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Neoclassical transport of energetic minority tail ions, which are gener­
ated by high powered electromagnetic waves of the Ion Cyclotron Range 
of Frequencies (ICRF) at the fundamental harmonic resonance, is studied 
analytically in tokamak geometry. The effect of Coulomb collisions on the 
tail ion transport is investigated in the present work. The total tail ion 
transport will be the sum of the present collision-driven transport and the 
wave-driven transport, which is due to the ICRF-wave scattering of the 
tail particles as reported in the literature. The transport coefficients have 
been calculated kinetically, and it is found that the large tail ion viscosity, 
driven by the localized ICRF-heating and Coulomb slowing-down collisions, 
induces purely convectjve particle transport of the tail species, while the 
energy transport is both convective and diffusive. The rate of radial par­
ticle transport is shown to be usually small, but the rate of radial energy 
transport is larger and may not be negligible compared to the Coulomb 
slowing-down rate. 
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I . In t roduct ion 

Auxiliary heating of tokamak plasmas by electromagnetic waves in the 

Ion Cyclotron Range of Frequencies (ICRF-waves) is becoming one of the 

promising schemes to heat the plasma to the temperature required for con­

trolled thermonuclear fusion reactions. Experiments in Princeton Large 

Torus (PLT), 1 Joint European Torus (JET), 2 and Toroidal Fusion Test 

Reactor (TFTR) 3 have demonstrated that ICRF heating at fundamental 

harmonic resonance can generate very energetic minority tail ions (with 

average energy ranging over 1 MeV in JET). Since the rate of energy trans­

fer from the energetic tail ions to the main plasmas is proportional to the 

energy content in the tail ions, it is important to understand the radial 

confinement property, and thus the radial profile of particle and energy 

density, of the tail ion species. 

Due to the spatially localized heating effect and highly non-Maxwellian 

nature of the tail distribution, the neoclassical equilibrium properties of the 

tail distribution are quite different from those of the background Maxwellian 

plasma and the resulting transport does not obey the usual neoclassical ba­

nana descriptions. Several'theoretical attempts have appeared in the litera­

ture, exploring the new features of ICRF-driven non-Maxwellian transport. 

Reference 4 has calculated the non-Maxwellian distribution function of tail 

ions in the strong heating limit, and obtained the neoclassical diffusion coef­

ficients driven by the Coulomb slowing-down collisions, predicting that the 

radial loss rate of the tail ions will be about one banana width in a slowing-
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down collision time. However, Ref. 4 used a bounce-averaged ICRF-heating 

operator at a place in the calculation where the local operator was needed. 

This made it neglect the unconventional and important effect of poloidally 

local heating by resonance with the ICRF waves. As will be shown in the 

present work, neglect of the poloidally local heating effect led Ref. 4 to 

describe incorrectly the basic particle transport mechanism as a diffusive 

process instead of a convective process. 

In this work, we concentrate on the collision-driven transport of the 

non-Maxwellian tail ions. We will assume k^ = 0 and, hence, ignore the 

ICRF-driven parallel friction and transport discussed in Ref. 5, which is 

due to toroidal momentum input from the wave. The total transport will 

be the sum of the ICRF-driven transport of Ref. 5 and the collision-driven 

transport of the present paper. The analytic estimates in Ref. 5 led to 

the conclusion that RF-driven transport is usually unimportant. However, 

the numerical calculations of Refs. 6 and 7 show that if the RF power 

profile is so narrow and the tail ions become so energetic that their banana 

widths become a significant fraction of the RF-power profile width, then 

RF-driven transport can play a significant role in the centra! power balance 

of the tail ions. These numerical calculations found that for some JET cases 

the RF-driven transport can lead to a significant hollowing of the minority 

density profile, broadening the effective heating profile by a factor of ~ 2, 

and reducing the central minority energy from ~ 1 MeV to ~ 100 keV. 

The RF power profile in JET is fairly narrow, with P{r) proportional to 

exp[—r2/(2d72)j and a ~ 15 cm. By comparison, the central banana width of 
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a hydrogen ion is ~ 37 cm at 1 MeV, and ~ 17 cm at 100 keV. The numerical 

calculation of Refs. 6 and 7 ignored the effects of neoclassical collision-driven 

transport discussed here, which may fill in the hollow minority profiles 

found in Refs. 6 and 7. 

We study the neoclassical transport of non-Maxwellian tail ions with a 

quasilinear ICRF operator and Coulomb scattering operator when the mi­

nority tail-ion species is in resonance with a ICRF wave at the fundamental 

harmonic. We use a rigorous ordering scheme which is consistent with the 

repetitive local heating and cooling of the trapped tail iors, whose energy is 

above the ion-electron critical slowing-down energy, as they execute banana 

motions. And we find that, even though the radial transport rate is roughly 

consistent with that given by Ref. 4, the transport mechanism is quite dif­

ferent: The large parallel viscosity created by the local ICRF-heating and 

Coulomb cooling of the tail ions induces convective radial transport for the 

particles, and convective and diffusive radial transport for the energy. It 

can be concluded from the present work that the neoclassical particle loss 

rate of the tail ions is usually not seriously large, of order a banana width 

in a slowing-down time. However, the energy transport rate can be con­

siderably larger due to the large numerical coefficients resulting from the 

non-Maxwellian velocity moment of the tail distribution function. And the 

energetic tails can lose their kinetic energy by radial neoclassical transport 

mechanisms on a time scale comparable to the slowing-down time. 

In Section II, a heuristic description of the basic physical mechanisms, 

which lead to the radial convective transport of tail ions from the single 
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particle and fluid point of view, is discussed. A full kinetic calculation 

of both particle and energy transport is given in Section III, and some 

discussions are presented in Section IV. 
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II. Heuristic Description of Tail-Ion Transpor t Under St rong 

ICRF Heating 

In this section we will illustrate the basic physical mechanisms which 

govern the radial motion of the high energy minority ions generated by 

strong ICRF heating. The earlier part of the descriptions given here is not 

new and is presented here for heuristic purposes to make clearer presenta­

tion of the tail-inn transport physics. During the guiding-center motion of 

the resonant ions, two different scattering processes compete against each 

other and determine the steady-state motion of the guiding center. One 

is the usual Coulomb scattering process relaxing the particle distribution 

function toward a thermal equilibrium state, and the other is the ICRF-

heating process8 increasing the perpendicular (to magnetic field vector B) 

energy of the resonant particles as they pass through the resonance layer 

denned by, at the fundamental harmonic resonance 

w = 9.R + V||, (1) 

where u> is the angular frequency and k\\ is the parallel {to B) wave number 

of a given ICRF wave, and SIR = CBR/M,C is the gyrofrequency of tail ions, 

whose mass is Mt and charge is e, at the resonance location B = BR. We 

will assume that the Doppler broadening of the resonance layer due to k\\ 

is small, and thus will set k\\ = 0 for the rest of the present work. For the 

effect of &|| j£ 0. we refer to Ref. 5. 

Since ICRF heating increases the perpendicular energy of the resonant 

ions preferentially, the well-heated ions will execute banana orbits. It is easy 
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to see that as the perpendicular heating at the resonance location proceeds 

further, the turning points of the resonance particles will asymptotically 

approach the resonance location where B = BR, as was first observed ex­

perimentally.9 We can use the following simple argument to understand 

this phenomenon: At the resonance location, the kinetic energy of a reso­

nant particle can be written as e = Afft>jj + / I B / J , where p = Mtv\f2B is the 

magnetic moment. Thus the increase in the particle kinetic energy Ae due 

to the perpendicular heating of the amount Apt at the resonance location 

is given by 

Ae = BR&n. (2) 

The turning point given by Bt = e/fi is redefined after the heating processes 

at the resonance location 

Bt = (e + BR&ii)((n + An), 

where Eq. (2) has been used for Ae. In the strong heating limit, we then 

have 

Bt -> BR, for A/t/e » 1. 

Therefore, the high energy tail ions generated by high power ICRF heat­

ing execute banana orbital motions with turning points near the resonnnce 

layers. They get heated when they reach the tips of the banana orbits. 

but cooled during the rest of the orbital motions by Coulomb collisions 

(see Fig. 1). For the tail ions considered here, whose kinetic energy is 

much higher than the critical ion-electron slowing-down energy, the main 

Coulomb collision;*] effect is from slowing-down by background electrons. 

7 



And the steady-state particle motion is achieved when the energy gain by 

ICRF heating at the turning points balances the energy loss by the slowing-

down collisions. 

The radial motion of our tail ions can be understood by considering the 

conservation of canonical angular momentum. 1 0 The collisjonless orbits are 

confined to surfaces of constant canonical angular momentum: 

R2V; • (Mv + eA/c) = constant, (3) 

where R is the major radius, £ is toroidal angle, A is the vector poten­

tial. The relation between the vector potential A and a radial coordinate 

4>( poloidal flux) can be identified from Faraday's law 

where E is the electric field vector. 

By multiplying Vip on both sides of Eq. (4) and using the following 

relations 

Vij> = RBpij>, (5) 

<A • V x E = i - V(RET), 

!v.(*B)-JLjJ.V* = 0, 
where Bp(Br) is the poloidal(toroidal) component of B and ^ = Vi/>/|Vi/'|. 

we can easily change Eq. (4) into B • V(CRET — dipfdt) = 0, or 

— =cR£r. (6) 



From Eq. (4) and the relation B = V x A, we also have cEj = -dAT/dt, 

and thus Eq, (6) becomes 

«/> = ~RAT. (7) 

Using this expression for the vector potential, the conservation of canonical 

angular momentum is expressed as 

ij> — cMvrR/e = constant, 

where vr is the toroidal component of the particle velocity. 

Information on the net radial motion of the trapped particles can be 

obtained by taking a time derivative along the particle trajectory: 

dii dib cM d _ 

i = •£ + *•** = —*<**>• < 8 > 
Integrating the above equation between two successive times tt and t2, at 

which moments VT vanishes {turning points), we obtain 

where {- • -} denotes an orbital average. Since dfyjdt is related to the radial 

flux surface velocity u, through the relation 

drb 

Eq. (9) yields an interesting result 

{u-W.-} = {trs-Vtf.}, 
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i.e., the average radial motion of the trapped particles is equal to the radial 

motion of the poloidal flux surface. According to Eq. (6), the average radial 

velocity can be expressed in terms of the toroidal electric field as 

{v- W} = -{cREj}, (10) 

which describes the inward pinch effect of banana particles first described 

by Ware 1 1 and Galeev.1 2 

As the banana particles suffer from Coulomb and RF scatterings, the 

radial pinch effect described above will be modified. If the Coulomb col­

lisions are too frequent, banana orbits will not be allowed at all and the 

pinch effect will be absent. In the weakly collisional case, when the banana 

motions are well defined, the scattering effect can make the n^t radial mo­

tion deviate from Eqs. (9) and (10) by disturbing VT and adding a friction 

FT in Eq. (8) as follows: 

cM d(Rvr) 
e dt 

cRFT 

collision* 

If there is a net toroidal torque {RFT} during a complete banana motion, 

we will have additional radial motions which will make the radial particle 

motion not to coincide with the radial flux surface motion. 

The RF scattering at the resonance location, with i-|| = 0, does not 

change toroidal momentum and thus does not contribute to the net toroidal 

torque. The toroidal torque from Coulomb slowing-down collisions changes 

signs as particle's v\\ changes sign, and thus the net torque {RFT} will not 

be zero if there is some asymmetry in the scattering between the positive 
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and negative vy motions (see Fig. 2). The qualitative features of this 

transport mechanism were first pointed out by Ref. 14. There can be two 

different physical mechanisms to give rise to such asymmetry in Fr during 

a banana motion: One is the difference in the path length of the particle 

guiding center due to the magnetic shear, and the other is the difference 

in the slowing-down rate l/r, due to the radial gradient in the background 

electron density and temperature. 

Radial flow due to the magnetic shear can be estimated as follows. The 

connection length qR generally increases as the minor radius increases. 

Thus the path length is greater during the outer half of the banana motion 

than the inner half by the approximate amount, A(,3(gil)/dr, where At is 

the radial banana width. Hence, the net toroidal friction integrated along 

a complete banana orbit takes the value 

l r T ' _ TV qR dr ' 

where T, is the ion-electron slowing-down colb'sion time. As a result, the 

banana tips will drift radially outward at the rate given by 

e er, qR Or 

Radial flow of the RF-generated tail ions driven by the radial gradient 

in r, is estimated as follows: The net toroidal friction due to the difference 

in the slowing-down rate is 

1 T ] ~ r, V dr 2TC Or h 
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and the corresponding radial drift speed is then given by 

Summing up Eqs. (11) and (12), we obtain 

{ „ - . w ) a ^ l ( ^ + l ^ . ^ , ( U ) 

Equation (13) represents the radial flow of ICRF-generated tail ions due 

to the collisional dissipation, in addition to the collisionless pinch effect. 

Notice here that the flow of particles given by Eq. (13) is all convective. 

This is due to the lack of randomness in the slowing-down process of the tail 

ions at well above the critical slpwing-down energy. We note here that the 

same conclusion may not apply to radial heat flow, since the momentum 

conservation law we used here does not apply to the heat flow. This point 

will be addressed in detail in the next section where a full kinetic calculation 

is presented. 

The convective transport process of tail ions described above is absent 

in the usual neoclassical theories. Since the usual neoclassical transport 

is often more easily understood with fluid equations, identification of the 

above simple transport mechanisms with fluid friction and viscosity may 

help clarify the difTereice in the transport processes between the usual neo­

classical and present processes. This identification can also help understand 

each terms in the kinetic description presented in the next section in terms 

of fluid quantities. 
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As a function of fluid quantities, the radial particle flux T can be ex­

pressed as follows10: 

r = < n u - V ^ > = - - < i J 2 V C - ( F - V - P + en£) > +0 (p 3 ) , (14) 
e 

where < • • • > represents the flux-surface average, uis the fluid flow velocity, 

and F is the frictional force; and the quantity c/e has been treated as first 

order in gyroradius p in consideration of the Vip multiplied to left-hand 

side. 

The first term in the right-hand side of Eq. (14) is the toroidal fric­

tional force due to the difference in the toroidal flow speed between different 

plasma species, and is first order in gyroradius. This term alone will yield 

diffusive transport driven by the gradients in density and pressure of the 

tail species. The second term can be shown to correspond to an off-diagonal 

stress tensor term as follows: 

< £ 2 V £ V P > = < V • (iZ2VC • P ) > = 4? < R2V<; • P - V^ > . 
dip 

And the third term represents the toroidal electric field, which gives rise 

to the Ware pinch effect. For simplicity, we disregard this third term from 

our discussion. 

For a plasma usually described in the literature, the lowest order dis­

tribution function is a Maxwellian. For such a more familiar plasma, the 

off-diagonal stress tensor term is of second order in gyroradiu^ (this point 

will be made clearer in the next section). Hence, the second term is small 

compared to the first term, and thus the neoclassical radial transport arises 

solely from the toroidal frictional force in the Maxwellian plasma case. 
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The present problem of high energy tail transport is different from the 

usual one in that the lowest order distribution function is not an isotropic 

Maxwellian and, more importantly, in that a true local steady state is 

not established. Instead, the anisotropic tail distribution reaches a global, 

and time-averaged steady state over the bounce motions of the banana 

motions only. At the banana tips the particles are heated by ICRF heating, 

and at all other locations during their banana motions they are cooled by 

Coulomb slowing-down collisions. The steady condition dffdt = 0 is not 

satisfied locally, but is satisfied only over the bounce average operation, 

{df/dt}f, = 0. As a consequence, even the zeroth order (in gyroradius) 

distribution function gets distorted by the locally nonvanishing scattering 

process. Unlike the usual Maxwellian plasma, such tail plasmas generate 

large off-diagonal stress tensor elements which is first order in gyroradius, 

as will become more explicit in the next section. The off-diagonal stress 

tensor term, second term, in Eq. (14) is then of the same order as the 

first term for our tail particles and yields the convective transport terms as 

well as diffusive terms. Our kinetic analysis shows that the diffusive terms 

from the off-diagonal stress tensor exactly cancel the diffusive contribution 

from the friction term (first term) in Eq. (14), leaving only the convective 

transport from the off-diagonal stress tensor for the particle flux across the 

flux surfaces. 
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III. Kinetic Calculation 

We will use a well-known fiux coordinate system (ip,6, Q, where ij) is 

the enclosed poloidal flux surface and serves as a radial coordinate, 6 is 

the poloidal angle, and £ is the toroidal angle. The magnetic field can be 

expressed as 

B = /(^)VC + VC x W • 

Parallel derivatives can be expressed as 

- 1 d 
U JBd9' 

where axisymmetry is assumed so that d/d( = 0, and J = [V^ x V0- VC] - 1 

is the Jacobian. The flux surface average of a quantity g is then written as 

w fdej' 

and the bounce average is defined as 

JBdO i rJB /-, 
hi ' J H\ 

where the bounce integral is taken between 6 = —it and z for the passing 

particles and between — St to 6t for the trapped particles, where ±9, are the 

poloidal angles at the turning points where v\\ -* 0. The flux surface average 

of a velocity integral can be expressed in terms of the bounce average as 

follows: 
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where E is the kinetic energy, fi is the magnetic moment per unit mass, 

and c — Signfuj]). 

We introduce a useful identity for the Alfven approximation of the drift 

velocity v^ = — v^fi X V(w[j/Q), which is repeatedly used in our calculation: 

* J jB[d8\nJdii> dtpKsiJ d$\ ( ' 
The particular usefulness of the above relation is realized when we take the 

bounce average of Vd • V / over a banana motion. Making use of integration-

by-parts and the condition V|| = 0 at the turning points, we can easily show 

A quasilinear form 1 3 of the drift-kinetic equation can be written in the 

form 

^ + ( « | | A + ft)-V/-^|^- = C ( / ) + Q( / ) = C - ( / ) , (IS) 

where / = f(E,n,a,il>,9j) is the gyrophase-averaged value of the qua-

sistatic part of particle distribution function, n = B/B is the unit vector 

in the direction of local B, C(f) is the usual Coulomb scattering operator, 

and 

Q(/) = _v„-r J I 

represents the quasilinear scattering by RF waves with r„ defined to be the 

RF'driven quasilinear particle flux in velocity space. Detailed justification 

of Eq. (18) can be found in Ref. 4. 
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In order to obtain a formal solution to Eq. (IS), we use the usual small 

banana width ordering 6 = A(,/<z «C 1, where A4 is the banana width and 

a is the plasma radius. This ordering may restrict the validity of present 

analyses to plasmas with larger minor radius or stronger magnetic field, 

since the radial excursion of the rf-produced high-energy tail ions tends to 

be large. For equilibrium distribution of the high energy tail ions, where 

the heating by RF waves is balanced by the collistonal cooling, we adopt 

the usual transport ordering and take dfdt to be of second order in S. The 

parallel electric field term in Eq. (18) has to be small for equilibrium in 

order to avoid massive electron runaway, and for ion species it is usually 

treated 1 0 as second order in S. We expand / in 8, 

and obtain the first two lowest order equations as follows: 

«1|n-V/o = C( / 0 ) + Q(/o} = C-</ 0) (10) 

^ n - V / j - < ? • ( / , ) = - £ - V / 0 . (20) 

For the high energy tail ions the collision frequencies are uiucii smaller 

than the parallel transit frequency v = (vc + v^Ljv^ <C 1, where ve is 

the 90°-Coulomb collision rate, v^ represents the quasilinear scattering rate 

by RF waves, and L is the scale length in the direction parallel to the 

magnetic field lines. To incorporate this additional smallness parameter 

into our analyses, we use a double ordering scheme and write / as 
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/^/r+zi"*/^*.-, 

where the superscripts represent expansion in v. The zeroth order equation 

in 6, Eq. (19), can then be further divided into 

o | | f t -V/^ = 0, (21) 

«l|ft-V^> = C- f /T) , (22) 

and the first order equation in 5, Eq. (20), becomes 

fll"-V/f 0 ) = -va-VtfK (23) 

^ • V / ^ - C V f 0 ' ) = - tv -V/ ,5 1 ' , (24) 

where the next order equations in v are omitted for simplicity. 

Equation (21) is a mathematical statement of the physical fact that the 

dissipationless lowest order distribution function is constant along magnetic 

field lines. A solution for /} can be obtained by averaging Eq. (22) over 

the bounce motion of the trapped tail ions: 

{v\\hV4% = {C-(C)}b. (25) 

The left-hand side of Eq. (25) is identically zero because of the relation 

h - V = (JB)~x(dld6). The function fa can be taken out of the bounce 
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average operator by using Eq. (21), and thus leading to 

{C'($% = { C M / f ) + { Q M j f ) = 0. (26) 

Detailed study of this equation and the solution for / J 0 ' are discussed else­

where. 4 , 1 6" 1 8 In the present work, we will consider that To is given in 

obtaining the formal description of the transport coefficients. Our final 

transport coefficients are not sensitive to the details of the shape of /<$ but 

depends only on the moments of f$ ' . The next order solutions /o ,/{ , 

and / , ( 1 ) can be expressed in terms of / J 0 ) using Eqs. (22), (23), and (24). 

The quasilinear RF-scattering operator Q can be written as 

where D± is the quasilinear velocity-space particle diffusion coefficient15 

driven by ICRF waves at the resonance location, w is the ICRF wave fre­

quency, il is the gyrofrequency of the tail ions(fi oc 1/major radius), and 

the 6-function ensures Q = 0 everywhere except at a resonance point given 

by SI = u. This form of Q corresponds to the fy = 0 limit. Additional 

transport effects caused by fc|| ^ 0 have been discussed in Ref. 5. Notice 

here that the combined scattering operator C*, with full Coulomb operator 

and Eq. (27), is parity conserving in ti||. 

For the combined scattering operator C", two conservation laws are 

required for a steady state. The first is the particle conservation law: 

JdivC-(f) = Q, (2S) 
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and the second is the flux-surface-averaged energy conservation law: 

^J^v(mv2/2)C'(^0)))=0. {29) 

We can easily see that Eq. (29) follows froni Eqs. (15) and (26). The particle 

conservation law is stronger since it requires the equation to be true at 

every point in real space. Notice here that the flux-surface-averaged energy 

conservation law is required to the lowest order in /$ only. It is interesting 

to find that Eq. (2S) yields many more general conservation equations. For 

any constant of motion (, we have 

(^J<fv(;C-(fi0)))=Q. (30) 

When the tail ions are above the critical r?lowing-down energy, and thus 

the pitch angle scattering is weak, most of the tail ions are trapped with 

their banana tips near the resonance layer, as discussed earlier. We will 

make use of this fact and ignore the small passing component of /<) . This 

makes the transport calculation somewhat simpler, allowing us to ignore 

the trapped-passing boundary. We also make use of the fact that /<j is 

symmetric in v\\ in the trapped particle regime. 

A. Radial Particle Flux of Tail Ions 

The radial particle flux of the minority tail ions can be calculated from 

T = {Jd3v(vd-V*)f) = {j<PvIv{rV(^)f} 
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where the flux surface average operation is represented by < - - - > , V = 

dV/dip = 2ir f ddj is the derivative of the enclosed volume, Alfven's ex­

pression for the vertical drift is used, and the last equality is obtained by 

integration-by-parts along the magnetic field lines, using the velocity inte­

gration expressed in terms of the velocity coordinate (E,fi,a): 

Double expansion of / then yields 

r = - < / < ^ i , • v( /r + /<" + fl0) + fil) + • • •) >• 

The first term is zero because of Eq. (21). Notice here that fl is even in v\\ 

and, therefore, /Q and f\ are odd in t>||, as can be seen from Eqs. (22) and 

(23). We can then easily see that the integral of the second and third terms 

in the parentheses vanish, since the integrands are odd in v^. Hence, the 

only contribution to particle flux is from / , , which can be explained from 

the fact that the neoclassical radial transport is a consequence of collisional 

dissipation on the radial drift motions. Using Eq. (24) for f\ , we obtain 

r = TJ + TJ, (31) 

F l = -{J^C'V^)), (32) 

T 2 = ( / ^ ^ - V / D - (33) 

Determining / , and /Q in terms of fg and performing the velocity-space 

integral and flux-surface average ivill give us the neoclassical radial particle 

flux of the high energy tail ions. 
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We note here that the Fi term in Eq. (31) represents the usual contri­

bution to the neoclassical radial particle diffusion from the parallel friction 

force [see Eq. (14)]. We will show that this diffusive term cancels out with 

the diffusive part of T2 and thus the usual banana diffusion process is absent 

here. The Tj term, however, represents an unusual feature of the present 

problem. This term represents the off-diagonal stress tensor contribution 

to the neoclassical radial particle flux coming from the nonvanishing /o , 

which does not exist to this order in the usual thermal equilibrium problem 

where the lowest order distribution function is a Maxwellian [see Eq. (14)]. 

This can be easily understood from Eq. (22), by noticing that C(/o ) van­

ishes for a Maxwellian /Q '. The existence of nonvanishing /Q ' is due to the 

localized heating operator Q. As discussed in the previous section, a true 

equilibrium distribution function satisfying C*(/ 0 ) = 0 does not exist for 

our high energy tail ions, even to the lowest order in gyroradius. And the 

collisional steady state exists only over the bounce average orbits through 

Eq. (26). A high energy tail ion in resonance with RF waves is heated near 

the turning points of the banana orbits, and loses energy during the rest of 

the banana motions through Coulomb collisions with the cold background 

particles (see Fig. 1): 

/ <PvEC*(fQ ) > 0 at resonance surfaces, 

fd3vEC"(fk0)) < 0 otherwise. 

The first term in the expression for the radial particle flux can readily be 

evaluated by solving for /j from Eq. (23), as in the usual banana transport 
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theories. 1 0 Using the relation 

we can easily find 

Here G is a function constant along B, and can be determined from the 

• bounce average of the next order equation, Eq. (24). The bounce average 

of the first term in Eq. (24) is trivially zero. The right-hand side of Eq. (24) 

is odd in v^ since /<j ' is an odd function of V||, and thus it vanishes when 

bounce averaged. The solubility condition for Eq. (24) then simply becomes 

{C'{fi°% = 0, (35) 

which is identical to the solubility condition for the usual neoclassical ba­

nana transport for thermal particles. The combined collision operator C" 

conserves parity in a = uj|/[v|||, as discussed after Eq. (27). The first term 

in Eq. (34) is odd in v\\ and it vanishes in the bounce-average integral of 

Eq. (35). G is independent of 8 and thus it can be taken outside of the 

bounce integral, and Eq. (35) becomes 

{C-}tG = 0, 

i.e., G and / 0 are solutions of the same equation[ see Eq. (26)]. Without 

loss of generality, we can absorb G into f0 . In any case, G is even in v\\ 

and thus gives no contribution to the radial fluxes. Therefore, our solution 

for / , ' simply becomes 

fi - - 7 T T - ^ T - ( 3 C ) 
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In order to be able to actually evaluate the phase-space integral to ob­

tain the final expression for the diffusion coefficients, a simplified Coulomb 

collision operator is used. We assume that most of the minority tail ions 

have energies higher than the critical slowing-down energy above which the 

tail ion-electron energy transfer rate is greater than the tail ion-ion energy 

transfer rate. This assumption will set a lower bound to the RF-power 

level to ensure the validity of our analysis as discussed in Ref. 4. Then the 

Coulomb scattering operator for the tail ions can be written as the combi­

nation of the tail ion-electron slowing-tiown part C'e and the tail ion-main 

ion pitch angle scattering part Cfj, where £ is cosine of the pitch angle 

£ = rii/u, and the subscripts t, i, and e denote tail ion, main ion, and 

electron species, respectively; 

C(f) = C;t + C?h (37) 

cuu) = ^ - " / " (3 S) 

1 Mene 

(39) 

T, MtTltTct' 

* = r^)3i, 
3 ^ y/M~cT?2 

T„, = 

Tti -

S v ^ Z f C n t l n A ' 
1 M}vlSJ 

4nZ?Z?e*n> In A' 

where nt is the flux-surface-averaged tail-ion density, and vejj is a typicnl 

tail-ion velocity (we define vejj so that (3/2)n ( M|i»^ is thu flux-surface-
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averaged tfdl-ion energy density). The weak pitch angle scattering is re­

tained here because the d/d(, may be large due to the localization near the 

resonance pitch angle. This localization width of /<, in pitch angle itself 

is determined from pitch angle scattering. 4 ' 1 6 , 1 8 But it turns out that the 

pitch angle scatterings make little contribution to our final evaluation of 

the transport coefficients, due to the fact that v ( 1 -C f,. 

The first part in the particle flux, T\, can LOW be easily evaluated to he 

r, = -( /A/2( C + Q)(/j 0 1 )) 

where the contribution from the RF heating operator, Q, has been dropped 

because Q commutes with VJ| and Q conserves particle number [/ <PvQ{f) = 

0 for any / ]. 

The second part in the particle flux, T2, is easily calculated by using 

Eq (16) for the vertical drift: 

r2 = ( / a -3^ .v /r ) 

- fdej JdVJJ dEd(ijQ [d$ \n) ^ r w \n) ^F 
Integrating by parts and collecting term, it is straightforward to obtain 

fd) a ,,...v flfO 

r> = -Her Jd^ fmJ deiww 
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We use Eq. (22) to express / J 1 ' in terms of /<j°\ 

and substitute it into the above expression for T 2 to obtain 

r. = -7£n&[/*r/A$c-(tf> 
p « r / „ / . H c o f ) 

fdejty 
i> a \j*jj*.ffifa-££i») (41) 

fdQJdip 

Here in the second equality, as in the case of I \ , the contribution from Q 

vanishes because v\\ commutes with the heating operator Q and Q consen'es 

particles. 

We explicitly evaluate the t/> derivative, using J = qR2/I, and assuming 

J = RBT — constant. Considering the ^ dependence of J', vs, qR2. and 

1/ft2, the term proportional to vs in Eq. (41) is changed into 

The first term in T^, Eq. (42), has the form of diffusion, but it is exactly 

equal and opposite to the component of Ti proportional to vs. Thus there 

is no diffusive terra in T proportional to v,. The only diffusion is clue 

to pitch angle scattering terms which are proportional to i>tI. The other 

terms in Eq. (42) represent convective transport due to the asymmetric 
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banana-orbital effects between the radially inside and outside half of the 

banana motions, as discussed in Sec. II. For example, the second term 

in Eq. (42) is driven by the asymmetry due to the radial gradient in the 

slowing-down collision frequency; the third term is driven by the magnetic 

shear, or equivalently by the asymmetry in the orbital path lengths between 

the inside and outside banana orbits; and the fourth and fifth terms are 

driven by the asymmetry in the parallel particle velocity and magnetic 

field strength, respectively. Actually, the fourth and fifth terms are from 

the same physical origin {OB/dtp), but the fifth term is of one order higher 

in inverse-aspect-ratio than the rest and can be neglected. Making the 

large-aspect-ratio approximation, using the relation 

1 dv, __ J^dr^ _ 3 dTc 

ua dtp ~ nt dtp 2Te dtp' 

and summing Ti and r 2together, we find that the component F, of particle 

flux r proportional to the slowing-down rate is given by 

'• " £(/*& ( 0 ) 1 dnc 3 dTe t I dqR 
+ • nc dtp 2Te dip qR dip 

_ JLIf^lmLMX ( 4 3 ) 
Here in the last term, which is from (tyj/cty-term, the driving term dB/dtp 

is smaller than the other driving terms by one order in inverse aspect ratio, 

but it is multiplied by v\ which is larger than vh by one order in inverse 

aspect ratio. 

r ( ; , the part of V proportional to l/re i-, is calculated in the same way as 

for Ts. Making the large aspect ratio approximation and thus neglecting ivj 



compared to v2, we obtain 

(44) 

We note here that if one desires to be more accurate and keep v?, (compared 

to v2) in the pitch angle scattering term, one should also keep the ion-ion 

energy scattering effect in the Coulomb collision operator. The total flux 

is then given by the sum of the slowing-down contribution, Eq. (43), and 

the pitch angle contribution, Eq. (44): T = Tt +1\,. 

In order to make further progress, we need to evaluate explicitly the 

fiux-surface-averaged velocity space moments which appear in Eqs. (43) 

and (44). We will evaluate these moments using a model solution for Jo , 

which is approximately valid in the high energy limit, where the minority 

ions collide primarily with electrons instead of the thermal ions, and the 

RF-driven velocity diffusion is balanced by drag on the electrons: 

/r = / m ( £ w § - ^ ) , (45) 
3/2 

A = 

3nt 

where BR is the magnetic field at resonance, satisfying LJ = QR = ZteBii/Mtc. 

A is a coefficient necessary to make n, the flux-surface-averaged minority 

tail density 
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= 4\/2ir r dEVEf(E) Jo 
= rit, 

and ±9R are defined as the poloidal angles of the turning points which are 

identical to the poloidal angles of the ICRF-resonance points in the present 

^-function approximation of the pitch angle spread. Notice here that fm 

is the flux-surface- and pitch-angle-averaged particle distribution function, 

and is the same as the isotropic solution of Ref. 8 in the high energy limit 

where RF heating is balanced by drag due to collisions with electrons. The 

Sux-surface-averaged energy density for our model solution is just 

The normalization coefficient A can be expressed in terms of geometric 

constants. Using J = qR2/I, A can be written as 

f%deR*B(l-B/BR)-W ' 

Working to lowest order in inverse-aspect ratio with circular flux surfaces 

R = RQ + rcos9 and B = BaRo/R, this can be written in terms of the 

complete elliptic integral K(m): 

B0K(sm2(0R/2)) " 

If the resonance layer is near the low field side of the flux surface so that 

0R < 1, then A" as ir/2. 
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The ^-function fi dependence means that all of the minority tail ions 

have their banana tips exactly in the resonance layer. In reality, / j 0 ) will 

have a finite width in fi rather than this ^-function dependence. But since 

we only need a few velocity-space moments of /Q , it is not necessary to 

be highly accurate in the specification of /Q '. The peaking of fl around 

fi/E = 1/BR can be seen from the numerical solution of Eq. (26) in Refs. 16 

and 17, and from the experimental observations of Ref. 9. An analytic 

solution for /Q , which includes the finite width in fi rather than a 6-

function, has been derived in Ref. 18. 

In Eq. (44), we need to evaluate the moment 

VT " / o ^ 2 / - V ^ f r ( 1 fig ' 
where vefj = •JTeff/Mt , and we have ignored the variation of fl with 

poloidal angle to be consistent with the large-aspect-ratio approximations 

we used to derive Eqs. (43) and (44). We make the same approximations 

to evaluate the moments needed for Eq. (43): 

where {--Ji is now the bounce-averaging operator for orbits with their 

banana tips in the resonance layer: 

[ B R - B ] iXJB^ff)"2 

I BR ib ^JB(B^)-in' 
The other moment needed for Eq. (43) is 

2 V d W s k W d,p / - 2rs \J d Vfo V ^r) fig 
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3 (Ive/f\2(dlnB\ 

Using the above expressions for the velocity space moments, we can 

write the total particle flux, which is the sum of Eqs. (43) and (44), as 

r = r. + r M l 

3n, 
r. = 

)nt (Ivejf\2 (BR-B\ (3dlnTe dlnne g l n g \ 
r, \ fin ) \ BR } b \2 dij> dip dj> ) 

3nt fIveJ1\2(d}nB\ .... 

v'dty \2*rti ^ j • 
Continuing to work to the lowest order in inverse-aspect ratio, we approx­

imate 

±±V.±±2*[S2£*±%-. 
V'dip V'dip J I qdik 

Explicitly carrying out the ^-derivative in I\i, with the help of the above 

approximation, we get 

r 1 nt (Ivejj\2 fdlnnt ldlnTef/ d lnn, dlng\ 
' V ^ F T J , A fio ) \ di!> 2 Oil> dtp dip ) ' ( ' 

T 3, the component of T which is proportional to l / r 4 ( has a similar magni­

tude as the particle flux found in Ref. 4, but has a quite different physical 

meaning since Ref. 4 had a purely diffusive particle flux while the present 

T, is purely convective. This difference is due to the use of an overly sim­

plified RF heating operator in Ref. 4. In the slowing-down contribution 

T,, the electron-density-gradient-driven term is radially inward, while the 
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other terms drive particles radially outward. In the pitch angle contribu­

tion Tt(, the convective terms are small compared to T3 and are neglected 

to be consistent with the present approximation. And thus Tti is diffusive 

to the lowest order and may have some, if any, significance. In the usual 

case where dnt/dip < 0 and dTefj/dif> < 0, the tail density gradient drives 

tail ions outward, while the tail temperature gradient drives them inwards. 

We shall make some more remarks on the diffusive particle flux. r ( 1 , 

being proportional to the pitch angle scattering rate l / r t i , is the traditional 

drive of neoclassical banana transport and leads to a diffusive component 

in the particle flux. However, the dependence of the aspect ratio is not 

traditional. This is because we have assumed that all of the minority ions 

are trapped due to the perpendicular heating from ICRF waves, while in 

the usual case where /o is isotropic, only a small fraction, ~ Jr/R, of the 

particles are trapped. This assumption is valid only if the minority ions are 

sufficiently energetic so that the pitch angle scattering rate is sufficiently 

small compared to the slowing-down rate. Analytic and numerical solutions 

for /Q indicate 4 , 1 6 that this requires Tcfj > ( i i / r )£ C T i t , where Ecril is the 

critical energy above which collisions with electrons exceed collisions with 

ions. If all of the gradients are of the same order 

d\n% d\nne d\nnt 0 In Te// ding 

then r ( I- will be small compared to T, in the high energy regime where 

our expressions for the particle flux are correct. We have retained the r„-

component, however, because of its relationship to 'lie usual neoclassical 
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transport, because it alone contains a diffusive component, and because 

dlnTcjj/dip may be very large compared to other gradients in cases where 

the ICRF power is highly focussed near the axis (since Tejf oc PRF) while 

the background pressure is relatively flat. 

B. Radial Energy Transport of Tail Ions 

The radial energy flux calculation is similar in many ways to the particle 

flux calculation, so we will leave out most of the intermediate steps. The 

radial energy flux in the present work is defined as 

• -5<W^)>»V / 1") 
where Q is defined in such a way that the energy loss from a flux volume 

is expressed as 

and the sole survival of / J 1 ' in the expansion of / is as explained in the 

particle flux calculation. 

As in the particle flux calculation, we divide Q into two parts using 

Eq- (24), 

=£- = TT- + TT- (48) 
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The perturbed function / , J in the expression for Qx is easily changed into 

/o by using Eq. (36). In the expression for Q 2 l following exactly the same 

procedure as for V2, we use Eq. (16) and integration-by-parts in 6 to express 

Vd • V/o in terms of its parallel derivative h • V/Q . Using Eqs. (22) and 

(36) for So a n d /1 1 w e c a n t n e n express Q\, and Q 2 in terms of /Q as 

follows: 

Teff 2 \J \vt!S) il l fl 90 V 

The direct RF contribution to the heat flux through the RF quasilinear 

operator Q (in C" = C + Q) no longer vanishes exactly for general / 0 

as it did in the case of the particle flux. However, due to the fact that 

Q ~ 0 everywhere except at resonance and v?,/v2 <g! 1 at resonance, the Q 

contribution will be ignored compared to the C contribution. 

The collision operator in the above equations can be simplified by mtegration-

by-parts, yielding 
(0) 

£-;WK/Ma>("*-M)]-
where the pitch angle scattering frequency is smaller than the slowing-

down scattering frequency by approximately an inverse-aspect ratio, but 

vsv}, ~ ut{V2 as explained earlier. 
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Notice here that the diffusive term in Q? proportional to the slowing-

down rate (the component of Qi proportional to v,dfQ /dip) does not can­

cel Qi exactly, as seen in the particle flux case. Thus, unlike the particle 

flux, we will have a diffusive radial transport of tail-ion energy due to 

the slowing-down collisions. The difference between the radial particle and 

energy fluxes is in that there is no particle source in the velocity space scat­

tering operator, but there is a strong energy source in the RF-scattering 

operator and a strong energy sink in the slowing-down operator. The mi­

nority tail ions absorb power from the RF waves on one flux surface, and 

give power to electrons (via slowing-down collisions) on other flux surfaces 

during banana motions (see Fig. 1). This finite banana-width spreading 

of the RF power is represented by the diffusive terms in Q proportional to 

the slowing-down rate. 

In the particle flux calculation, the pitch-angle-scattering contribution 

is kept, even though vti <C v, is true. This is because it contained the only 

diffusive transport process. However, in the case of the energy transport, 

the bigger slowing-down scattering contribution contains diffusive terms, 

and thus, keeping the higher-order diffusive terms from the pitch-angle-

scattering contribution is meaningless in the present situation, where the 

minority tail ions are so energetic that vlxjva < r/R is true. 

Rather than explicitly evaluating dfl /dip in Q\, it is convenient to 

interchange the order of ^-derivative so that only integrals over JQ ^ arc 
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needed, i.e., 

Ci 
T.JJ 

^K/M§)V>)] 2*,, V 

^ ( / M K ) V & I * * W M ) . 
The rest of the calculation of the energy transport is parallel to the cal­

culation of the particle transport. After some straightforward algebra, we 

obtain 

Q = Qi + Qc, 
Qd = 15n, fI»tJrf(BR-B\ [ 1 dnt 1 &TtJ} 

TeJf T, { Ho ) \ BR J, [2nt 50 + Tsf} 50 
& _ 15nt /Ivt}1\2 (BR-B\ f 3 dTc 1 dnc 1 dg 

T.JS ~ ra \ fio ) 1 BR }b\2Ttdii> n c 50 g 3 0 

(49) 

15n, (Ivt)j\2 (Bn-B] [ 3 dTc 1 dnc 1 . 

+ 250 I n i~B^)J 
45n, / I » e / / \ J J d l i i J B l 

where we have separated ^ into two components; Qj the diffusive com­

ponent and Qc the convective component. The pitch-angle contribution is 

neglected here because, unlike the particle flux case, the diffusive terms ap­

pear in both slowing-down and pitch-angle scattering contributions. And 

the slowing-down contribution is always bigger in our ordering where the 

minority ions are so energetic that T3/TU < r/R is true, as explained earlier. 

We can see from Eq. (49) that the diffusive components of Q are radially 

outward in the normal case. 
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IV. Discussions 

We have studied the neoclassical kinetic behavior of the energetic minor­

ity tail ions generated by strong ICRF heating at the fundamental harmonic 

frequency, and obtained simple kinetic expressions for the radial transport 

coefficients of the tail minority ions. It is found that the radial particle 

transport by the Coulomb slowing-down collisions on the background elec­

trons is purely convective. The only diffusive particle transport of the tail 

ions is from the weak pitch angle scattering on the background ions and 

is usually smaller than that of convective particle transport. On the other 

hand, the radial energy transport by Coulomb slowing-down scattering has 

both diffusive and convective terms, due the spread of the energy absorbed 

by the particles from the RF waves to the background electrons duiing the 

banana motions. 

The rate of radial particle transport is small, of order one banana width 

in a slowing-down time. But the rate of energy transport is larger due 

to the non-Maxwellian nature of the tail distribution function, and the 

tail ions can radially lose non-negligible amounts of their energy before 

they are slowed down by collisions with the electrons. As discussed in 

the introduction, it is probably important to include both collision-driven 

transport of the present work and the RF-driven transport of Ref. 5 in the 

analysis of ICRF heating cases like in J E T 6 , 7 where the RF-power profile is 

so well focussed and the tail becomes so energetic that the banana widths 

of the tail ions become a significant fraction of the RF-power profile width. 
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Since the direct effect of ICRF waves on radial transport is absent in the 

present analyses (due to the assumption that An = 0), only Coulomb colli­

sions are responsible for the transport and thus the total particle transport 

must be automatically ambipolar.1 0 For the case when k\\ ^ 0, there will be 

some additional transport directly driven by the ICRF waves as discussed 

in Ref. 5. 

Our expression for the particle flux T and the energy flux Q, a. presented 

in Eqs. (46,47,49, and 50), are valid for a large-aspect-ratio, low-/? tokamak 

with arbitrary flux surface shapes. For a large-aspect-ratio tokamak with 

circular concentric flux surfaces, using the relations B oc 1/R oc 1/(J?0 + 

r cos0), 3 0 / 9 r = rB/q, and cos0 ~ l — 62/2 valid in the deeply trapped 

particle limit, we can obtain the following approximation: 

\-Bir)b * 2{—BT-)*^1-™^' 

where Bm{n is the minimum value of B on the flux surface corresponding 

to 8 = 0 and R, is the value of R at the magnetic axis. And thus, for 

a large-aspect-ratio tokamak with concentric circular flux surfaces, we can 

transform our results as follows: 

v ' f = 7^ ( r r ' i r l ) ' ( 5 1 ) 

r = -2T3R[^J il-cos0R)[2—r 5T--ST. 
3nt 1 (v,.j,\2 , 
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1 nt /vefj\2\d]nnt l d l n T e / / d lnn, d ing 
y/2^rti\ngoJ [ Or 2 dr dr dr 

where fi«0 = ZteBe0/Mtc is the poloidal gyrofrequency averaged over the 

flux surface and {cos 9}b a 1 — 6%/4 can be used in the deeply trapped limit 

* C l . Likewise, the energy balance equation in circular geometry is 

V-Q = ~(rQ"), (52) 
r or 

£ - -?**(£)'<»--»[• 
9mT, e/J 

dr 
l a i n n , 331nT e d l n n c dlnq 
2 dr 2 dr dr dr 

45n 4 1 fveJj\2 1 , d l 
+ T * i i h £ ) {3(l-c0sgfl) + { c ° s g } t 

(53) 

The rate of radial particle flow is found to be about one banana width 

in a slowing-down time. Thus, the loss of fast particles from the central 

plasma region (which is over several banana widths in radial thickness) is 

small within a slowing-down time. But the rate of radial energy transport 

is much faster than a banana width in a slowjng-down time. Hence the 

radial transport processes discussed here should be included in the detailed 

modeling of the main-plasma heating by the tail ions, which occurs in a 

slowing-down time scale, and in the analysis of the experimental tail-ion 

data. 

In the calculation of the present neoclassical transport rate, a simple 

(but realistic) anisotropic tail distribution function has been assumed by 

taking the limit of small pitch angle spread. The present model distribution 
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function reduces to the isotropic model solution of Ref. 8 when integrated 

over pitcii angle. Different models of anisotropic tail distribution functions, 

like those given in Refs. 16 and 18 may yield somewhat different results. 

However, since all the information we need from the lowest order tail dis­

tribution function is a few velocity moments, it is expected that all the 

essential features of our diffusion coefficients are unchanged, only the nu­

merical coefficients may change a little. We have actually evaluated the 

differences in the transport coefficients and found that the present model 

distribution function yielded a little larger coefficient value than other mod­

els quoted above did. Thus we may regard the present transport rate as an 

upper bound to the neoclassical loss of fast ions. 

The present analyses may not be valid in the transport estimation of 

another possibly important class of ICRF-driven minority ions, which is the 

lower energy tail ions near the critical ion-electron slowing-down energy. In 

this case, the Coulomb pitch angle scattering will be as strong as the energy 

scattering and thus the localization of the tail ions near the resonance pitch 

angle is not possible. Thus, more elaborate analyses of the tail ion kinetics 

in connection with the passing-trapped transition become necessary. 
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Figures 

FIG. 1. Schematic diagram of a fast ion's banana motion. It is heated 

at the banana tips and cooled during the banana motion. The verticle 

dashed line represents the resonance surface where the particle is taking 

energy from the RF wave. 

FIG. 2. Convective radial motion of a fast ion due to the asymmetric 

amount of drag between the outside and inside banana motions. 
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