 . 0 2 1 3 . 0 1 2 3 . 0 0 8 

50 P | 0 . 9 7 2 0 . 6 6 8 0 . 5 1 6 0 . 4 2 2 0 , 3 5 9 0 , 3 1 3 0 . 2 7 7 
a 0 . 1 2 8 0 , 0 7 2 0 , 0 5 2 0 , 0 4 2 0 , 0 3 6 0 , 0 3 2 0 . 0 2 9 
•̂ Bi 0 . 6 8 1 0 . 3 0 1 0 . 1 7 6 0 . 1 3 1 0 . 1 1 5 0 . 1 1 4 0 . 1 1 9 
B2 4 . 1 4 0 3 . 2 4 4 3 . 0 8 0 3 . 0 3 7 3 . 0 1 9 3 , 0 1 1 3 , 0 0 7 

70 y'l 0 . 9 8 0 0 . 6 7 1 0 . 5 1 8 0 . 4 2 4 0 . 3 6 0 0 , 3 1 4 0 . 2 7 8 
0 0 , 1 1 1 0 . 0 6 1 0 . 0 4 4 0 . 0 3 6 0 , 0 3 1 0 , 0 2 7 0 , 0 2 5 
v'Bi 0 , 6 2 4 0 . 2 6 1 0 . 1 5 0 0 . 1 1 0 0 . 0 9 7 0 , 0 9 6 0 , 1 0 0 
B2 3 . 9 9 2 3 , 1 8 5 3 , 0 5 8 3 , 0 2 6 3 , 0 1 4 3 . 0 0 8 3 . 0 0 5 

100 Uj' 0 . 9 8 6 0 . 6 7 3 0 . 5 1 9 0 . 4 2 5 0 . 3 6 1 0 . 3 1 4 0 , 2 7 9 
o 0 , 0 9 5 0 . 0 5 1 0 . 0 3 7 0 . 0 3 0 0 . 0 2 6 0 , 0 2 3 0 , 0 2 1 
•̂ Bi 0 . 5 6 0 0 , 2 2 3 0 , 1 2 6 0 . 0 9 2 0 . 0 8 1 0 , 0 8 0 0 , 0 8 3 
B2 3 , 8 2 6 3 . 1 3 6 3 . 0 4 2 3 . 0 1 9 3 , 0 1 0 3 . 0 0 6 3 . 0 0 4 

iFor c=l, there is the special property that v* is distributed 
independently of the mean (see Bowman and Shenton, 1981) so that 
this special property is used along with Levin's algorithm. For 
c > 1, we have used Levin's oie for Pi(v*), a u for P 2 ( ^ * ) > " n 
for V3{v*), and 0 ^ for Jii,(v*), If a 4-moment Pearson distribu­
tion is now fitted, assuming the value of c is known, our guess 
is that the middle percentage points (1, 5, 10, 90, 95, and 99) 
are in error by not more than 555 and very likely less for 
samples exceeding 30 or so.) 
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c* - C + Ci(v*-v) + C2(v*-v)V2] + ... 

with c, = ^-S- (3.1) 
dv*^ 

If we wish to carry the series (3.1) and similar 
ones for higher moments so that in expectation all 

terms are included contributing to, say, n"̂ "̂ , 
then we need all derivatives up to C2it. These can 
be found using Faa di Bruno's formula for a 
derivative of a function of a function (see for 
example Shenton and Bowman, 1977b, pp. 14, 130, 
169; for several generalizations see Good, 1961). 

3.2 Derivatives of c* with respect to v*. From 
TTT) 

r(l+2/c*)/r2(l+l/c*) = 1 + v*2 (3.2) 
so that taking logarithmic derivatives 

(3.3) 

-1^ {,1,(1+ 1- ) - ,1,(1+ i- )} i£l = 1 {JL_ + J _ } 
c*^ ^ c* c* av* 2 v*+i v*-i ̂  

where ip(x) = din r(x)/dx, i = /(-I). Clearly we 
can drop the asterisks and replace them when 

necessary. We write c for 3 c/3v , the modified 
(3.3) in the form 

CiO(c) = VQ. (3.4) 
Using the formula of Leibniz for the s-th deriva­
tive of a product. 

r^l£l=j(^)(c) 
3C^ S 

= Z l^)ll4^ (r+l)l H^^'^^^c) (3.5) 
r=0 "" c'''-^ where 

H(°hc)=H(c)=,Kl+ i)-,|;(l+ | ) , H("'^c)=d'"H(c)/dc"'. 
From (3.4) 

JC2+ Ĵ  'c^ = Vl = 3vo/3v, 

JC3+ 3J^^^CiC2+ J^^^c? = V2, (3.6) 

JC^+ 4J^^^CiC3+ 3J^^^C^+ 6J^^^C?C2+ J^^^Ci = V3 

and so on, where 

NS.. / i x S 

V 3 0̂ = (-1)' cl ( 1 

' 3v̂  2 '• ^(v+l)'-'^ "̂  (v-i)̂ -̂ l 

Now the structure of these formulas is the same 
(Luckacs, 1955) as occurs in the expression of 
noncentral moments (y') in terms of cumulants. 

For example, 

K2 + K^ = y2, 

K3 + 3K2KI + K5 = ys. (3.7) 

Kit •̂  4K3K1 + 3K2 "*• ^<2<\ + <i = Vii-
But these formulas are equivalent to 

r-1 , 
y- = Z C:^] K u' (r = 2,3,...) (3.8) 

s=0 

giving ŷ  in terms of y^_j, y^_2>---. yo (note 
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•̂ 1 = yi» yo "̂  ! ) • Hence the left side members of 
(3.7) and the generalization can be set up 
recursively from previous members and awkward com­
binatorial problems avoided, a distinct advantage 
in digital implementation. 

3.3 Moment series for c*. A tabulation is given 
in Table 8 for the first four moments for a selec­
tion of values from c = 0.8(0.1)2.6(0.2)3.2, 3.5, 
3.8, 4.0, The sign pattern for c=l [apart from 
one anomoly in each of yi(c*) and yi|(c*)) is 
alternating. As c increases this regular pattern 
is disrupted and the plus signs start to predomi­
nate, especially for the higher moments. As for 
magnitude, very approximately, the coefficient of 
n decreases from (24)!, for c=l, towards (12)! 
for c=3 for yi(c*), with slight increases for the 
higher moments. See Table 9 for further details. 

[Table 8 about here] 

TABLE 9. Magnitude of coefficients for c* 
moment series 

Moment 

c 

0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.8 
3.0 
3.2 
3.5 
3.8 
4.0 

1 

yi 

. (1). 

(c*) 

(1), 
|Ci2/Co 

1.1 
4.3 
7.9 
4.4 
5.3 
1.2 
3.9 
1.8 
1.0 
7.2 
5.3 
4.0 
2.6 
1.0 
4.1 
5.3 
3.6 
1.0 
2.2 
4.7 
5.5 
2.9 
9.5 
2.6 
3.0 

31 
27 
24 
22 
20 
19 
17 
16 
15 
13 
12 
11 
10 
09 
07 
06 
06 
07 
07 
07 
07 
07 
07 
08 
08 

y2( 

, . (2). 

c*) 

(2). 

y3( 

. (3). 

c*) 

(3). 
|Ci2/Ci 1 |Ci2/C2 1 

3.4 
1.7 
3.7 
2.3 
3.1 
7.3 
2.6 
1.2 
7.2 
5.0 
3.7 
2.8 
1.8 
6.7 
3.9 
1.9 
1.4 
7.9 
4.3 
3.8 
6.9 
7.6 
6.5 
1.9 
3.1 

[In the moment columns 
to the power of 

31 
28 
25 
23 
21 
19 
18 
17 
15 
14 
13 
12 
11 
09 
08 
08 
08 
07 
07 
08 
08 
08 
07 
09 
09 

each 
ten used as 

1.2 
1.8 
6.7 
6.1 
5.0 
9.3 
2.9 
1.3 
7.1 
4.6 
3.3 
2.3 
1.4 
5.1 
4.4 
3.9 
4.2 
4.2 
3.3 
5.5 
6.3 
1.1 
1.0 
7.6 
2.6 

31 
28 
26 
23 
21 
19 
18 
17 
15 
14 
13 
12 
11 
09 
08 
08 
08 
08 
08 
07 
08 
09 
09 
08 
09 

second col 

yj 

.('̂ ) 
Cl2 

2.5 
1.6 
4.4 
3.2 
4.7 
1.2 
4.3 
2.1 
1.2 
8.2 
5.9 
4.2 
2.5 
8.4 
1.3 
1.8 
2.4 
2.9 
3.2 
2.7 
6.8 
2.4 
6.0 
3.7 
2.3 

c*) 

/.("^J 
/C2 

31 
28 
25 
23 
21 
20 
18 
17 
16 
14 
13 
12 
11 
09 
09 
09 
09 
09 
09 
09 
08 
09 
09 
09 
09 

umn refers 
a multiplier. ] 

These properties suggest that E(c*) will exceed c, 
and Var(c*) will exceed the asymptotic variance 
[Vari(c*)) for c in the region of 1.5 or more. 
Numerical evidence for 8.0 < c < 4.0 and 
10 < n < 100 suggests E(c*-c) > 0, and Var(c*)/ 
Varijc*) > 1. For example, when c=1.9, n^lO, 
E(c*-cr = 0.2, and the variance ratio is 1.4: 
similarly, when n=10, c=1.5, rfc* c) - 0.3, ar.c! 
the variance ratio is 1,7. 
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TABLE 8. Moment series for c*, where r(l+2/c*)/r^{l+l/c*) 

(v* = •'m2/mi, the coefficient of variation). 
1 + v̂  

C 
1.0 

s 
0 

y;(c*) y,(c*) u,(c*) u,(c*) 

1.00000000000 +00 
2.64493406685 +00 

-1.71123763218 +01 
8.53180565368 +02 

-7.08236389752 +04 
5 9.16919113987 +06 

-1.67242143328 +09 
4.04878601561 +11 

-1.24957512007 +14 
4.77569676051 +16 

-2.21096768650 +19 
1.21859738849 +22 

12 -7.88382598313 +24 

000 
162 
046 
186 
939 
236 
187 
138 
754 

8.891 
5.306 
3.685 

00000000 
17622550 
99772400 
82984508 
12796742 
91027771 
09573920 
31172021 
76767742 
15426850 
19049143 
37991717 

+00 
+01 
+0 3 
+05 
+07 
+0 9 
+12 
+14 
+17 
+19 
+22 
+25 

• 1 . 3 0 3 9 5 
4 . 0 4 5 3 7 

- 7 . 4 2 9 3 8 
1 . 6 9 1 6 1 

- 4 . 7 0 6 2 1 
1 . 5 9 1 8 3 

- 6 . 4 6 7 4 7 
3 . 1 1 7 7 7 

- 1 . 7 6 3 2 7 
1 . 1 5 8 1 6 

- 8 . 7 5 5 3 4 

5.98911 
576826 
033595 
175037 

073393 
254710 
649882 
660021 
643511 
021472 
174063 

-01 
+02 
+0 4 
+07 
+0 9 
+12 
+14 
+17 
+20 
+23 
+25 

3.00000 
-1.94936 
-1.26370 
6.47275 
-2.68301 
1.18649 
-5.89933 
3.34303 
-2.16292 
1.59366 
-1.33150 

000000 
949445 
978873 
757861 
982152 
611510 
637320 
106097 
996989 
933885 
479075 

+00 
+01 
+04 
+06 
+09 
+12 
+14 
+17 
+ 20 
+23 
+26 

1.5 0 

12 

2.0 0 

1.50000000000 
2.39460463705 
1.06599601622 
2.69713017770 
-3.53721215742 
9.59416683127 
-3.29037238977 
1.43244108906 
-7.58422614574 
4.75599220101 
•3.46116462749 
2.87708828012 
-2.69712794353 

12 

2 . 0 0 0 
2 . 7 0 6 
4 . 0 9 6 
1 . 0 7 7 
1 . 7 3 1 
1 . 2 2 8 

• 6 . 0 9 6 
9 . 9 6 3 

• 1 . 7 3 6 
3 . 3 1 9 

• 7 . 4 4 1 
1 . 8 6 9 

• 5 . 2 0 7 

00000000 
21619094 
22030667 
50575800 
39719173 
61199259 
43673836 
09999457 
42702591 
04521127 
75186773 
62029389 
20028160 

+0 0 
+00 
+0 0 
+01 
+0 2 
+0 3 
+05 
+07 
+0 8 
+10 
+12 
+14 
+16 

+00 
+00 
+00 
+01 
+01 
+02 
+0 2 
+03 
+0 5 
+06 
+07 
+09 
+10 

1 . 5 3 8 
4 . 3 5 1 
6 . 4 8 2 

- 8 . 0 6 4 
3 . 0 5 8 

- 1 . 2 4 2 
6 . 2 6 5 

- 3 . 7 4 3 
2 . 6 0 2 

- 2 . 0 7 0 
1 . 8 6 1 

- 1 . 8 7 2 

45275798 
86733758 
15451578 
47688276 
79721603 
15369477 
18882532 
61577598 
18037332 
55762499 
90755390 
20275839 

2.4917 
1.2135 
5.8738 
2.1808 
1.2287 
3.0103 
6.4779 
-1.0338 
2.2169 
-5.4791 
1.4834 
-4.4300 

8668783 
8171725 
5616295 
7615386 
4693140 
2157428 
9658547 
3596766 
0539839 
9534477 
0632029 
6816905 

+00 
+00 
+01 
+0 2 
+0 4 
+06 
+07 
+09 
+11 
+ 13 
+15 
+ 17 

+0 0 
+01 
+01 
+0 2 
+03 
+0 2 
+04 
+06 
+07 
+0 8 
+ 10 
+11 

5.21738 
7.03747 
-3.95658 
3.93587 
-1.97061 
1.22282 
-8.57722 
6.81247 
-6.07053 
6.02121 
-6.59986 

040174 
501861 
737729 
343555 
328158 
944586 
170066 
904037 
476093 
347100 
794137 

1 . 3 0 9 
1 . 4 1 8 
1 . 0 4 4 
7 . 2 6 9 
3 . 4 3 1 
3 . 3 3 9 

• 1 . 9 2 9 
7 . 1 5 5 

• 1 . 9 1 8 
5 . 7 2 6 

• 1 . 8 7 2 

38563578 
36390122 
88271269 
66573635 
72490855 
13330334 
66573241 
02179883 
43636327 
63115649 
60123534 

+00 
+01 
+02 
+04 
+06 
+08 
+09 
+11 
+13 
+15 
+17 

+01 
+0 2 
+03 
+03 
+04 
+0 5 
+06 
+07 
+09 
+ 10 
+ 12 

7.100 
8.371 
1.087 
2.118 
1.251 

185 
064 
022 
061 
194 
459 

1 . 8 6 2 
3 . 2 0 5 
3 . 7 0 0 
3 . 4 0 5 
2 . 7 5 9 
2 . 1 5 2 

OiO 
838 
292 
264 
665 

51066563 
31826997 
24472751 
53890204 
92390674 
57479543 
73968110 
87789404 
34168661 
99508294 
75868166 

70026930 
18319944 
18540429 
37720008 
31393146 
57142591 
60605221 
08487647 
54172381 
72136972 
56464359 

+00 
+01 
+0 3 
+04 
+0 6 
+08 
+10 
+ 12 
+14 
+ 16 
+ 18 

+01 
+0 2 
+03 
+04 
+0 5 
+06 
+0 7 
+08 
+09 
+ 11 
+ 12 

2 . 5 0 

12 

2 . 5 0 0 
3 . 2 1 0 
5 . 9 1 3 
1 . 3 1 4 
3 . 1 9 0 
5 . 9 4 1 
7 . 6 9 2 

- 6 . 6 7 0 
• 1 . 9 0 3 
4 . 0 2 7 
5 . 3 4 2 
2 . 9 5 4 

- 2 . 6 1 4 

00000000 
80683541 
59408349 
97936214 
36593715 
39796099 
55201951 
92260119 
68917783 
56907485 
31938856 
57913454 
58998108 

+00 
+00 

+01 
+01 
+01 
+00 
+02 
+0 3 
+04 
+05 
+06 
+07 

3.851253 
2.112606 
9.694086 
4.115584 
1.542602 
4.589540 
5.774123 
-3.005886 
1.551045 
7.528856 
9.343433 
3.055716 

10096 
14720 
72744 
22187 
94167 
31641 
71479 
11116 
73000 
01116 
39404 
51390 

+00 
+01 
+01 
+0 2 
+03 
+0 3 
+03 
+04 
+05 
+06 
+07 
+08 

2 . 6 8 1 
3 . 0 2 6 
2 . 3 3 0 
1 . 4 8 0 
8 . 0 0 0 
3 . 4 9 1 
1 . 0 5 8 
2 . 5 6 9 
4 . 7 1 4 
1 . 0 3 0 
1 . 1 2 8 

09244124 
59719099 
21878154 
74310784 
56858598 
42049167 
94424669 
36352297 
01051553 
71583918 
54524846 

+01 
+0 2 
+0 3 
+04 
+04 
+0 5 
+06 
+06 
+07 
+09 
+10 

4 . 4 4 9 
8 . 5 4 7 
1 . 0 ] 1 
9 . 4 6 8 
7 . 5 3 1 
5 . 1 6 9 
3 . 0 0 1 
1 . 4 5 1 
7 . 4 2 2 
8 . 3 5 0 
1 . 3 0 7 

6 4 5 1 3 4 3 0 
0 6 2 3 6 1 7 8 
8 5 9 2 4 4 3 6 
4 1 0 2 1 3 4 6 
4 2 2 7 3 5 2 3 
1 7 8 8 2 1 3 3 
6 1 4 5 0 7 4 2 
7 7 6 9 8 1 7 0 
5 9 3 6 9 2 2 8 
4 9 0 8 2 2 1 3 
9 9 5 0 3 7 1 8 

+ 0 1 
+02 
+04 
+04 
+05 
+06 
+07 
+08 
+08 
+09 
+ 1 1 

3 . 0 0 3 . 0 0 0 0 0 0 0 0 0 0 0 +00 
3 . 8 2 1 3 2 1 8 7 4 7 8 +00 
7 . 5 5 0 6 9 0 8 4 6 0 0 +00 
1 . 6 6 6 7 7 7 4 4 0 5 5 + 0 1 
3 . 5 3 3 3 7 5 6 8 3 6 6 + 0 1 

5 4 . 6 1 2 9 3 3 5 4 2 3 5 + 0 1 
- 8 . 3 0 5 4 6 9 4 2 9 1 3 + 0 1 
- 9 . 5 8 4 1 2 1 9 6 9 6 0 + 0 1 

1 . 0 7 2 3 7 1 2 1 1 8 1 +04 
1 . 0 8 5 2 5 5 2 4 2 4 0 + 0 5 

- 5 . 3 2 1 3 8 0 2 2 4 6 4 + 0 3 
- 1 . 3 5 4 7 9 0 3 5 4 8 1 +07 

12 - 1 . 6 6 1 2 7 6 1 6 7 5 2 +08 

5 . 6 3 7 1 4 9 8 2 0 2 5 +00 
3 . 2 4 4 7 1 7 5 0 0 6 1 + 0 1 4 . 8 8 6 0 0 9 8 6 9 3 5 + 0 1 9 . 5 3 3 2 3 7 4 2 8 7 8 +01 
1 . 4 9 6 0 9 5 1 5 9 3 6 +02 5 . 6 4 8 2 6 6 3 2 6 1 2 + 0 2 1 . 9 1 8 7 7 2 5 6 3 3 9 + 0 3 
6 . 0 5 4 3 0 4 0 8 8 8 1 + 0 2 4 . 3 1 0 1 9 1 1 5 0 8 7 + 0 3 2 . 3 0 4 5 5 7 7 6 0 2 3 +04 
2 . 0 3 3 1 4 5 8 1 6 7 9 + 0 3 2 . 6 1 1 9 0 7 3 9 4 3 5 +04 2 . 1 2 2 4 5 4 8 7 8 7 4 + 0 5 
4 . 6 7 3 9 7 9 3 7 1 3 3 + 0 3 1 . 2 8 2 1 2 5 2 0 5 5 5 + 0 5 1 . 6 1 0 6 5 2 0 6 3 6 3 +06 
6 . 3 5 5 9 4 8 6 3 8 9 7 + 0 3 5 . 0 5 7 4 7 3 0 5 9 0 9 + 0 5 1 . 0 2 8 2 7 1 8 8 5 6 8 +07 
1 . 1 1 6 9 1 5 4 3 3 9 0 + 0 5 2 . 1 7 1 4 6 3 1 3 3 0 6 +06 5 . 7 7 5 7 8 2 3 3 5 9 9 + 0 7 
2 . 0 6 5 9 6 3 4 4 1 3 8 +06 2 . 2 2 5 5 4 6 1 0 0 0 8 +07 3 . 6 0 8 5 2 0 0 2 3 2 5 +08 
1 . 3 9 6 5 1 3 1 1 7 3 1 +07 2 . 6 4 9 2 5 3 6 1 9 4 2 +08 3 . 4 1 6 5 2 7 8 7 5 3 3 +09 

• 1 . 1 8 9 7 0 4 2 9 1 7 0 +08 1 . 0 8 0 6 5 4 2 3 5 1 2 + 09 3 . 3 0 6 4 6 8 1 8 5 6 8 +10 
- 3 . 8 9 9 6 8 5 6 8 6 6 4 + 0 9 - 3 . 0 8 1 7 4 5 2 6 2 5 3 +10 6 . 4 7 2 1 4 2 4 1 6 8 1 + 1 0 

(Notice the sign pattern irregularities as c increases and the decrease in magnitude in the higher 
coefficients.) 



c 
1.0 9 

10 
11 
12 
13 

^1 

1.0949728 
1.0950276 
1.0950562 
1.0950702 
1.0950773 

S3 1.0950844 
S5 1.0950843 
PIO 1.0955000 
Pll 1.0947000 

Ol-B^ 
TABLE 10. 

N=25 

Levin and Fade approximants for c* moments . 

0 . 0 3 7 2 3 4 4 
0 . 0 3 7 3 5 2 6 
0 . 0 3 7 4 2 2 6 
0 . 0 3 7 4 5 3 5 
0 . 0 3 7 4 7 4 6 

0 . 0 3 7 5 2 0 7 
0 . 0 3 7 4 9 3 7 
0 . 0 3 7 0 2 0 0 
0 . 0 3 4 6 6 0 0 

0 . 0 0 3 3 5 6 6 
0 . 0 0 3 7 4 3 4 
0 . 0 0 3 9 4 1 4 
0 . 0 0 3 9 7 0 4 
0 . 0 0 4 0 3 5 3 

0 . 0 0 3 9 1 8 0 
0 . 0 0 4 0 3 1 6 
0 . 0 0 4 2 1 0 0 
0 . 0 0 3 5 2 0 0 

0 . 0 3 4 7 4 4 5 
0 . 0 0 3 3 0 5 4 
0 . 0 0 4 3 1 6 4 
0 . 0 0 4 6 8 1 5 
0 . 0 0 4 9 1 1 2 

0 . 0 0 5 3 0 0 6 
0 .0052R56 
0 . 0 1 0 2 0 0 0 
0 . 0 0 4 1 5 0 0 

1 . 0 7 9 8 4 8 4 
1 . 0 7 9 8 7 3 8 
1 . 0 7 9 8 8 6 4 
1 . 0 7 9 8 9 2 1 
1 . 0 7 9 8 9 4 8 

1 . 0 7 9 8 9 7 2 
1 . 0 7 9 8 9 7 1 
1 . 0 8 0 1 0 0 0 
1 . 0 7 9 7 0 0 0 

N«30 

0.0307982 
0.0308527 
0.0308835 
0.0308958 
0.0309041 

0.0309208 
0.0309104 
0.0306700 
0.0289000 

0.0023006 
0.0024777 
0.0025660 
0.0025749 
0.0026012 

0.0025614 
0.0025983 
0.0026870 
0.0023350 

-0.0007795 
0.0025505 
0.0029895 
0.0031664 
0.0032735 

0.0034381 
0.0034648 
0.0047570 
0.0028970 

1.5 9 1.5987553 
10 1.5987578 
11 1.5987592 
12 1.5987598 
13 1.5987601 

0.0718490 
0.0718752 
0.0718882 
0.0718943 
0.0718971 

0.0131371 
0.0132863 
0.0133660 
0.0134040 
0.0134218 

0.0205066 
0.0205384 
0.0206300 
0.0207284 
0.0208095 

1.5817627 
1.5817636 
1.5817640 
1.5817642 
1.5817643 

0.0580862 
0.0580953 
0.0580993 
0.0581010 
0.0581017 

0.0085160 
0.0085696 
0.0085947 
0.0086054 
0.0086099 

0.0127585 
0.0127741 
0.0128070 
0.0128385 
0.0128618 

S3 1.5987603 
S5 1.5987603 
PIO 1.5987700 
Pll 1.5987600 

0.0718996 
0.0718996 
0.0719040 
0.0719010 

0.0134374 
0.0134373 
0.0134770 
0.0134530 

0.0211908 
0.0209189 
0.0214170 
0.0210040 

1.5817643 
1.5817643 
1.5817670 
1.5817640 

0.0581023 
0.0581023 
0.0581040 
0.0581030 

0.0086132 
0.0086132 
0.0086240 
0.0086170 

0.0129282 
0.0128849 
0.0130110 
0.0129050 

2.0 9 
10 
11 
12 
13 

2.1155475 
2.1155476 
2.1155476 
2.1155476 
2.1155476 

S3 2.1155476 
S5 2.1155476 
PIO 2.1155476 
Pll 2.1155475 

0.1235319 
0.1235278 
0.1235657 
0.1235426 
0.1235408 

0.1235406 
0.1235467 
0.1235397 
0.1235402 

0.0336408 
0.0336363 
0.0336364 
0.0336372 
0.0336380 

0.0336559 
0.0336403 
0.0336397 
0.0336390 

0.0648167 
0.0647768 
0.0649225 
0.0648706 
0.0648623 

0.0648608 
0.0648720 
0.0648605 
0.0648594 

2.0951835 
2.0951835 
2.0951835 
2.0951835 
2.0951835 

2.0951835 
2.0951835 
2.0951835 
2.0951835 

0.0990390 
0.0990363 
0.0990437 
0.0990419 
0.0990416 

0.0990416 
0.0990418 
0.0990416 
0.0990416 

0.0214528 
0.0214519 
0.0214519 
0.0214521 
0.0214523 

0.0214531 
0.0214526 
0.0214526 
0.0214525 

0.0390282 
0.0390159 
0.0390441 
0.0390380 
0.0'?q0368 

0.0390365 
0.0390376 
0.0390366 
0.0390364 

2.5 9 
10 
11 
12 
13 

2.6388235 
2..6388232 
2.6388233 
2.6388233 
2.6388233 

S3 2.6388233 
S5 2.6388233 
PIO 2.6388233 
Pll 2.6388233 

1952872 
1952872 
1952872 
1952872 

0.1952869 

0.1952872 
0.1952872 
0.1952873 
0.1952872 

0.0701416 
0.0701420 
0.0701416 
0.0701413 
0.0701469 

0.0701415 
0.0701417 
0.0701419 
0.0701428 

0.1656667 
0.1656683 
0.1656727 
0.1656633 
0.1656434 

0.1656809 
0.1656677 
0.1656175 
0.1656876 

2.6141264 
2.6141263 
2.6141263 
2.6141263 
2.6141264 

2.6141264 
2.6141264 
2.61412fi4 
2.6141264 

0.1560170 
0.1560170 
0.1560170 
0.1560170 
0.1560171 

0.1560170 
0.1560170 
O'. 1560170 
0.1560170 

0.0446131 
0.0446132 
0.0446131 
0.0446131 
0.0446134 

0.0446131 
0.0446131 
0.0446132 
0.0446133 

0.0988083 
0.0988085 
0.0988091 
0.0988065 
0.0988021 

0.0988128 
0.0988084 
0.0987839 
0.0988104 

3.0 9 
10 
11 
12 
13 

3 . 1 6 6 0 9 5 5 
3 . 1 6 6 0 9 5 5 
3 . 1 6 6 0 9 5 6 
3 . 1 6 6 0 9 5 6 
3 . 1 6 6 0 9 5 6 

S3 3 . 1 6 6 0 9 5 6 
S5 3 . 1 6 6 0 9 5 6 
PIO 3 . 1 6 6 0 9 5 6 
P l l 3 . 1 6 6 0 9 5 7 

0 . 2 8 8 7 5 4 1 
0 . 2 8 8 7 5 4 1 
0 . 2 8 8 7 5 6 7 
0 . 2 8 8 7 5 6 2 
0 . 2 8 8 7 5 6 2 

0.2887562 
0.2887562 
0.2887558 
0.2887560 

0 . 1 2 8 6 6 0 4 
0 . 1 2 8 5 7 7 0 
0 . 1 2 8 6 5 5 7 
0 . 1 2 8 6 6 5 0 
0 . 1 2 8 6 6 4 9 

0 . 1 2 8 6 6 4 9 
0 . 1 2 8 6 6 4 8 
0 . 1 2 8 6 5 9 6 
0 . 1 2 8 6 6 3 9 

0 . 3 6 4 8 2 2 2 
0 . 3 6 4 8 7 2 9 
0 . 3 6 5 0 4 9 6 
0 . 3 6 4 8 4 7 6 
0 . 3 6 4 8 6 9 5 

0 . 3 6 4 8 6 7 3 
0 . 3 6 4 9 2 0 2 
0 . 3 6 4 9 0 9 3 
0 . 3 6 4 9 2 6 2 

3 . 1 3 6 4 2 9 7 
3 . 1 3 6 4 2 9 7 
3 . 1 3 6 4 2 9 8 
3 . 1 3 6 4 2 9 8 
3 . 1 3 6 4 2 9 8 

3 . 1 3 6 4 2 9 8 
3 . 1 3 6 4 2 9 8 
3 . 1 3 6 4 2 9 8 
3 . 1 3 6 4 2 9 8 

0 . 2 3 0 3 3 f i l 
0 . 2 3 0 3 3 6 1 
0 . 2 3 0 3 3 6 7 
0 . 2 3 0 3 3 6 6 
0 . 2 3 0 3 3 6 6 

0 . 2 3 0 3 3 6 6 
0 . 2 3 0 3 3 6 6 
0 . 2 3 0 3 3 6 7 
0 . 2 3 0 3 3 6 6 

0 . 0 8 1 8 0 7 7 
0 . 0 8 1 8 1 5 0 
0 . 0 8 1 8 0 7 7 
0 . 0 8 1 8 0 8 5 
0 . 0 8 1 8 0 8 5 

0 . 0 8 1 8 0 8 5 
0 . 0 8 1 8 0 8 5 
0 . 0 8 1 8 0 7 9 
0 . 0 8 1 8 0 8 4 

0 . 2 1 6 9 6 2 0 
0 . 2 1 6 9 6 9 9 
0 . 2 1 6 9 7 8 8 
0 . 2 1 6 9 6 8 1 
0 . 2 1 6 9 6 9 9 

0 . 2 1 6 9 6 9 7 
0 . 2 1 6 9 7 1 7 
0 . 2 1 6 9 7 4 4 
0 . 2 1 6 9 7 6 7 

[Notes on Table 10. Sequences for the four moments are those for Levin's t-algori thm (2.1) and refer to o ^̂  for each 

moment. S3 and S5 refer to the Shank's extrapolates (see footnote to Table 4) based on the last 3 and 5 sequence 
values respectively. I f either of these extrapolates reverses the sequence trend, i t should be ignored; generally we 
look for monotonicity in the sequences. Caution is needed in interpret ing the Shanks' extrapolates. 

For the Pade fractions we have used the St ie l t jes continued f ract ion forms; for example, for the mean we use 

(1) (1) (1) (1) 
ul(c*) - il£ Pi '^i P5 ^^ 

1 1 
and Pll, P12 refer to the approximants stopping at the partial numerators Ps, qs respectively. For the variance we 

(2) (3) p 
use a similar expression, the first partial numerator now being qo . Similarly, ti3(c*) and Ui4(c*) have % /n , and 

qo /n^ as first partial numerators. 

Generally, there is good agreement in the two types of approximants for c >̂  2--five or six decimal place agree­
ment seems to be common. There is a deterioration for smaller c and especially for the 3-rd and 4-th central moments. 
Thus for c-1, n=25, our preferences would be ̂ 3(0*) - 0.0060, and uit(c*) - 0.005 with some doubt; the situation for 
n=30 is only slightly improved. Even so, the effect on the percentiles is surprisingly small (see Tables 13a, 13b). 

The reason for the deterioration in the summation algorithms for c < 2 doubtless lies in the largeness of the 
higher coefficients in the series, together with a "bumpiness" in the early terms especially for M3 and UH.) 
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3.4 Summation of the c^ series. The cliversified 
structure of the series' coefficients arising from 
the 100 cases tabulated (25 values of c, for four 
moments) makes it imperative to diminish the labor 
involved in a detailed study; so we confine atten­
tion generally to samples in the region of 25 or 
more. This makes less stringent demands on the 
summatory algorithms chosen. 

Again, since magnitudes decrease and sign patterns 
become irregular as c increases, summatory algo­
rithms successful for small c may fail for large c 
(1.6 £ c < 4). 

For c in the vicinity of unity, we use Levin's 
t-algorithm or its truncated versions; some illus­
trations are given in Table 10 and an appendix. 
We look first of all for monotonicity, and 
secondly, smallness of first differences. 

A word on notation—we use S3 and S5 to denote the 
Shanks' approximant based on the last three, and 
last five values computed. (See the footnote to 
Table 4.) For c*, terms up to the coefficient of 
n~^^ are always used. 

In addition L(tr=s,Sr) means a Levin algorithm 
with S initial terms truncated, with a Shanks' 
smoothing formula applied to the last r (3 or 5) 
terms. Similarly, 2cB (a=a, tr=s,Sy.) and IcB 
(a=a, tr=s,Sr) refer to the Borel-Pade type 
algorithm described in paragraph 2.2. 

We should warn that truncation of a series does 
not relate linearly to summation algorithms in 
general. For example, different diagonals of a 
Pade table are generally distinct, and removing 
the first term of a series or adding a term at the 
beginning can change drastically the continued 
fraction representation. 

3.5 Detailed illustrations. 

3.5.1. There is undoubtedly a summation problem 
for small n, so we confine attention for the most 
part to n >̂  20; the difficulties stem from the 
variety of patterns which emerge for the series, 
so that no one approach works for small samples 
over the parameter space of the shape parameter. 
We must point out that the study, as it is, 
involves some 200 series so that detailed indi­
vidual cases cannot be undertaken. 

Table 10 gives a general view of the usefulness of 
the Levin algorithm. Table 11 treats the four 
moments of c* and several summation algorithms. 
The series are noteworthy for the preponderance of 
positive coefficients and divergence at about the 
rate of the single factorial series. Higher 
moments are less easy to sum than lower. Another 
characteristic to notice is the bumpiness of the 
coefficients, in contrast to the series for v*. 
As to potential error in the c* - series higher 
coefficients, we^ ran only say that we have used 
double-double precision arithmetic on an IBM 
computer, amounting to the retention of about 30 
decimal deigits. 



Assessment^ of -&^-

TABLE 11a. v[{c*) 

2cB(a=l,tr=l) 2cB(a=l,tr=0) 2cB(a=2,tr=0) 

Fr Fr Fr 

9 
10 
11 
12 
13 

2.676077 
2.676312 
2.676484 
2.676613 
2.676713 

235 
172 
129 
100 

2.668530 
2.670296 
2.671610 
2.672609 
2.673384 

1766 
1314 
999 
775 

2.668901 
2.662645 
1.665430 
2.667547 
2.669188 

3744 
2785 
2117 
1641 

2.67712 

Direct Sum 

term 

0 
1 
2 
3 
4 
5 
6 
7 
DS(6) 2.677187 

2.5 
0.1605403 
0.0147840 
0.0016437 
0.0001994 
0.0000186 
0.0000001 
-0.0000005 

2.67864 2.67606 

The preferred value is 2.67712 
because of the small differ­
ences in 2cB(a=l,tr=l); this 
agrees with the direct sum to 
the n~ term. A simulation 
of 10^ cycles gave 2.6777. 
Levin without truncation gave 
2.6772. 

9 
10 
11 
12 
13 

Ss 
0 

TABLE lib. 

2cB(a=2,tr=0) 

Fr A 

0.2493811 
0.2511325 
0.2525795 
0.2537325 
0.2546665 

17514 
14470 
11530 
9340 

0.259590 
0.5095 

y2(c*) 

2cB(a=l,tr=l) 

Fr A 

0.2587758 
0.2591325 
0.2593988 
0.2596630 
0.2597630 

3567 
2663 
2042 
1600 

0.260476 
0.5104 

Preferred 2cB is 0.5104. A simulation gave 
ô  - 0.5105. The direct sum gave DS(9) 

•10 = 0.260625 with the n "̂ coefficient 0.0000007, 
with a ~ 0.5104. The Levin assessment gave 

0.5105, our final choice. 

9 
10 
11 
12 
U 

Ss 

TABLE lie. 

2cB(a=l,tr=0) 

Fr A 

0.1140509 
0.1157980 
0.171732 
0.1182790 
0.1191839 

17471 
13752 
11058 
9049 

0.124287 
0.9347 

Comparisons are: 
2cB 

y3(c*) 

2cB(a=l,tr=l) 

Fr A 

0.1214065 
0.1221675 
0.1227386 
0.1231806 
0.1235302 

{ 

Simulation 

Levin 

DS(IO) 

/3i - 0. 

/01 ~ 0. 

/3i - 0. 

0. 

/3i ~ 0. 

7610 
5711 
4420 
3496 

0.125189 
0.9415 

9415 

9512 

9440 

125625 (for U3(c*)) 

9442 
Dw*£i-f Qy v*orl \ / a l i i a Jti. n QAAO 
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TABLE lid. m»(c*) 

2cB(a=l,tr=0) 

Fr A 

2cB(a=l,tr=l) 

Fr A 

9 
10 
11 
12 
13 

Ss 
32 

Levin 

rDs(12) 

0.2630947 76628 
0.2707575 62896 
0.2770471 52531 
0.2823002 44498 
0.2867500 

0.318118 
4.684 

82 - 4.831 

0.3283169 (n-^^ 

0.2966641 
0.3012249 
0.3048026 
0.3070804 
0.3100412 

0.323717 
4.765 

term 0.00003) 

45608 
35777 
28778 
23608 

82" 4.839 
Final choice 82" 4.84. A small sample case 
(c=1.5, n=10) is given in the appendix. 
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3.5.2 Simulation comparisons. A check on the 
summation algorithm for several values of the 
shape parameter c with samples of n=20 is shown in 
Table 12. Agreement with the simulation assess­
ments improves as the skewness of the population 
decreases (c increases from I towards 3--the 
Weibull density has zero skewness when c=3.6 
approx.). 

TABLE 12. Moments of c* by series (Levin) 
and simulation (10^ runs) 

M1(C*) a(c*) /ei(c*) 82(c*) 

1.0 

1.5 

2.0 

2.5 

3.0 

20 

20 

20 

25 

20 

20 

L 
S 
L 
S 
L 
S 
L 
S 
L 
S 
L 
S 

1.1177 
1.1174 

1.6248 
1.6247 

2.1470 
2.1472 
2.1155 
2.1156 

2.6772 
2.6777 

3.2123 
3.2130 

0.2188 
0.2183 

0.3072 
0.3068 

0.4050 
0.4048 
0.3515 
0.3511 

0.5105 
0.5105 

0.6214 
0.6215 

0.6645 
0.6751 

0.8166 
0.8240 

0.9035 
0.9106 
0.7747 
0.7705 

0.9440 
0.9512 

0.9601 
0,9669 

3.5796 
4.1027 

4.3727 
4.6079 

4.7211 
4.8945 
4.2498 
4.2502 

4.8307 
5.0155 

4.8627 
5.0429 

L = Levin's t-algorithm using all series 
coefficients to n'^^. S = simulation of 10^ 
cycles.) 

3.6 Percentage points comparisons. Using the 
moment series for v* and c* along with the mapping 
in (2.7) we compare standard percentile levels 
derived from the 4-moment Pearson density approxi­
mants (Tables 13a, 13b) for samples of 15, 20, and 
25 at five values of c. There are also simulation 
comparisons for samples of 20. The reader may 
agree that the results are satisfactory. 

Another check on the summatory algorithms arises 
from a study of Pearson and Tukey (1965) on the 
relation between distances between percentage 
points (for Pearson curves) and the mean and 
standard deviation. For a region of the (81,82) 
plane (3i < 4, 82 < 11> approximately), we may 

A 

approximate the mean by y = [50%] + 0.185A where 
A= [95%] + [5%] - 2[50%]; here [50%], for 
example, refers to the median. For the standard 
deviation Pearson and Tukey give the equations, 

oA o. = [95%] - [5%] ^ 
max{3.29-0.1(A/a(^ Qg)^, 3.08} 0.05 

0' ... = [97.5%] - [2,5%] 
"•^^^ max{3.98-0.138(A/ajJ ^25)^. 3.66} 

and the f i n a l assessment o - maxlo^ . c , oX n o d -
^ 0.05' 0.025^ 

We consider these values for the mean and standard 
deviation of c* using the percentiles of c* 
derived from the percentiles of v* under the 
mapping {?.7). The point to notice is our concerrr 
ior c* motue-its derived by a complicated numerical 
process and how t.-̂ .,: '•omoare vvith assessments 
derived from more stable ana ••'>', r r.y.-;.-̂  f^r v* 
(up to the n"̂ ** coefficients). The agreement tor 
samples of 15 or more is quite remarkable (Table 
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TABLE 13a. Percentage points of V* from V* 
moments (direct) and C* moments 
(indirect) 

N=15 N=20 N=25 

% Direct I Direct I M C Direct I 

C=1.0 
1 0.5454 0.5475 0.5956 0.5964 0.595 0.6309 0.6315 
5 0.6312 0.6249 0.6757 0.6726 0.677 0.7067 0.7048 
10 0.6813 0.6743 0.7220 0.7186 0.723 0.7500 0.7481 
90 1.1747 1.1736 1.1705 1.1711 1.170 1.1645 1.1649 
95 1.2744 1.2479 1.2613 1.2525 1.261 1.2481 1.2441 
99 1.4921 1.3651 1.4606 1.4107 1.465 1.4319 1.4099 

C=1.5 
1 0.3864 0.3869 0.4243 0.4245 0.425 0.4502 0.4504 
5 0.4532 0.4515 0.4840 0.4834 0.484 0.5049 0.5046 
10 0.4902 0.4886 0.5171 0.5165 0.518 0.5352 0.5349 
90 0.8046 0.8042 0.7942 0.7940 0.794 0.7858 0.7856 
95 0.8605 0.8565 0.8427 0.8416 0.842 0.8291 0.8286 
99 0.9769 0.9591 0.9429 0.9393 0.943 0.9179 0.9170 

C=2.0 
1 0.2985 0.2986 0.3290 0.3290 0.330 0.3496 0.3496 
5 0.3523 0.3520 0.3766 0.3765 0.376 0.3929 0.3928 
10 0.3821 0.3819 0.4029 0.4028 0.403 0.4168 0.4167 
90 0.6212 0.6209 0.6113 0.6110 0.611 0.6039 0.6037 
95 0.6606 0.6604 0.6450 0.6448 0.645 0.6338 0.6337 
99 0.7394 0.7411 0.7121 0.7127 0.714 0.6930 0.6932 

C=2.5 
1 6.2424 0.2425 0.2679 0.2679 0.269 0.2852 0.2852 
5 0.2875 0.2873 0.3079 0.3077 0.308 0.3215 0.3214 
10 0.3125 0.3123 0.3299 0.3298 0.330 0.3414 0.3413 
90 0.5102 0.5100 0.5014 0.5012 0.501 0.4949 0.4948 
95 0.5416 0.5412 0.5282 0.5281 0.528 0.5187 0.5186 
99 0.6032 0.6026 0.5806 0.5806 0.582 0.5649 0.5650 

C=3.0 
1 0.2037 0.2038 0.2256 0.2257 0.226 0.2405 0.2405 
5 0.2425 0.2423 0.2601 0.2600 0.260 0.2718 0.2718 
10 0.2641 0.2640 0.2792 0.2791 0.279 0.2891 0.2890 
90 0.4350 0.4349 0.4271 0.4270 0.427 0.4214 0.4213 
95 0.4617 0.4615 0.4499 0.4498 0.450 0.4416 0.4416 
99 0.5136 0.5133 0.4941 0.4940 0.495 0.4807 0.4805 

M. C. is 10^ simulation, I is indirect. 
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TABLE 13b. Percentage points of C* from C* 

moments (direct) and V* moments 
(indirect) 

N=15 N=20 N=25 

% Direct I Direct I M C Direct I 

C=1.0 
1 0.7439 0.6880 0.7225 0.7008 0.699 0.7229 0.7131 
5 0.8075 0.7919 0.8047 0.7996 0.800 0.8098 0.8074 
10 0.8554 0.8546 0.8571 0.8576 0.858 0.8615 0.8618 
90 1.5112 1.4945 1.4108 1.4037 1.401 1.3512 1.3475 
95 1.6420 1.6242 1.5156 1.5078 1.505 1.4406 1.4365 
99 1.9000 1.9078 1.7285 1.7311 1.696 1.6233 1.6250 

C=1.5 
1 1.0429 1.0237 1.0652 1.0611 1.061 1.0917 1.0906 
5 1.1713 1.1657 1.1930 1.1911 1.192 1.2125 1.2118 
10 1.2513 1.2507 1.2684 1.2680 1.268 1.2826 1.2823 
90 2.1558 2.1480 2.0267 2.0242 2.022 1.9497 1.9484 
95 2.3543 2.3449 2.1819 2.1788 2.181 2.0802 2.0786 
99 2.7980 2.8015 2.5221 2.5238 2.519 2.3610 2.3621 

C=2.0 
1 1.3648 1.3682 1.4234 1.4247 1.420 1.4666 1.4672 
5 1.5459 1.5455 1.5867 1.5861 1.587 1.6172 1.6168 
10 1.6538 1.6529 1.6830 1.6823 1.684 1.7055 1.7050 
90 2.8389 2.8372 2.6747 2.6739 2.673 2.5754 2.5748 
95 3.1086 3.1056 2.8844 2.8829 2.885 2.7507 2.7498 
99 3.7336 3.7341 3.3524 3.3524 3.344 3.1327 3.1326 

C=2.5 
1 i.7089 1.7072 1.7804 1.7805 1.766 1.8349 1.8351 
5 1.9242 1.9227 1.9776 1.9769 1.976 2.0177 2.0172 
10 2.0555 2.0547 2.0956 2.0950 2.096 2.1259 2.1255 
90 3.5518 3.5487 3.3430 3.3417 3.343 3.2175 3.2168 
95 3.8968 3.8925 3.6103 3.6085 3.606 3.4405 3.4394 
99 4.6964 4.6992 4.2086 4.2092 4.197 3.9281 3.9282 

C=3.0 
1 
5 
10 
90 
95 
99 

2.0409 
2.2976 
2.4552 
4.2785 
4.7006 
5.6789 

2.0395 
2.2964 
2.4547 
4.2753 
4.6967 
5.6835 

2.1299 
2.3644 
2.5058 
4.0235 
4.3505 
5.0821 

2.1293 
2.3637 
2.5054 
4.0220 
4.3486 
5.0837 

2.125 
2.363 
2.507 
4.025 
4.346 
5.072 

2.1960 
2.4138 
2.5437 
3.8703 
4.1428 
4.7391 

2.1958 
2.4134 
2.5434 
3.8695 
4.1417 
4.7398 

M. C. is 10 simulation. (Based on 4-moment 
Pearson density approximation, the series summed 
by Levin's t-algorithm. For v* see 2.6. For c* 
all coefficients were used.) 



18 

TABLE 15. Mean and standard deviation of c* 
computed directly from c* series 
compared to Pearson-Tukey approximants 
based on percentiles of c* derived from 
those of V* 

N=15 N=20 N=25 

C=1.0 M\ 1.1556 1.1558 1.1177 1.1178 1.0951 1.0951 
o 0.2589 0.2593 0.2188 0.2186 0.1936 0.1932 

C=1.5 M1 1.6697 1.6696 1.6248 1.6247 1.5988 1.5987 
o 0.3711 0.3696 0.3072 0.3057 0.2681 0.2664 

C=2.0 M1 2.2023 2.2018 2.1470 2.1468 2.1155 2.1154 
o 0.4937 0.4928 0.4050 0.4035 0.3515 0.3496 

C=2.5 \x[ 2.7449 2.7443 2.6772 2.6769 2.6388 2.6387 
o 0.6245 0.6232 0.5105 0.5086 0.4419 0.4396 

C=3.0 M[ 3.2940 3.2933 3.2123 3.2119 3.1661 3.1659 
a 0.7613 0.7597 0.6214 0.6191 0.5374 0.5345 

[*Levin's t-algorithm, using all available 
coefficients in the series for MI(C*) and Vzic*). 
**Pearson-Tukey values derived from their 
max{oi Qg, OQ Q 2 C } based on percentiles of c* 

derived from v* moment series. ) 

4. THE MOMENT ESTIMATOR FOR 1/c 

The equation for the estimator d* of d(=l/c) is 
r(l+2d*)/r2(l+d*) = 1 + v*2. (4.1) 

A quick approximate solution (see 2.8 for a 
comparison) is 

d* - 0.908919V* + 0.91081v*2 (4 .2 ) 
(0 < V < 2) 

hinting that the distribution of d* will be done 
(in some sense) to that of v*. A modification of 
the approach of 1(3 now leads to series develop­
ments for the moments of d* up to terms in 
n"^^. From tabulations for the same parameter 
space as was used for c*, we find the series for 
d* in general have the same sign and magnitude 
patterns (however, we are limited to fewer coef­
ficients). Thus development provides yet another 
check on the validity of moment assessments. As 
an example, the assessments of moments when n=10, 
c=1.5 are: 

Ml(a*) aid*) /gi(d*) 32(d*) 

(i) Levin: 0.607184 0.156519 0.4633 3.4253 
(ii) Pade: 0.607190 0.155542 0.4634 3.4122 
The 4-moment percentiles of d* using (1) are 

1% 5% 10% 90% 95% 99% 

d* 0.2924 0.3714 0.4165 0.8125 0.8825 1.0256 
Derived 0.3231 0.4004 0.4437 0.8170 0.8843 1.0257 

V* 
Direct 0.3230 0.4005 0.4439 0.8171 0.8846 1.0260 

along with a comparison for v*. In addition we 
have from the d* percentiles, the c* values 0.975, 
1.133, 1.231, 2.401, 2.693, and 3.420 which can be 
compared with the less reliable (because or tne 
bumpiness of the higher moments) results in Table 
12. 
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Further comparisons of moments and percentiles 
(not reported here) give grounds for confidence in 
1 £ c _< 4 and n > 15 approximately. Actually 
there is reason to believe that if percentage 
points of c* are needed, it is better to proceed 
via d*. 

5. CONCLUDING REMARKS 

(i) The series for the moments of v* taken as far 
as the n"̂ ** term appear to be divergent. As c, 
the shape parameter varies from 1 to about 4, the 
regular alternating sign pattern is increasingly 
disrupted (especially for the higher moments), 
whereas the magnitude pattern is diluted (the n"̂ '* 
coefficient decreases from about 10 to 10^^). 
The Levin t-algorithm, with stopping point 
signalled from exact small sample results, works 
well. 

(ii) Series for the shape parameter c* (take as 
far as n ) are more difficult to sum because of 
irregular sign and magnitude patterns. 

(iii) Series for d* (estimating d=l/c) are similar 
to those for the coefficient of variation. 

(iv) Validation is by numerical investigation--
error bounds for moments and percentiles are out 
of the question. We use several summation algo­
rithms (Levin, Levin with truncation, Pade, 
simulation) and in them study consistency. There 
can be difficulties here--for example, adjacent 
close approximants may still be in error. We have 
described some highly successful cases and some 
problematical cases—for example Mit(c*) when c=1.5 
or so and n is small. 

There are outstanding problems, such as: 
(a) the response of an algorithm to slight errors 
in series coefficients for low orders of n~^ and 
large errors in coefficents for high orders of 
n~^; (b) the choice of algorithm for summation 
purposes. Levin's t-algorithm works well for 
alternating series and magnitudes lying between 
the single and double factorial series. The Pade 
approach behaves similarly and very likely has 
wide application (see the Baker-Gammel-Wills 
conjecture (Baker, 1975)}; (c) the construction of 
algorithms which relate specifically to moments of 
statistics expressable as multiple integrals. 

Finally, it should be eminently clear that low 
order asymptotics to measures such as means, 
covariances, etc., should be viewed with great 
caution. Even if the first few coefficients are 
seductively small, there may be rude awakenings 
round the corner; for example, an n~^ term in a 
variance may exist but all higher order terms may 
not. 

To those not well acquainted with summation 
problems reference may be made to: 
(i) Baker and Gammel (1970, Baker (1975^ C'-vc^ 
and Morris (1973), and Brê i"?*̂ ''.: ('930} For modern 
studies on Pade methn.is (n) Wall (1948), Perron 
(1950), StieVjc^ U918), Bore! (1928) for classi­
cal stud>-.; (iii) Van Dyke (1974, 1975) for 
gener:."" remarks on divergent series; (iv) Shoha: 
an-' lamarken (1963) for the moment problem. 
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APPENDIX 

A small sample case. To illustrate problems which 
arise for small samples, we take c=1.5 and n=10. 
In particular the fourth central moment has the 
successive coefficients (approximated for 
convenience) 
y4(c*) - 0.07 + 0.08 + 0.11 + 0.21 - 1.25 + 11.86 

- 106.5 + 1022.9 - 10513.4 + ...; 
it should be noted that the first coefficient is 
merely three times the square of the variance 
asymptote and provides no unexpected information. 
Also note the disrupted sign pattern. 

We try the Levin algorithm. 

vi(c*) vzCc*) vsic*) y^(c*) 
Truncate & Start 

at n"** term 

Or 

2 1.7502 0.1279 0.1080 0.2335 
3 1.7418 0.2656 0.1097 0.1679 
4 1.6397 0.2403 0.1163 0.1722 
5 1.7749 0.2398 0.1244 0.1957 
6 1.7675 0.2426 0.1345 0.2229 
7 1.7663 0.2457 0.1464 0.1979 
8 1.7663 0.2485 0.1585 
We base yit(c*) on ag yielding the value 0.3776. 
Our preferred assessments are: 

yl= 1.7663, y2= 0.2485, /3i= 1.2789(?), 
&2- 6.1132(?) with rather low confidence in &2-
If we take ay instead of ag, our alternative for 

(a) 
the kurtosis is 02 = 5.7102. We not have the 
Pearson 4-moment fits for c* (Table Al). Thus the 
change in &2 does affect the c* percentiles but 
this change is damped out in the v* derived 
values. 

TABLE Al. Percentiles of v* derived from c* 
compared to direct values n=10, c=1.5 

% 

c* (a) 
(b) 

Derived (a) 
V* ( b ) 

V* di rec t 

1 5 10 

0.995 1.134 1.226 
1.038 1.149 1.230 

1.005 0.884 0.820 
0.964 0.873 0.818 
1.026 0.885 0.817 

90 

2.413 
2.426 

0.442 
0.440 
0.444 

95 99 

2.628 3.355 
2.713 3.360 

0.400 0.329 
0.400 0.328 
0.401 0.323 

[(a) uses the moments with kurtosis 32, and 
(a), 

(b) with kurtosis 32 J 
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