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I. SUMMARY OF PAST PROGRESS

From April 1982 we have had DOE funding for work on chaos in nonlinear
dissipative dynamical systems. The present proposal is essentially for a continuation
of the previous line of work. Therefore, in this section we briefly review our past

progress under the previous DOE funding.

A. Crises and Chaotic Transients

Crises — sudden macroscopic changes in chaotic attractors due to their collision
with unstable orbits — and the associated chaotic transients have been extensively

studied by us in a series of papers listed below.

1. “Chaotic Attractors in Crisis”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev.
Lett. 48, 1507 (1982).

2. “Crises, Sudden Changes in Chaotic Attractors, and Transient Chaos”, C. Gre-
bogi, E. Ott, and J. A. Yorke, Physica 7D, 181 (1983).

3. “Fractal Basins Boundaries, Long-Lived Chaotic Transients, and Unstable-
Unstable Pair Bifurcation”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev.
Lett. 50, 935 (1983).

4. “Structure and Crises of Fractal Basin Boundaries”, S. W. McDonald, E. Ott,
and J. A. Yorke, Phys. Lett. 107A, 51 (1985).

5. “Super Persistent Chaotic Transients”, C. Grebogi, E. Ott, and J. A. Yorke,
Ergodic Theory and Dynamical Systems 5, 341 (1985).

6. “Critical Exponent of Chaotic Transients in Nonlinear Dynamical Systems”,

Phys. Rev. Lett. 57, 1284 (1986).

7. “Critical Exponents for Crisis-Induced Intermittency”, C. Grebogi, E. Ott,
F. Romeiras, and J. A. Yorke, Phys. Rev. A 36, 5365 (1987).



B.

The Dimension of Chaotic Attractors

In this area we have investigated the various definitions of attractor dimension,

their possible relationship to Lyapunov numbers, their implications for the effect of

noise on attractors, and numerical techniques for their calculation. Papers on this

topic are listed below.

8.

10.

11.

12.

13.

14.

15.

16.

17.

“The Dimension of Chaotic Attractors”, J. D. Farmer, E. Ott, and J. A. Yorke,
Physica 7D, 153 (1983).

“Is the Dimension of Chaotic Attractors Invariant Under Coordinate Changes?”,

E. Ott, W. D. Withers, and J. A. Yorke, J. Stat. Phys. 36, 659 (1984).

“A Scaling Law: How an Attractor’s Volume Depends on Noise Level”, E. Ott,
E. D. Yorke, and J. A. Yorke, Physica 16D, 62 (1985).

“Lorenz Cross-Sections and the Structure and Dimension of Higher Dimen-

sional Attractors”, E. Kostelich and J. A. Yorke, Physica 24D, 263 (1987).

“Unstable Periodic Orbits and the Dimension of Chaotic Attractors”, C. Gre-
bogi, E. Ott, and J. A. Yorke, Phys. Rev. A 36, 3522 (1987).

“Unstable Periodic Orbits and the Dimensions of Multifractal Chaotic Attrac-
tors”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 37, 1711 (1988).

“Strange Saddles and the Dimensions of Their Invariant Manifolds”, G. -

H. Hsu, E. Ott, and C. Grebogi, Phys. Lett. 127A, 199 (1988).

“Dimensions of Strange Nonchaotic Attractors”, M. Ding, C. Grebogi, and
E. Ott, Phys. Lett. 137TA, 167 (1989).

“Pointwise Dimension and Unstable Periodic Orbits”, C. Grebogi, E. Ott, and
J. A. Yorke, in Essays on Classical and Quantum Dynamics, Ed. H. Uberall
(Gordon and Breach, 1989), 10 pages, in print.

“Lyapunov Partition Functions for the Dimensions of Chaotic Sets”, E. Ott,

T. Sauer, and J. A. Yorke, Phys. Rev. A 39, 4212 (1989).



C.

Fractal Basin Boundaries

In this area we have been the first to quantitatively assess and study the ex-

tent to which the existence of fractal basin boundaries pose practical difficulties in

predicting outcome from imperfect initial data.

18.

19.

20.

21.

22.

23.

24.

25.

26.

“Final State Sensitivity: An Obstruction to Predictability”, C. Grebogi, S. W.
McDonald, E. Ott, and J. A. Yorke, Phys. Lett. 99A, 415 (1983).

“Fractal Basin Boundaries in Nonlinear Dynamical Systems”, C. Grebogi,
S. W. McDonald, E. Ott, and J. A. Yorke, in Statistical Physics and Chaos in
Fusion Plasmas, Ed. C. W. Horton and L. E. Reichl (Wiley, New York, 1984).

“An Obstruction to Predictability”, S. W. McDonald, C. Grebogi, E. Ott,
and J. A. Yorke, in Proc. XIIIth Intn’l. Colloq. on Group Theor. Methods in
Physics (World Scientific publishing Co., Singapore, 1984).

“Fractal Basin Boundaries”, S. W. McDonald, C. Grebogi, E. Ott, and J. A.
Yorke, Physica 17D, 125 (1985).

“Metamorphoses of Basin Boundaries”, C. Grebogi, E. Ott, and J. A. Yorke,
Phys. Rev. Lett. 56, 1011 (1986).

“Basin Boundary Metamorphoses: Changes in Accessible Boundary Orbits”,

C. Grebogi, E. Ott, and J. A. Yorke, Physica 24D, 263 (1987).

“Multi-dimensional Intertwined Basin Boundaries and the Kicked Double Ro-
tor”, E. Kostelich, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Lett. 118A,
448 (1986).

“Multi-dimensional Intertwined Basin Boundaries: Basin Structure of the
Kicked Double Rotor”, E. Kostelich, C. Grebogi, E. Ott, and J. A. Yorke,
Physica 25D, 347 (1987).

“Fractal Basin Boundaries with Unique Dimension,” C. Grebogi, E. Ott,
J. A. Yorke, and H. E. Nusse, Ann. N.Y. Acad. Sci. 497, 117 (1987).



27. “Basic Sets: Sets that Determine the Dimensions of Basin Boundaries”, C. Gre-
bogi, H. E. Nusse, E. Ott, and J. A. Yorke, Springer Lecture Notes in Math-
ematics, Vol. 1342 (Dynamical Systems)(Springer-Verlag, 1988), p. 220.

28. “Fractal Boundaries for Exit in Hamiltonian Dynamics”, S. Bleher, C. Gre-

bogi, E. Ott and R. Brown, Phys. Rev. A 38, 930 (1988).

29. “Scaling of Fractal Basins Boundaries Near Intermittency Transitions to Chaos”, .

B. -S. Park, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 40, 1576 (1989).

D. Other Research

Other research papers not falling in the above three categories are the follow-
ing. These cover work in quasiperiodicity, Hamiltonian systems, windows and their

scaling, fat fractals, shadowing, etc.

30. “Are Three-Frequency Quasiperiodic Orbits to Be Expected in Typical Non-
linear Dynamical Systems?”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev.
Lett. 51, 339 (1983).

31. “Correlations of Periodic Area-Preserving Maps”, J. D. Meiss, J. R. Cary,
C. Grebogi, J. D. Crawford, and H. D. I. Abarbanel, Physica 6D, 375 (1983).

32. “Relativistic Ponderomotive Hamiltonian”, C. Grebogi and R. G. Littlejohn,
Phys. Fluids 27, 1996 (1984).

33. “Strange Attractors That Are Not Chaotic”, C. Grebogi, E. Ott, S. Pelikan,
and J. A. Yorke, Physica 13D, 261 (1984).

34. “Quasiperiodicity and Chaos”, C. Grebogi, E. Ott, and J. A. Yorke, in Proc.
XIIIth Intn’l. Colloq. on Group Theor. Methods in Physics (World Scientific
Publishing Co., Singapore, 1984).

35. “Attractors on an N-Torus: Quasiperiodicity Versus Chaos”, C. Grebogi,
E. Ott, and J. A. Yorke, Physica 15D, 354 (1985).

L



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

“Nonlinear Dynamics”, C. Grebogi, in The Role of Supercomputers in Energy
Research Program, U.S. Department of Energy, Office of Scientific Computing
(1984).

“The Exterior Dimension of Fat Fractals”, C. Grebogi, S. W. McDonald,
E. Ott, and J. A. Yorke, Phys. Lett. 110A, 1 (1985).

“Scaling Behavior of Windows in Dissipative Dynamical Systems”, J. A. Yorke,
C. Grebogi, E. Ott, and L. Tedeschini-Lalli, Phys. Rev. Lett. 54, 1095 (1985).

“Effect of Noise on Time-Dependent Quantum Chaos”, E. Ott, J. D. Hanson,
and T. M. Antonsen, Phys. Rev. Lett. 53, 2187 (1984).

“Quasiperiodically Forced Damped Pendula and Schrodinger Equations with
Quasiperiodic Potentials: Implications of Their Equivalence”, A. Bondeson,

E. Ott, and T. M. Antonsen, Phys. Rev. Lett. 55, 2103 (1985).

“How Often Do Simple Dynamical Processes Have Infinitely Many Coexisting
Sinks?”, L. Tedeschini-Lalli and J. A. Yorke, Comm. Math. Phys. 106, 635
(1986).

“Markov Tree Model of Transport in Hamiltonian Systems”, J. D. Meiss and

E. Ott, Phys. Rev. Lett. 55, 2741 (1985).

“Broadening of Spectral Peaks at the Merging of Chaotic Bands in Period-
Doubling Systems”, R. Brown, C. Grebogi, and E. Ott, Phys. Rev. A 34, 2248
(1986).

“Markov Tree Model of Transport in Area-Preserving Maps”, J. D. Meiss and
E. Ott, Physics 20D, 387 (1986).

“Lorenz-like Chaos in a Partial Differential Equation for a Heated Fluid
Loop”, J. A. Yorke, E. D. Yorke, and J. Mallet-Paret, Physica 24D, 279
(1987).



46.

47.

48.

49.

50.

ol.

92.

53.

94.

53.

56.

“Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dy-

namics”, C. Grebogi, E. Ott, and J. A. Yorke, Science 238, 632 (1987).

“Strange Nonchaotic Attractors of the Damped Pendulum with Quasiperiodic

Forcing”, F. J. Romeiras and E. Ott, Phys. Rev. A 35, 4404 (1987).

“Quasiperiodically Forced Dynamical Systems with Strange Nonchaotic At-
tractors”, F. J. Romeiras, A. Bondeson, E. Ott, T. M. Antonsen, and C. Gre-
bogi, Physica 26D, 277 (1987).

“Chaotic Fluid Convection and the Fractal Nature of Passive Scalar Gradi-
ents”, E. Ott and T. M. Antonsen, Phys. Rev. Lett. 61, 2839 (1988).

“Critical Exponents for Power-Spectra Scaling at Mergings of Chaotic Bands”,
F. Romeiras, C. Grebogi, and E. Ott, Phys. Rev. A 38, 463 (1988).

“Numerical Orbits of Chaotic Processes Represent True Orbits”, S. M. Ham-
mel, J. A. Yorke, and C. Grebogi, Bull. Am. Math. Soc. 19, 465 (1988).

“Chaotic Flows and Magnetic Dynamos”, J. M. Finn and E. Ott, Phys. Rev.
Lett. 60, 760 (1988).

“Chaotic Flows and Fast Magnetic Dynamos”, J. M. Finn and E. Ott, Phys. Flu-
ids 31, 2992 (1988).

“Evolution of Attractors in Quasiperiodically Forced Systems: From Quasiperi-
odic to Strange Nonchaotic to Chaotic”, M. Ding, C. Grebogi, and E. Ott,
Phys. Rev. A 39, 2593 (1989).

“Spatio-temporal Dynamics in a Dispersively Coupled Chain of Nonlinear Os-
cillators”, D. K. Umberger, C. Grebogi, E. Ott, and B. Afeyan, Phys. Rev. A
39, 4835 (1989).

“Theory of First Order Phase Transitions for Chaotic Attractors of Nonlinear
Dynamical Systems”, E. Ott, C. Grebogi, and J. A. Yorke, Phys. Lett. 135A,
343 (1989).



57.

98.

99.

60.

61.

62.

“Routes to Chaotic Scattering”, S. Bleher, E. Ott, and C. Grebogi, Phys. Rev.
Lett. 63, 919 (1989).

“Quasiperiodic Forcing and the Observability of Strange Nonchaotic Attrac-
tors”, F. J. Romeiras, A. Bondeson, E. Ott, T. M. Antonsen, and C. Grebogi,
Physica Scripta 40, 442 (1989).

“Chaos, Strange Attractors, and Fractal Basin Boundaries”, C. Grebogi, Trans.
Am. Nucl. Soc. 60, 346 (1989).

“Strange Saddles in Scattering Hamiltonian Systems”, G. H. Hsu, S. Ble-
her, C. Grebogi, and E. Ott, in Essays on Classical and Quantum Dynamics,
Ed. H. Uberall (Gordon and Breach, 1989), 14 pages, in print.

“Fractal Structure in Physical Space in the Dispersal of Particles in Fluids”,
L. Yu, C. Grebogi, and E. Ott, in Proc. Conf. on Nonlinear Structures in

Physical Systems - Pattern Formation, Chaos, and Waves (Springer-Verlag,
1990).

“A Procedure for Finding Numerical Trajectories on Chaotic Saddles”, H. E.
Nusse and J. A. Yorke, Physica 36D, 137 (1989).
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II. CONTROL OF CHAOTIC PROCESSES

The following is a brief discussion of our recent progress on the problem of
controlling chaotic processes using unstable periodic orbits (discussed in Sec. I.B.1).

To simplify the analysis we consider continuous time dynamical systems which
are three dimensional and depend on one system parameter which we denote p.
(For example, dx/dt = F(x, p), where x is three dimensional.) We assume that the
parameter p is available for external adjustment, and we wish to temporally program
our adjustments of p so as to achieve improved performance. We emphasize that
our restriction to a three dimensional system is mainly for ease of presentation,
and we believe that the case of higher dimensional (including infinite dimensional)
systems can be treated by similar methods.

We imagine that the dynamical equations describing the system are not known,
but that experimental time series of some scalar dependent variable z(¢) can be
measured. Using delay coordinates [PCFS,T] with delay T one can form a delay
coordinate vector, X(t) = [z(t), z(t—T), 2(t-2T), ..., 2(t—MT)]. We are interested
in periodic orbits and their stability properties, and we shall use X to obtain a
surface of section for this purpose. In the surface of section, a continuous-time
periodic orbit appears as a discrete time orbit cycling through a finite set of points.
We require the dynamical behavior of the surface of section map in neighborhoods
of these points in order to study the stability of the periodic orbits. To embed a
small neighborhood of a point from x into X, we typically only require as many
dimensions as there are coordinates of the point. Thus, for our purposes, M = D~1
1s generally sufficient. (This is in contrast with M +1 = 2D + 1, typically required
for global embedding.) Hence, for the case considered (D = 3), our surface of
section is two-dimensional.

We suppose that the parameter p can be varied in a small range about some
nominal value py. Henceforth, without loss of generality, we set po = 0. Let the

range in which we are allowed to vary p be p, > p > —p..

Using an experimental surface of section for the embedding vector X, we imagine



that we obtain many experimental points in the surface of section for p = 0. We
denote these points &, &,, &3, ..., §, where £  denotes the coordinates in the
surface of section at the nth piercing of the surface of section by the orbit X(¢).
For example, a common choice of the surface of section would be z(t — MT) equals
a constant, and &, = [z(t,.),...,2(t, — (M — 1)T)], where t = t, denotes the
time at the nth piercing. From such experimentally determined sequences it has
been demonstrated that a large number of distinct unstable periodic orbits on a
chaotic attractor can be determined [GLV,LK]. We then examine these unstable
periodic orbits and select the one which gives the best performance. Again using
an experimentally determined sequence, we obtain the stability properties of the
chosen periodic orbit (cf. {GLV] and [LK] for discussion of how this can be done
and for descriptions of its implementation in concrete experimental cases). For
the purposes of simplicity, let us assume in what follows that this orbit is a fixed
point of the surface of section map (i.e., period one; the case of higher period is a
straightforward extension). Let A, and A, be the experimentally determined stable
and unstable eigenvalues of the surface of section map at the chosen fixed point of
the map (|A.] > 1 > |A,]). Let e, and e, be the experimentally determined unit
vectors in the stable and unstable directions. Let £ = £ = 0 be the desired fixed
point. We then change p slightly from p = 0 to some other value p = p. The fixed
point coordinates in the experimental surface of section will shift from 0 to some
nearby point £ -(p) and we determine this new position. For small  we approximate
g = 0€5(p)/0p|y=0 = p~'€p(P), which allows an experimental determination of the
vector g.

Thus, in the surface of section, near £ = 0, we can use a linear approximation

for the map, (£, —&r(p)) =M - (€, — €p(p)), where M is a 2 by 2 matrix. Using
£-(p) = pg we have v

En+1 = Dng + {Aueufu + ,\,e,f,] : [&n - png} (1)

(In the linearization (1), we have considered p, to be small and of the same order

as £,.) We emphasize that g, e,, es, A\, and ), are all experimentally accessible



by the embedding technique just discussed. In (1) f, and f, are contravariant basis
vectors defined by f;-e, =f,-e, =1, f,-e, = f,-e, = 0. Note that we have written
the location of the fixed point as p,g, because we imagine that we adjust p to a new

value p, after each piercing of the surface of section. That is, we observe £, and

then adjust p to the value p,. Thus p, depends on §,. Further, we only envision
making this adjustment when the orbit falls near the desired fixed point for p = 0.

Assume that &, falls near the desired fixed point at £ = 0 so that (1) applies.
We then attempt to pick p, so that £, , falls on the stable manifold of £ = 0. That
is, we choose p, so that f,-§,,, = 0. If §,,, falls on the stable manifold of £ = 0,
we can then set the parameter perturbations to zero, and the orbit for subsequent

time will approach the fixed point at the geometrical rate A,. Thus for sufficiently

small €, we can dot (1) with f,, to obtain

Pn = Au(Ay — 1)—1(£n )/ (g fu), (2)

which we use when the magnitude of the right-hand side of (2) is less than p..
When it is greater than p., we set p, = 0. We assume in (2) that the generic
condition g - f, # O is satisfied. Thus, the parameter perturbations are activated
(i.e., pn # 0) only if &, falls in a narrow strip || < €., where £ = f, - £,,, and
from (2) &, = p.|(1 — A Vg - f,|. Thus, for small p., a typical initial condition will
execute a chaotic orbit, unchanged from the uncontrolled case, until £, falls in the
strip. Even then, because of nonlinearity not included in (1), the control may not
be able to bring the orbit to the fixed point. In this case the orbit will leave the strip
and continue to wander chaotically as if there was no control. Since the orbit on
the uncontrolled chaotic attractor is ergodic, at some time it will eventually satisfy
|€] < €. and also be sufficiently close to the desired fixed point that attraction to
€ = 0 is achieved. (In rare cases applying Eq. (2) when the trajectory enters the
strip, but is still far from 0, may result in stabilizing the wrong periodic orbit which
visits the strip.)

Thus, we create a stable orbit, but, for a typical initial condition, it is preceded in

time by a chaotic transient in which the orbit is similar to orbits on the uncontrolled

10



chaotic attractor. The length 7 of such a chaotic transient depends sensitively on
the initial condition, and, for randomly chosen initial conditions, has an exponential
probability distribution [GOY1, GORY] P(7) ~ exp —(7/ < 7 >) for large 7. The
average length of the chaotic transient < 7 > increases with decreasing p. and

follows a power law relation [GOY1, GORY] for small p,, < 7 >~ p;7.

We will now derive a formula for the exponent 4. Dotting the linearized map
for €,4,, Eq. (1), with f,, we obtain £ ; = 0. In obtaining this result from (1) we
have substituted p, appropriate for |{| < {,. We note that the result {7, = 0is a
linearization, and typically has a lowest order nonlinear correction that is quadratic.
In particular, & = f, - £, is not restricted by [£%| < £., and thus may not be small
when the condition [€¥| < €. is satisfied. Hence the correction quadratic in £ is
most significant. Including such a correction we have ¥, = x(€3)?, where « is a
constant. Thus, if |£|(€3)? > &., then [€%,,| > &., and attraction to € = 0 is not
achieved, even though |£%]| < £,. Attraction to £ = 0 is achieved when the orbit falls
in the small parallelogram P. given by |€%| < £., €] < (&./]&])Y/2. For very small
€., an initial condition will bounce around on the set comprising the uncontrolled
chaotic attractor for a long time before it falls in the parallelogram P.. At any
given iterate the probability of falling in P, is u(P.), the measure of the uncontrolled
attractor contained in P,. Thus, < 7 > '= u(P,). The scaling of p(P.) with &,
is p(P.) ~ (£)*[(& /|34 ~ ff”%d', where d, and d, are the partial pointwise
dimensions for the uncontrolled chaotic attractor at £ = 0 in the unstable direction
and the stable direction, respectively. Thus u(P.) = ], where v = d, + (d,/2).

Since we assume the attractor to be effectively smooth in the unstable direction,

dy, = 1. The partial pointwise dimension in the stable direction is given in terms of

the eigenvalues (GOY1, GORY] at £ = 0, d, = (¢n|)\,|)/(4n|A,|"?). Thus
1
y=1+ §(€n|/\u|)/(€n|/\,|"). (3)

To study the effect of noise we add a term €8, to the right-hand side of the
linearized equations for §,,,, Eq. (1), where 6, is a random variable and € is a

small parameter specifying the intensity of the noise. The quantities §,, are taken

11



to have zero mean ( < 6, >= 0), be independent (< 8,6,, >= 0 for m # n),
and have a probability density independent of n. Dotting (1) with noise included
with f, we obtain £, = €b,, where 6% = f, - §,. Thus if the noise is bounded,
[6¥] < bmax, then the stability of € = 0 will not be affected by the noise if the bound
is small enough, €b,.x < €,. If this condition is not satisfied, then the noise can
kick an orbit which is initially in the parallelogram P, into the region outside P..
We are particularly interested in the case where such kick-outs are caused by low
probability tails on the probability density and are thus rare. (If they are frequent
then our procedure is ineffective.) In such a case the average time to be kicked
out < 7' > will be long. Thus an orbit will typically alternate between epochs of
chaotic motion of average duration < 7 > in which it is far from £ = 0, and epochs
of average length < 7 > in which the orbit lies in the parallelogram P.. For small
enough noise the orbit spends most of its time in P,, < 7/ > >>» < 7 >, and one
might then regard the procedure as being effective.

We now consider a specific numerical example. Our purpose is to illustrate and
test our analyses of the average time to achieve control and the effect of noise.
To do this we shall utilize the Henon map, Tn41 = A — 22 + Byn, Yny1 = Zn,
where we take B = 0.3. We assume that the quantity A can be varied by a small
amount about some value Ay. Accordingly we write A as A = Ay + p, where p
is the control parameter. For the values of Ap which we investigate, the attractor
for the map is chaotic and contains an unstable period one (fixed point) orbit.
The coordinates (zf,yr) for the fixed point which is in the attractor along with the
associated parameters and vectors appearing in Eq. (1) may be explicitly calculated.
The quantity £, appearing in (1) is &, = (2. — TF)Xo + (Y — yr)Yo. To test our
prediction for the dependence of < 7 >, the average time to approach £ = 0, on
the maximum allowed size of the parameter perturbation p,, we proceed as follows.
We iterate the map with p = 0 using a large number of rand.omly chosen initial
conditions until all these initial conditions are distributed over the attractor {500
iterates were typically used). We then turn on the parameter perturbations and

determine for each orbit how many further iterates r are nccessary before the orbit

12



falls within a circle of radius -1,_;5. centered at the fixed point. We then calculate
the average of these times. We do this for many different values of p, and plot the
results as a function of p,. This is shown on the log-log plot in Fig. 1 along with
the theoretical straight line of slope given by the exponent (3). We see that the
agreement is good although there are significant variations about the general power
law trend. These are to be believed due to the fractal nature of the attractor and
have also been seen in numerical calculations of the pointwise dimension for points
on chaotic attractors (cf. [GOY2] and [GOY3]).

Next we must consider the issue of noise. We add terms €d,, and €é,, to the
right-hand sides of the Henon map equations. The random quantities é,, and
b,n are independent of each other, have mean value zero, mean squared value one
(< 8 >=< 63 >= 1), and have a gaussian probability density. Figure 2 shows orbit
plots, z,, versus n for 1500 iterates of the noisy map with parameter perturbations
given by (2), for two different noise levels and p, held fixed at p, = 0.2. As predicted
the orbit stays near the fixed point with occasional bursts into the region far from
& =0, and these bursts are less frequent for smaller noise levels.

We propose extensions of this work in the following directions. We emphasize
that our numerical experiments to date have only involved the Henon map. In
practice, one can anticipate difficulties as experience is gained with more typical
dynamical systems. In particular, what are the implications of imperfect identifica-
tion of the periodic orbit and its stability properties? What are the implications of
different types of noise? Are there unforeseen problems in going to higher dimen-
sional and infinite dimensional dynamical systems? How can the transient times
to achieve the desired periodic orbit be most effectively reduced by small controls?
These and other problems will be studied, and we anticipate that this area will
be a rich source of very interesting practical and theoretical research with major

potential technological benefits for a broad range of applications.

13



1 lel]ll T I lellTI | 1L

1 Jllllll 1

1
1

Lol

LI Il1ll]

1

T

T IIIIHI
1

TTTTTT]
L1t gl

T

T
1

102 1 ! llJllJ_l { 1 LllLlll 1 N NEN

107 107 107 10

Fig. 1. < 7 > versus p.. Points were computed using 128 randomly se-

lected initial conditions. Ag = 1.4.
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Fig. 2. z, versus n for two cases with the same realization of the random
vector §. p. = 0.2 and Ag = 1.29 for both cases. (a) € = 3.5x 1072
(b) e = 3.8 x 1072
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