
DOE/ER/25036—3
DE90 006641

CHAOTIC TRANSIENTS, HIGHER DIMENSIONAL PHENOMENA, 
AND COUPLED ORDINARY DIFFERENTIAL EQUATIONS

Progress Report 

January 1989-December 1989

w
§
d
Q

Celso Grebogi

s b 'i«d -C ?-
© « •a . -o
u >*> vT C £
§ ^ I ^ I 2

Sio§-£ li|l

Ijtl1*4*8& a s ■& .§ f §•§
Is

a
£ s* 
■8 “

! £ a |.s .s
sti

a
0
s o *S O 
c 31 « 8
oM "g 
§■5
a ^
ed

a, 'C

S Z 
■e c
ai2 E 
.9 143 OP o

_ "P w 
C 4> »9

g-i«g
M3

° 1 §

VC/5
h* V° -3wT .ti
C/5 *-»“ V5

s s f£

g

W5 U8 © 
tM «■S' ^ * © § js

»• 5
Its
s8.

i in
§i|ii-

c

s
o■s

■31 «g cP (AE 8 8 ^

•8J5
ll

2
& S

S o 8 >, u 2 g,iS » •“ » !=

$ §■a a
E «
COO L.

_o*&
E

xT 
«
C/5
0

1
*o

C/5 u M JS
|g §
^ Q. U

a^
CO60 O 

C JS
•= a

« o *2 
° 6 o g
11 i I
» .3 ■<- “^ §"g 

S-g-a
E § 3

Laboratory for Plasma Research 
University of Maryland 

College Park, MD 20742-3511

James A. Yorke

Institute for Physical Science and Technology 
University of Maryland 

College Park, MD 20742-2431

January 1990

Prepared for the U.S. Department of Energy 
Under Grant Number DE-FG05-87ER25036

v.

Cr

DISTRIBUTION OF THIS DOCUMEN



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



I. SUMMARY OF PAST PROGRESS

From April 1982 we have had DOE funding for work on chaos in nonlinear 

dissipative dynamical systems. The present proposal is essentially for a continuation 

of the previous line of work. Therefore, in this section we briefly review our past 

progress under the previous DOE funding.

A. Crises and Chaotic Transients

Crises - sudden macroscopic changes in chaotic attractors due to their collision 

with unstable orbits - and the associated chaotic transients have been extensively 

studied by us in a series of papers listed below.

1. “Chaotic Attractors in Crisis”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. 

Lett. 48, 1507 (1982).

2. “Crises, Sudden Changes in Chaotic Attractors, and Transient Chaos”, C. Gre­

bogi, E. Ott, and J. A. Yorke, Physica 7D, 181 (1983).

3. “Fractal Basins Boundaries, Long-Lived Chaotic Transients, and Unstable- 

Unstable Pair Bifurcation”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. 

Lett. 50, 935 (1983).

4. “Structure and Crises of Fractal Basin Boundaries”, S. W. McDonald, E. Ott, 

and J. A. Yorke, Phys. Lett. 107A, 51 (1985).

5. “Super Persistent Chaotic Transients”, C. Grebogi, E. Ott, and J. A. Yorke, 

Ergodic Theory and Dynamical Systems 5, 341 (1985).

6. “Critical Exponent of Chaotic Transients in Nonlinear Dynamical Systems”, 

Phys. Rev. Lett. 57, 1284 (1986).

7. “Critical Exponents for Crisis-Induced Intermittency”, C. Grebogi, E. Ott, 

F. Romeiras, and J. A. Yorke, Phys. Rev. A 36, 5365 (1987).
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B. The Dimension of Chaotic Attractors

In this area we have investigated the various definitions of attractor dimension, 

their possible relationship to Lyapunov numbers, their implications for the effect of 

noise on attractors, and numerical techniques for their calculation. Papers on this 

topic axe listed below.

8. “The Dimension of Chaotic Attractors”, J. D. Farmer, E. Ott, and J. A. Yorke, 

Physica 7D, 153 (1983).

9. “Is the Dimension of Chaotic Attractors Invariant Under Coordinate Changes?”, 

E. Ott, W. D. Withers, and J. A. Yorke, J. Stat. Phys. 36, 659 (1984).

10. “A Scaling Law: How an Attractor’s Volume Depends on Noise Level”, E. Ott, 

E. D. Yorke, and J. A. Yorke, Physica 16D, 62 (1985).

11. “Lorenz Cross-Sections and the Structure and Dimension of Higher Dimen­

sional Attractors”, E. Kostelich and J. A. Yorke, Physica 24D, 263 (1987).

12. “Unstable Periodic Orbits and the Dimension of Chaotic Attractors”, C. Gre­

bogi, E. Ott, and J. A. Yorke, Phys. Rev. A 36, 3522 (1987).

13. “Unstable Periodic Orbits and the Dimensions of Multifractal Chaotic Attrac­

tors”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 37, 1711 (1988).

14. “Strange Saddles and the Dimensions of Their Invariant Manifolds”, G. - 

H. Hsu, E. Ott, and C. Grebogi, Phys. Lett. 127A, 199 (1988).

15. “Dimensions of Strange Nonchaotic Attractors”, M. Ding, C. Grebogi, and 

E. Ott, Phys. Lett. 137A, 167 (1989).

16. “Pointwise Dimension and Unstable Periodic Orbits”, C. Grebogi, E. Ott, and 

J. A. Yorke, in Essays on Classical and Quantum Dynamics, Ed. H. Uberall 

(Gordon and Breach, 1989), 10 pages, in print.

17. “Lyapunov Partition Functions for the Dimensions of Chaotic Sets”, E. Ott, 

T. Sauer, and J. A. Yorke, Phys. Rev. A 39, 4212 (1989).
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C. Fractal Basin Boundaries

In this area we have been the first to quantitatively assess and study the ex­

tent to which the existence of fractal basin boundaries pose practical difficulties in 

predicting outcome from imperfect initial data.

18. “Final State Sensitivity: An Obstruction to Predictability”, C. Grebogi, S. W. 

McDonald, E. Ott, and J. A. Yorke, Phys. Lett. 99A, 415 (1983).

19. “Fractal Basin Boundaries in Nonlinear Dynamical Systems”, C. Grebogi, 

S. W. McDonald, E. Ott, and J. A. Yorke, in Statistical Physics and Chaos in 

Fusion Plasmas, Ed. C. W. Horton and L. E. Reichl (Wiley, New York, 1984).

20. “An Obstruction to Predictability”, S. W. McDonald, C. Grebogi, E. Ott, 

and J. A. Yorke, in Proc. XHIth Intn’l. Colloq. on Group Theor. Methods in 

Physics (World Scientific publishing Co., Singapore, 1984).

21. “Fractal Basin Boundaries”, S. W. McDonald, C. Grebogi, E. Ott, and J. A. 

Yorke, Physica 17D, 125 (1985).

22. “Metamorphoses of Basin Boundaries”, C. Grebogi, E. Ott, and J. A. Yorke, 

Phys. Rev. Lett. 56, 1011 (1986).

23. “Basin Boundary Metamorphoses: Changes in Accessible Boundary Orbits”, 

C. Grebogi, E. Ott, and J. A. Yorke, Physica 24D, 263 (1987).

24. “Multi-dimensional Intertwined Basin Boundaries and the Kicked Double Ro­

tor”, E. Kostelich, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Lett. 118A, 

448 (1986).

25. “Multi-dimensional Intertwined Basin Boundaries: Basin Structure of the 

Kicked Double Rotor”, E. Kostelich, C. Grebogi, E. Ott, and J. A. Yorke, 

Physica 25D, 347 (1987).

26. “Fractal Basin Boundaries with Unique Dimension,” C. Grebogi, E. Ott, 

J. A. Yorke, and H. E. Nusse, Ann. N.Y. Acad. Sci. 497, 117 (1987).
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27. “Basic Sets: Sets that Determine the Dimensions of Basin Boundaries”, C. Gre­

bogi, H. E. Nusse, E. Ott, and J. A. Yorke, Springer Lecture Notes in Math­

ematics, Vol. 1342 (Dynamical Systems)(Springer-Verlag, 1988), p. 220.

28. “Fractal Boundaries for Exit in Hamiltonian Dynamics”, S. Bleher, C. Gre­

bogi, E. Ott and R. Brown, Phys. Rev. A 38, 930 (1988).

29. “Scaling of Fractal Basins Boundaries Near Intermittency Transitions to Chaos”,

B. -S. Park, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 40, 1576 (1989).

D. Other Research

Other research papers not falling in the above three categories are the follow­

ing. These cover work in quasiperiodicity, Hamiltonian systems, windows and their 

scaling, fat fractals, shadowing, etc.

30. “Are Three-Frequency Quasiperiodic Orbits to Be Expected in Typical Non- 

Unear Dynamical Systems?”, C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. 

Lett. 51, 339 (1983).

31. “Correlations of Periodic Area-Preserving Maps”, J. D. Meiss, J. R. Cary,

C. Grebogi, J. D. Crawford, and H. D. I. Abarbanel, Physica 6D, 375 (1983).

32. “Relativistic Ponderomotive Hamiltonian”, C. Grebogi and R. G. Littlejohn, 

Phys. Fluids 27, 1996 (1984).

33. “Strange Attractors That Are Not Chaotic”, C. Grebogi, E. Ott, S. Pelikan, 

and J. A. Yorke, Physica 13D, 261 (1984).

34. “Quasiperiodicity and Chaos”, C. Grebogi, E. Ott, and J. A. Yorke, in Proc. 

XHIth Intn’l. Colloq. on Group Theor. Methods in Physics (World Scientific 

Publishing Co., Singapore, 1984).

35. “Attractors on an N-Torus: Quasiperiodicity Versus Chaos”, C. Grebogi, 

E. Ott, and J. A. Yorke, Physica 15D, 354 (1985).
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36. “Nonlinear Dynamics”, C. Grebogi, in The Role of Supercomputers in Energy 

Research Program, U.S. Department of Energy, Office of Scientific Computing 

(1984).

37. “The Exterior Dimension of Fat Fractals”, C. Grebogi, S. W. McDonald, 

E. Ott, and J. A. Yorke, Phys. Lett. 110A, 1 (1985).

38. “Scaling Behavior of Windows in Dissipative Dynamical Systems”, J. A. Yorke, 

C. Grebogi, E. Ott, and L. Tedeschini-Lalli, Phys. Rev. Lett. 54, 1095 (1985).

39. “Effect of Noise on Time-Dependent Quantum Chaos”, E. Ott, J. D. Hanson, 

and T. M. Antonsen, Phys. Rev. Lett. 53, 2187 (1984).

40. “Quasiperiodically Forced Damped Pendula and Schrodinger Equations with 

Quasiperiodic Potentials: Implications of Their Equivalence”, A. Bondeson, 

E. Ott, and T. M. Antonsen, Phys. Rev. Lett. 55, 2103 (1985).

41. “How Often Do Simple Dynamical Processes Have Infinitely Many Coexisting 

Sinks?”, L. Tedeschini-Lalli and J. A. Yorke, Comm. Math. Phys. 106, 635 

(1986).

42. “Markov Tree Model of Transport in Hamiltonian Systems”, J. D. Meiss and 

E. Ott, Phys. Rev. Lett. 55, 2741 (1985).

43. “Broadening of Spectral Peaks at the Merging of Chaotic Bands in Period- 

Doubling Systems”, R. Brown, C. Grebogi, and E. Ott, Phys. Rev. A 34, 2248 

(1986).

44. “Markov Tree Model of Transport in Area-Preserving Maps”, J. D. Meiss and 

E. Ott, Physics 20D, 387 (1986).

45. “Lorenz-like Chaos in a Partial Differential Equation for a Heated Fluid 

Loop”, J. A. Yorke, E. D. Yorke, and J. Mallet-Paret, Physica 24D, 279 

(1987).
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46. “Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dy­

namics”, C. Grebogi, E. Ott, and J. A. Yorke, Science 238, 632 (1987).

47. “Strange Nonchaotic Attractors of the Damped Pendulum with Quasiperiodic 

Forcing”, F. J. Romeiras and E. Ott, Phys. Rev. A 35, 4404 (1987).

48. “Quasiperiodically Forced Dynamical Systems with Strange Nonchaotic At­

tractors”, F. J. Romeiras, A. Bondeson, E. Ott, T. M. Antonsen, and C. Gre­

bogi, Physica 26D, 277 (1987).

49. “Chaotic Fluid Convection and the Fractal Nature of Passive Scalar Gradi­

ents”, E. Ott and T. M. Antonsen, Phys. Rev. Lett. 61, 2839 (1988).

50. “Critical Exponents for Power-Spectra Scaling at Mergings of Chaotic Bands”, 

F. Romeiras, C. Grebogi, and E. Ott, Phys. Rev. A 38, 463 (1988).

51. “Numerical Orbits of Chaotic Processes Represent True Orbits”, S. M. Ham- 

mel, J. A. Yorke, and C. Grebogi, Bull. Am. Math. Soc. 19, 465 (1988).

52. “Chaotic Flows and Magnetic Dynamos”, J. M. Finn and E. Ott, Phys. Rev. 

Lett. 60, 760 (1988).

53. “Chaotic Flows and Fast Magnetic Dynamos”, J. M. Finn and E. Ott, Phys. Flu­

ids 31, 2992 (1988).

54. “Evolution of Attractors in Quasiperiodically Forced Systems: From Quasiperi­

odic to Strange Nonchaotic to Chaotic”, M. Ding, C. Grebogi, and E. Ott, 

Phys. Rev. A 39, 2593 (1989).

55. “Spatio-temporal Dynamics in a Dispersively Coupled Chain of Nonlinear Os­

cillators”, D. K. Umberger, C. Grebogi, E. Ott, and B. Afeyan, Phys. Rev. A 

39, 4835 (1989).

56. “Theory of First Order Phase Transitions for Chaotic Attractors of Nonlinear 

Dynamical Systems”, E. Ott, C. Grebogi, and J. A. Yorke, Phys. Lett. 135A, 

343 (1989).
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57. “Routes to Chaotic Scattering”, S. Bleher, E. Ott, and C. Grebogi, Phys. Rev. 

Lett. 63, 919 (1989).

58. “Quasiperiodic Forcing and the Observability of Strange Nonchaotic Attrac­

tors”, F. J. Romeiras, A. Bondeson, E. Ott, T. M. Antonsen, and C. Grebogi, 

Physica Scripta 40, 442 (1989).

59. “Chaos, Strange Attractors, and Fractal Basin Boundaries”, C. Grebogi, Trans. 

Am. Nucl. Soc. 60, 346 (1989).

60. “Strange Saddles in Scattering Hamiltonian Systems”, G. H. Hsu, S. Ble­

her, C. Grebogi, and E. Ott, in Essays on Classical and Quantum Dynamics, 

Ed. H. Uberall (Gordon and Breach, 1989), 14 pages, in print.

61. “Fractal Structure in Physical Space in the Dispersal of Particles in Fluids”, 

L. Yu, C. Grebogi, and E. Ott, in Proc. Conf. on Nonlinear Structures in 

Physical Systems - Pattern Formation, Chaos, and Waves (Springer-Verlag, 

1990).

62. “A Procedure for Finding Numerical Trajectories on Chaotic Saddles”, H. E. 

Nusse and J. A. Yorke, Physica 36D, 137 (1989).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.
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II. CONTROL OF CHAOTIC PROCESSES

The following is a brief discussion of our recent progress on the problem of 

controlling chaotic processes using unstable periodic orbits (discussed in Sec. I.B.l).

To simplify the analysis we consider continuous time dynamical systems which 

are three dimensional and depend on one system parameter which we denote p. 

(For example, dx/dt = F(x,p), where x is three dimensional.) We assume that the 

parameter p is available for external adjustment, and we wish to temporally program 

our adjustments of p so as to achieve improved performance. We emphasize that 

our restriction to a three dimensional system is mainly for ease of presentation, 

and we believe that the case of higher dimensional (including infinite dimensional) 

systems can be treated by similar methods.

We imagine that the dynamical equations describing the system are not known, 

but that experimental time series of some scalar dependent variable z(t) can be 

measured. Using delay coordinates [PCFS,T] with delay T one can form a delay 

coordinate vector, X(f) = [^(t), z(t — T), z(t — 2T),..., z(t — MT)]. We are interested 

in periodic orbits and their stability properties, and we shall use X to obtain a 

surface of section for this purpose. In the surface of section, a continuous-time 

periodic orbit appears as a discrete time orbit cycling through a finite set of points. 

We require the dynamical behavior of the surface of section map in neighborhoods 

of these points in order to study the stability of the periodic orbits. To embed a 

small neighborhood of a point from x into X, we typically only require els many 

dimensions as there are coordinates of the point. Thus, for our purposes, M = D — \ 

is generally sufficient. (This is in contrast with M + 1 = 2D + 1, typically required 

for global embedding.) Hence, for the case considered (D = 3), our surface of 

section is two-dimensional.

We suppose that the parameter p can be varied in a small range about some 

nominal value po- Henceforth, without loss of generality, we set po = 0. Let the 

range in which we are allowed to vary p be p, > p > —p„.

Using an experimental surface of section for the embedding vector X, we imagine
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that we obtain many experimental points in the surface of section for p = 0. We 

denote these points ^ £3, ..£k, where denotes the coordinates in the

surface of section at the nth piercing of the surface of section by the orbit X(t). 

For example, a common choice of the surface of section would be z(t — MT) equals 

a constant, and £n = [z(tn),..., z(tn — (M — 1)T)], where t = tn denotes the 

time at the nth piercing. From such experimentally determined sequences it has 

been demonstrated that a large number of distinct unstable periodic orbits on a 

chaotic attractor can be determined [GLV,LK]. We then examine these unstable 

periodic orbits and select the one which gives the best performance. Again using 

an experimentally determined sequence, we obtain the stability properties of the 

chosen periodic orbit (cf. [GLV] and [LK] for discussion of how this can be done 

and for descriptions of its implementation in concrete experimental cases). For 

the purposes of simplicity, let us assume in what follows that this orbit is a fixed 

point of the surface of section map (i.e., period one; the case of higher period is a 

straightforward extension). Let As and Au be the experimentally determined stable 

and unstable eigenvalues of the surface of section map at the chosen fixed point of 

the map (|AU| > 1 > |A,|). Let e4 and eu be the experimentally determined unit 

vectors in the stable and unstable directions. Let £ = s 0 be the desired fixed 

point. We then change p slightly from p = 0 to some other value p = p- The fixed 

point coordinates in the experimental surface of section will shift from 0 to some 

nearby point €f(P) and we determine this new position. For small p we approximate 

g = d£p(p)/dp\p=o = P-1£f(p), which allows an experimental determination of the 

vector g.

Thus, in the surface of section, near £ = 0, we can use a linear approximation 

for the map, (£n+1 — ^p(p)) = M • (£n — £F(p)), where M is a 2 by 2 matrix. Using 

£p(p) = pg we have

£n+i = Png + [Aueufu + A,e,f,] • [£„ - p„g]. (1)

(In the linearization (1), we have considered pn to be small and of the same order 

as £„.) We emphasize that g, eu, es, Au and A3 are all experimentally accessible
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by the embedding technique just discussed. In (1) iu and f, are contravariant basis 

vectors defined by f, • e3 = fu • eu = 1, f, • eu = fu • es = 0. Note that we have written 

the location of the fixed point as p„g, because we imagine that we adjust p to a new 

value pn after each piercing of the surface of section. That is, we observe £n and 

then adjust p to the value pn. Thus pn depends on £n. Further, we only envision 

making this adjustment when the orbit falls near the desired fixed point for p = 0.

Assume that falls near the desired fixed point at £ = 0 so that (1) applies. 

We then attempt to pick pn so that £n+1 falls on the stable manifold of £ = 0. That 

is, we choose pn so that fu • £n+1 = 0. If £n+1 falls on the stable manifold of £ = 0, 

we can then set the parameter perturbations to zero, and the orbit for subsequent 

time will approach the fixed point at the geometrical rate A,. Thus for sufficiently 

small £n we can dot (1) with fu, to obtain

Pn = Au(Au-l)-1(^-fu)/(g-fu), (2)

which we use when the magnitude of the right-hand side of (2) is less than p„. 

When it is greater than p„, we set pn = 0. We assume in (2) that the generic 

condition g • fu ^ 0 is satisfied. Thus, the parameter perturbations are activated 

(i.e., pn 7^ 0) only if £n falls in a narrow strip |£“| < £., where £“ = fu • £n, and 

from (2) £, = p«|(l — A^jg • fu|. Thus, for small p„, a typical initial condition will 

execute a chaotic orbit, unchanged from the uncontrolled case, until £n falls in the 

strip. Even then, because of nonlinearity not included in (1), the control may not 

be able to bring the orbit to the fixed point. In this case the orbit will leave the strip 

and continue to wander chaotically as if there was no control. Since the orbit on 

the uncontrolled chaotic attractor is ergodic, at some time it will eventually satisfy 

|£“| < £. and also be sufficiently close to the desired fixed point that attraction to 

£ = 0 is achieved. (In rare cases applying Eq. (2) when the trajectory enters the 

strip, but is still far from 0, may result in stabilizing the wrong periodic orbit which 

visits the strip.)

Thus, we create a stable orbit, but, for a typical initial condition, it is preceded in 

time by a chaotic transient in which the orbit is similar to orbits on the uncontrolled
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chaotic attractor. The length r of such a chaotic transient depends sensitively on 

the initial condition, and, for randomly chosen initial conditions, has an exponential 

probability distribution [G0Y1, GORY] P(r) ~ exp—(r/ < r >) for large r. The 

average length of the chaotic transient < r > increases with decreasing p. and 

follows a power law relation [G0Y1, GORY] for small p„, < r >~ pj7.

We will now derive a formula for the exponent 7. Dotting the linearized map 

for £n+1, Eq. (1), with f„, we obtain £"+1 = 0. In obtaining this result from (1) we 

have substituted pn appropriate for |£“| < We note that the result £"+1 = 0 is a 

linearization, and typically has a lowest order nonlinear correction that is quadratic. 

In particular, £* = f, • £n is not restricted by |£“| < £», and thus may not be small 

when the condition |£“| < is satisfied. Hence the correction quadratic in £* is 

most significant. Including such a correction we have £“+1 = «(^„)2, where k is a 

constant. Thus, if |k|(^)2 > then |^+1| > £„, and attraction to ^ = 0 is not 

achieved, even though |£"| < £„. Attraction to $ = 0 is achieved when the orbit falls 

in the small parallelogram Pc given by |£“| < £„, |^*| < (^»/|«|)1'/,2■ For very small 

£,, an initial condition will bounce around on the set comprising the uncontrolled 

chaotic attractor for a long time before it falls in the parallelogram Pc. At any 

given iterate the probability of falling in Pc is p(Pc), the measure of the uncontrolled 

attractor contained in Pc. Thus, < r >-1= p(Pc)- The scaling of p(Pc) with 

is p(-Pc) ~ (£.)'iu[(£»/M)1/,2]<i, ~ ^»u+2<i*i where du and d3 are the partial pointwise 

dimensions for the uncontrolled chaotic attractor at £ = 0 in the unstable direction 

and the stable direction, respectively. Thus p(Pc) = £7, where j = du + (d,/2). 

Since we assume the attractor to be effectively smooth in the unstable direction, 

du = 1. The partial pointwise dimension in the stable direction is given in terms of 

the eigenvalues [GOY1, GORY] at £ = 0, d, = (£njA„|)/(^n|AJ|~1). Thus

7=l + i(£n|A,|)/(£n|A.|-1). (3)

To study the effect of noise we add a term e6n to the right-hand side of the 

linearized equations for £n+1, Eq. (1), where 6n is a random variable and e is a 

small parameter specifying the intensity of the noise. The quantities 6n are taken
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to have zero mean ( < 6n >= 0), be independent (< >= 0 for m ^ n),

and have a probability density independent of n. Dotting (1) with noise included 

with fu we obtain £“+1 = where (5“ = fu • 5n. Thus if the noise is bounded, 

|6“| < ^max, then the stability of ^ = 0 will not be affected by the noise if the bound 

is small enough, e<5max < £,. If this condition is not satisfied, then the noise can 

kick an orbit which is initially in the parallelogram Pc into the region outside Pc. 

We are particularly interested in the case where such kick-outs are caused by low 

probability tails on the probability density and are thus rare. (If they are frequent 

then our procedure is ineffective.) In such a case the average time to be kicked 

out < t' > will be long. Thus an orbit will typically alternate between epochs of 

chaotic motion of average duration < r > in which it is far from £ = 0, and epochs 

of average length < r' > in which the orbit lies in the parallelogram Pc. For small 

enough noise the orbit spends most of its time in Pc, < r' > < r >, and one

might then regard the procedure as being effective.

We now consider a specific numerical example. Our purpose is to illustrate and 

test our analyses of the average time to achieve control and the effect of noise. 

To do this we shall utilize the Henon map, rn+i = ^4 — + Pyn, yn+i = Xn,

where we take B = 0.3. We assume that the quantity A can be varied by a small 

amount about some value Aq. Accordingly we write A as A = Aq + p, where p 

is the control parameter. For the values of Aq which we investigate, the attractor 

for the map is chaotic and contains an unstable period one (fixed point) orbit. 

The coordinates (x/r, ijp) for the fixed point which is in the attractor along with the 

associated parameters and vectors appearing in Eq. (1) may be explicitly calculated. 

The quantity £„ appearing in (1) is £n = (xn - xf)x0 + (y„ - yF)yo- To test our 

prediction for the dependence of < r >, the average time to approach £ = 0, on 

the maximum allowed size of the parameter perturbation p., we proceed as follows. 

We iterate the map with p = 0 using a large number of randomly chosen initial 

conditions until all these initial conditions are distributed over the attractor (500 

iterates were typically used). We then turn on the parameter perturbations and 

determine for each orbit how many further iterates r axe necessary before the orbit
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falls within a circle of radius centered at the fixed point. We then calculate 

the average of these times. We do this for many different values of p, and plot the 

results as a function of pm. This is shown on the log-log plot in Fig. 1 along with 

the theoretical straight line of slope given by the exponent (3). We see that the 

agreement is good although there are significant variations about the general power 

law trend. These axe to be believed due to the fractal nature of the attractor and 

have also been seen in numerical calculations of the pointwise dimension for points 

on chaotic attractors (cf. [G0Y2] and [G0Y3]).

Next we must consider the issue of noise. We add terms eSxn and e8yn to the 

right-hand sides of the Henon map equations. The random quantities 8xn and 

8yn are independent of each other, have mean value zero, mean squared value one 

(< 8% >=< 8y >= 1), and have a gaussian probability density. Figure 2 shows orbit 

plots, xn versus n for 1500 iterates of the noisy map with parameter perturbations 

given by (2), for two different noise levels and p, held fixed at p, = 0.2. As predicted 

the orbit stays near the fixed point with occasional bursts into the region far from 

£ = 0, and these bursts are less frequent for smaller noise levels.

We propose extensions of this work in the following directions. We emphasize 

that our numerical experiments to date have only involved the Henon map. In 

practice, one can anticipate difficulties as experience is gained with more typical 

dynamical systems. In particular, what are the implications of imperfect identifica­

tion of the periodic orbit and its stability properties? What are the implications of 

different types of noise? Are there unforeseen problems in going to higher dimen­

sional and infinite dimensional dynamical systems? How can the transient times 

to achieve the desired periodic orbit be most effectively reduced by small controls? 

These and other problems will be studied, and we anticipate that this area will 

be a rich source of very interesting practical and theoretical research with major 

potential technological benefits for a broad range of applications.
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Fig. 1. < t > versus pm. Points were computed using 128 randomly se­

lected initial conditions. Aq = 1.4.
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Fig. 2. x„ versus n for two cases with the same realization of the random 

vector 6. p. — 0.2 and A0 = 1.29 for both cases, (a) e = 3.5 x 10-2; 

(b) e = 3.8 x lO"2.
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