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Neoclassical transport of energetic minority tail ions, which are gener-
ated by high powered electromagnetic waves of the Ion Cyclotron Range
of Frequencies (ICRF) at the fundamental harmonie resonance, is studied
analytically in tokamak geometry. The effect of Coulomb collisions on the
tail ion tranmsport is investigated in the present work. The total tail ion
transport will be the sum of the present collision-driven transport and the
wave-driven transport, which is due to the ICRF-wave scattering of the
tail particles as reported in the literature, The transport coefficients have
been calculated kinetically, and it is found that the large tail ion viscosity,
driven by the localized ICRF-heating and Coulomb slowing-down collisions,
induces purely convective particle transport of the tail species, while the
energy transport is both convective and diffusive. The rate of radial par-
ticle transport is shown to be usually small, but the rate of radial energy
transport is larger and may not be negligible compared to the Coulomb

“slowing-down rate.
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I. Introduction

Augxiliary heating of tokamak plasmas by clectromagnetic waves in the
Ion Cyclotron Range of Frequencies (ICRF-waves) is becoming one of the
promising schemes to heat the plasma to the temperature required for con-
trolled thermonuclear fusion reactions. Experiments in Princeton Large
Torus (PLT),' Joint European Torus (JET),? and Torocidal Fusion Test
Reactor (TFTR)® have demonstrated that ICRF heating at fundamental
harmonic resonance can generate very energetic minority tail ions (with
average energy ranging over 1 MeV in JET). Since the rate of energy trans-
fer from the energetic tail ions to the main plasmas is proportional to the
energy content in the tail ions, it is important to understand the radial
confinement property, and thus the radial profile of particle and energy
density, of the tail ion species.

Due to the spatially localized heating effect and highly non-Maxwellian
nature of the tail distribution, the neoclassical equilibrium properties of the
tail distribution are quite different from those of the background Maxwellian
plasma and the resulting transport does not obey the usual neoclassical ba-
nana descriptions. Several theoretical attempts have appeared in the litera-
ture, exploring the new features of ICRF-driven non-Maxwellian transport.
Reference 4 has calculated the non-Maxwellian distribution function of tail
ions in the strong heating limit, and obtained the neoclassical diffusion coef-
ficients driven by the Coulomb slowing-down collisions, predicting that the

radial loss rate of the tail ions will be about one banana width in a slowing-
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down collision time. However, Ref. 4 used a bounce-averaged ICRF-heating
operator at a place in the calculation where the local operator was needed.
This made it neglect the unconventional and important effect of poloidally
local heating by resonance with the ICRF waves. As will be shown in the
present work, neglect of the poloidally local heating effect led Ref. 4 to
describe incorrectly the basic particle transport mechanism as a diffusive
process instead of a convective process.

In this work, we concentrate on the collision-driven transport of the
non-Maxwellian tail ions. We will assume &; = 0 and, hence, ignore the
ICRF-driven parallel friction and transport discussed in Ref. 5, which is
due to toroidal momentum input from the wave. The total transport will
be the sum of the ICRF-driven transport of Ref. 5 and the collision-driven
transport of the present paper. The analytic estimates in Ref. 5 led to
the conclusion that RF-driven transport is usually unimportant. However,
the numerical calculations of Refs. 6 and 7 show that if the RF power
profile is so narrow and the tail ions become so energetic that their banana
widths become a significant fraction of the RF-power profile width, then
RF-driven transport can play a significant role in the central power balance
of the tail ions. These numerical calculations found that for some JET cases
the RF-driven transport can lead to a significant hollowing of the minority
density profile, broadening the effective heating profile by a factor of ~ 2,
and reducing the central minority energy from ~ 1 MeV to ~ 100 keV.
The RF power profile in JET is fairly narrow, with P(r) proportional to

exp[~r?/(20?)] and ¢ ~ 15 cm. By comparison, the central banana width of



ahydrogen ion is ~ 37 cm at 1 MeV, and ~ 17 cm at 100 keV. The numerical
calculation of Refs. 6 and 7 ignored the effects of neoclassical collision-driven
transport discussed here, which may fill in the hollow minority profiles
found in Refs. 6 and 7.

We study the neoclassical transport of non-Maxwellian tail ions with a
quasilinear ICRF aperator and Coulomb scattering operator when the mi-
nority tail-ion species is in resonance with a ICRF wave at the fundamental
harmonic. We use a rigorous ordering scheme which is consistent with the
repetitive local heating and cooling of the trapped tail iors, whose energy is
above the ion-electron critical slowing-down energy, as they execute banaaa
motions. And we find that, even though the radial transport rate is ronghly
consistent with that given by Ref. 4, the transport mechanism is quite dif-
ferent: The large parallel viscosity created by the local ICRF-heating and
Coulomb cooling of the tail ions induces convective radial transport for the
particles, and convective and diffusive radial transport for the energy. It
can be concluded from the present work that the neoclassical particle loss
rate of the tail ions is usually not seriously large, of order a banana width
in a slowing-down time. However, the energy transport rate can be con-
siderably larger due to the large numerical coefficients resulting from the
non-Maxwellian velocity moment of the tail distribution function. And the
energetic tails can lose their kinetic energy by radial neoclassical transport
mechanisms on a time scale comparable to the slowing-down time.

In Section II, a heuristic description of the basic physical mechanisms,

which lead to the radial convective transport of tail jons from the single
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particle and fluid point of view, is discussed. A full kinetic calculation
of both particle and energy transport is given in Section III, and some

discussions are presented in Section IV.



II. Heuristic Description of Tail-Ion Transport Under Strong
ICRF Heating

In this section we will illustrate the basic physical mechanisms which
govern the radial motion of the high energy minority ions generated by
strong ICRF heating. The earlier part of the de:.riptions given here is not
new and is presented here for heuristic purposes to make clearer presenta-
tion of the tail-inn transport physics. During the guiding-center motion of
the resonant ions, two different scattering processes compete against ecach
other and determine the steady-state motion of the guiding center. One
is the usual Coulomb scattering process relaxing the particle distribution
function toward a thermal equilibrium state, and the other is the ICRF-
heating process® increasing the perpendicular (to magnetic field vector B)
energy of the resonant particles as they pass through the resonance layer

defined by, at the fundamental harmonic resonance
w =8+ k"v", (1)

where w is the angular frequency and & is the parallel {to B) wave number
of a given ICRF wave, and Qp = eBp/M,c is the gyrofrequency of tail ions,
whose mass is M, and charge is e, at the resonance location B = Bp. We
will assume that the Doppler broadening of the resonance layer due to ky
is small, and thus will set k& = D for the rest of the present work. For the
effect of k) # 0, we refer to Ref. 5.

Since ICRF heating increases the perpendicular energy of the resonant

ions preferentially, the well-heated ions will exgcute banana orbits. It is casy



to see that as the perpendicular heating at the resonance location proceeds
further, the turning points of the resonance particles will asymptotically
approach the resonance location where B = Bp, as was first observed ex-
perimentally.? We can use the following simple argument to understand
this phenomenon: At the resonance location, the kinetic energy of a reso-
nant particle can be written as¢ = M.vﬁ + uBp, where u = M,v2 /2B is the
magnetic moment. Thus the increase in the particle kinetic energy Ac due
to the perpendicular heating of the amount Ay at the resonance location
is given by

Ag = BrAp. (2)
The turning point given by By = e/u is redefined after the heating processes

at the resonance location
B, = (e + BrAp)/(p + Lp),

where Eq. (2} has been used for Ae. In the strong heating limit, we then

have

By — By, for Apfe» 1.

Therefore, the high energy tail ions generated by high power ICRF heat-
ing execute banana orbital motions with turning points near the resonance
layers. They get heated when they reach the tips of the banana orbits,
but cooled during the rest of the orbital motions by Coulomb collisions
(see Fig. 1). For the tail ions considered here, whose kinetic energy is
much higher than the critical ion-electron slowing-down energy, the main

Coulomb collisional effect is from slowing-down by background electrons.



And the steady-state particle motion is achieved when the energy gain by
ICRF heating at the turning points balances the energy loss by the slowing-
down collisions. )

The radial motion of our tail ions can be understocd by considering the
conservation of canonical angular momentum.'® The collisjonless orbits are

confined to surfaces of constant canonical angular momentum:
R*V( . (M7 + eAfc) = constant, (3)

where R is the major radius, { is toroidal angle, A is the vector poten-
tial. The relation between the vector potential A and a radial coordinate

¥( poloidal flux) can be identified from Faraday’s law

< 198
VXE——Ew, (4)

_where E is the electric field vector.

By multiplying Vi on both sides of Eq. (4) and using the following

relations
Vy = RB, v, (3)
b-VxE= B V(RE
~ RB, (RET),
ad - d =
—_— § = - h =
atV (¥B) 3tB Vi ,

where Bp(Br) is the poloidal(toroidal) component of B and % = Vi /¥,
we can easily change Eq. (4) into B - V(cREy — 3¢/3t) = 0, or



From Eq. (4) and the relation B=9x fi', we also have cEpr = —04r/at,
and thus Eq. (6) becomes

¥ = —RAT. (7
Using this expression for the vector potential, the conservation of canonical

angular momentum is expressed as
¥ — cMvrR/e = constant,

where vy is the toroidal component of the particle velocity.
Information on the net radial motion of the trapped particles can be

obtained by taking a time derivative along the particle trajectory:

dy oy M d
Lot 5 9y = T R, (8)

Integrating the above equation between twvo successive times ¢) and ¢,, at

which moments vy vanishes {turning points), we obtain
(7-v9} = ~(54), (©)

where {---} denotes an orbital average. Since 33/t is related to the radial

flux surface velocity 4, through the relation

2
a"iw,-w:o,

Eq. (9) yields an interesting result

{v-Vy} ={i, -V},



i.., the average radial motion of the trapped particles is equal to the radial
motion of the poloidal flux surface. According to Eq. (6), the average radial

velocity can be expressed in terms of the toroidal electric field as
{7 V¢) = -{cREz), (10)

which describes the inward pinch effect of banana particles first described
by Ware!! and Galeev."?

As the banana particles suffer from Coulomb and RF scatterings, the
radial pinch effect described above will be modified. If the Coulomb col-
lisions are too frequent, banana orbits will net be allowed at all and the
pinch effect will be absent. In the weakly collisional case, when the banana
motions are well defined, the scattering effect can make the not radial mo-
tion deviate from Eqs. (9) and (10) by disturbing v7 and adding a friction
Fr in Eq. (8) as follows:

oM dfor)| _ cREr
e | isions e
If there is a net toroidal torque {RFr} during a complete banana motion,
we will have additional radial motions which will make the radial particle
motion not to coincide with the radial flux surface motion.

The RF scattering at the resonance location, with & = 0, does not
change toroidal momentum and thus does not contribute to the net toroidal
torque. The toroidal torque from Coulomb slowing-down collisions changes
signs as particle’s v changes sign, and thus the net torque {RFr} will not

be zero if there is some asymmetry in the scattering between the positive
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and negative v motions (see Fig. 2). The qualitative features of this
transport mechanism were first pointed out by Ref. 14. There can be two
different physical mechanisms to give rise to such asymmetry in Fr during
a banana motion: One is the difference in the path length of the particle
guiding center due to the magnetic shear, and the other is the difterence
in the slowing-down rate 1/7, due to the radial gradient in the background
electron density and temperature.

Radial flow due to the magnetic shear can be estimated as follows. The
connection length qR generally increases as the minor radius increases.
Thus the path length is greater during the outer half of the banana motiou
than the inner half by the approximate amount, A,d(qR)/0r, where A, is
the radial banana width. Hence, the net toroidal friction integrated along

a complete banana orbit takes the value

N[U_ﬂlAa@QR
{Fr} =~ ok Br

where 7, is the ion-electron slowing-down collision time. Asa result, the

banana tips will drift radially outward at the rate given by

cR |l cR & 3gR

{F-ng}:?{FT} er, qR Or ~ (11)

Radial flow of the RF-generated tail ions driven by the radial gradient
in 7, is estimated as follows: The net toroidal friction due to the difference

in the slowing-down rate is

ool 23 3 L
{Fr} = T (n, or _EF)’
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and the corresponding radial drift speed is then given by

- _lwleR, 18n. 3 9T,
{7V} = et, "\'l’(n,= ar 2T, or ) (12)
Summing up Eqgs. (11) and (12}, we obtain
s oy R, 1 OgR  10n, 3 OT
{o- Vo= et, A"(qR or -i”ne or 2T, or ) (13)

Equation (13) represents the radial flow of ICRF-generated tail ions due
to the collisional dissipation, in addition to the collisionless pinch effect.
Notice here that the flow of particles given by Eq. (13) is all convective.
This is due to the lack of randomness in the slowing-down process of the tail
ions at well above the critical slowing-down energy. We note here that the
same conclusion may not apply to radial heat flow, since the momentum
conservation law we used here does not apply to the heat flow. This point
will be addressed in detail in the next section where a full kinetic calculation
is presented.

The convective transport process of tail ions described above is absent
in the usual neoclassical theories. Since the usuval neoclassical transport
is often more easily understood with fluid equations, identification of the
above simple transport mechanisms with fluid friction and viscosity may
help clarify the difference in the transport processes hetween the usual neo-
classical and present processes. This identification can also help understand
each terms in the kinetic description presented in the next section in terms

of fluid quantities.



As a function of fluid quantities, the radial particle flux I' can be ex-

pressed as follows'?:
I=<ni-V§>=—= <BV(-(F-V-P+enE) >+0(5), (14)

where < - - - > represents the flux-surface average, i is the fluid flow velocity,
and F is the frictional force; and the quantity c/e has been treated as first
order in gyroradius p in consideration of the Vi multiplied to left-hand
side.

The first term in the right-hand side of Eq. (14) is the toroidal fric-
tional force due to the difference in‘ the toroidal flow speed between different
plasma species, and is first order in gyroradius. This term alone wiil yield
diffusive transport driven by the gradients in density and pressure of the
tail species. The second term can be shown to correspond to an off-diagonal

stress tensor term as follows:

<R’VC-V-P>=<V-(R’VC-P)>=%<R’V(-P-V¢>.

And the third term represents the toroidal electric field, which gives rise
to the Ware pinch effect. For simplicity, we disregard this third term from
our discussion. ’

For a plasma usually deseribed in the literature, the lowest order dis-
tribution function is a Maxwellian. For such a more familiar plasma, the
oft-diagonal stress tensor term is of second order in gyroradiu= (this point
will be made clearer in the next section). Hence, the second term is small

compared to the first term, and thus the neoclassical radial transport arises

solely from the toroidal frictional force in the Maxwellian plasma case.
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The present problem of high energy tail transport is different from the
usual one in that the lowest order distribution function is not an isotropic
Maxwellian and, more importantly, in that a true local steady state is
nat established. Instead, the anisotropic tail distribution reaches a global,
and time-averaged steady state over the bounce motions of the banana
motions only. At the banana tips the particles are heated by ICRF heating,
and at all other locations during their banana motions they are cooled by
Coulomb slowing-down collisions. The steady condition df /dt = 0 is not
satisfied locally, but is satisfied only over the bounce average operation,
{df/dt}s = 0. As a consequence, even the zeroth order (in gyroradius)
distribution function gets distorted by the locally nonvanishing scattering
process. Unlike the usual Maxwellian plasma, such tail plasmas generate
large off-diagonal stress tensor elements which is first order in gyroradius,
as will become more explicit in the next section. The off-diagonal stress
tensor term, second term, in Eq. (14) is then of the same order as the
first term for our tail particles and yields the convective transport terms as
well as diffusive terms. Our kinetic analysis shows that the diffusive terms
from the off-diagonal stress tensor exactly cancel the diffusive contribution
from the friction term (first term) in Eq. (14), leaving only the convective
transport from the off-diagonal stress tensor for the particle flux across the

flux surfaces.

14



I1I. Kinetic Calculation

We will use a well-known flux coordinate system (¥,8,(), where ¢ is
the enclosed poloidal flux surface and serves as a radial coordinate, § is
the poloidal angle, and ( is the toroidal angle. The magnetic field can be

expressed as

B=I()V(+V(x V.

Parallel derivatives can be expressed as

19
JBaa’
where axisymmetry is assumed so that 3/0¢ = 0, and J = [Vy¥ x V8-V(]!

AV =

is the Jacobian. The flux surface average of a quantity g is then written as

_ 487 fd6dg
and the bounce average is defined as
J Bdo
g _ -.-.—.-
ok = lvnl T
where the bounce integral is taken between # = —= and 7 for the passing

particles and between —§, to 6, for the trapped particles, where 19, are the
poloidal angles at the turning points where v; — 0. The flux surface average
of a velocity integral can be expressed in terms of the bounce average as

follows:

dEdy

Uda”) = deJ/dM""Bgf [z
= -zf-.za;fdmp fdee{g}b’ (13)
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where E is the kinetic energy, p is the magnetic moment per unit mass,
and ¢ = Sign(y;).
We introduce a useful identity for the Alfvén approximation of the drift

velocity 7; = —uy# x V{/Q?), which is repeatedly used in our calculation:

- Vf = 7k [aa B Z-%3) af] (16)

The particular usefulness of the above relation is realized when we take the
bounce average of v4-V f over a banana motion. Making use of integration-

by-parts and the condition v = 0 at the turning points, we can easily show

dIB. .o v 0f }
f oS = I6¢/d9969. (17)

A quasilinear form"™ of the drift-kinetic equation can be written in the

form

31

O (op+ 3. VS -7 Eipe =CN AN =T, (9)

where f = f(E,p,0,%,8,t) is the gyrophase-averaged value of the qua-
sistatic part of particle distribution function, & = B /B is the unit vector
in the direction of local B, C (f) is the usual Coulomb scattering operator,

and
Q(f) = —Vu - P,p

represents the quasilinear scattering by RF waves with I',, defined to be the
RF-driven quasilinear particle flux in velocity space. Detailed justification

of Eq. (18) can be found in Ref. 4.
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In order to obtain a f;rmal solution to Eq. (18}, we use the usual small
banana width ordering § = A,/a <« 1, where A, is the banana width and
a is the plasma radius. This ordering may restrict the validity of present
analyses to pla.émas with larger minor radius or stronger magnetic field,
since the radial excursion of the rf-produced high-energy tail ions tends to
be large. For equilibrium distribution of the high energy tail jons, where
the heating by RF waves is balanced by the collizional cooling, we adopt
the usual transport ordering and take 8/9¢ to be of second order in 6. The
parallel electric field term in Eq. (18) has to be small for equilibrium in
order to avoid massive electron runaway, and for ion species it is usually

treated’? as second order in §. We expand f in &,

f=foth+thfat--,
and obtain the first two lowest order equations as follows:

Y- Vo =C(fo)+ Qfo) = C°(fo) (19)
U”ﬁ . Vfl -_— C'(fl) = —'U-; . Vfﬂ- (20)

For the high energy tail ious the collision frequencies are iuucis smalier
than the parallel transit frequency o = (2. + v,)L/v; < 1, where u, is
the 90°-Coulomb collision rate, », represents the quasilinear scattering rate
by RF waves, and L is the scale length in the direction parallel to the
magnetic field lines. To incorporate this additional smallness parameter

into our analyses, we use a double ordering scheme and write f as
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fo= B+ N+ R ks

H=f0+ Y+ +

where the superscripts represent expansion in 7. The zeroth order equation

in 4, Eq. (19}, can then be further divided into

apf - V"
wi- VY = C(A), (22)

0, (21)

and the first order equation in 4, Eq. (20), becomes

wh VY = -5 VR, (23)
oy - VY - C (A7) = —d- VY, (24)

where the next order equations in ¥ are omitted for simplicity.

Equation (21) is 2 mathematical statement of the physical fact that the
dissipationless lowest order distribution function is constant along magnetic
field lines. A solution for fi” can be obtained by averaging Eq. (22) over

the bounce motion of the trapped tail jons:
{mf - Vi"h = {C())s. (25)

The left-hand side of Eq. (23) is identically zero because of the relation

V = (JB)"}(d/4). The function fi" can be taken out of the bounce
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average operator by using Eq. (21), and thus leading to
{C(A s = {CWA”) +{QK(S™) = 0. (26)

Detailed study of this equation and the solution for £ are discussed else-
where.#1¢-18 In the present work, we will consider that £ is given in
obtaining the formal description of the transport coefficients. Our final
transport coefficients are not sensitive to the details of the shape of féoj but
depends only on the moments of f.§°’. The next order solutions f{", .
and f,m can be expressed in terms of f.§°’ using Eqs. (22), (23), and (24).

The quasilinear RF-scattering operator @ can be written as

o = 2Dt - w2l (1)
1

v Ov,

where D) is the quasilinear vclocity-space particle diffusion coefficient’®
driven by ICRF waves at the resonance location, w is the ICRF wave fre-
quency, { is the gyrofrequency of the tail ions(Q? o« 1/major radius), and
the 6-function ensures Q = 0 everywhere except at a resonance point given
by = w. This form of @ corresponds to the ky = 0 limit. Additional
transport effects caused by & # 0 have been discussed in Ref. 5. Notice
here that the combined scattering operator C*, with full Coulomb operator
and Eq. (27), is parity conserving in y.

For the combined scattering operator C*, two conservation laws are

required for a steady state. The first is the particle conservation law:

(K]
o
—

[y =0, (
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and the second is the flux-surface-averaged energy conservation law:

( f Po(mv?[2)C (£ )) (29)
We can easily see that Eq. (29) follows from Eqs. (15} and (26). The particle
conservation law is stronger since it requires the equation to be true at
every point in real space. Notice here that the ﬂux—surface-averaged energy
conservation law is required to the lowest order in 9 only. It is interesting
to find that Eq. (28) yields many more general conservation equations. For

any constant of motion ¢, we have
(f#vccu™) =o (30)

When the tail ions are above the critical slowing-dewn energy, and thus
the pitch angle scattering is weak, most of the tail ions are trapped with
their banana tips near the resonance layer, as discussed earlier. We will
make use of this fact and ignore the small passing component of f{”'. This
makes the transport calculation somewhat simpler, allowing us to ignore
the trapped-passing boundary. We also make use of the fact that fm) is

symmetric in v in the trapped particle regime.

A. Radial Particle Flux of Tail Ions

The radial particle flux of the minority tail ions can be calculated from

V@) = -~V
o= (f o Vo) £) = (f ol - 9
= [dal,l—l" Vf).
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where the flux surface average operation is represented by < --- >, V' =
AV/dy = 2x [ d0T is the derivative of the enclosed volume, Alfvén's ex-
pression for the vertical drift is used, and the last equality is obtained by
integration-by-parts along the magnetic field lines, using the velocity inte-
gration expressed in terms of the velocity coordinate (E, u, o):

[#v=apy, [ 42

[l

Double expansion of f then yields
D= —(f ot day VU@ + £+ f2+ 40 +--9).

The first term is zero because of Eq. (21). Notice here that fc(,o) is even in vy
and, therefore, fé” and fl(o) are odd in v, as can be seen from Eqs. (22) and
(23). We can then easily see that the integral of the second and third terms
in the parentheses vanish, since the integrands are odd in v”: Hence, the
only contribution to particle flux is from 1 which can be explained from
the fact that the neoclassical radial transport is a consequence of collisional

dissipation on the radial drift motions. Using Eq. (24) for 1 we obtain

I = I+Tu, (31)
I

no= —(f oo (s, (32)

ro= (f@ogla oA (33)

Determining £ and f{" in terms of £} and performing the velocity-space

integral and flux-surface average will give us the neoclassical radial particle

flux of the high energy tail ions.



We note here that the I'; term in Eq. (31) represents the usual contti-
bution to the neoclassical radial particle diffusion from the parallel friction
force [see Eq. (14)]. We will show that this diffusive term cancels out with
the diffusive part of I'; and thus the usual banana diffusion process is absent
here. The I'; term, however, represents an unusual feature of the present
problem. This term represents the off-diagonal stress tensor contribution
to the neoclassical radial particle flux coming from the nonvanishing fé”,
which does not exist to this order in the usual thermal equilibrium problem
where the lowest order distribution function is a Maxwellian [see Eq. (14)].
This can be easily understood from Eq. (22), by noticing that C( 7o ) van-
ishes for a Maxwellian f{”). The existence of nonvanishing £V is due to the
localized heating operator (). As discussed in the previous section, a true
equilibrium distribution function satisfying C*( féo’) = 0 does not exist for
our high energy tail ions, even to the lowest order in gyroradius. And the
collisional steady state exists only over the bounce average orbits through
Eq. (26). A high energy tail ion in resonance with RF waves is heated near
the turning points of the banana orbits, and loses energy during the rest of
the banana motions through Coulomb collisions with the cold background

particles (see Fig. 1):
f FvEC*(f) > 0 at resonance surfaces,

f PvEC(f”) < 0 otherwise.

The first term in the expression for the radial particle flux can readily be

evaluated by solving for F9 from Eq. {23), as in the usual banana transport

1~
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theories.'® Using the relation

- Vip = Ivuﬁ~V%1,

we can easily find
o _ _ydf”
! Q

Here G is a function constant along &, and can be determined from the

+G. (34)

-bounce average of the next order equation, Eq. (24). The bounce average
of the first term in Eq. (24) is trivially zero. The right-hand side of Eq. (24)
is odd in v since F is an odd function of vy, and thus it vanishes when

bounce averaged. The solubility condition for Eq. (24) then simply becomes
{C(f™M) =0, (35)

which is identical to the solubility condition for the usual neoclassical lra-
nana transport for thermal particles. The combined collision operator C~
conserves parity in ¢ = v /[, as discussed after Eq. (27). The first term
in Eq. (34) is odd in v and it vanishes in the bounce-average integral of
Eq. (35). G is independent of # and thus it can be taken outside of the

bounce integral, and Eq. (35) becomes
{C'},G=0,

i.e., G and f” are solutions of the same equation| see Eq. (26)]. Without
loss of generality, we can absorb G into £{”. In any case, G is even in v

and thus gives no contribution to the radial fluxes. Therefore, our solution

[ )

for simply becomes

a4
o= -1 ;’w. (36)
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In order to be able to actually evaluate the phase-space integral to ob-
tain the final expression for the diffusion coefficients, a simplified Coulomb
collision operator is used. We assume that most of the minority tail ions
have energies higher than the critical slowing-down energy above which the
tail jon-electron energy transfer rate is greater than the tail ion-ion energy
transfer rate. This assumption will set a lower bound to the RF-power
level to ensure the validity of our analysis as discussed in Ref. 4. Then the
Coulomb scattering operator for the tail ions can be written as the combi-
nation of the tail ion-electron slowing-aown part Cj, and the tail ion-main
ion pitch angle scattering part C};, where £ is cosine of the pitch angle
£ = v /v, and the subscripts ¢, i, and e denote tail ion, main ion, and

electron species, respectively;

Cf) = C.L+Cf, (37)
cuf) = u,%-sf,, (39)
cin = Zaa-eg, (39)
_ l_ M.n.
Vo = T,_ﬂ{,nt‘&g’
R CYANE S
Wi = (v ) Ty

. 3v2 VAT
“ T 8f22e4n,ln1\
1 Moy,

47 Z2Z%ein In A’

Tw =

where n, is the flux-surface-averaged tail-ion density, and v.;; is a typical

tail-ion velocity (we define v.sy so that (3/2)n M,0%, is the flux-surface-
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averaged tail-ion energy density). The weak pitch angle scattering is re-
tained here because the 3/9€ may be large due to the localization near the
resonance pitch angle. This localization width of féol in pitch angle itself
is determined fromn pitch angle scattering,*1%1® But it turns out that the
pitch angle scatterings make little contribution to our final cvaluation of
the transport coeflicients, due to the fact that v; € u,.

The first part in the particle flux, Iy, ¢an r.ow be easily evaluated to be

I

~(f @vric + @)™

(f #orleudd ag;] )

(UJ
~f Polgh? 4 1) L2, (10)

where the contribution from the R¥ heating operator, @, has been dropped
because « commutes with v and  conserves particle number [f vQ(f) =
0 for any f .

The second part in the particle flux, I';, is easily calculated by using
Eq (16) for the vertical drift:

a Jv 5
r, = { j 30 || (1))
..'Tz, Fv” ] afé” a ] 0)‘#)
df )= -=1=] =]
TaT f 7 [ dBdu [ I(Q) o~ 8) o0
Integrating by parts and collecting term, it is straigntforward to obtain

— -TZU ]_Uﬁ af(;
Te=—Ta7 - [ B 1 3 Ud 30738 |
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We use Eq. {22) to express Y in terms of £i%,
(l)

(0)
S =B C(1),

k[
and substitute it into the above expression for I'; to obtain
- 19 i)
I = deJ&,b fdwf"a omc (fo )]'
_ o1 B v 110

—-I2 9 12?2 — 3}
= fdeja_¢[f a7 [ & f(o)(m P ik nyh_)]_ (1)

Here in the second equality, as in the case of I'1, the contribution from @

vanishes because v commutes with the heating operator @) and ) conserves
particles,

We explicitly evaluate the ¥ derivative, using J = ¢R?/I, and assuming
I = RBr =~ constant. Considering the ¥ dependence of 7, v,, ¢R?. and
1/Q2, the term proportional to v, in Eq. (41) is changed into

Pof (108" 1w 18R
3 (0) II Rt dgit

1 3Ivul_£3_3 ' .
ol B B@«p))' (42)

The first term in 'y, Eq. (42), has the form of diffusion, but it is exactly
equal and opposite to the component of I'; proportional to v,. Thus there
is no diffusive term in I’ proportional to v,. The only diffusion is due
to pitch angle scattering terms which are proportional to 1y;. The other

terms in Eq. (42) represent convective transport due to the asvmmetric
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banana-orbital effects between the radially inside and outside half of the
banana motions, as discussed in Sec. II. For example, the second term
in Eq. (42) is driven by the asymmetry due to the radial gradient in the
slowing-down collision frequency; the third term is driven by the magnetic
shear, or equivalently by the asymmetry in the orbital path lengths between
the inside and outside banana orbits; and the fourth and fifth terms are
driven by the asymmetry in the paralle! particle velocity and magnetic
field strength, respectively. Actually, the fourth and fifth terms are from
the same physical origin (8B /84), but the fifth term is of one order higher
in inverse-aspect-ratio than the rest and can be neglected. Making the
large-aspect-rativ approximation, using the relation

10 _10n _ 3 OL

v 8% n. 00 2T.8%’
and summing I'; and [ytogether, we find that the component T, of particle

flux T" proportional to the slowing-down rate is given by

_ U" (g) 1 dn, _ 3 AT, 1 dqR
r = (f ol [n, 3 . 0% LR Op
r 108
B 27,'<f L aw} (+3)

Here in the last term, which is from Qv/0y-term, the driving term 8B /9y
is smaller than the other driving terms by one order in inverse aspect ratio.
but it is multiplied by vi which is larger than vﬁ by one order in inverse
aspect ratio.

[, the part of I" proportional to 1/7;, is calculated in the same way as

for I';. Making the large aspect ratio approximation and thus neglecting v
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compared to »?, we obtain

L Iz_i (o)lv
rt-——mj&p [_/ ijds vfy Vn]- (44)

We note here that if one desires to be more accurate and keep vﬁ (compared
to v?) in the pitch angle scattering term, one should also keep the ion-ion
energy scattering effect in the Coulomb collision operator. The total flux
is then given by the sum of the slowing-down contribution, Eq. (43), and
the pitch angle contribution, Eq. (44): T' =T, + [,.

In order to make further progress, we need to evaluate explicitly the
flux-surface-averaged velocity space moments which appear in Eqgs. (43)
and (44). We will evaluate these moments using a mode} solution for f; o
which is approximately valid in the high energy limit, where the minority
ions collide primarily with electrons instead of the thermal ions, and the

RF-driven velocity diffusion is balanced by drag on the electrons:

1
1 = fu(E)AS(G - 5o), (45)
. M. 3/2 )
1= 27 _doJ
f% d8JB/\/1- B/Bp’
R] Ts
Tor = =

where Bp, is the magnetic field at rescnance, satisfyingw = Qp = Z,eBp/M,.
A is a coefficient necessary to make n, the flux-surface-averaged minority

tail density
(/a“vf“"> = 2,-.2/ dE/ duf® i 0:‘}%?/1%]
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1

4/3r /0 ” dEVES(E)

= Iy,

and +fp are defined as the poloidal angles of the turning points which are
identical to the poloidal angles of the ICRF-resonance points in the present
é-function approximation of the pitch angle spread. Notice here that fn
is the flux-surface- and pitch-angle-averaged particle distribution function,
and is the same as the isotropic solution of Ref. 8 in the high energy limit
where RF heating is balanced by drag due to collisions with electrons. The

flux-surface-averaged energy density for our model solution is just
3
( / d%fé“’M,E) = Saly;.

The normalization coefficient A can be expressed in terms of geometric
constants. Using J = qR?*/I, A can be written as

Ao 2J7, dOR?
[ d6R?B(1 ~ B/Bp)-\/?

Working to lowest order in inverse-aspect ratio with circular flux surfaces
R = Rq + rcosf and B = ByRy/R, this can be written in terms of the
complete elliptic integral K(m):

mf2r/ Ry

A= By K (sin’(8g/2)) -

If the resonance layer is near the low field side of the flux surface so that

fr < 1, then K = = /2.



The é-function p dependence means that all of the minority tail ions

© witl

have their banana tips exactly in the resonance layer. In reality, fg
have a finite width in u rather than this é-function dependence. But since
we only need a few velocity-space moments of féo), it is not necessary to
be highly accurate in the specification of f(o’ The peaking of fgo) around
u/E = 1/Bp can be seen from the numerical solution of Eq. (26) in Refs. 16
and 17, and from the experimental observations of Ref. 3. An analytic
solution for féu), which includes the finite width in g rather than a é-

function, has been derived in Ref. 18.

In Eq. (44), we need to evaluate the moment
1 n
o v v? Ui ~ e eff
(/ fé Qz 9 1/0'7 Tes Qo
where vy = /Toss/M; , and we have ignored the variation of 2 with
poloidal angle to be consistent with the large-aspect-ratio approximations

we used to derive Eqs. (43) and (44). We make the same approximations

to evaluate the moments needed for Eq. (43):

(] #osd) =on ' [228)

where {---]}s is now the bounce-averaging operator for orbits with their
banana tips in the resonance layer:

{BR —B} _ —ORJB(E'%R_B)W
5

Br EQ‘RJ’B (E%;_B)"”Z .

The other moment needed for Eq. (43) is
/da (u)pv_'_ odlnB ~ 1 fda 0) zalnB E
° T oy /| T 2, 9y | O
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-~ 3 n (I‘U,_U)z olnB
- 21’, ! Qo al,[) b.
Using the above expressions for the velocity space moments, we can

write the total particle flux, which is the sum of Egs. (43) and (44), as

' = I‘u+rtiy
_2_11 (Iv,”)z{BR—B} (33111’11 dlnn, _alnq)
o\ O Br 1y

L, = 378y  “ov D

3n (Ivy;\* [OIn B
-5 (72) {—37},, (48)

Ty = —-—--......(/' [1n c!!)

V' Oy 27r T 23

Continuing to work to the lowest order in inverse-aspect ratio, we approx-

imate
1 3 1 8 f 2015 qR"' 1 zq_
Vow Sviage qd%

Explicitly carrying out the 3-derivative in Ty, with the help of the above

approximation, we get

1 ne (Ivg\? (Olnn, _18InTyy +3lnn,— +31nq

r“=_\7ﬁn,( Qo ) ( a2 09 a | o ) - 14D

T,, the component of I' which is proportional to 1/7,, has a similar magni-
tude as the particle flux found in Ref. 4, but has a quite different physical
meaning since Ref. 4 had a purely diffusive particle lux while the present
[, is purely convective. This difference is due to the use of an overly sim-
plified RF heating operator in Ref. 4. In the slowing-down contribution

.. the electron-density-gradient-driven term is radially inward. while the
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other terms drive particles radially outward. In the pitch angle contribu-
tion Ty, the convective terms are small compared to I', and are neglected
to be consistent with the present approximation. And thus T, is diffusive
ta the lowest order and may have some, if any, significance. In the usual
case where 9n,/0% < 0 and 8T, ;; /3% < 0, the tail density gradient drives
tail ions outward, while the tail temperature gradient drives them inwards.

We shall make some more remarks on the diffusive particle flux. Ty,
being proportional to the pitch angle scattering rate 1/7, is the traditional
drive of neoclassical banana transport and leads to a diffusive component
in the particle flux. However, the dependence of the aspect ratio is not
traditional. This is because we have assumed that all of the minority ions
are trapped due to the perpendicular heating from ICRF waves, while in
the usual case where f{” is isotropic, only a small fraction, ~ m, of the
particles are trapped. This assumption is valid only if the minority ions are
sufficiently energetic so that the pitch angle scattering rate is sufficiently
small compared to the slowing-down rate. Analytic and numerical solutions
for fém indicate®'® that this requires T.;; > (R/r)E., where E_; is the
critical energy above which collisions with electrons exceed collisions with

tons. If all of the gradients are of the same order

SInT. o Slnn, N dlnn, N dInT,y; - dlng
) o P Y o’

then I';; will be small compared to I, in the high energy regime where
our expressions for the particle flux are correct. We have retained the Ty

component, however, because of its relationship to *he usual neoclassical
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transport, because it alone contains a diffusive component, and because
0InT,s; /0y may be very large compared to other gradients in cases where
the ICRF power is highly focussed near the axis (since T.;; < Ppr) while

the background pressure is relatively flat.

B. Radial Energy Transport of Tail Ions

The radial energy flux calculation is similar in many ways to the particle
flux calculation, so we will leave out most of the intermediate steps. The

radial energy flux in the present work is defined as
1
Q - (/ Lo (L) - 7p) f[1)> ,
Tesy
- / &P ﬂ;; L F
P ety Il 1

where @ is defined in such a way that the energy loss from a flux volume

is expressed as

V. (4Q) = (V'Q)

V’ dy
and the :ole survival of f“) in the expansion of f is as explained in the
particle flux calculation.

As in the particle flux calculation, we divide @ into two parts using

Eq‘ (24)\

Q [0} Qs
= (48
Tess Tyy Ty )

3]

% - (/e () ).
eff Veyy
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Ty 2(]110 (veu) % Vh >

The perturbed function _fl in the expression for Q, is easily changed into

) by using Eq. (36). In the expression for Q,, following exactly the same
procedure as for I';, we use Eq. (16) and integration-by-parts in 6 to express
Uy - me in terms of its parallel derivative #i - Vfé”. ﬁsing Eqgs. (22) and
{36) for fm and f(o), we can then express ¢, and Q; in terms of féa) as

Q:l _ 1 v i!Iv" - I'!J”af(go)
m = 3/ e () e @)

Q; 1 18|, || s £(0)
T, = -———4113”_‘773:/1 [V <./¢va —+C"(fs )

The direct RF contribution to the heat flux through the RF quasilinear

follows:

operator @ (in C* = C + @) no longer vanishes exactly for general féo)
as it did in the case of the particle lux. However, due to the fact that
@ = 0 everywhere except at resonance and vﬁ /¥* < 1 at rescnance, the Q
contribution will be ignored compared to the C contribution.
The collision operator in the above equations can be simplified by integration-

by-parts, yielding

& () (5 )
Q ']
ffz; - eftV’f"l’ [V <[d3"v ( ) £ (””“n—%m:v?»],

where the pitch angle scattering frequency is smaller than the slowing-

down scattering frequency by approximately an inverse-aspect ratio. but

v vfl ~ p,v?® as explained earlier.
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Notice here that the diffusive term in @Q; proportional to the slowing-
down rate (the component of Q; proportional to v,8 fém /8w)} does not can-
cel @, exactly, as seen in the particle flux case. Thus, unlike the particle
flux, we will have a diffusive radial transport of tail-ion energy due to
the slowing-down collisions. The difference between the radial particle and
energy fluxes is in that there is no particle source in the velocity space scat-
tering operator, but there is a strong energy source in the RF-scattering
operator and a strong energy sink in the slowing-down operator. The mi-
nority tail ions absorb power from the RF waves on one flux surface, and
give power to electrons (via slowing-down collisions) on other flux surfaces
during bana;la motions (see Fig. 1). This finite banana-width spreading
of the RF power is represented by the diffusive terms in Q proportional to
the slowing-down rate.

In the particle flux calculation, the pitch-angle-scattering contribution
is kept, even though v; < v, is true. This is because it contained the only
diffusive transport process. However, in the case of the energy transport.
the bigger slowing-down scattering contribution contains diffusive terms,
and thus, keeping the higher-order diffusive terms from the pitch-angle-
scattering contribution is meaningless in the present situation, where the
minority tail lons are so energetic that v; /v, < r/R is true.

Rather than explicitly evaluating afo JO¢ in @y, it is convenient to

interchange the order of i-derivative so that only integrals over féo) are



needed, ie.,
1?,1, = T”j'dGJ “Tz/‘w/d" & (ﬁ)
2:” F2v(feon( ) ey fm,>]

2ugy; (/a“v . (g) |f(m In(vs T Blyy) >

The rest of the calculation of the energy transport is parallel to the cal-

(0]

v /#73)

culation of the particle transport. After some straightforward algebra, we

obtain

Q = Qd+Qcy
Qd _ _1572, Iv,” 2 BR—B _]_._% _l_aT,]] .
T T, (Qo) { Bp }, 2n,a¢+T,,, ov |’ (49)
Q. _ _l5m (Iv,,,)’{Bn—B} 309, 10n. 19y
Teyy T, Q Br Jy|2T. 0% n. 0% qdv

+ {22}

"y
_ 45n, Tveyy 2(9InB -
47'_, ( QQ ) al,b 6 ! (00)

where we have separated @ into two components; ¢y the diffusive com-
ponent and &, the convective component. The pitch-angle contribution is
neglected here because, unlike the particle flux case, the diffusive terms ap-
pear in bath slowing-down and pitch-angle scattering contributions. And
the slowing-down contribution is always bigger in our ordering where the
minority ions are so energetic that r, /7, < r/R is true, as explained earlier.
We can see from Eq. (49) that the diffusive components of @ are radially

outward in the normal case.
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IV. Discussions

We have studied the neoclassical kinetic behavior of the energetic minor-
ity tail ions generated by strong ICRF heating at the fundamental harmonic
frequency, and obtained simple kinetic expressions for the radial transport
coefficients of the tail minority ions. It is found that the radial particle
transport by the Coulomb slowing-down collisions on the background elec-
trons is purely convective. The only diffusive particle transport of the tail
ions is from the weak pitch angle scattering on the background ions and
is usually smaller than that of convective particle transport. On the other
hand, the radial energy transport by Coulomb slowing-down scattering has
both diffusive and convective terms, due the spread of the energy absorbed
by the particles from the RF waves to the background electrons during the
banana motions.

The rate of radial particle transport is small, of order one banana width
in a slowing-down time. DBut the rate of energy transport is larger due
to the non-Maxwellian nature of the tail distribution function, and the
tail ions can radially lose non-negligible amounts of their energy before
they are slowed down by collisions with the electrons. As discussed in
the introduction, it is probably important to include both collision-driven
transport of the present work and the RF-driven transport of Ref. 5 in the
analysis of ICRF heating cases like in JET®7 where the RF-power profile is
so well focussed and the tail becomes so energetic that the banana widths

of the tail jons become a significant fraction of the RF-power profile width.
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Since the direct effect of ICRF waves on radial transport is absent in the
present analyses (due to the assumption that &) = 0), only Coulomb colli-
sions are responsible for the transport and thus the total particle transport
must be automatically ambipolar.!® For the case when &) # 0, there will be
some additional transport directly driven by the ICRF waves as discussed
in Ref. 5.

Our expression for the particle flux I and the energy flux Q, a. presented
in Eqs. (46, 47, 49, and 50), are valid for a large-aspect-ratio, low-3 tokamak
with arbitrary flux surface shapes. For a large-aspect-ratio tokamak with
circular concentri¢ flux surfaces, using the relations B o« 1/R o« 1/(R, +
rcos@), 8y /8r = rB/q, and cos® =~ 1 — §?/2 valid in the deeply trapped

particle limit, we can obtain the following approximation:

{BRB; }b = 2(BRBRM) Jitc,(1 cos br),

dln B q ‘
{ al,b }b -~ —m{cosﬂ}b,

where By, is the minimum value of B on the flux susface correspending

to § = 0 and R, is the value of R at the magnetic axis. And thus, for
a large-aspect-ratio tokamak with concentric circular flux surfaces, we can

transform our results as follows:

= 1a _.
. = (e} -
v.T rar(“ ) (51)
3nyr (v 2 301nT 3lnn dlng
TN — ___'__( Cff) —cos B e _ §
3% B\ R/ (L7375, ar ar
3711 1 Very
+§?’}—2 (Q ) {cos 8},

38



1 n (v,ﬂ)z dlnn, _ _l_alnT,” + Olnn, + 2lng
V27 7 \ Qo or 2 0r or or |
where Qg = Z,eBgo/M;c is the poloidal gyrofrequency averaged over the

flux surface and {cosf}s =~ 1~ 6% /4 can be used in the deeply trapped limit

@ < 1. Likewise, the energy balance equation in circular geometry is

G = 19 .0m o
v (Q = -5 Q") (52)
Qi 15n r (v,,,)? OinTeyy
X 2Bl f¥yr — cos Bp) | ==L
Ty 2 7 R\ Qo (1 — cosBg) or

18Inn + gz'ﬂnTe 3 dlnn, _ ding
2 ar 2 Or ar or

45m1 (m) 4 {cost
4 1, R\ Qo [3(1 — cosfp) + {cosOh].

(83)

The rate of radial particle flow is found to be about one banana width
in a slowing-down time. Thus, the loss of fast particles from the central
plasma region (which is over several banana widths in radial thickness) is
small within a slowing-down time. But the rate of radial energy transport
is much faster than a banana width in a slowing-down time. Hence the
radial transport processes discussed here should be included in the detailed
modeling of the main-plasma heating by the tail ions, which occurs in a
slowing-down time scale, and in the analysis of the experimental tail-ion
data.

In the ealculation of the present neoclassical transport rate, a simple
(but realistic) anisotropic tail distribution function has been assumed by

taking the limit of small pitch angle spread. The present model distribution
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function reduces to the isotropic model solution of Ref. 8 when integrated
over pitcw angle. Different models of anisotropic tail distribution functions,
like those given in Refs. 16 and 18 may yield somewhat different resuits,
However, since all the information we need from the lowest order tail dis-
tribution function is a few velocity moments, it is expected that ail the
essential features of our diffusion coefficients are unchanged, only the nu-
merical coefficients may change a little. We have actually evaluated the
differences in the transport coefficients and found that the present model
distribution function yielded a little larger coefficient value then other mod-
els quoted above did. Thus we may regard the present transport rate as an
upper bound to the neoclassical loss of fast ions.

The present analyses may not be valid in the transport estimation of
another possibly important class of ICRF-driven minority ions, which is the
lower energy tail ions near the critical ion-electron slowing-down energy. In
this case, the Coulomb pitch angle scattering will be as strong as the energy
scattering and thus the localization of the tail ions near the resonance pitch
angle is not possible. Thus, more elaborate analyses of the tail ion kinetics

in connection with the passing-trapped traasition become necessary.
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Figures

FIG. 1. Schematic diagram of a fast ion’s banana motion. It is heated
at the banana tips and cooled during the banana motion. The verticle
dashed line represents the resonance surface where the particle is taking

energy from the RF wave.

FIG. 2. Convective radial motion of a fast ion due to the asymmetric

amount of drag between the outstde and inside banana motions.
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