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ABSTRACT

Taylor series for the first four moments of the
coefficients of variation in sampling from a
2-parameter Weibull density are givegi they are
taken as far as the coefficient of n %*. From
these a four moment approximating distribution is
set up using summatory techniques on the series.
The shape parameter is treated in a similar way,
but here the moment equations are no longer
explicit estimators, and terms only as far as
those in n~ 1'% are given., The validity of assessed
moments and percentiles of the approximating dis-
tributions is studied. Consideration is also
g}ven to properties of the moment estimator for
1/c.

1. INTRODUCTION

The 3-parameter distribution function is
F(t) = 1-exp{-(t-s)/b®} (t>s,c,b50) (1)

where s is the origin, b, and ¢ the scale and
shape parameters respectively.

In one form or another (the parameter 1/b is
sometimes used) the density has widespread appli-
cation, the precise reason for its use not being
clear always (it has a slight advantage in the
simplicity of its distribution function, but this
is a minor point in the face of computers of one
sort or another). However, it seems well suited
to situations involving breaking strengths (Barlow
et al., 1979; Cain and Knight, 1981, for example),
survival times (Peto and Lee, 1973, for example),
etc. It has been used as a model for wind speed
(Stewart and Essenwanger, 1978), a main attraction
here being the interest in wind power, which is
proportional to the cube of wind speed; this
translates into changing the value of ¢ in the
Weibull model.

Our interest is in the nature of series for the
mean, variance, etc., of moment estimators for the
parameters in the 3-parameter case. However, the
complications here are such as to confine atten-
tion more or less to basic asymptotics (a partial
study of the situation has so far produced the
first 12 terms in the moments of the skewness).
Although it is quite likely that properties of
estimators in the 3-parameter case will differ
considerably from those in the 2-parameter case,
the study of the latter should bring out some of
the difficulties. The only previous study of the
series in this case (Newby, 1980) goes no further
than basic asymptitics, and these were not free
from error.

1.1 What do we expect from a study of estimators?
Of course, a study of estimation problems should

at least have a better than fuzzy aim. Basically
estimates of parameters survive only if they lead




to passing a satisfactory goodness of fit test.

It seems reasonable to assume that refinements
predicated on methods of estimation pale in com-
parison to model selection. Again it is always
tempting to base decisions on narrow choices of
criteria. Since sample size plays only a minor
role in basic asymptotic assessments of variances
(and biases), we are deceiving ourselves when
decisions are based on asymptotic comparisons. In
addition, it is all too easy to introduce a caveat
invoking "a large enough sample," a transparent
circularity digression.

When we pay some attention to what comes after the
first order asymptotic in means and variances, for
example, we find a change of attitude to the
asymptote, for we may be confronted with a few
decreasing terms followed by one or more surges
and variegated sign patterns. It is surely time
we became aware of the existence of higher order
terms and studied ways of using the information
they contain. The statistics community seems to
be half a century behind the times in this respect
and completely unaware of advances and studies due
to a school of theoretical physicists (see for
example, the preface to Baker and Gammel, 1970).

1.2 Problems with the 3-parameter Weibull and
aims of this study. Moments of the maximum 1ike-
11hood estimators in this case probably do not
exist and other procedures are needed. Fitting by
moments is quite straightforward, using the skew-
ness to fix the shape parameter c, then the
variance to fix b, and lastly, the mean to fix the
start s. But properties of the distribution of
these estimatorss presents formidable mathematical
difficulties, although a computer assisted
approach is feasible. The 2-parameter case has
already been studied; Bowman and Shenton (1981)
have given details for the first four moments of
the coefficient of variation, using summatory
algorithms on the series (carried out to terms of
order n “', n being the sample size). Here we
discuss characteristics of these series and series
for the first four moments of the moment estimator
(c*). Having the four moments for v* and c* we
can compare the percentage points of the one
against the other using a four moment approximat-
ing distribution. Questions of validity are
considered. Lastly, some general comments are
added concerning the information in (what appear
to be) divergent series.

2. LEVIN'S ALGORITHM AND v* MOMENTS WHEN ¢ = 1.5

2.1 The series (Table 1) alternate in sign and
diverge faster than the single factorial series
(1-11/n+2!/n“-...) but not ag fast as the double
factorial series (1-2!/n+4!In“-...). We think the
Levin algorithm (Levin, 1973) using

LTABLE 1 about here]
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where for the series ag + aj/n +...,
AJ.+1 = a9+ a;/n + ...+ aj/nJ, (3 = 0,1,...)

applied to certain divergent series is divergent
itself, but there exists a best member of the
sequence (or stopping point). Now a peculiar
aspect of series for statistical moments is that,
for small n, we can often derive exact results
using dimension reducing transformations or quad-
rature; the latter poses problems when n exceeds
five or so. In the present case exact results
have been found for n=2, and 4 using quadrature.

Details for the first four moments for these
values of n are given in Table 2.

TABLE 2. Levin's t-algorithm and the moments
series for v¥, n=2,3,4. (Entries are
@15 c=1.5)
room(v)  up(vr) uz( v*) wy (v¥)
n=2 6 .40486185 .06017495 -.01056879 .04307018
7 .39979784 .06217180 -.00907002 .03302390
8 .39479750 .06467342 -.00534255 .02057064
9 .39044492 .06727881 -.00085487 .01098028
10 .38694110 .06965979 .00356697 .00954210
11 .38417228 .07149851 .00729993 .01515748
12 .38196432 .07259348 .01022352 .02266028
13 .38020300 .07280097 .01228739 .02792580
14 .37885619 .07204075 .01412681 .02847297
15 .37795604 .07018375 .01586526 .02370270
16 .37759054 .06714841 .01863328 .01337855
17 .37788403 .06275753 .02126346 -.00030514
18 .37899629 .05713638 .01761667 -.01086268
19 .38106947 .05199600 -.02680927 .00972894
20 .38395273 .05679861 -.15955086 .09882317
True .382657 .06360 .00649 .008786
rooom(v) () wg(vr) o (v¥)
n=3 6 .49557302 .05132049 .00150823 .01928206
7 .49355822 .05191633 .00191748 .01525018
8 .49189084 .05253079 .00265513 .01097594
9 .49068668 .05309256 .00340504 .00837420
10 .48986117 .05353657 .00403855 .00793691
11 .48928991 .05382896 .00449792 .00862812
12 .48888579 .05397361 .00481116 .00943739
13 .48859966 .05398413 .00500293 .00990738
14 .48840697 .05388140 .00516034 .00989262
15 .48829599 .05367738 .00529306 .00946541
16 .48826233 .05338954 .00548973 .00870570
17 .48830396 .05302404 .00564607 .00784777
18 .48842022 .05261345 .00540456 .00730647
19 .48860605 .05229469 .00304165 .00850647
True .488905 .052842 .0047611 .008096
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10

15

20

24

uy (v*)

6.7896869309735
-5.6132013492859
1.6557176844808
-1.8474620536721
2.1922586200894
-4.3580645232247
1.2140053990087
-4.4319272510179
2.0203579868046
-1.1120346826810
7.2096574734542
-5.4024459971249
4.6095483370065
-4.4246256616307
4.7306820232839
-5.5869875796767
7.2369947493057
-1.0219131662144
1.5647248801081
-2.5858544423711
4.5932258200979
-8.7373158431193
1.7739714027278
-3.8328687301095
8.7887933193700

-01
-01
-01

TABLE 1.

Uz(V*)

2.6772673984050 -01
-6.2527413386551 -0

2.8054197020753
-3.1740301673027
6.1698213591867
-1.6985660574568
6.1568194941015
-2.7938852616884
1.5329655502103
-9.9160099223580
7.4175948216140
-6.3204220814912
6.0603265024852
-6.4738200315179
7.6400548503158
-9.8902833121783
1.3958391428942
-2.1362971186825
3.5290314664515
-6.2663989110185
1.1916385088463
-2.4187672237888
5.2247417831321

'-1.1977722473854

00

41

Moments of v*; ¢=1.5.

Ua(v*)

3.2420881596408 -01

-2.8812804441747
3.0748070794268
-5.8538726736417
1.6234033676654
~5.9254772698640
2,.7053438277634
-1.4920295848592
9.6926666881294
-7.2765971642972
6.2191074550240
~-5.9786222434405
6.4007815420352
~-7.5684964011259
9.8142882027352
-1.3871913557010
2,1258940610359
-3,5160392107693
6.2500388332982
~1,1896832619930
2.4169335423533
-5.2249959528916
1,1987171388092

00
0l
02
04
05
07
09
10
12
14
16
18
20
22
25
27
29
31
34
36
38
41

u, (v¥)

2.1503282167687 -01
1,0502505615668 -01

-1.5448458389139
3.6415327254464
-1,1056445045515
4.2823776889988
-2.0334982988104
1.15309230180290
~7.6471743602422
5.8332256542299
-5.0490312473491
4,9040292832800
-5.2953093012828
6.30650928_.35133
-8.2281468998640
1.,1691746931915
~1,8000727655091
2,9892767600516
~5.3328414511363
1.0183630563144
-2,0748600181908
4,4971880275419
-1,0341841311369

(v = vin,/m}, where m, is the second central moment of the sample, and m; the mean. )

01
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05
07
09
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i8
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31
34
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41
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TABLE 2--(Continued)
r. uy (v*) ug(v*) uz(v¥) Wy (v¥)
n=4 6 ,54117667 .04353539 .00327633 .01095807
7 .54021557 .04376028 .00341579 .00900337
8 .53952911 .04396895 .00363020 .00727274
9 .53909662 .04414201 .00382233 .00643290
10 .53883094 .04426374 .00396656 .00631124
11 .53866334 .04433463 .00405987 .00645609
12 .53855483 .04436501 .00411736 .00660624
13 .53848469 .04436465 .00414895 .00668134
14 .53844185 .04434288 .00417348 .00667184
15 .53841989 .04430541 .00419236 .00660458
16 .53841484 .04425801 .00421892 .00650020
17 .53842363 .04420338 .00423718 .00639565
18 .53844390 .04414778 .00420655 .00633948
19 .53847285 .04410983 .00395035 .00647756
20 .53850428 .04415703 .00336182 .00689265
True .5385352 .0441541 .0041379 .0064037

(True given in an appendix on

results.)

small sample

The "boxed" entries are those closest to the true

value,

much to choose between r=8 and r=17.
tency of the stopping point as n increases is

In the case of the variance there is not
The consis-

noteworthy. In Table 3 we show the sequences for
n=5 and n=10.
TABLE 3. Levin's t-algorithm and the moments
series for v*, n=5,10; c=1.5
r o um(v) o ( V¥) ug( v*) W, (v¥)
n=5 7 .56809277 .03766328 .00331170 .00605289
8 .56776951 .03774945 .00339003 .00527773
9 .56758617 .03781515 .00345310 .00496769
10 .56748250 .03785700 .00349608 .00492982
11 .56742171 .03787906 .00352147 .00497093
12 .56738511 .03788745 .00353590 .00500903
13 .56736316 .03788679 .00354316 .00502583
14 .56735080 .03788075 .00354857 .00502246
15 .56734505 .03787145 .00355242 .00500770
16 .56734405 .03786066 .00355762 .00498707
17 .56734644 .03784916 .00356077 .00496833
r o) () (V) (vY)
n=10 7 .62353379 .02206202 .00161832 .00179863
8 .62351206 .02206626 .00162092 .00176415
9 .62350304 .02206853 .00162229 .00175653
10 .62349912 .02206957 .00162297 .00175610
11 .62349733 .02206996 .00162328 .00175668
12 .62349649 .02207006 .00162341 .00175704
13 .62349610 .02207003 .00162346 .00175714
14 .62349594 .02206996 .00162349 .00175709
15 .62349589 .02206988 .00162351 .00175701
16 .62349589 .02206981 .00162353 .00175693
17 .62349591 .02206976 .00162353 .00175688
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2.2 Another algorithm (a modified Borel-Padé
described in Shenton and Bowman, 1977a) basically
considers

S(n) ~eg+ey/n+ ... (2.2)

- [ e @ Lk grky (h/n) tk o(h/n) 262+, . }dt
0 (a>0;h>0)

Teading to the summation formula (to be referred
to as 2cB) r1

Fr(n;a,h) =N I Ks(a,h) @S(N;a) (N = n/h) (2.3)

s=0
s e
where Ks(a,h) = I : -—E——E———— s
r=0 h“r(at+2r)
o (Nza) = J &t ha
s o (N+£2)stl

@S(-) can either be calculated by quadrature or

using the recurrence
2 (2.4)
4s(s+1)¢S+1(N;a)=rfosr¢s_r(N;a), (s=2,3,...)

with Gg = 2s(6s+2a-3),

6y = -{12s%+8s(a-3)+a2-7a+12+N},
G, = (2s+a-3) (2s+a-4);
and ¢g(N;a) = [ e'tta'l(N+t2)‘1dt,

0

®,(Nsa) = %-a oo(N;a)- %-°0(N;a+1),

9(N;a) = {(4a+6)o;(N;a)-(a%+a+N)eg(N;a)

+r(a)}/8.
Actually these indicate that os(-‘) is a linear

function of the basic functions 2g( <), and 2,(-*)
and indeed

o (Nsa) = N 0 ()+a{) (W) g (N )+ 2 (W) oy (N3 )

where s; = [s-i-1)/2], i = 1,2,3(s23) (2.5)
and Hgi)(-) are real polynomials.

Results are given in Table 4, and whereas there
are slight discrepancies for n=5 and the Levin
values (Table 3), the agreement is quite satisfac-
tory. One should notice the reduction in the
sizes of the first differences for each moment as
n increases. This characteristic also applies to
the Levin sequences provided the differences
relate to a neighborhood of the best stopping
point. It could be that the Borel sequences con-
verge, whereras as noted earlier those for Levin
do not.

Our preferred values for the four moments are:

T T T O I )

5 0.568 0.0378 0.0035 0.0049
10 n A22A 0.072207 0.00162 0.00175




TABLE 4. Borel-Padé Sequences for the moments
series for v* when ¢ = 1.5, n = 5,10

FonM) %) ) w(w)

21 573267 .037860  .003306 .004785
22 .572835 .037874 .003312 .004771
23 .572446  .037886  .003318 .004760
24 572094 .037894 .003325 .004752
25 .571774 .037900 .003332  .004746
S3  .568643 .037912 .003016 .004731
Ss  .567936  .037896  .003470 .005021

1
(5]

n

Pou() (V) ua(W) g (vE)

n=10 21 .624125 .022069 .001618 .001754
22 .624057 .022070 .001618  .001754
23 .623999  .022070 .001619  .001753
24  .623947 .022070 .001619  .001753
25 .623903 .022070 .001619  .001753
S3  .623586  .022070 .001635 .001752
Ss .623529  .022070 .001622  .001760

(Entries are Fr(n;l,l); see (2.3). S3,55 refer to

Shanks' (1955) extrapolate on F,3, Fay, Fpg and
FZI: F22, F23, qu, ng. Indeed

S = (Fy3,F25-F24)/0%F 5y, and
F21 Faz Fa3 1 1 1

S5 = |&F 3 AF3;  AFp; AFpy  OFpp  AFp3
A2F21 A2F22 A2F23 A2F21 A2F22 A2F23 .

These extrapolates are to be used with caution;
sometimes they reverse a trend throwing suspicion
on the process. )

2.3 We now assume that for higher values of n the
stopping rule for the Levin sequences holds. It
is possible, in view of the conjectured diver-
gency, that each n has its own best stopping point
for each moment. However, the sequence values
become lightly packed for larger n; for example
for c¢=1.5, n=50, we have for var(v¥),

a1 = 5.1231738-03 @y = 5.1231117-03
@y = 5.1231473-03 a7 = 5.1231104-03
a5 = 5.1231320-03 a1g = 5.1231096-03
ay3 = 5.1231228-03 a9 = 5.1231090-03
@y = 5.1231173-03 aze = 5.1231087-03
a5 = 5.1231138-03 ap; = 5.1231085-03

and a;g is the best value flagged from earlier
cases. It seems reasonable to take 5.12311-03 as
the preferred value. Of course, increasing n
still further and choosing a best value would have
to take into account the basic accuracy of the
moment series coefficients,

2.4 A further set of comparisons for c=2.0 (Table
5) shows that conclusions similar to those drawn
for c=1.5 hold.

2.5 A summary of the characteristics of the
moment series for v* is given in Table 6. It will
be noticed that divergency is pronounced for small
¢, corresponding to marked skewness (and long-
tailed) in the Weibull density. The divergency
becomes less severe as ¢ increases, but now there
is a disruption in the alternating sign pattern,
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TABLE 5 - Moment—Assessmentsfor—v¥;-¢c=2.0-
Levin and Borel (modified)

n_ n(ve)  wp(vr)  wg(vF)  m(v¥)
2 L .306971 11 .047562 9 .006066 7 .006613 5
T .306853  .047434  .006883  .006036
DS .312 .0573 .0120 .00183
3L .388759 11 .037496 9 .003423 7 .004547 5
T .388807  .037349  .003626  .004275
DS .3848 .0395 .00453  .00635
4 L .425847 11 029815  .002288 7 .002972 5
T .425863  .029785  .002340  .00288
DS .4262 .0293 .00263  .00338
5 L .446871 11 .024596 9 .001640 7 .002040 5
2cB*  .446913 024645  .001608  .002047
DS .44702 .02441  .00177  .002170
10 L .486309 11 .013020 9 .000519 7 .000559 5
2cB*  .486309  .013021 .000518  .000559
DS .486299  .013030  .000510  .000563
20 L .5049 .006696  .000146  .000143

S1  .5048 .006708  .000152  .000144
Sa 5044 .006675  .000140  .000141

(L is the Levin t-algorithm, the parenthetic entry
referring to the best approximant or. T refers

to values computed by quadrature. 2cB refers to
the Borel-Padé algorithm effectively using all the
available coefficients (see expression (2.3)); for

u) we have used a=2, h=1 with terms up to n~*
truncated, and for u,, us, and u, we have used

a=1, h=1 with the n~! term omitted for u, and no
truncations for uz and w,. DS refers to the
direct sum of the series stopping at the first
numerically smallest term. S; and S, refer to
simulations of 10° cycles each, the s.d. of the
mean being 0.0003 approx. )




TABLE 6. Magnitudes and sign patterns occurring
in the first four moment series for the
coefficient of variation v*, as affected
by the shape parameter c.

Moment Ui(v*) o ( V¥) uz( v¥) wy (Vv¥)
(1) (1) (2) (), , (3) (3), (&), (4)

c | 24/V0 | | Vau/vy | | Vau/v g )| | 2y /v2 |
0.9 2.9 67 4.6 67 6.3 66 2.3 67A
1.0 8.6 60 1.7 61 3.6 60 1.1 61A
1.1 4.2 55 1.0 56 3.0 55 7.4 55A
1.2 1.5 51 4.2 51 1.7 51 3.5 51A
1.3 2.5 47 7.4 47 4.0 47 6.9 47A
1.4 1.2 44 3.8 44 2.6 44 3.9 44A
1.5 1.3 41 4.5 41 3.7 41 4.9 41A
1.6 2.6 38 9.4 38 9.2 38 1.1 39A
1.7 7.9 35T 3.0 36 3.4 36 3.5 36A
1.8 3.1 331 1.2 34 1.6 34 1.4 34A
1.9 1.3 31T 5.0 31 7.4 31 6.1 31A
2.0 3.7 28T 1.5 29 2.4 29 1.9 29A
2.1 2.4 26 9.6 26L 1.7 27L 1.2 27L
2.2 5.7 25B 2.5 26B 5.4 26B 3.5 26B
2.3 1.6 2586 6.7 258 1.4 26B 8.8 258
2.4 3.2 268 1.3 27B 2.3 27B 1.6 27B
2.5 1.2 268 4.7 268 1.0 27B 5.9 26B
2.6 5.6 25B 2.3 26B 5.3 26B 2.9 26B
2.8 1.2 258 4.9 25B 1.2 26B 6.1 258
3.0 6.0 258 2.4 26B 6.0 26B 3.0 26B
3.2 1.8 268 7.3 268 1.9 27B 8.9 268
3.5 3.4 268 1.3 27B 3.4 2/78 1.6 27B
3.8 7.3 268 2.7 2/B 6.7 278 3.2 27B
4.0 2.6 27B 9.6 2/B 2.4 288 1.1 28B
(Introduction of letters of T, L, and B indicate

disruption of alternating sign pattern. Disrup-
tion occurs at the top (T) of the series, bottom
(L), and both top and bottom (B). A refers to a
sign pattern with alternation except for the first
two terms. In the moment columns each second
column refers fo)t?e)power of ten used as a

i) (i

multiplier. v2.+/vS , 1 =1,2,3,4 refer to
coefficients in the series.)

anomolies creeping in for both the initial terms
and those for the highest coefficients

(n"2*,n"23, etc.). It will be recalled that the
density itself tends towards symmetry with c
slightly larger than three and thereafter achieves
negative skewness. We have not carried out
extensive studies of the series for ¢ > 4.0.
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2.6 Moment assessments—for-c =-0.8 (0.1), 2.6
T10.2), 3.2, 3.5, 3.8, 4.0 and n = 13(1)50(5)100
have been tabulated; for uj(vt), up(v*), nz(v*),
u( v¢) we used 13, 18, 12, and 11 coefficients of
the corresponding series. A selection is given in
Table 7. From these it will be seen that for a
sample of n known to come from a Weibull density
with parameter ¢ (which fixes v) the estimate v*
of v is expected to underestimate the true v.
Using a least squares procedure on the tabulated
values, we have derived the unbiased c, given v*
and n, namely

[TABLE 7 about here]

T ~ {L+bgy/n+bga/nZ+vr(bygtbyy/n)+v*?by}/  (2.6)
{ago*ag1/n+aga/n?+v*(agtar1/n)+vrage}

(0<v*<1)
where
age = -0.02586359654 bgog = 1.0
agy = 0.1368685508 bg; = -0.03224982824
agz = 0.1941632032 bg2 = -0.05540306547
a;o = 0.9555907114 byjg = -0.4528195583
ay; = -0.2097962308 by = -0.9542316494
aze = -0.2918002479 byg = 0.08948942647,

the errors being numerically less than 0.5%. The
grid of values used was
n=10(1)20,22,25(5)50(10)100 and 0.8 < c < 4
involving 575 points.

In a similar way if we need a quick, fairly
accurate solution to the equation

L R R (2.7)
r<(1+1/c)
then
e = GV * cov? + c3vd + ¢yt (2.8)
1+ d]_\) + dz\)2 + d3\)3
where
c; = 0.779960622 d; = 0.188028602
c2 = 0.587095391 d, = 0.609555293
c3 = 0.471569800 d3 = 0.00282363508
cy = -0.0382146209

The error in the approximation to ¢ is 0.0004% or
less for 0.6 < ¢ < 6.6 (0.178 < v < 1.758).

If we replace v by v* then the moment estimator of
¢ is the real solution of

r(1+42/c*)/T2(141/c*) = 1 + v*2 (2.8)
showing that the distribution of ¢* is a function
of ¢ only, v* being scale free (this is also
evident from the tabulated moments of v* which do
not involve b).

3. THE DISTRIBUTION OF c*

3.1 Moment series. It will be evident from the
equation for c* that the Taylor series for its

moments will be nmn%r1nmnp+7cated—~—Hawever~4we”use

a two-stage process, expressing c* in terms of v*,

and v* in terms of the moments m1 and m2 Thus we
set




TABLE 7. Moments of v* using the Levin sequences.

c 1.0 1.5 2.0 2.5 3.9 3.5 4.0

n_ VvV 1.000 0.679 0.523 J.428 0.363 0.316 0.281
15 ¥} 0.914 0.642 0.499 0.409 0.348 0.303 0.268
6 0.200 0.125 0.094 0.077 0.067 0.059 0.053
vB1 0.780 0.457 0.300 0.236 0.217 0.219 9.23

B2 4.278 3,533 3,227 3.110 3.058 3.036 3.026

20 ¥} 0.934 0.651 0.505 0.414 0.352 0.306 0.272
O 0.182 0.110 0.082 0.067 0.058 0.051 0.046
/B10.779 0.421 0.266 0.205 0.186 0.186 0.195

B2 4,335 3.460 3.181 3.086 3.046 3,026 3.319

25 ¥y 0.946 0.657 0.508 0.417 0.354 0.308 0.273
O 0.168 0.099 0.073 0.060 0.952 0.046 0.041
/810.766 0.392 0.241 0.184 0.165 0.164 0.172

B2 4.332 3.402 3.150 3.070 3.037 3.021 3.015

30 4; 0.954 0.660 0.511 0.419 0.356 0.310 0.275
0 0.157 0.091 0.067 0.055 0.047 0.042 0.038
vB10.750 0.367 0.222 0.168 0.150 0.149 0.156

B2 4,304 3,356 3.128 3,059 3.031 3.018 3.012

35 W} 0.960 0.663 0.513 0,420 0.357 0.311 0.275
0 0.148 0.085 0.062 0.051 0.044 0.039 0.035
/B10.732 0.347 0.207 0.156 0.139 0.137 0.143

B2 4,266 3.319 3.112 3,051 3,027 3.016 3.010

40 1} 0.965 0.665 0.514 0.421 0.358 0.312 0.276
0 0.140 0.080 0.058 0.047 0.041 0.036 0.033
7B1 0.714 0.329 0.195 0.146 0.129 0.128 0.134

B2 4.224 3,289 3.099 3.045 3.024 3,014 3.009
45 1} 0.969 0.667 0.515 0.422 0.358 0.312 0.277
o 0.134 0.075 0.055 0.045 0.038 0.034 0.031
/B10.697 0.314 0.185 0.137 0.122 0.120 0.125

B2 4.182 3,265 3.089 3,040 3.921 3.012 3.008

50 M} 0.972 0.668 0.516 0.422 0.359 0.313 9.277
c 0.128 0.072 0.052 0.042 0.036 0.032 0.9029
YB: 0.681 0.301 0.176 0.131 0.115 0.114 0.119

B2 4.140 3.244 3,080 3.037 3.019 3.011 3.007

70 M} 0.980 0.671 0.518 0.424 0.360 0.314 0.278
o 0.111 0.061 0.044 0.036 0.031 0.027 0.025
7B1 0.624 0.261 0.150 0.110 0.097 0.096 0.100

82 3,992 3.185 3.058 3.026 3.014 3,008 3.005
100 1) 0.986 0.673 0.519 0.425 0.361 0.314 0.279
0 9.095 0.051 0.037 0.030 0.026 0.023 0.021
/81 0.560 0.223 0.126 0.092 0.081 0.080 0.083

B2 3.826 3.136 3.042 3.019 3.010 3.006 3.004

(For c=1, there is the special property that v* is distributed
independently of the mean (see Bowman and Shenton, 1981) so that
this special property is used along with Levin's algorithm. For

¢ > 1, we have used Levin's ayg for m(v*), a1 for wp(v*), a3
for uz(v*), and ajg for w,(v*), If a 4-moment Pearson distribu-
tion is now fitted, assuming the value of ¢ is known, our guess
is that the middle percentage points (1, 5, 10, 90, 95, and 99)
are in error by not more than 5% and very likely less for
samples exceeding 30 or so.)
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cx =¢ + cl(\)*-\)) + Cz(\’*—\’)Z/Z! + ...
- dSc*
dvxS

If we wish to carry the series (3.1) and similar

ones for higher moments so that in expectation all

terms are included contributing to, say, n-lz,

then we need all derivatives up to ¢,4. These can
be found using Faa di Bruno's formula for a
derivative of a function of a function (see for
example Shenton and Bowman, 1977b, pp. 14, 130,
169; for several generalizations see Good, 1961).

with c

(3.1)

3.2 Derivatives of c¢* with respect to v*. From
(1.1)

T(1+2/c*)/T?(141/c*) = 1 + w2 (3.2)
so that taking logarithmic derivatives

_ (3.3)
1 1 Z ac* 1 1 1
+ _ + == | +

where Y(x) = dan I'(x)/dx, i = ¥(-1). Clearly we
can drop the asterisks and replace them when

necessary. We write c_  for 3rc/avr, the modified
(3.3) in the form

c13{(c) = vq. (3.4)
Using the formula of Leibniz for the s-th deriva-
tive of a product,

aSJ(C) - J(S)(C)

acs

- ) i%%%i (re1)t 1)) (3.5)
where r=0 ¢

1O e)=nier=viar -war By, ™ ()=d(c) /o™

From (3.4)
Jc o+ J(l)c% = vy = dvy/ v,
Jcg+ 3J(1)c1c2+ J(z)ci = vy, (3.6)

oot 43¢ cqr 30 ez 638 e 93¢ = vy
and so on, where

_ 3% _ (-1)° o (L s 1 ]
S .
av® 2 (v1)S*1 (v-g)sHL
Now the structure of these formulas is the same
(Luckacs, 1955) as occurs in the expression of
noncentral moments (u;) in terms of cumulants.

v

For example,
Ko + K% = pé,
kg + 3Kk, + K? = u;, (3.7)

Ky + Grgky + 3Ky + 6Kk + kY = .
But these formulas are equivalent to
r-1

= ("N e w o(r=23,...) (3.8)

ul
roogp S r-s’s

giving u! in terms of u' ., w' ..., up (note

g
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K1 = uj, Mp = 1). Hence the left side members of
(3.7) and the generalization can be set up
recursively from previous members and awkward com-
binatorial problems avoided, a distinct advantage
in digital implementation.

3.3 Moment series for c*. A tabulation is given
in Table 8 for the first four moments for a selec-
tion of values from ¢ = 0.8(0.1)2.6(0.2)3.2, 3.5,
3.8, 4.0. The sign pattern for c=1 (apart from
one anomoly in each of uy(c*) and w,(c*)) is
alternating. As c¢ increases this regular pattern
is disrupted and the plus signs start toc predomi-
nate, especially for the higher moments. As for
magnitude, very approximately, the coefficient of

n 12 decreases from (24)!, for c=1, towards (12)!

for c=3 for m(c*), with slight increases for the
higher moments. See Table 9 for further details.

[Table 8 about here]

TABLE 9. Magnitude of coefficients for c*
moment series

Moment  wi(c*)  wp(c*) us(c*) uy (C*)
1) (1 2) (2 (3) (3 (4 4)

o qeialed | (eidei? ) (i3 peidd el
0.8 1.1 31 3.4 31 1.2 31 2.5 31
0.9 4.3 27 1.7 28 1.8 28 1.6 28
1.0 7.9 24 3.7 25 6.7 26 4.4 25
1.1 4.4 22 2.3 23 6.1 23 3.2 23
1.2 5.3 20 3.1 21 5.0 21 4.7 21
1.3 1.2 19 7.3 19 9.3 19 1.2 20
1.4 3.9 17 2.6 18 2.9 18 4.3 18
1.5 1.8 16 1.2 17 1.3 17 2.1 17
1.6 1.0 15 7.2 15 7.1 15 1.2 16
1.7 7.2 13 5.0 14 4.6 14 8.2 14
1.8 5.3 12 3.7 13 3.3 13 5.9 13
1.9 4.0 11 2.8 12 2.3 12 4.2 12
2.0 2.6 10 1.8 11 1.4 11 2.5 11
2.1 1.0 09 6.7 09 5.1 09 8.4 09
2.2 4.1 07 3.9 08 4.4 08 1.3 09
2.3 5.3 06 1.9 08 3.9 08 1.8 09
2.4 3.6 06 1.4 08 4.2 08 2.4 09
2.5 1.0 07 7.9 07 4.2 08 2.9 09
2.6 2.2 07 4.3 07 3.3 08 3.2 09
2.8 4.7 07 3.8 08 5.5 07 2.7 09
3.0 5.5 07 6.9 08 6.3 08 6.8 08
3.2 2.9 07 7.6 08 1.1 09 2.4 09
3.5 9.5 07 6.5 07 1.0 09 6.0 09
3.8 2.6 08 1.9 09 7.6 08 3.7 09
4.0 3.0 08 3.1 09 2.6 09 2.3 09
(In the moment columns each second column refers

to the power of ten used as a multiplier. )

These properties suggest that E(c*) will exceed c,
and Var(c*) will exceed the asymptotic variance
(Vary(c*) ) for ¢ in the region of 1.5 or more.
Numerical evidence for 8.0 < ¢ < 4.0 and

10 < n < 100 suggests E{c*-c) > 0, and Var(c*)/
Varj(c*) > 1. For example, when c=1.9, n=10,
E(c*-c) = 0.2, and the variance ratio is 1.4:
similarly, when n=10, c=1.5, 7fc* o) = 0.8, an?
the variance ratio is 1.7.
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1.0

12

1.5 0

12

3.9 0

12

TABLE 8.

W, (c¥)

1.00000000000
2.64493406685
-1.71123763218
8.53180565368
-7.08236389752
9.16919113987
-1.67242143328
4.04878601561
-1.24957512007
4.77569676051
-2.21096768650
1.21859738849
-7.88382598313

1.50000000000
2.39460463705
1.06599601622
2.69713017770
-3.53721215742
9.59416683127
-3.29037238977
1.43244108906
-7.58422614574
4.75599220101
-3.46116462749
2.87708828012
-2.69712794353

2.00000000000
2.70621619094
4.09622030667
1.07750575800
1.73139719173
1.22861199259
-6.09643673836
9.96309999457
-1.73642702591
3.31904521127
~-7.44175186773
1.86962029389
-5.20720028160

2.50000000000
3.21080683541
5.91359408349
1.31497936214
3.19036593715
5.94139796099
7.69255201951
-6.67092260119
-1.90368917783
4.02756907485
5.34231938856
2.95457913454
-2.61458998108

3.00000000000
3.82132187478
7.55069084600
1.66677744055
3.53337568366
4.61293354235
-8.30546942913
-9.58412196960
1.07237121181
1.08525524240
-5.32138022464
-1.35479035481
-1.66127616752

(v*

+04Q
+00
+01
+02
+04
+06
+09
+11
+14
+16
+19
+22
+24

+00
+00
+00
+01
+02
+03
+05
+07
+08
+19
+12
+14
+16

+00
+00
+00
+01
+01
+02
+02
+03
+05
+06
+07
+09
+10

+00
+00
+00
+01
+01
+01
+00
+02
+03
+04
+05
+06
+07

+00
+00
+00
+01
+01
+01
+01
+01
+04
+05
+03
+07
+08

u,(c*)

1.90000000000
-1.16217622550
1.04699772400
-1.18682984508
1.93912796742
-4.23691027771
1.18709573920
-4,.13831172021
1.75476767742
-8.89115426850
5.30619049143
-3.68537991717

1.53845275798
4,35186733758
6.48215451578
-8.06447688276
3.05879721603
-1.24215369477
6.26518882532
-3.74361577598
2,60218037332
-2.07055762499
1.86190755390
~1.87220275839

2.49178668783
1.21358171725
5.87385616295
2.18087615386
1.22874693140
3.01032157428
6.47799658547
-1.03383596766
2.21690539839
-5.47919534477
1.48340632029
-4.43006816905

3.85125310096
2.11260614720
9.69408672744
4.11558422187
1,54260294167
4,58954031641
5.77412371479
-3.00588611116
1.55104573000
7.52885601116
9.34343339404
3.05571651390

5.63714982025
3.24471750061
1.,49609515936
6.05430408881
2,03314581679
4.67397937133
6.35594863897
1,11691543390
2.06596344138
1.39651311731
-1.18970429170
-3.89968568664

(/la)

Moment series for c*, where P(l+2/c*)/r2(1+1/c*) =

+00
+01
+03
+05
+07
+09
+12
+14
+17
+19
+22
+25

+00
+00
+01
+02
+04
+06
+07
+09
+11
+13
+15
+17

+20
+J1
+01
+02
+03
+02
+04
+06
+07
+J8
+10
+11

+00
+01
+01
+02
+33
+03
+03
+04
+05
+06
+07
+08

+00
+01
+02
+32
+03
+03
+03
+05
+06
+07
+08
+09

/my/m;, the coefficient of variation).

u,(c*)

-1.30395598911
4,04537576826
-7.42938033595
1.69161175037
-4.70621073393
1.59183254710
-6.46747649882
3.11777660021
-1.76327643511
1.15816021472
~-8.75534174063

5.21738040174
7.03747501861
-3.95658737729
3.93587343555
-1.97061328158
1.22282944586
-8.57722170066
6.81247904037
-6.07053476093
6.02121347100
-6.59986794137

1.30938563578
1.41836390122
1.04488271269
7.26966573635
3.43172490855
3.33913330334
-1.92966573241
7.15502179883
-1.91843636327
5.72663115649
-1.87260123534

2.68109244124
3.02659719099
2.33021878154
1.48074310784
8.00056858598
3.49142049167
1.05894424669
2.56936352297
4.71401051553
1.03071583918
1.12854524846

4.88600986935
5.64826632612
4.31019115087
2.61190739435
1.28212520555
5.05747305909
2,17146313306
2.22554610008
2.64925361942
1.08065423512
-3.08174526253

1 + v¥?

-01
+02
+04
+07
+09
+12
+14
+17
+290
+23
+25

+00
+01
+02
+04
+06
+08
+09
+11
+13
+15
+17

+J1
+02
+03
+93
+04
+05
+06
+97
+39
+10
+12

+01
+02
+03
+04
+34
+35
+06
+06h
+37
+09
+10

+01
+02
+03
+04
+05
+05
+06
+37
+08
+09
+10

u, (c*)

3.00000000000
~1.94936949445
-1.26370978873

6.47275757861
-2.68301982152

1.186496115190
-5.89933637320

3.34303106097
-2.16292996989

1.59366933885
-1.33158479075

7.10051066563
8.37131826997
1.08724472751
2,11853890204
-1.25192390674
1,18557479543
-1,06473968110
1,02287789404
-1.06134168661
1.19499508294
-1.45975868166

1.86270026930
3.20518319944
3.70018540429
3.40537729008
2.75931393146
2.15257142591
1.0i060605221
1.83808487647
-3.29254i172381
1.26472136972
-4.66556464359

4.44964513430
8.54706236178
1.01185924436
9.46841021346
7.53142273523
5.16917882133
3.00161450742
1.45177698170
7.42259369228
8.35049082213
1.30799593718

9.53323742878
1.91877256339
2.30455776023
2.12245487874
1.61065206363
1.02827188568
.5.77578233599
3.60852002325
3.41652787533
3.30646818568
6.47214241681

(Notice the sign pattern irregularities as c increases and the decrease in magnitude in the higher
| coefficients.)

+03
+04
+J5
+06
+37
+J8
+09
+11
+12

+01
+J2
+34
+04
+35
+06
+07
+08
+08
+99
+11

+01
+03
+04
+35
+J6
+97
+97
+J8
+09
+19
+10
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TABLE 10. Levin and Padé approximants for c* moments .
N=25 N=30
c r H, u, U, Uy H, U, M, u,
1.0 9 1.0949728 0.0372344 0.0033566 {.0347445 1.,0798484 0.0307982 0.0023006 ~-0.0007795
10 1.0950276 0.0373526 0.0037434 0.0033054 1.0798738 0.0308527 0.0024777 0.0025505
11 1.0950562 0.0374226 0,.0039414 0.0043164 1.0798864 0.0308835 0.0025660 10.0029895
12 1.0950702 0.0374535 0.0039704 0.0046815 1.0798921 3.0308958 0.0025749 0.0031664
13 1.0950773 0.0374746 0.0040353 0.0049112 1.0798948 0.0309041 0.0026012 0.0032735
S3 1.0950844 0.0375207 0.0039180 0.0053006 1.0798972 0.0309208 0.002%614 0.0034381
S5 1.0950843 0.0374937 0.0040316 0.0052856 1.0798971 0.0309104 0.0025983 0.0034648
P10 1.0955000 0.0370200 0.0042100 0.0102000 1.,0801000 0.0306700 0.0026870 0.0047570
P11l 1.0947000 0.0346600 0,0035200 0.0041500 1.0797000 0.0289000 0.0023350 0.0028970
1.5 9 1.5987553 0.0718490 0.0131371 0.0205066 1.5817627 0.0580862 0.0085160 0.0127585
10 1.5987578 0.0718752 0.0132863 0.0205384 1.5817636 0.0580953 0.0085696 0.0127741
ll 1.5987592 0,0718882 0,0133660 0.0206300 1.5817640 0.0580993 0.0085%947 0.0128070
12 1.5987598 0.0718943 0.0134040 0.0207284 1,5817642 0.0581010 0.0086054 0.0128385
13 1.5987601 0.0718971 0.0134218 0.3208095% 1,5817643 0.0581017 0.0086099 0.0128618
S3 1.5987603 0.0718996 0.0134374 0.0211908 1.5817643 0.0581023 0.0086132 0.0129282
S5 1.5987603 0.0718996 0.0134373 0.0209189 1.5817643 0,.,0581023 0.0086132 0.0128849
P10 1.5987700 0.0719040 0.0134770 0.0214170 1.,5817670 0.0581040 0.0086240 0.0130110
Pll 1.5987600 0.0719010 0.0134530 0.0210040 1.5817640 0.0581030 0.0086170 0.0129050
2.9 9 2.1155475 0.1235319 0.0336408 0.0648167 2,0951835 0.0990390 0.0214528 0.0390282
10 2.1155476 0.1235278 0.0336363 0.0647768 2.0951835 0.0990363 0.0214519 0.0390159
1l 2,1155476 0.1235657 (0.0336364 0.0649225 2,0951835 0.0990437 0.0214519 0.0390441
12 2,1155476 0.1235426 0.0336372 0.0648706 2,0951835 0.0990419 0,0214521 90.0390389
13 2.1155476 0.1235408 0.0336380 0.0648623 2.0951835 0,0990416 0.0214523 0.0390368
S3 2.1155476 0.1235406 0.0336559 (0.0648608 2.0951835 0.0990416 0.0214531 0.0390365
S5 2.1155476 0.1235467 0.0336403 0.0648720 2.0951835 0.0990418 0.0214526 0.0390376
P10 2.1155476 0.1235397 0.0336397 0.0648605 2.0951835 0.0990416 0.0214526 0.0390366
Pll 2.1155475 0.1235402 0.0336390 .0648594 2.0951835 0.0990416 0.0214525 0.0390364
2.5 9 2.6388235 0.1952872 0.0701416 0.1656667 2.6141264 0.1560170 0.0446131 0.0988083
10 2.6388232 0.1952872 90.0701420 0.1656683 2.6141263 0.1560170 0.0446132 0.0988085
11 2.6388233 0.1952872 0.0701416 0.1656727 2.6141263 0.1560170 0.0446131 0.0988091
i2 2.6388233 0.1952872 0.0701413 0.1656633 2.6141263 0.1560170 0.0446131 0.0988065
13 2.6388233 0.1952869 0.0701469 0.1656434 2.6141264 0.1560171 0.0446134 0.0988021
S3 2.6388233 0.1952872 0.0701415 0.1656A809 2.6141264 0.1560170 0.0446131 0.0988128
S5 2.6388233 0.1952872 J0.0701417 0.1656677 2.6141264 0,1560170 90.0446131 0.0988984
P10 2.6388233 0.1952873 0.0701419 0.1656175 2.6141264 0.1560170 0.044A132 0.0987839
P11l 2.6388233 0.1952872 0.0701428 J0.1656876 2.6141264 0.1560170 0.0446133 0.0988104
3.0 9 3.,1660955 0.2887541 0.1286604 0.3648222 3.1364297 0.2303361 0.0818077 0.2169620
10 3.1660955 0.2887541 0.1285770 0.3648729 3.1364297 0.2303361 0.0818150 0.2169699
11 3.1660956 0.2887567 0.1286557 0.3650496 3.1364298 9.2303367 0.0818077 0.2169788
12 3.1660956 0.2887562 0.1286650 0.3648476 3.1364298 0.2303366 (0.0818085 0.2169681
13 3.1660956 0.2887562 0.1286649 (.3648695 3.1364298 0.2303366 0.0818085 0.2169699
S3 3.1660956 .2887562 0.1286649 0.3648673 3.1364298 0.2303366 0.0818085 0.2169697
S5 3.1660956 0.2887562 0.1286648 0.3649202 3.1364298 0.2303366 0.0818085 0.2169717
P10 3.1660956 (0.2887558 0.1286596 0.3649093 3.1364298 0.2303367 0.0818079 0.2169744
P11l 3.1660957 0.2887560 0.1286639 0.3649262 3.1364298 0.2303366 0.08i8084 0.2169767

(Notes on Table 10. Sequences for the four moments are those for Levin's t-algorithm (2.1) and refer to L) for each

moment .

S3 and Ss refer to the Shank's extrapolates (see footnote to Table 4) based on the last 3 and 5 sequence

values respectively. If either of these extrapolates reverses the sequence trend, it should be ignored; generally we
look for monotonicity in the sequences. Caution is needed in interpreting the Shanks' extrapolates.

For the Padé fractions we have used the Stieltjes continued fraction forms; for example, for the mean we use
' nc P(l) qgl) Pgl) qgl)
*y = oKL 41 R I I T,
R T P nalt-

and Pyj, P2 refer to the approximants stopping at the partial numerators ps, qs respectively. For the variance we

3
use a similar expression, the first partial numerator now being qp . Similarly, uz(c*) and u,(c*) have qé )/nz, and

(4), , . .
qo /n® as first partial numerators.

Generally, there is good agreement in the two types of approximants for ¢ > 2--five or six decimal place agree-
ment seems to be common. There is a deterioration for smaller c¢ and especially for the 3-rd and 4-th central moments.
Thus for c=1, n=25, our preferences would be uz(c*) - 0.0060, and u,(c*) - 0.005 with some doubt; the situation for
n=30 is only slightly improved. Even so, the effect on the percentiles is surprisingly small (see Tables 13a, 13bj.

The reason for the deterioration in the summation algorithms for ¢ < 2 doubtless lies in the largeness of the
higher coefficients in the series, together with a "bumpiness" in the early terms especially for u; and u,.)




3.4 Summation of the c* series. The diversified
structure of the series' coefficients arising from
the 100 cases tabulated (25 values of c, for four
moments) makes it imperative to diminish the labor
involved in a detailed study; so we confine atten-
tion generally to samples in the region of 25 or
more. This makes less stringent demands on the
summatory algorithms chosen.

Again, since magnitudes decrease and sign patterns
become irregular as ¢ increases, summatory algo-
rithms successful for small ¢ may fail for large c
(1.6 < c < 4).

For ¢ in the vicinity of unity, we use Levin's
t-algorithm or its truncated versions; some illus-
trations are given in Table 10 and an appendix.

We look first of all for monotonicity, and
secondly, smallness of first differences.

A word on notation--we use S3 and S5 to denote the
Shanks' approximant based on the last three, and
last five values computed. (See the footnote to
Table 4.) For c*, terms up to the coefficient of

n 12 are always used.

In addition L(tr=s,Sy) means a Levin algorithm

with S initial terms truncated, with a Shanks'
smoothing formula applied to the last r (3 or 5)
terms. Similarly, 2cB (a=a, tr=s,S,) and 1cB
(a=a, tr=s,S,) refer to the Borel-Padé type
algorithm described in paragraph 2.2.

We should warn that truncation of a series does
not relate linearly to summation algorithms in
general. For example, different diagonals of a
Padé table are generally distinct, and removing
the first term of a series or adding a term at the
beginning can change drastically the continued
fraction representation.

3.5 Detailed illustrations.

3.5.1. There is undoubtedly a summation problem
for small n, so we confine attention for the most
part to n > 20; the difficulties stem from the
variety of patterns which emerge for the series,
so that no one approach works for small samples
over the parameter space of the shape parameter.
We must point out that the study, as it is,
involves some 200 series so that detailed indi-
vidual cases cannot be undertaken.

Table 10 gives a general view of the usefulness of
the Levin algorithm. Table 11 treats the four
moments of c* and several summation algorithms.
The series are noteworthy for the preponderance of
positive coefficients and divergence at about the
rate of the single factorial series. Higher
moments are less easy to sum than lower. Another
characteristic to notice is the bumpiness of the
coefficients, in contrast to the series for v*,
As to potential error in the c* - series higher
- coefficients, we ctan only say that we have used
double-double precision arithmetic on an IBM
computer, amounting to the retention of about 30
decimal deigits.
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— Assessment of moments—of ¢*, ¢=25,n=20- — — —— — -
TABLE 1la. wj(c*)
2cB(a=1,tr=1) 2cB(a=1,tr=0) 2cB(a=2,tr=0)
r Fr A Fr A Fr A
9 2.676077 235 2.668530 1766 2.668901 3744
10 2.676312 172 2.670296 1314 2.662645 2785
11 2.676484 129 2.671610 999 1.665430 2117
12 2.676613 100 2.672609 775 2.667547 1641
13 2.676713 2.673384 2.669188
Ss  2.67712 2.67864 2.67606
Direct Sum
r term
0 2.5 The preferred value is 2.67712
1 0.1605403 because of the small differ-
2 0.0147840 ences in 2cB(a=1,tr=1); this
3 0.0016437 agrees with the direct sum to
4 0.0001994 the nz° term. A simulation
5  0.0000186 of 10° cycles gave 2.6777.
6 0.0000001 Levin without truncation gave
7  -0.0000005 2.6772.
DS(6) 2.677187
TABLE 11b. up(c*)
2cB(a=2,tr=0) 2cB(a=1,tr=1)
r Fr A Fr A
9 0.2493811 17514 0.2587758 3567
10 0.2511325 14470 0.2591325 2663
11 0.2525795 11530 0.2593988 2042
12 0.2537325 9340 0.2596630 1600
13 0.2546665 0.2597630
Ss 0.259590 0.260476
o 0.5095 0.5104

Preferred 2c¢B is 0.5104. A simulation gave

o - 0.5105. The direct sum gave DS(9)

= 0.260625 with the n~ % coefficient 0.0000007,
with ¢ ~ 0.5104. The Levin assessment gave

0.5105, our final choice.

TABLE 1llc. wu3(c*)
2cB(a=1,tr=0) 2cB(a=1,tr=1)
r Fr A Fr A
9 0.1140509 17471 0.1214065 7610
10 0.1157980 13752 0.1221675 5711
11 0.171732 11058 0.1227386 4420
12 0.1182790 9049 0.1231806 3496
13 0.1191839 0.1235302
Ss 0.124287 0.125189
/8, 0.9347 0.9415
Comparisons are:
2¢B /By ~ 0.9415
“SimuTation V8; ~ 0.9512 -
Levin V8, ~ 0.9440
{DS(10) 0.125625 (for mn3(c*))
VB ~ 0.9442

Dvafarvad uvalue Ja. = N QAAD



TABLE 11d. wuy(c*)

2cB(a=1,tr=0) 2cB(a=1,tr=1)

r Fr A Fr A
9 0.2630947 76628 0.2966641 45608
10 0.2707575 62896 0.3012249 35777
11 0.2770471 52531 0.3048026 28778
12 0.2823002 44498 0.3070804 23608
lé 0.2867500 0.3100412

Ss 0.318118 0.323717

B2 4.684 4.766

Levin 8, ~ 4.831
{Ds(12) 0.3283169 (n-'2 term 0.00003)

B~ 4.839
Final choice 85~ 4.84. A small sample case
(c=1.5, n=10) 1is given in the appendix.
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3.5.2 Simulation comparisons. A check on the
summation algorithm for several values of the
shape parameter ¢ with samples of n=20 is shown in
Table 12. Agreement with the simulation assess-
ments improves as the skewness of the population
decreases (c increases from I towards 3--the
Weibull density has zero skewness when c=3.6
approx.).

TABLE 12. Moments of c* by series (Levin)
and simulation (10° runs)

< n m(c*)  o(c*)  VBy(c*) By(c*)
1.0 20 L 1.1177 0.2188 0.6645 3.5796
S 1.1174 0.2183 0.6751 4.1027

1.5 20 L 1.6248 0.3072 0.8166 4.3727
S 1.6247 0.3068 0.8240 4.6079

2.0 20 L 2.1470 0.4050 0.9035 4.7211
S 2.1472 0.4048 0.9106 4.8945

25 L 2.1155 0.3515 0.7747 4.2498

S 2.1156 0.3511 0.7705 4.2502

2.5 20 L 2.6772 0.5105 0.9440 4.8307
S 2.6777 0.5105 0.9512 5.0155

3.0 20 L 3.2123 0.6214 0.9601 4.8627
S 3.2130 0.6215 0.9669 5.0429

L = Levin's t-algorithm using all series
coefficients to n"'2%, S = simulation of 10°
cycles.)

3.6 Percentage points comparisons. Using the
moment series for v* and c* along with the mapping
in (2.7) we compare standard percentile levels
derived from the 4-moment Pearson density approxi-
mants (Tables 13a, 13b) for samples of 15, 20, and
25 at five values of c. There are also simulation
comparisons for samples of 20. The reader may
agree that the results are satisfactory.

Another check on the summatory algorithms arises
from a study of Pearson and Tukey (1965) on the
relation between distances between percentage
points (for Pearson curves) and the mean and
standard deviation. For a region of the (8y,8;)
plane (8; < 4, B, < 11, approximately), we may

approximate the mean by uw = [50%] + 0.185A where
A= [95%] + [5%] - 2[50%]; here [50%], for
example, refers to the median. For the standard
deviation Pearson and Tukey give the equations,
[95%] - [5%]
1
max{3.29-0.1(A/ob.05)

-~

]
%.05

2 3.08}

-

: - 97.5%1 - [2.5%
%.025 L 1-.12,5%]

f 2
max{3.98-0.138(A/00'025) , 3.66}

and the final assessment o - max{06.05, 06.025}-

We consider these values for the mean and standard
deviation of c* using the percentiles of c*
derived from the percentiles of v* under the

—mapaing (2.7). The point to notice is our concern
cor ¢* moments derived by a complicated numerical
process and how t..._> ~nmpare with assessments
derived from more stabie ana o1, o~ coving far yk
(up to the n 2" coefficients). The agreement tor
samples of 15 or more is quite remarkable (Table
14).




TABLE 13a.

N=15

% Direct

C=1.0

1 0.5454
5 0.6312
10 0.6813
90 1.1747
95 1.2744
99 1.4921

C=1.5

1 0.3864
5 0.4532
10 0.4902
90 0.8046
95 0.8605
99 0.9769

C=2.0
1 0.2985
5 0.3523
10 0.3821
90 0.6212
95 0.6606
99 0.7394

C=2.5
1 0.2424
5 0.2875
10 0.3125
90 0.5102
95 0.5416
99 0.6032

C=3.0

1 0.2037
5 0.2425
10 0.2641
90 0.4350
95 0.4617
99 0.5136

OO0OO0O0O0OO0O == -0 00

COO0OOOO

OO0 O0O0O

QOO C

Percentage points of V* from V*
moments (direct) and C* moments

(indirect)
N=20
I Direct
.5475 0.5956 0O
.6249 0.6757 0
.6743 0.7220 0
L1736 1.1705 1
.2479 1.2613 1
.3651 1.4606 1
.3869 0.4243 0
.4515 0.4840 0
.4886 0.5171 0
.8042 0.7942 0
.8565 0.8427 0
.9591 0.9429 0
.2986 0.3290 0
.3520 0.3766 0
.3819 0.4029 0
.6209 0.6113 0
.6604 0.6450 O
.7411 0.7121 0
.2425 0.2679 0
.2873 0.3079 0
.3123 0.3299 0
.5100 0.5014 0
.5412 0.5282 0
.6026 0.5806 0
.2038 0.2256 0
.2423 0.2601 O
.2640 0.2792 0
.4349 0.4271 0
L4615 0.4499 0
.5133 0.4941 0

.5964
.6726
.7186
L1711
.2525
.4107

.4245
.4834
.5165
.7940
.8416
.9393

.3290
.3765
.4028
.6110
.6448
7127

.2679
.3077
.3298
.5012
.5281
.5806

.2257
.2600
2791
.4270
.4498
.4940

MC

0.595
0.677
0.723
1.170
1.261
1.465

0.425
0.484
0.518
0.794
0.842
0.943

0.330
0.376
0.403
0.611
0.645
0.714

0.269
0.308
0.330
0.501
0.528
0.582

0.226
0.260
0.279
0.427
0.450
0.495

0

OCOOOOOO OOOCOO0 = = OO

COOOOO

0
0
0.
0
0
0

N=25
Direct

.6309
.7067
.7500
.1645
.2481
.4319

.4502
.5049
.5352
.7858
.8291
.9179

.3496
.3929
.4168
.6039
.6338
.6930

.2852
.3215
.3414
.4949
.5187
.5649

.2405
.2718
2891
.4214
.4416
.4807

M. C. is 10° simulation, I is indirect.

OO0 OO COQOOQO OCOOOOCO -0 OO0

OOoCOOO0C

.6315
.7048
.7481
.1649
.2441
.4099

.4504
.5046
.5349
.7856
.8286
.9170

.3496
.3928
L4167
.6037
.6337
.6932

.2852
.3214
.3413
.4948
.5186
.5650

.2405
.2718
.2890
L4213
.4416
.4806
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TABLE 13b.
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Percenta?e points of C* from C*

moments

(indirect)
N=20

N=15

% Direct

C=1.0

1 0.7439
5 0.8075
10 0.8554
90 1.5112
95 1.6420
99 1.5000

C=1.5
1 1.0429
5 1.1713
10 1.2513
90 2.1558
95 2.3543
99 2.7980

€=2.0

1 1.3648
5 1.5459
10 1.6538
90 2.8389
95 3.1086
99 3.7336

C=2.5
1 1.7089
5 1.9242
10 2.0555
90 3.5518
95 3.8968
99 4.6964

€=3.0

1 2.0409
5 2.2976
10 2.4552
90 4.2785
95 4.7006
99 5.6789

M. C. is 10° simulation.

|

0.6880
0.7919
0.8546
1.4945
1.6242
1.9078

1.0237
1.1657
1.2507
2.1480
2.3449
2.8015

1.3682
1.5455
1.6529
2.8372
3.1056
3.7341

1.7072
1.9227
2.0547
3.5487
3.8925
4.6992

2.0395
2.2964
2.4547
4.2753
4.6967
5.6835

Direct

0.7225
0.8047
0.8571
1.4108
1.5156
1.7285

1.0652
1.1930
1.2684
2.0267
2.1819
2.5221

1.4234
1.5867
1.6830
2.6747
2.8844
3.3524

1.7804
1.9776
2.0956
3.3430
3.6103
4.2086

2.1299
2.3644
2.5058
4.0235
4.3505
5.0821

I

0.7008
0.7996
0.8576
1.4037
1.5078
1.7311

1.0611
1.1911
1.2680
2.0242
2.1788
2.5238

1.4247
1.5861
1.6823
2.6739
2.8829
3.3524

1.7805
1.9769
2.0950
3.3417
3.6085
4.2092

2.1293
2.3637
2.5054
4.0220
4.3486
5.0837

(Based on 4-moment

MC

0.699
0.800
0.858
1.401
1.505
1.696

1.061
1.192
1.268
2.022
2.181
2.519

1.420
1.587
1.684
2.673
2.885
3.344

1.766
1.976
2.096
3.343
3.606
4,197

2.125
2.363
2.507
4.025
4.346
5.072

0.
.8098
.8615
.3512
.4406
.6233

0
0
1
1
1

N N =t b s =

WANMN

£ WM NN

WwWwWN N

direct) and V* moments

N=25
Direct

7229

.0917
.2125
.2826
.9497
.0802
.3610

.4666
.6172
.7055
.5754
. 7507
.1327

.8349
.0177
.1259
.2175
.4405
.9281

.1960
.4138
.5437
.8703
.1428
.7391

0.
.8074
.8618
.3475
.4365
.6250

WA N = N N = s - OO

WWWN N =

I

7131

.0906
.2118
.2823
.9484
.0786
.3621

.4672
.6168
.7050
.5748
.7498
.1326

.8351
.0172
.1255
.2168
.4394
.9282

.1958
4134
5434
.8695
.1417
.7398

Pearson density approximation, the series summed
by Levin's t-algorithm.
all coefficients were used.)

For v* see 2.6.

For c*
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TABLE 15. Mean and standard deviation of c*
computed directly from c* series
compared to Pearson-Tukey approximants
based on percentiles of c* derived from
those of v*

N=15 N=20 N=25
.0951
.1932

.5987
.2664

.1154
.3496

.6387
.4396

.1659
.5345

.1556
.2589

.6697
3711

1 .1558
0
1
0
€=2.0 u) 2.2023
0
2
0
3

.2593

L1177 1.1178
.2188 0.2186

.6696 1.6248 1.6247
.3696 0.3072 0.3057

1 .0951
0
1
0
.2018 2.1470 2.1468
0
2
0
3

.1936

.5988
.2681

.1155

€C=1.0 u} 1
0
1
0
2
.4050 0.4035 0.3515
2
0
3
0

C=1.5 n,

.4937

.7449
.6245

.4928
.7443

C=2.5 u; .6772 2.6769 2.6388

.6232 0.5105 0.5086 0.4419

.2940 3.2933 3.2123 3.2119 3.1661
0.7613 0.7597 0.6214 0.6191 0.5374

(*Levin's t-algorithm, using all available
coefficients in the series for wj(c*) and uy(c*).
**Pearson-Tukey values derived from their

max{oé 05> 03 025} based on percentiles of c*

Qw |ON |[ON O O
QW [ON |[ON |[O= O

€=3.0 u}
ag

derived from v* moment series. )
4, THE MOMENT ESTIMATOR FOR 1l/c

The equation for the estimator d* of d(=1/c) is
T(1+2d%)/T2(1+d*) = 1 + w2, (4.1)
A quick approximate solution (see 2.8 for a
comparison) is
d* . 0.908919v* + 0.91081v*? (4.2)
(0 <v<2)
hinting that the distribution of d* will be done
(in some sense) to that of vk. A modification of

the approach of Y3 now leads to series develop-
ments for the moments of d* up to terms in

n" Y2, From tabulations for the same parameter
space as was used for c¢*, we find the series for
d* in general have the same sign and magnitude
patterns (however, we are limited to fewer coef-
ficients). Thus development provides yet another
check on the validity of moment assessments. As
an example, the assessments of moments when n=10,
c=1.5 are:

pi(a¥)  o(d¥)  V/By(d*) Bp(d*)

(i) Levin: 0.607184 0.156519 0.4633 3.4253

(i1) Padé: 0.607190 0.156542 0.4634 3.4122
The 4-moment percentiles of d* using (1) are

1% 5% 10% 90% 95% 99%

d* 0.2924 0.3714 0.4165 0.8125 0.8825 1.0256

Derived 0.3231 0.4004 0.4437 0.8170 0.8843 1.0257
vk

Direct 0.3230 0.4006 0.4439 0.8171 0.8846 1.0260
ol

— along with a comparison for v¥. In addition we
have from the d* percentiles, the c* values 0.975,
1.133, 1.231, 2.401, 2.693, and 3.420 which can be
compared with the less reliable (because of tne
bumpiness of the higher moments) results in Table

12.
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Further comparisons of moments and percentiles
(not reported here) give grounds for confidence in
1<c<4andn>15 approximately. Actually
there s reason to believe that if percentage
points of c* are needed, it is better to proceed
via d*.

5. CONCLUDING REMARKS

(i) The series for the moments of v* taken as far

as the n 2" term appear to be divergent. As c,
the shape parameter varies from 1 to about 4, the
regular alternating sign pattern is increasingly
disrupted (especially for the higher moments),

whereas the magnitude pattern is diluted (the n~
coefficient decreases from about 10°° to 1025).
The Levin t-algorithm, with stopping point
signalled from exact small sample results, works
well.

24

(i1) Series for the shape parameter c* (take as

far as n'lz) are more difficult to sum because of
irregular sign and magnitude patterns.

(iii) Series for d* (estimating d=1/c) are similar
to those for the coefficient of variation.

(iv) Validation is by numerical investigation--
error bounds for moments and percentiles are out
of the question. We use several summation algo-
rithms (Levin, Levin with truncation, Padé,
simulation) and in them study consistency. There
can be difficulties here--for example, adjacent
close approximants may still be in error. We have
described some highly successful cases and some
problematical cases--for example wu,(c*) when c=1.5
or so and n is small. .

There are outstanding problems, such as:
(a) the response of an algorithm to slight errors

in series coefficients for low orders of n™' and
large errors in coefficents for high orders of

n !5 (b) the choice of algorithm for summation
purposes. Levin's t-algorithm works well for
alternating series and magnitudes lying between
the single and doublie factorial series. The Padé
approach behaves similarly and very likely has
wide application [see the Baker-Gammel-Wills
conjecture (Baker, 1975)); (c) the construction of
algorithms which relate specifically to moments of
statistics expressable as multiple integrals.

Finally, it should be eminently clear that low
order asymptotics to measures such as means,
covariances, etc., should be viewed with great
caution. Even if the first few coefficients are
seductively small, there may be rude awakenings

round the corner; for example, an n"! term in a
variance may exist but all higher order terms may
not.

To those not well acquainted with summation

problems reference may be made to:

(i) Baker and Gammel (1970, Baker (1975) Cr.vc,
and Morris (1973), and Brezine®? [7385) for modern
studies on Padé methnl-; {11) Wall (1948), Perron
(1950), Stiel:;es (1918), Borel (1928) for classi-
cal studi-~,; (iii) Van Dyke (1974, 1975) for
gener:’ remarks on divergent series; (iv) Shoha:
ar-* tamarken (1963) for the moment problem.
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APPENDIX -

A small sample case. To illustrate problems which
arise for small samples, we take c=1.5 and n=10.
In particular the fourth central moment has the
successive coefficients (approximated for
convenience)
uy(c*) -~ 0.07 + 0.08 + 0.11 + 0.21 - 1.25 + 11.86
- 106.5 + 1022.9 - 10613.4 + ...;
it should be noted that the first coefficient is
merely three times the square of the variance
asymptote and provides no unexpected information.
Also note the disrupted sign pattern.

We try the Levin algorithm,

wmlc*)  wplc*)  ws(c*) w, (c*)
Truncate & Start
at n~" term

r o

2 1.7502  0.1279  0.1080 0.2335
3 1.7418  0.2656  0.1097 0.1679
4 1.6397  0.2403  0.1163 0.1722
5 1.7749  0.2398  0.1244 0.1957
6 1.7675  0.2426  0.1345 0.2229
7 1.7663  0.2457  0.1464 0.1979
8 1.7663  0.2485  0.1585

We base wuy(c*) on og yielding the value 0.3776.
Our preferred assessments are:

uy= 1.7663, u,= 0.2485, vB,= 1.2789(7),

Bo= 6.1132(?) with rather Tow confidence in B8,.
If we take o7 instead of ag, our alternative for

the kurtosis is Bga)= 5.7102. We not have the
Pearson 4-moment fits for c* (Table Al). Thus the
change in B, does affect the c* percentiles but
this change is damped out in the v* derived
values.

TABLE Al. Percentiles of v* derived from c*
compared to direct values n=10, c=1.5

% 1 5 10 90 95 99

c* (a) 0.995 1.134 1.226 2.413 2.628 3.355
(b) 1.038 1.149 1.230 2.426 2.713 3.360

Derived (a) 1.005 0.884 0.820 0.442 0.400 0.329
vk (b) 0.964 0.873 0.818 0.440 0.400 0.328
vk direct 1,026 0.885 0.817 0.444 0.401 0.323

((a) uses the moments with kurtosis B,, and

(b) with kurtosis sga))
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