
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT U R B A N A - C H A M P A I G N

REPORT NO. UIUCDCS-R-90-1563 UILU-ENG-90-1701
DOE/ER/25026/34

WAVEFORM METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS

January 1990

by

Fen-Lien Juang

DISTRIBUTION Ot THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

D
IS

C
LA

IM
ER

m H 23 ro c; d o 9 s £6 o o c

cr n> O p D
-

C P fB O

° 1=3 n
p

(W

A cr A CL A 00 ►1 A A

m

g
|

g-
 O

s-'
 £

O.
 B

'
o'

-o p Ct*
S-
 c

r
5

'
^

O

O

M

g 3 A P

o
 g

*
5-

3
O

^
3 c

_
*—1 •

o

*-»

T3
 3

cr
 a o

o
o

*0

■~*i
cr

O p p ct
- o M *^
1

O o to oo 't W W to on O to 0
5 P P CL

e
j

W W > | p 0
5 00 o

O C?3

co o rf*
-

O
l

^0 W
H

^

Q

Q
 O

2
Q

M

f o
 d

>

h

?
 w

C
d
^

Z

CO
d
 o

M
S o H

T
hi

s
re

po
rt
 w

as
 p

re
pa

re
d

as
 a

n
ac

co
un

t
of

 w
or

k
sp

on
so

re
d

by
 a

n
ag

en
cy

 o
f

th
e

U
ni

te
d

S
ta

te
s

G
ov

er
nm

en
t.

N
ei

th
er

 t
he

 U
ni

te
d

S
ta

te
s

G
ov

er
nm

en
t

no
r

an
y

ag
en

cy
 t

he
re

of
,

no
r

an
y

of
 t

he
ir

em

pl
oy

ee
s,
 m

ak
es

 a
ny

 w
ar

ra
nt

y,
 e

xp
re

ss
 o

r
im

pl
ie

d,
 o

r
as

su
m

es
 a

ny
 l

eg
al
 l

ia
bi

lit
y

or
 r

es
po

ns
i­

bi
lit

y
fo

r
th

e
ac

cu
ra

cy
,

co
m

pl
et

en
es

s,
 o

r
us

ef
ul

ne
ss
 o

f
an

y
in

fo
rm

at
io

n,
 a

pp
ar

at
us

,
pr

od
uc

t,
or

pr

oc
es

s
di

sc
lo

se
d,
 o

r
re

pr
es

en
ts
 t

h
at
 i

ts
 u

se
 w

ou
ld
 n

ot
 i

nf
ri

ng
e

pr
iv

at
el

y
ow

ne
d

ri
gh

ts
.

R
ef

er
­

en
ce

 h
er

ei
n

to
 a

ny
 s

pe
ci

fi
c

co
m

m
er

ci
al
 p

ro
du

ct
,

pr
oc

es
s,
 o

r
se

rv
ic

e
by

 t
ra

de
 n

am
e,
 t

ra
de

m
ar

k,

m
an

uf
ac

tu
re

r,
 o

r
ot

he
rw

is
e

do
es
 n

ot
 n

ec
es

sa
ri

ly
 c

on
st

itu
te
 o

r
im

pl
y

it
s

en
do

rs
em

en
t,

re
co

m
­

m
en

da
tio

n,
 o

r
fa

vo
ri

ng
 b

y
th

e
U

ni
te

d
S

ta
te

s
G

ov
er

nm
en

t
or
 a

ny
 a

ge
nc

y
th

er
eo

f.
 T

he
 v

ie
w

s
an

d
op

in
io

ns

of
 a

ut
ho

rs
 e

xp
re

ss
ed

he
re

in

do

no
t

ne
ce

ss
ar

ily

st
at

e
or
 r

ef
le

ct

th
os

e
of
 t

he

U
ni

te
d

S
ta

te
s

G
ov

er
nm

en
t

or
 a

ny
 a

ge
nc

y
th

er
eo

f.

P P P P >-1 CO CO O

*1 A l A p C-
H

P

cr

O o ►—
I

o
M

2

H
 H

^
 a

o

„
 o

H
 c

fl
<0

 »
T|

g
g

l-
H

O Cf
l

Z i ^
5

z

m

i

o

o

n

o
vo

td

o

\

PJ

§

^
<T

i
tO

cn

ut

vo

o

o
j

to CT
5 1 I to •u

REPORT NO. UIUCDCS-R-90-1563

This work is lovingly dedicated to my parents

Kuei-Wei Juang and Yeh Hsieh,

my grandmother, Hsiao-Luan Hsieh

and my husband, Hsin-Fong Chen.

Acknowledgement

I would like to express my deep appreciation and gratitude to my thesis advisor, Professor C.

William Gear, for his guidance and financial support during the years of my graduate study. I

am also grateful to my advisor for his careful reading of the preliminary drafts and numerous

comments during the preparation of this thesis. I also like to thank the other members on my

committee, Professors Sameh, Saylor, Skeel, and G alii van for their interest in my work and to

all who have helped me throughout my academic life.

Thanks to the former and current occupants in 31 corridor, Ben, Dan, Jerry, Jim, John,

Mike, Ren-Li, Ruth, Steve, Tam, Tom, Tony and Mr. Xu for their friendship. Special thanks

to Sohail for his expert help in so many things.

I thank my parents and my grandmother for a lifetime of love find support. Finally, I am

glad to thank my husband Hsin-Fong not only for his suggestion on the content and style of

this thesis but also for his constant encouragement and support.

iv

Contents

1 Introduction......................... 1

2 Waveform Relaxation .. 3

2.1 Basic Idea... 4

2.2 General Iteration Formula... 8

3 Accuracy Increase in Waveform Relaxation .. 12

3.1 Taylor Series and Waveform Relaxation... 13

3.1.1 Picard Method... 15

3.1.2 Waveform Relaxation .. 17

3.2 Order of Accuracy and Accuracy Increase.. 20

4 Accuracy Increase in Waveform Gauss-Seidel.. 31

4.1 Accuracy Increase for A Subsystem... 32

4.2 Accuracy Increase and Dependency Graphs... 35

4.2.1 Accuracy Increase and Ascending Chains.. 36

4.2.2 Accuracy Increase in a Single Cycle ... 41

4.2.3 Accuracy Increase in General Graphs .. 47

4.3 Average Accuracy Increase ... 53

4.4 Conclusion .. 59

5 Variant Gauss-Seidel Approaches.. 61

5.1 Hierarchical Gauss-Seidel and Regrouping.. 62

5.2 Efficiency for Variant Gauss-Seidel Approaches... 69

v

6 Numerical Experiments

6.1 Implementation . . .

6.2 Numerical Results .

72

72

75

6.2.1 Linear Problems....................... 76

6.2.2 Solution of a Wave-Like Equation .. 119

6.3 Efficiency of WGS.. 129

7 Summary... 134

Bibliography.. 136

Vita... 138

vi

Chapter 1

Introduction

Large dynamical systems are likely to be described by variables that change at very different

rates. The traditional approach to solving this kind of problem is to discretize all the variables

with an identical mesh. This forces one to choose a mesh that is fine enough to accurately

reflect the behavior of the most rapidly changing variable. Stiffness may force the use of implicit

integration methods. The application of an implicit method involves the solution of a system of

nonlinear algebraic equations. Due to the large dimension of a big system and the size of a fine

mesh, an enormous processing time is inevitable. In addition to the cost consideration, real time

and interactive applications require fast response. Approaches to reduce the processing time

by taking advantage of the multirate property of a large system of DDEs have been suggested

by Gear and Wells in [3, 4, 14]. These approaches are, first, to partition a big system into

several subsystems, then to solve each subsystem independently (i.e. using different time steps

or different methods for each subsystem). These approaches are called multirate integration

methods.

One major problem of classical multirate integration (as discussed, for example, in [4, 14])

is the overhead of coordination between the subsystems. The coordination is needed at each

step to pass current information between subsystems. The waveform relaxation method (see

[7, 8, 15, 16]) is am approach which circumvents these problems by iterating the integrations

using the old information from other subsystems. In this thesis, the waveform iteration will be

studied under the assumption that the integrations aire performed exactly.

Waveform relaxation has been shown to converge superlinearly on finite intervals by Nevam-

1

linna in [11]. In this thesis the order of accuracy of solutions generated by the waveform relax­

ation method is discussed. The order of accuracy of an iterate is characterized by the number

of correct terms in its Taylor series. (A term in an iterate’s Taylor series is correct if it matches

the corresponding term in the true solution’s Taylor series.) We will show that the accuracy at

each step of the iteration is at least one order higher than the accuracy at previous step. Under

some certain conditions the increase in order of accuracy after each iteration can be improved

dramatically.

The waveform relaxation method is reviewed in Chapter 2 and two iterative approaches,

Waveform Gauss-Seidel (WGS) and Waveform Jacobi (WJ) are discussed briefly. Sev­

eral waveform relaxation methods based on different splittings are discussed. The waveform

relaxation method is a generalized Picard method. Each approximate solution generated by

the Picard method has one more correct term in its Taylor series than its previous one. In

Chapter 3 we use some examples to show how the correct terms in the Taylor series of iterate

generated by different waveform relaxation methods increase. Then we define the order of

accuracy of an approximate solution and show that the order of accuracy of successive approx­

imate solutions generated by the waveform relaxation method is increasing. In Chapter 4 we

will show that the increase in the order of accuracy after each Waveform Gauss-Seidel iteration

sweep is related to a system’s partitioning and ordering. After a system is partitioned, the

coupling relations among all subsystems can be indicated by a directed graph. Such a directed

graph is called a system’s dependency graph. We will prove that the average accuracy increase

in waveform Gauss-Seidel is equal to the minimum ratio of Cjd among all cycles in a system’s

dependency graph , where <7 is a cycle length and d is the number of times the numerical num­

bering of nodes in this cycle decreases. In Chapter 5 we will discuss some variant Gauss-Seidel

approaches which can achieve better accuracy increase when being used to solve systems with

special type of dependency graphs. In Chapter 6 we will discuss some implementation issues

of the multirate integration method in waveform relaxation setting. We will present some nu­

merical results from an experimental package for solving systenas of differential equations by

waveform Jacobi or waveform Gauss-Seidel. From the results we can see that the numerical

results matches the theoretical results discussed in Chapter 4.

2

Chapter 2

Waveform Relaxation

Waveform methods were first proposed [7, 8] in the context of VLSI circuit simulation where

they were used to solve differential-algebraic equations (DAEs). In this thesis we will examine

their effectiveness for the solutions of ordinary differential equations (ODEs) which are special

case of DAEs. The high cost of fabrication makes it important to verify the design of an

integrated circuit by using simulation. One technique is to first construct a system of nonlinear

ODEs that describe the given circuit, and then to solve the system with a numerical integration

method. This is called circuit simulation [10].

The standard approach of solving ODE systems is based on three techniques [3, 10, 16]:

1. Using implicit integration methods to discretize the system of differential equations. (If

the equations are stiff, stiffly stable methods must be used.)

2. Using a functioned iteration or modified Newton method to solve the system of nonlinear

algebraic equations obtained at each time point of the discretization. (If the equations

are non stiff, only one functional iteration is needed, if stiff, an average of slightly more

than one Newton iteration is needed.)

3. Using a direct method to solve the system of linear algebraic equations generated by

Newton’s method. (If the equations are non stiff, this last step is not necessary.)

As the size of ODE system grows, the standard approach can become inefficient. This is

because the large systems usually contain variables that change at very different rates. The

direct application of integration methods forces one to discretize adl the variables identically

3

and the discretization must be fine enough to accurately reflect the behavior of the most

rapidly changing variable. If each variable in the system could use the largest possible timestep

that would accurately reflect its behavior, i.e. if we could use different stepsizes for different

variables, then the efficiency of the simulation could be improved greatly. Approaches that

allow different stepsizes for different components in solving systems of ordinary differential

equations are called Multirate Integration Methods [3, 4, 14].

In contrast, waveform methods apply the iteration first to define, by a sequence of differen­

tial equations, a sequence of functions of time (“waveforms”) which converge to the solution of

the differential equations. The discretization of the resulting differential equations is done as a

second step. Waveform methods can result in systems of ODEs which fire mutually decoupled.

This not only reduces commumcation requirements (in parallel processing) but also permits

simple implementation of multirate integration.

Since the main computational bottleneck in solving stiff ordinary differential equations

is the implicitness of the ODEs (numerical stability), it may be conceptually beneficial to

apply iterative techniques in continuous time before discretization to handle implicitness [12].

Waveform Relaxation method is a class of continuous-time iterative methods, which was first

used to speed up the simulation process of integrated circuit design [7] by allowing the individual

variable of the systems to use different timesteps.

In this chapter we will review the basic idea of Waveform Relaxation method. Two popu­

lar approaches, Waveform Gauss-Seidel and Waveform Jacobi, will be presented in Sec­

tion 2.1. General iteration formula of waveform relaxation will be given find several convergence

properties will be discussed in Section 2.2.

2.1 Basic Idea

Waveform relaxation is a family of iterative methods that are applied to solve systems of

ordinary differential equations. One of its basic ideas is to partition a big system into loosely

coupled subsystems and to solve each subsystem independently over a part of the integration

interval called a window. The coupling between subsystems is neglected in the sense that at

each iteration sweep each subsystem is solved by using past values of other subsystems over

4

the window. The iterative process is continued until satisfactory convergence is obtained for

each subsystem in a window. The same iterative process is performed in every window along

the time axis until the entire integration interval has been considered. At each iteration sweep

of waveform relaxation, every subsystem is discretized differently according to its behavior in

the window. At the first iteration sweep, zero-th order (constant) extrapolations are usually

used to approximate the values of variables in other subsystems; at later iteration sweeps,

interpolations within the window are used to approximate the needed values. A waveform is a

continuous representation of a solution component on a window.

Consider the following autonomous system of ordinary differential equations

where u 6 Rn, and F : Rn —► Rn. Using waveform relaxation to solve (2.1), the system is first

partitioned into m coupled subsystems

1 < i < m, is solved independently by using past values of «i,..., «*_!, Ui+i,..., um.

For simplicity, in this section we only discuss systems which are partitioned into two sub­

systems, that is, the case m = 2.

u = ir(u), u(0) = Uo (2.1)

«1 = /l(«l,U2>---5Um), «l(0) = ttl.Q

■Um — /m('ul» u2? • • •» ^m)? t*m(0) — 'um,0

«t(0) = Ui,0

«1 = /l(“l,«2) «l(0) = ti1,O (2.2)

^2 = /2(ui,U2) U2(0) = tl2,o (2.3)

The extension to arbitrary m is straightforward.

5

The idea of waveform relaxation will be illustrated using the two-time-scale system charac­

terized by Eqns. (2.2) and (2.3). We assume t € [0, T], a finite interval.

Waveform Gauss-Seidel

In this approach, an initial guess to the solution of (2.2) or (2.3) is required to start the

iterative process. Let us assume u^t) = U2,o, is the initial guess. We integrate Equation (2.2)

with respect to ui,

= /i(«i,4°])» ui(°) = “i.o

to obtain the first approximation, to the solution. We then plug into Equation (2.3)

and integrate (2.3) with respect to U2,

u2 = f2(u[l,U2), u2(0) = u2io.

We obtain ^ on approximation to the solution. Next is plugged back into Equation (2.2)
f2land this equation is reintegrated to obtain , which is a better approximation to the solution.

This iterative process cam be written in the form

W= AO*?1 2 3 4.*?'11). 4fcl(0) = “i.o

?' = Af-F.-F), . 4fe](0) = 112,0 .
for A > 1,

4° (0 = “2,0-

The process is terminated when the differences between the successive iterates are suf­

ficiently small. To summarize, the waveform Gauss-Seidel method can be described by the

following:

Algorithm 2.1: (Waveform Gauss-Seidel Algorithm for solving Eqn (2.1))

1. Partition system u into a number of subsystems, ui,..., um.

2. Set the iteration count, A = 0.

I’M3. Guess initial waveforms for all variables, for example, u\ (t) = Vf £ [0, T).

4. Repeat

6

(a) Increase iteration count, k = k + 1.

(b) For each (i G {1,..., m}) { solve

“[fcl(0 = Mui\ •••> «Sfcl» <£i1]> • • • > “m 1]) u|fe](°) = “i,o

for (u[fc3(t); t G [0, t]) }

(c) Until (maxi<i<m maxtgfo^] || «i*3(t) — ujfe-l3(t) ||< e, a small positive number.)

Note that the differential equation in Algorithm (2.1) has only one unknown variable

u[fc3. The variables .. .,Um-13 are known from the previous iteration and the variables

uj*3,..., have already been computed.

Waveform Jacobi

In this approach, initial guesses tJj_o3 and are both required. Assume ujj°3(t) = tii,o and

U2°3(t) = «2,o for t S [0, T]. Then the following equations

ni = «i(0) = tii.o

U2 = /2(ui , u2); U2(0) = «2,0

are integrated to produce better approximations u313 and u^13. Then the initial guesses u|°3 and

Uj03 are replaced by u^3 and u^, and the process is repeated to obtain and u^, the new

approximations.

The iterative process can be written as follows:

4fel = /i(uie]>u2t_11)> 4fc](°) = ui,o 1
> for fe > 1,

= /2(ttf“l3,4fcl). 4fel(0) = U2,oJ

4°3(t) = u1)0, 4°!(f) = U2,0-

The process is ended when both approximations converge. This method is suitable for

implementation on multiprocessor computers since each subsystem can be handled by a different

processor. The Waveform Jacobi method can be summarized by the following:

Algorithm 2.2: (Waveform Jacobi Algorithm for solving Eqn (2.1))

7

1. Partition system u into a number of subsystems, uj,.. .um.

2. Set the iteration count, k = 0.

3. Guess initial waveforms for all variables, for example, u^(£) = u^)0 Vt 6 [0, T}.

4. Repeat

(a) Increase iteration count, k = k + 1.

(b) For all (i € {1,..., m}) { solve

= /»(4fe-11>---»«t"i1]stiSfcl,u^1],...,u^_l1) «ife](°) = ui,o

for (uSfe](£); t e [0, t)) }

(c) Until (maxi<i<m maxtg^x] || ^(t) — uifc-1^(£) ||< e, a small positive number.)

The obvious attraction of WJ method is that each subsystem can be integrated indepen­

dently of the others in parallel. In the WGS method, the subsystems are integrated in sequence

using the most recent values of the other subsystems. Both of these are particular examples of

the general idea of splitting which will be discussed in next section.

2.2 General Iteration Formula

The idea of partitioning an ODE system can be generalized as splitting the right hand side of

the ODE system in (2.1). Let ^(u, v) be chosen so that ^r(u, u) = .F(u) and u = JF(u, v) is

easy to solve for any given v. Then the iteration formula is

ulfc+1] = ^(u^uM),' u[fc+1](0) = uo

with u[°l(i) = Uo. If we choose the splitting such that

U = JF(u,v)

= G(u, v) + p^v) - G(v, v)

or

u - G(u, v) = E’(v) - G(v, v), (2.4)

8

the general iteration formula for waveform relaxation is then

uM - G{vtk+1\ uM) = F(uW) - G(uW, uW), u^k+1\o) = uq (2.5)

where is the kth approximate solution generated by waveform relaxation. Suppose G

is chosen so that the Jacobian matrix in Eqn (2.5) is block diagonal or block triangular, it

is equivalent to the ODE system being decoupled into smaller subsystems and hence each

subsystem can be solved independently or sequentially.

Different iterative methods can be derived from different splittings of the right hand side

of the ODE system. Several iterations based on different splittings of the right hand side of

Eqn (2.1) are listed below.

Example Is If G = (gi,ffm)* and

0;(u[fc+l1, uW) = , u£!i, , U&1), 1 < i < m

where F = (fi, /g,..., /m)4? then, by the definition of G, G(uW, uW) — ^(uW) = 0 in (2.5). So

u[*+1! = G(u[fc+1],uW), u[fc+1](0) = uo,

is the iteration formula of waveform Jacobi. Under this splitting, the Jacobian matrix of the

iteration formula is block diagonal, so each subsystem can be solved simultaneously. Hence

waveform Jacobi is suitable for parallel computation.

□

Example 2: If G = (gu g2,..., gmf and

0i(uIfc+l1, uw) = /i(u?+l1, • • M u[.fc+l1, uSJj,..., uW), 1 < i < m

where F = (/i, /2,..., /m)t5 then, by the definition of G, G(uW, u^l) - JF’(uW) = 0 too in (2.5).

So the iteration formula of waveform Gauss-Seidel is

u^+i] = G(utfc+1l,uw), u[fe+1](0) = uo.

9

Under this splitting, the system is partitioned into loosely coupled subsystems and the Jacobian

matrix of the iteration formula is in lower block triangular form, so each subsystem will be solved

in sequence.

□

Example 3: If G is chosen so that

dF. .
<?(u>v) = -^(v)-u>

where |^(v) is the total derivative of F at v then we get the waveform Newton method:

_ F(u[k]) + |-(uw) • (u[fe+1] - UW) u[fc+1](0)

or

u[fc+1] - !^(uW) • u[fe+1] = F(uw) - |^(uw) • uw u[fc+1](0) = Uo.

In this iterative approach, the Jacobian matrix of the original system has to be computed at

each iteration sweep, so if the system is very large it is impractical.

□

Example 4: If we choose the splitting G(u, v) = 0, that is,

i^fe+i] = i?(uW)? u[fe+1](0) = u0

then we have the classical Picard method. As an iterative method, Picard is superlinearly

convergent on any finite intervals [11].

□

We want to choose a splitting to accomplish severed objectives: we want fast convergence,

and for this, G(u, v) should, in some senses, be like F(u); and we would also like the ODE

(2.4) to be easy to integrate (by choosing a very simple function G). The Picard method yields

the simplest integration: it is only a quadrature. However, its convergence is slow unless F

is almost independent of v. WJ and WGS require slightly more complex integrations, but

they are simpler than the original problem because it has been reduced to a number of simpler

subsystems. The important characteristic of these two splittings is that no communication

10

from other subsystems is needed during the integration of a single subsystem; it can happen

prior to the integration. The goal of fast convergence is achieved by methods like waveform

Newton in which we choose

G(u>v) = ■^(v)'u-

For this, <7(u, v) “looks like” -F(u) in that their first derivatives are identical at u = v. Note

that the error in successive iterates of a waveform method, — u satisfies

#+1] + Gue[fc+1] = (J?T - Gu)6W - 0(eW + etfe+15)2. (2.6)

In waveform Newton, the first term on the right-hand side vanishes.

The fast convergence properties of waveform Newton are offset by the greater cost of each

iteration. First there is the expensive computation of dF/d-v at each step. Second, when the

system of ODEs is very large and we try to integrate them on a parallel processor, there will

be extensive communication between subsystems which destroys the potential advantages of

parallel execution.

Finally, we summarize some convergence properties of waveform relaxation method. In

order to guarantee that waveform relaxation applied to Eqn (2.1) will converge to the systems’

solution, we first must guarantee that Eqn (2.1) has a solution. If we require that F is Lipschitz

continuous with respect to u, then a unique solution for the system exists [3]. In [16] it is shown

that the waveform relaxation algorithm is a contraction mapping in an exponentially scaled

norm and in [11] waveform relaxation is proved to converge superlinearly on any finite intervals.

In the following chapter we will look at waveform relaxation from a different point of view.

Instead of discussing the convergence property of waveform relaxation, we will discuss how the

order of accuracy of successive approximate solutions increases.

11

Chapter 3

Accuracy Increase in Waveform
Relaxation

In this chapter, we will look at waveform relaxation from a different point of view. Instead of

discussing the convergence property of waveform relaxation, we will discuss how the order of

accuracy of successive approximate solutions increases. We use Taylor expansions to demon­

strate that the waveform relaxation method is Picard-like. That is, the waveform relaxation

method can be considered as a generalization of the classical Picard method in the sense that

the Taylor series expansions of successive approximate solutions generated by both methods

have more and more terms coinciding with the Taylor series expansion of the exact solution. So

when many iterations are performed the iterative solution will be a good approximant of the

exact solution. In the Picard method each successive approximate solution gains exactly one

more term in its Taylor series expansion, while in the waveform relaxation method the gains

can be more than one. We will assume continuity of as many derivatives as necessary for our

analysis.

In Section 1 we study some examples to see why waveform relaxation method can be

considered as a generalized Picard method. From the examples given , we can see that the

Taylor series expansion at each iteration matches a certain degree Taylor polynomial of the

exact solution. As the iteration continues, the degree of the matching Taylor polynomial gets

higher. This phenomenon motivates us to discuss the idea of order of accuracy.

In Section 2 we define the order of accuracy of an approximate solution and use it to prove

Theorem 3.2 and Theorem 3.6, and a corollary that tell us how the order of accuracy increases

12

after each iteration sweep.

3.1 Taylor Series and Waveform Relaxation

Different splittings yield different waveform methods with different convergence properties.

All waveform relaxation methods converge superlinearly on any finite interval so it is not

possible to use a measure like rate of convergence to compare different splittings. In this

section we consider, instead, the rate of increase in the order of successive approximations.

In order to understand the motivation for discussing the order of accuracy of approximate

solutions generated by iterative methods, in this section we will use some instructive examples to

demonstrate how the Taylor expansions of the exact solution and of the approximate solutions

generated by waveform relaxation method axe related.

Consider Picard applied to the simple problem y' = y, y(0) = 1 starting from the approxi­

mation y^(t) = 1. The k-th. iterate is y^(t) = 1 + t + t2/21 + . ..+tk/kl. Each successive iterate

has one additional correct term in its power series. This is not peculiar to simple problems.

A Riccati equation, which will be solved by Picard and two forms of waveform relaxation is

discussed below. (All the coefficients of the Taylor series and of the error terms in this section

were computed with Mathematica [17].)

Consider the following Riccati equation:

u = u — 2u2, u(0) = 3. (3.1)

The exact solution to this equation is

1

It’s Taylor series expansion up to the 32™* power of t is listed below.

u(t)

3583811f6
48 336 2688

298031091301f9
24192

13

16346453844611t10 986230018285381tu
+

843006100707823t12
414720

>5595387775957286905743t18
5543180697600

24547781348408817799272276401161f20
14744860655616000

+

+

L918090U25
+

r974909801t26

L158885683781t27
+

1847808149161902184857600000

14

^

339104535032848365272025326877910367266529638957177f29
45342369198665138228428800000 +

495810658108561686421031761267011876081732764790997t3°
12087166088502668427264000000

12333429558529965383654866467831984844392866658385549338K31
548189243611861521181704192000000 +

115758851421793863092416150504705011017048892087489560633t32
93807785003099297742323712000000

O(t)33

3.1.1 Picard Method

The traditional forms of Picard method are written as either

u[fe+1](t) = uo + [* F(uW(T))dT
Jo

or

u(o) = uq.

From the second equation we see that Picard is actually a special case of waveform relaxation

by choosing

G(u^+1Wfc]) = G(uW UM) = 0,

i.e. no splitting is used. To see how the approximate solutions, in their Taylor series expansions,

generated by Picard are related to the exact solution, we now use Picard to solve the Riccati

equation given in (3.1). The iteration scheme used is as follow:

utfe+1l = uw - 2(uW)2, u[fe+l!(0) = 3.

The first five approximate solutions generated are listed below, where u(t) is the exact solution:

ut1^) = u(t) +

15

-165*2 , 905t3 19855t4 , 108901f5 3583811t6
2 + _2 8 + 8 " 48 +

137595781t7 6037499171t8 , 29803109130K9 16346453844611f10
336 2688 + 24192 ” 241920

O(t)11

= u(t) +

605f3 19855t4 , 108901t5 3583811t6 , 137595781i7
~~2 8 + 8 48 + 336

6037499171t8 , 298031091301f9 16346453844611i10
2688 + 24192 _ 241920 +

0(f)11

u^(f) = u(t) +

—6655f4 i 72721f5 3187811f6 , 135435781f7
8 + 8 48 + 336

6037499171f8 , 298031091301f9 16346453844611f10
2688 + 24192 241920 +

0(f)11

txW(f) = u(t) +

14641f5 1199231f6 74422381f7
+

4342500371f8
+

8 48 336 2688

253036822501i9 15211790292611f10
24192 241920 +

O(t)11

= «(i) +

8430151455011i10
241920 + O(t)11

From this example it is easy to see that after each Picard iteration exactly one additional

correct tennis picked up by the new approximation. And as the iteration continues, the number

of correct terms in an approximation gets larger.

3.1.2 Waveform Relaxation

In the following we will see that same behavior occurs in waveform relaxation method. After

each iteration one or more them one additional correct terms will be picked up, and the number

of additional correct terms to be picked up after each iteration is related to the iteration scheme

to solve the Riccati equation given in Equation (3.1). The splitting is Gf(u[fe+1l, u^) = u[fc+1J.

The first five approximate solutions with their error terms up to t11 are listed below.

used.

First we use the following scheme

u[fc+1] _ = _2(u^)2, u[fe+1](o) = 3.

uM(t) = u(t) 4-

—90t2 + 450t3

17

I cn H-
1

00 cs
. a +
cn to co cn oo «sj

Cn

to o h—
1

cn Cn to CO 4^ 00
l~*

+

S +

o <s* H*

to cn co to cn I CO h-1 H* O 4^
a

+ to Cn 4^ •*4 to

J
£ C*4» CH
-

+

M

I o 00 o * I

H* 4^

CO H* 0
0 h-» O o 00

+

-v|

0
0

OJ f—1 CO

CO

00
 Oi 4^ I?S66SIt + omzii - e?89S0T +

+ (?)nS

«*

o

0
0

o CO 00 CO o »-
*

to CO

CO O
i

o CO to Oi M o 4k

4^ to o

to 00 CO -v| CO to o> o J-
1

CO CO

+

CO cn CO O
i

-0 4^ co +
to 00 O

i
O

i
cn o CO «* to cn 0
0 t-* CO 0
0

+

+
o «-v M

to to 4^

cn o CO h-
1

to 4^ CO CO ft 00

4*

O
i

to to o H-
1

o> o

I—
1

CO cn to to o 4^ 00 o Cn M

+

O(t)11

From above listing we can see that again exactly one additional correct term is picked up

after each iteration and the leading error coefficient is different from that of the Picard method.

Next we use a different waveform relaxation scheme to solve the same Riccati equation by

using the splitting, G(utfc+1l, u^) = (1 — 4uW)uf*+1L The scheme used is now

u[fc+1l - (1 - 4ttW)u[fc+1] = 2(uW)2, u[fc+1](0) = 3.

In the following we list the first four approximate solutions with a few error terms.

u^(t) = ' u(t) +

150t3 - 1650t4 +

24818061035t9 136200799141f10
2016 2016 +

O(t)11

u^(t) = u(t) +

+

11 7 1716

189613674132775f14 + o(t)155096

= u(t) +

19

270000000*15 10627031250*16 , 3866146875000t17
49 49 + 833

59839216593750t18 , 157062483419343750t19 154718051530702500i2°
833 + 174097 15827 +

0(t)21

u^(t) = u(t) +

145800000000000000i31
74431

11168650195312500000t32
74431 +

0(i)33

In this scheme we see that more than one correct term is picked up after each iteration. Actually,

the number of correct terms in the Taylor expansion of an approximation almost doubles after

each iteration.

From these examples we see that the degree of the leading error term at each approximate

solution generated by waveform relaxation method increases as the iteration continues. In next

section we will show that the behavior we observe, in these examples is that normally expected.

3.2 _ Order of Accuracy and Accuracy Increase

In this section we begin with the definition of the order of accuracy. Then we show that the

increase in the order of accuracy after each iteration sweep will be at least one for different

iterative schemes. By using the Frechet derivative we also show that the increase can be in

geometrical progression if the splitting is chosen carefully.

From the examples given in the previous section we see that exactly one additional correct

term is picked up in each iteration. The reason is evident from a consideration of the error

term, eW(t) = uM(t) — u(t), which satisfies (2.6). If the partial derivatives in that equation Eire

evaluated at suitable points near the solution, the higher order terms can be ignored in that

20

equation, so we find that

eM = f* G(T)e[k\T)dT
Jo

where G is the Greens function for the left hand side of (2.6). Clearly, if eM(f) is a power series

starting with th+1 then effc+1J(t) will be a power series starting with tk+2. This leads us to

define- the order of accuracy of an approximation as follows. Let u,-(t) be the ith component of

the exact solution and Zi(t) be the ith component of an approximate solution to Equation (2.2).

Definition 3.1 If Zi(t) — u*(t) = 0(t)Mi+1 over a fixed, finite interval [0, T], then the order of

accuracy, N(zi), of Zi(t) is M, for 1 < i < n. The order of accuracy of z(t), denoted by N(z),

is defined as mini<j<n N(zi)

The first basic theorem of accuracy increase in waveform relaxation is stated and proved

below.

Theorem 3.2 Suppose that the exact solution of (2.1) can be written as

M
u(t) = +0(t)Am (3.2)

i=0

that is, u(t) G CM. Given z(t), an approximate solution, which satisfies z(0) = uo, define

M

K{t) = z{t) - u(f) = Y, b^‘ + 0{t)M+l. (3.3)
t=iV(z)+l

Let y(t) be the solution to the following system

y - ^(y, *) = J’(a) ~ G'K a), (3-4)

where G : R2n —* Rn, F and G are sufficiently smooth and define

M
E(t) = y(t) - u(f) = Y + 0(t)M+1. (3.5)

i=N(y)+l

Then, if F(z) and G(y, z) are sufficiently differentiable,

N(y) > N(z) + 1.

21

Proof: In Equation (3.3), it is easy to see that ^r(O) = = 0 for fc = 1,

N(z). To prove the inequcdity N(y) > N(z) + 1, it suffices to show that E(fc)(0) =

k = 1, 2,.. .,N(z) + 1.

Consider the system

u(t) = F(u(i)), u(0) = uq.

First subtract G(u(t), z(t)) from both sides of this system, we have

ii(t) - G(u(i),z(t)) = .F(u(t)) - G(u(t),z(i)).

Next subtract this equation from (3.4), we get

(y(t) - u(t))-(G(y(t),z(t))-G(u(t),z(f)))

= (^K*)) “ G(z(t),z(t))) - (F(u(t)) - G(u(t),z(t))).

Before we continue the proof, for convenience we introduce the following notation

■^w[PltP2f • - iPn] ~

where

&p;> few) ■

few) feW) • fc(p5)

fe(p;> • •• fete)

= W1(z1,Z2,...,Xn)

= W2(Zl,Z2,---,Zn)

= Wn(z1,z2,...,xn)

w :

Wi

w2

is defined for all points p = (xi,..., ^n) in an open set £> and pj,... ,p* G

Let

ffz(t)(v(*)) = G(v(t),z(«))

and

Qz(t)(v(t)) = F(v(t)) - G(v(t),z(t)),

2,...,

0 for

(3.6)

(3.7)

(3.8)

22

then apply Mean-Value Theorem, we have

9z(t)(y{t)) - <7Z(t)(u(<)) = {Lgz(t)\pl,.. .,p;])(y(0 - «(0)

and

$■(*)(■(*)) ~ Qz(t)(*(t)) = {LQ%{t)[ql,.. .,9;])(z(t) - u(t))

where p*,. .-,Pn are points lying in the line segment which joins y(t) and u(t) and g aire

points lying in the line segment which joins z(t) and u(t). Note that p* = Oi y(t) + (1 -a^) u(t)

and q* = /3j z(t) + (1 - jdi) u(<) where 0 < < 1, 0 < ^ < 1 for z = 1,..n. Because of the

smoothness of u(t), z(t) and y(t), p*,.. .,p* and g*,...,5* cire sufficiently smooth as well.

Replacing z(f) — u(t) by R(t) eind y(t) — u(£) by E(£) respectively in (3.6), this equation

becomes

E(0 = ^(„(*)E(0 + ^,)(t)R(t). (3-9)

Differentiate Equation (3.9) k times with respect to t, we obtain the following general form

E(‘+I)M = E (‘) + £ (*) (3-10)

Since R(fc)(0) = 0 for k = 0,1,...,iV(z) and E(0) = 0, by induction we can see that

EW(0) = 0 for A: = 0,1,..., iV(z) + 1. Thus the proof is complete. Note that E(^z)+2)(0) may

not be zero since R(-iV(z)+1)(0) ^ 0.

Q. E. D.

This theorem tells us that the accuracy of current iteration is at least one order higher

them that of the previous iteration. Here we emphasize the word “accuracy”. In general, the

increase of order of accuracy does not imply the convergence of the iterative scheme. But from

this theorem we can see that as the iteration continues more and more terms of the Taylor

expansion of each iterate coincide with the Taylor expansion of the exact solution.

Corollary 3.3 Use the same notations as in Theorem 3.2. Let F(u) = A u and G(w, z) =

Bw, where both A and B are constant matrices. If Rl-jV(z^(0) is not in the null space of A —B,

then N(y) = N(z) + 1

23

Proof: Equation (3.10) becomes

E(‘+1)« = g (i) E<‘",)(t) + % (i) I?(A - B) E“'”(t)-

Since both A and B are constant matrices, the equation (3.11) is reduced to

E(fc+1>(t) = B EW(i) + (A — B) R.W(t).

Thus eWz)+2)(0) = (A — B) R(Ar(*)+1)(0) ^ 0, and the proof is complete.

(3.11)

(3.12)

Q. E. D.

Theorem 3.2 gives an inequality. Normally this is an equality unless there is cancellation,

sparsity, or a special nature of the problem or splitting as described in Corollary 3.3. Cancella­

tion is exploited in the waveform Newton method, while sparsity will be exploited in the WGS

method which will be discussed in next chapter. Naturally we would like to know the exact

accuracy increase for each iterative scheme. But this is a very hard problem to answer, even

for the Picard method, the simplest WR method. We would expect the accuracy increase after

one Picard iteration to be exactly one, but it is not always true. A problem with a special

character is y = tn-1y. It increases in accuracy by n at each iteration starting from to = 0,

although that accuracy increase does not occur from other starting points.

Before we state and prove Theorem 3.6, we review the Frechet derivative and the Taylor’s

Theorem for vector functions [2] which are needed for proving the aforementioned theorem.

Consider w : X —> F, where X and Y are normed linear spaces. Given x 6 X, if a linear

operator dvr(x) exists which is continuous such that

w(r + h) — w(r) — dvr(x)h ||y
lim = 0

then w is said to be Frechet differentiable at x, and dw(z) is said to be the Frechet differential

of w at z with increment h. dw(z) G £(X, F), the space of all bounded linear operators from

X to F. If both X and F are Banach spaces and the Frechet derivative of w is a continuous

linear operator, then £(X, F) is again a Banach space, and hence we may consider the Frechet

differential of dw(-) : X —+ £(X, F).

24

If this difFerenticil exists we will denote it by d2w(®) and it is cleaxthat d2w(x) G £(X,C(X, Y)).

However it cam be shown that jC(X,£(X,Y)) is isometrically isomorphic to £(X x X,Y) £ind

d2w("): X —* C(X x X, Y). We may obviously continue this process so that

: X - £(X x X X ... X X,y).

Note that <2nw(x) is a bounded symmetric multilinear operator.

Theorem 3.4 (Taylor’s Theorem^ Let E be an open subset in a Banach space X, and Y

another Banach space. Then ifw:E —> Y is n times differentiable at a point x £ E,

w(x + h) = w(®) + dw(*)/i + ■^-d2w(x)h2 +-----h -^rdnw(®)/in +
2! nl

r(x,h) (3.13)

where
^ 11 r(z,h) \\y

IWI-*0 II ^ llx
= 0.

The terms dnw(z)/in need some explanation. dn'w(x)hn is a map from X x X x ... x X (n

times) into Y, so that its evaluation at the point (hi, /12,..hn) is

cTw(a:)(h1,/i2,...,hn).

The symbol dnvr(x)hri is used to represent the above expression when hi = hz = ... = hn = h.

Definition 3.5 Use the same notation as in Theorem 3.4, we say that

vr(x + h) — w(r) = 0(h)K

if dvrk{x) = 0 for fe = 1,2,..., X — 1.

Let us revisit the Riccati example with the waveform Newton method. We use the splitting

G(u[fc+1], uM) = (1 — 4uW)uffc+1l. The iteration is

utfc+1] - (1 - 4u[fcl)tt[fe+l! = 2(u[fc1)2, Jfc+1](0) = 3.

25

The first three approximate solutions are

«W(t)

»M(t)

v.W(t)

u(t) + 150t3 + O(t)4
, . 45000t7 n8

u(t) + —j— + 0(t)8

, . 270000000t15 .
«(<) +-------7S---+ 0(0

16

In this scheme we see that more than one correct term is picked up after each iteration. Actually,

the number of correct terms in the Taylor expansion of an approximation almost doubles after

each iteration because of the quadratic convergence of the Newton iteration.

This behavior is a particular case of Theorem 3.6 below which relates the order increase to

the “closeness” of G(v, u) to jF’(v). We define

Qu(v) = G(v,u)-F(v).

If <5 is zero, then the “splitting” leads to the solution in one iteration. If Qu(v) is relatively

insensitive to changes in v near v = u, we get rapid convergence. If we add one more assumption

to Theorem 3.2, we cam obtain an iterative scheme which has geometric accuracy increase.

Theorem 3.6 Same assumptions as given in Theorem 3.2, In addition, we assume that

<?z(t)K*)) - <?z(t)(u(*)) = 0(z - uf.

Then

N(y) > K (N(z) + 1).

In particular, if K = 2,that is, dF(u(t)) = dG(v(t),z(t)) w.r.t. v at v = u, this iteration

scheme is the Waveform Newton method and it converges quadratically, i.e., we get orders of

accuracy 0, 2, 6, 14, 30, ..., when starting with a constant zeroth iterate.

Before we prove this theorem, we discuss one possible method to solve systems of the form

x(f) = A(t)x(t) + f(t), x(a) = c (3-14)

where we assume that all the entries of A{t) and f(f) are smooth functions of t. We begin with

the following definition.

26

Definition 3.7 The transition matrix $(t, a) of the system (3.14) the solution of the system

a) = A(t)$(t, a), §(a, a) = Inxn.

Notes that a) is an nx n matrix.

The relationship between the transition matrix and the solution of the system (3.14) is

given by the well known theorem:

Theorem 3.8 The solution of the system (3.14) ** given by

x(£) = $(£, a)c+ f $(t, s)f(s)ds
Ja

= $(£, a)c + $(£, a) f §(a, s)f(s)ds. (3.15)

Now we are ready to prove Theorem 3.6.

Proof: First we recall Equation (3.6)

(y(0 ~ “(0) “ (G(y(f). ■(*)) “ G(u(t), *(«)))

= (f (.(«)) - G(z(t), ■(*))) - (F(u(£)) - G(u(£),.(«))).

Let

ffz(t)(v(£)) = G(v(£),z(£)), (3.16)

Q«(t)(v(0) = ^(▼(t)) - G(v(t),«(0) (3.17)

then apply Mean-Value Theorem to Equation (3.16), we have

0*(t)(y(t)) - 0»(t)(u(O) = (Lgx{t)\ph • • •5Pn])(y(0 - u(0)-

Equation (3.6) becomes

(y(0-«(*)) = ■&ft(,)[Pii---»Pn](y(0-i»(0) +

(Q*(t)(*(0) - Qz(o(u(0))- (3-18)

27

We now prove the following statement: If

x - u = 0(t)Nz

where Nz = iV(x) + 1 and

Qx(t)(»(0) ~ = 0(m - u)'f

then

Q*(t)(z(0) — ^x(t)(u(^)) = ^(0^ *•

By definition,

Qz(t)(z(*)) ~ Q*(t)M0) = ^7^Qz(t)(uW)(z ~ u)^ + r(u,x - u)

where

Km ll:(U',-,“)ll=0.
l|z-n||-o II a - U 11^

Hence

^ || Qz(t){*{t)) - Qz(t){u(t))
t-.o tNzK

— lim t—o
^<3z(t)(u(t))(a - u)15" r(u,x-u)

JTStiVxJr + II

< lim t-+o
dKQz(t)(u{t))(z-u

tiVz >
z-
T^z?) 4- lim£-.0

r(u, z — u)
|| z — u

(z ~ u) MiC
'I

s Ss?!" II II W5 II +

lim "^-^"limll^r ||z—u||—>0 || z - u ll^ t-»0 t^Z

< ^||^gz(t)(u(t))|iai|(^,^,...,z u'tNz

The last line is bounded, since limt_o || || is bounded. Thus the proof of the statement is

complete.

28

Replace the last part of system (3.18) by f(t) and note that y(0) — u(0) = 0. Let $(t, 0)

be the transition matrix of system (3.18), by Theorem 3.8 we obtain

y(t) - u(t) = $(t, 0) J $(0, s)f(s)ds

We have

t—»0 t^zK+l

= S? L'Hospital's rale)

= #(0,0) lim m
t-*0 (NZK +1)*^^

m
t—*o (NXK + l)tN*K

which is bounded by the previous statement, that is

rt
f $(0, s)f(s)ds = O(t)

Jo

Note that $(0,0) = Inxn- Therefore,

y — u = 0(t)NzK+1,

NXK+1

(3.19)

and

N(y) > NXK = (iV(z) + 1)K.

Q. E. D.

From Theorem 3.2 and Theorem 3.6, we see that the degree of the leading error term

in the approximate solution generated by waveform relaxation method increases as iteration

continues. And from the proofs we can see that the coefficient of the leading error term depends

on derivatives of .F(u), the right hand side of the original equation, and G(u, z), the splitting

function used. Suppose both F and G are sufficiently smooth, then their derivatives over any

finite interval are bounded. If t is chosen sufficiently small, the error will approach 0 when

29

enough iterations are performed. Therefore, waveform relaxation methods converge over any

small interval and converge superlinearly (see [11]), both can be seen from (3.5) and (3.10).

This kind of convergence property in waveform relaxation also explains the phenomenon stated

in [7] and [15] that the length of the convergent part is increasing after each iteration.

Note that g > 1 in Theorem 3.6 for any smooth F and G, but the case q = 2 is the only

other “practical” one. As noted, for large.systems even it is not practical because of the cost of

computation of the Jacobian and the communication involved. For the WJ method, 9 = 1 so

there is little that can be done to get faster order increase. In the next chapter we will examine

WGS.

30

Chapter 4

Accuracy Increase in Waveform
Gauss-Seidel

In previous chapter we defined the order of accuracy of approximate solutions generated by the

waveform relaxation method and showed that the accuracy of whole system after one iteration

sweep is at least one order higher than before the sweep starts. In this chapter we will discuss

the accuracy increase property for a special approach, the Waveform Gauss-Seidel method.

In the Gauss-Seidel approach a numerical ordering (numbering) of the subsystems is chosen

to determine the order when a subsystem is to be solved within an iteration sweep. The

accuracy increase in WGS is dependent on the numbering of the equations, so a “good” choice

of numbering is very important in Gauss-Seidel approach.

In Section 4.1 a result, which is similar to the accuracy increase property for a whole

system in Theorem 3.2, is obtained for each subsystem after its computation. One subsystem

affects smother if any of its variables appear on the right hand side of the differential equations

describing the other and such a subsystem is called the incoming subsystem of the other. At

each Gauss-Seidel sweep each subsystem is solved following the designated numerical ordering,

(using the most recently computed values of other subsystems,) the accuracy increase in a

subsystem after its computation can then be accumulated in the subsystem being computed

next. The accuracy increase after one sweep of Waveform Gauss-Seidel is, therefore, usually

greater than one.

The coupling relation between two subsystems is an oriented relationship and an adjacency

matrix can be used to describe these coupling relations among all subsystems. A directed

31

\

graph that is built from the adjacency matrix is called the dependency graph of a system. If

a system’s dependency graph is acyclic we could get the exact solution with only one sweep of

Waveform Gauss-Seidel when each subsystem is sequentially solved in a proper order; otherwise

iteration sweeps are needed until a sufficiently accurate solution has been computed. Since each

subsystem is to be solved as whole, it is denoted as a node in the dependency graph. In Section

4.2 we will introduce ascending chains in a cycle and discuss some accuracy increase properties

in the Waveform Gauss-Seidel method under the assumption that the accuracy increase for

each subsystem after its computation is exactly one over its incoming subsystems.

In Section 4.3 we will show that the average accuracy increase for the waveform Gauss-Seidel

method is equal to the minimum value C jd among all cycles in the dependency graph, where C

is the length of a cycle and d is the number of times the numbering of successive nodes around

the cycle decreases. Note that the value C depends on the coupling relation after a system is

partitioned and the value d depends on the numbering of nodes in the system’s dependency

graph that is imposed by the Gauss-Seidel approach. So after a system’s petitioning, we should

order the nodes to maximize this minimum.

4.1 Accuracy Increase for A Subsystem

In Waveform Gauss-Seidel we solve each subsystem sequentially and independently. When a

subsystem is solved at one Gauss-Seidel sweep, the remaining subsystems are given approxi-

mants to the exact solutions. We then discuss how the accuracies of the remaining subsystems

effect the accuracy of a subsystem after it is solved.

Theorem 4.1 Consider the equation for the ith component after partitioning,

Ui = /*(«!, Uj(0) = uit0. (4.1)

The equation to be solved after applying the Gauss-Seidel scheme is

32

Assume that

/

for j < i,

Elk] = — U; = 0(t)Ni for j > *• .

and all the ’s and E^+^ ’s are sufficiently smooth. Then

i\f+1] > min(ivjfc+1^...,N[tXX\• • • > + 1» ‘withequalityunlessthereiscancellation.

(4.4)

Proof: Let

M = min(N[k+l],, N^),

then for r = 0,1,2,..., M — 1

^f+1](0) = 0 for j = 1,2,..., t — 1,

^•^(O) = 0 for j = i +
(4.5)

Prom (4.1) and (4.2) we have

£ fijEf+1] + f^E^ + £ /uff.
i<*

(4.6)

By (4.2) and (4.5) we see that ijjfc+1^(0) = 0 from (4.6). Now differentiate (4.6) w.r.t. t to get

E\k+V = + +

£{^r+/v#+i1}+£{^/^r+ i-Wv (4.7)
i<»

33

Since
for j < i,Ef+1\0)

^(0)

(0) = o

Mfcl(o)Ji

from (4.3) and £?|fc+1^(0) = 0, we have ijfH’1^(0) = 0.

Differentiate Equation (4.6) r times, we get the following general form

E
l=o

By induction we get ^jE\k+1\o) = 0. E\k+1\o) will not be zero if there exists some

j ^ i such that ^fE^k+1\o) # 0 for some j < i or Jp^E^(O) ^ 0 for some j > i with the

corresponding fij ^ 0, unless there is numerical cancellation.

Q. E. D.

Note that only those j's actually appearing on the right hand side of Equation (4.1) affect

the derivations in the proof. Thus we have proved that after the computation of a subsystem,

its accuracy is at least one order higher than the minimum accuracy of all its input subsystems.

In particular , we consider a system of three equations,
.[fc+i]

/i(ui[fc+i] ? t*2 » u,3)

4fc+1] = /2(4fc+11>4fe+1],4*])

4fc+11 = /3(uf+1U?+1],4fc+11)-

— Ul = ©(t)-^! 1

4^ — u2 = 0(t)N* 1

U[k] - u3 =

34

then from previous theorem we have

N[k+1] > min(Nik],Nlk]) + l

4k+1] > min(N[k+1], + 1

N[k+1] > min(N[k+1],Nlk+1])+l.

This theorem assumes that all variables appear in all equations. If variable j appears in

the equation for variable i only if j £ li where Ij is a subset of [1,.. .,m], then (4.4) can be

replaced by

ivf+1] > min(ivf+H(i_J')1) + 1, (4.9)
ieii J

where H(i — j) = 1 if t > j and 0 otherwise. (A similar result holds for WJ with H identically

zero.)

4.2 Accuracy Increase and Dependency Graphs

In the Gauss-Seidel scheme the numbering of the subsystems is important since it determines

the order of their sequential solution. One subsystem affects another if any of its variables

appear on the right hand side of the differential equations describing the other. This coupling

is an oriented relationship and an adjacency matrix can be used to describe the coupling

relations among all subsystems. A directed graph that is built from the adjacency matrix is

called the dependency graph of a system. If a system’s dependency graph is acyclic we could

get the exact solution with only one waveform Gauss-Seidel iteration when each subsystem is

sequentially integrated in a proper order; otherwise iterations are needed until a sufficiently

accurate solution has been computed. (From now on a subsystem is referred to as a node in a

dependency graph.)

From Theorem 4.1, we know that the order of accuracy at one node after one waveform

Gauss-Seidel iteration is at least one greater than the minimum order of its incoming nodes,

and possibly more if there is fortuitous cancellation. But the fortuitous cancellation can only

occur under very special conditions, so it will be ignored in general. Hence we assume equality

in that theorem and investigate some examples to study the accuracy increase of the waveform

35

Gauss-Seidel method. From these examples we will see that the accuracy increase in the

waveform Gauss-Seidel method is related to the coupling and the numbering on a given system’s

dependency graph.

4.2.1 Accuracy Increase and Ascending Chains

It is instructive to consider some simple examples. In these examples the notation C[d = ajb

means that there is a cycle of length C with d ascending chains in it (for detailed definition of

ascending chains see def 4.2).

Example 1 : Consider a system with the following dependency graph after partitioning and

ordering. This graph has two cycles and all the nodes inside each cycle are sequentially ordered,

i.e. there is only one decrease in the numbering of all nodes around each cycle.

The two cycles are A\ = {(1,2,3,4,5)} of length Ci = 5 and Aj = {(1,4,5)} of length C2 = 3.

CiM = 5/1 and C2/d2 = 3/1. The sole numbering decrease is the branch (5,1) shown as

a dashed arrow. We list the order of accuracy and accuracy increase after each waveform

Gauss-Seidel iteration in the following tables assuming that we start with uW(£) = uq.

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •• •
1 0 1 4 7 10 13 16 19 22 25 28 •••
2 0 2 5 8 11 14 17 20 23 26 29 •••
3 0 3 6 9 12 15 18 21 24 27 30 •••
4 0 2 5 8 11 14 17 20 23 26 29 •• •
5 0 3 6 9 12 15 18 21 24 27 30 ■

36

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 1 3 3 3 3 3 3 3 3 3 ..
2 2 3 3 3 3 3 3 3 3 3 ..
3 3 3 3 3 3 3 3 3 3 3 ..
4 2 3 3 3 3 3 3 3 3 3 ..
5 3 3 3 3 3 3 3 3 3 3 ..

Form the second table we see that, after the waveform Gauss-Seidel iteration stabilizes,

the accuracy increase after one iteration is equal to the minimum cycle length which is “3” in

this example. The internal nodes of the cycle with minimum length in this example have been

ordered sequentially around this cycle. In general, the internal nodes of a cycle may not be

ordered sequentially; if this is the case, we can not achieve the accuracy increase equal to the

cycle length in one waveform Gauss-Seidel iteration. However, we will show that, in the case

of dependency graph with a single cycle, an accuracy increase equal to the length of the cycle

will occur in some number of iterations.

□

Let us consider another example in which the nodes are not sequentially ordered around a

cycle.

Example 2 : Consider a dependency graph which contains only one cycle and nodes inside

the cycle are not sequentially ordered,

O--^©--
f :
i V 1= {(1,4,6), (2,5), (3)}; C/d = 6/3

©^—©------- ©

where (1,4, 6), (2,5) and (3) are ascending chains of length 3, 2, and 1, respectively, in the

given cycle. The tables of order of accuracy and accuracy increase are given below.

37

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 0 1 2 4 7 8 10 13 14 16 19 •••
2 0 1 4 5 7 10 11 13 16 17 19 •••
3 0 1 3 6 7 9 12 13 15 18 19 •••
4 0 2 3 5 8 9 11 14 15 17 20 •••
5 0 2 5 6 8 11 12 14 17 18 20 •••
6 0 3 4 6 9 10 12 15 16 18 21 •••

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 1 1 2 3 1 2 3 1 2 3 •••
2 1 3 1 2 3 1 2 3 1 2 •••
4 2 1 2 3 1 2 3 1 2 3 ..
5 2 3 1 2 3 1 2 3 1 2 •••
6 3 1 2 3 1 2 3 1 2 3 ..

□

We see in Example 2 that the accuracy increase of “six” , the cycle length, is achieved in

three iterations. That is, after the iteration stabilizes, we cam pick up six more correct terms

in the Taylor expansion of the approximate solution in every three iteration sweeps. We might

notice that “three” is the number of times the numbering of successive nodes is “out of order”

around the cycle. This is not a coincidence, and it will be seen as a general result, Theorem 4.3,

for which we need to define the concept of an ascending chain in a cycle.

Suppose an ordering for the Gauss-Seidel method applied on a graph containing a cycle A

of length C has been chosen. Number the nodes of the graph according to the Gauss-Seidel

ordering.

Definition 4.2 An ascending chain of length l in a cycle A is a sequence of nodes with numer­

ical ordering such that (1) jo < ji <••■ < jl-i, (2) there exists an edge from

node ji to node ji+\ for i = 0,1,...,/ — 2 in the cycle, and (3) no ascending chain in cycle A

contains {jo, Ji, • •., j/-i} as a subsequence (in other words, it is as long as possible).

It follows from the definition that any cycle can be decomposed into a mutually exclusive set

of ascending chains and the number of ascending chains in a cycle equals the number of times

38

the numbering of successive nodes around the cycle decreases. By the equality assumption

in Theorem 4.1, we know that after one waveform Gauss-Seidel iteration, each node, ji, in

an ascending chain can not have order of accuracy more than one greater than the order of

accuracy of its predecessor node, ji — 1, in the chain at this iteration, while the first node in

an ascending chain can not have order of accuracy greater than one plus the order of accuracy,

prior to the iteration, of its predecessor, the last node in the chain that precedes it. (If no

other node except its predecessor in the cycle is connected to a node k, it will achieve exactly

this order increase.)

Now we introduce some simple notations to express these ideas.

Let A be a cycle of length C with d ascending chains. Let h, /2, • • •, ^ be the lengths of the d

ascending chains that follow the orientation of A and ^ be the order of accuracy of the

node of the ith ascending chain at the nth waveform Gauss-Seidel iteration. For convenience,

define li+<i = 1, and W^i+^k = for all i. Then by assuming equality in Theorem 4.1, we

have

Wn.i.ifci+l < Wn,i,ki + 1

Wn+l,i+l,0 < Wn,t,Zj-l + 1

for k{ = 0,1,..., Zi — 2,and n > 1. For ease of derivation later, we define = W^o and

, i-e. (W^) denotes the order of accuracy at the tail (head) node of the

ith ascending chain at the nt/l waveform Gauss-Seidel iteration. And it is easy to see that

WnA* < W^ + ki (4.10)

W?+l,i < WZ-i + U (4.11)

WZ+U < Wj.!+ /<-!. (4.12)

Based on these relations, we then have the following result which says that the accuracy increase

after number-of-ascending-chains iteration sweeps is bounded by the cycle length.

Theorem 4.3 If a cycle A of length C consists of d ascending chains, then, after the first

iteration, the accuracy increase at the internal nodes of A due to d waveform Gauss-Seidel

iterations is bounded by C.

39

Proof: By Eqn (4.12) for n > 1

"£hM = W^,<+d

< Wn+d-l.t+ii-l + li+d-l

< WM-d-21i+<i-2 + U+d-2 + U+d-1

< W^+l,i+l + ^t+l H-------H

< + ^* + /t+1 +-----h ^t+<i-i

< Wli + C.

Tke proof for the remaining nodes in an ascending chain is similar:

Wn+d,i,ki = Wn+d,i+d,ki

< Wn+d,i+d + h

< Wn+d-i'i+d-l +l + ki

^ Wn+d-2,i+d-2 + U+d-1 + 1 + ki

< Wn+d-3,i+d-3 + U+d-2 + U+d-1 + 1 + &t

< + U+2 + ' ' ' + U+d-2 + U+d-1 + l + ki

^ Wn,i + ^t+1 + U+2 + ’ • • + U+d-2 + U+d-1 + 1 +

< — 1 — ^1 + ^i+l + U+2 +-----H U+d-2 + f»+d-l + 1 +

= W'n.iA+E^
j = l

= wn,iM + c.

Q. E. D.

In particular, when d = 1, that is all the internal nodes of a cycle are solved in cyclic order,

the accuracy increase in one waveform Gauss-Seidel iteration is then bounded by the cycle

length; which is the result we saw in Example 1.

40

If we assume that each node of a cycle has no other nodes connected to it except its

predecessor in the cycle, then its order of accuracy after each waveform Gauss-Seidel iteration

is exactly one over its predecessor’s in the cycle, i.e.

= Wn,.-,*,. + 1 (4.13)

W'f+i.m = W5 + 1 (4.14)

for Jill i and k^s. Thus

= Wji + fci (4.15)

W&i,i = W5_i + Zi (4.16)

+ (4-17)

for ki = 0,1,..., Zj — 1, i = 1,2,..., d and n > 1. Hence for a single cycle the average accuracy

increase in each iteration is C jd. Ignoring fortuitous cancellation, a cycle can not have a greater

average accuracy increase, so it is clear that a bound on the average accuracy increase for a

graph is given by mini (Ci/d^) where i indexes all the cycles in the graph. We will show that

this bound is realized by all the graphs in section 4.3, so that we should order the nodes to

maximize this minimum.

4.2.2 Accuracy Increase in a Single Cycle

If we examine the tables in Example 2 carefully we see that the accuracy increase at a given

node at successive iteration followed a repetitive pattern after some initial irregularity. For some

it was (1,2,3), for others it was (2,3,1), and for the remainder it was (3,1,2). The important

property of these patterns is that they are circular shifts of a partition of the cycle length

C = 6, where there are d = 3 members in the partition. In general we say that a set of d

strictly positive integers {qi,q2, • • •, qd} Is an integer partition of C, if 5Zi=i = C.

We now show that given a cycle of length C with d ascending chains of lengths Z2,...,

and Id, and an integer partition, {q\,q2, ■ • - ,qd}, of C, if the initial orders of accuracy at all

nodes of the cycle are chosen carefully, then the accuracy increase at each node at every d

successive waveform Gauss-Seidel iterations is {gj, qd-\, • • • > <Z2> <Zi} or its circular shifts.

41

Theorem 4.4 Let A be a cycle of length C with d ascending chains of lengths, li, I2, ■.Id,

and let {qi, 52, • • • > qd} be an integer partition of C. If the initial order of accuracies are chosen

such that

Wli = HUiV-h) for x = 1,2,.. .,d
Wo^kt = + ki for fcj = 0,1,..Z,- - 1,

then

= Wn_+ qi-n (4-18)

for ki = 0,1,2, — 1, i = 1,2,..., <i, and n > 1, where qn = qn%d and n%d = n mod (d)

for any integer n.

Proof: By Eqn (4.15), - Wn-i^ = i.e. all the nodes in an ascending

chain have the same accuracy increase after each waveform Gauss-Seidel iteration, so it suffices

to show that

Wr£ = tt£-i,i + ®-n (4.19)

for i = 1,2,. ..,d and n > 1.

We prove this theorem by induction on n. When n = 1 and i = 1,2,. ..,d, from Eqn (4.17)

and the choice of initial orders, we have

Wu = +

= — ^i) + k-1
j=i-l

d
= ~ lj) 4" 9*-i

j=i

= 1^0,* "I" 9t—1 •

Hence, (4.19) holds for n = 1. Assume that the statement is true for n < m and i =

1,2, ...,d, i.e.

= Wl-U + ®-m. (4.20)

Then consider n = m + 1 and i = 1,2,..d, from Eqns (4.16), (4.17), and (4.20) we have

= + k-1
= +

“t" 9t-(m+l)

Hence, by mathematical induction, Eqn (4.19) holds for all n > 1.

Q. E. D.

From Eqn (4.18) and the periodic behavior of qj's we have
n+d

^n+d,i,ki = ^n,i,ki +
j'=n+l

d

= Wn,i,ki + XI
i=i

= + C,

which are exactly the results we saw in previous examples. Since all the nodes in an ascending

chain have the same accuracy increase after each waveform Gauss-Seidel iteration, without loss

of generality from now on we can use the head or tail node at each ascending chain to discuss the

accuracy increase property. In Table 4.1 we list the accuracy increase at the tail node of each

ascending chain after each waveform Gauss-Seidel iteration using the result in Theorem 4.4.

Prom this table it is easy to see that the accuracy increase at any node in every d successive

iterations is {?<*, gj-i,..., gi} or its circular shifts. To avoid the decreasing subscripts in q^s

as iteration proceeds, we let pj = qd-j for j = 0,1,...,d — 1 and rewrite Table 4.1 to obtain

Table 4.2.

Using this new table with some simple manipulations we have the following formula for the

order of accuracy at the nth waveform Gauss-Seidel iteration:
d TlVod

Wli = ^(Pd-j - lj) + L^J X c + X Pd-i+j, (4.21)
j=i j=l

for i = 1, 2,..., d and n > 1.

If we choose a specific integer partition of the cycle length C, we will not only have a nice

formula for the order of accuracy at each node, but will have an accuracy increase pattern that

can not be destroyed by other cycles in the same graph that do not have a smaller C/d.

43

Iteration Index
0 1 2 d d+1 d+2

h
0 =

+94 +94-1 + • • • +9i +94 +94-1 + ...

h
h ~ 3x =
El=2(9j ~ li) +9i +94 H----- +92 +9i +94 + ...

h
— 9l + ^2 — 92 =

- h) +92 +9i + '' • +93 +92 +9i + ...
• \ ; : : : ; ;

k
zr(‘i-n) =
zLtii - h) +9i-i +9*—2 + • • • +9» +9*-i +9»—2 + ...

;
• ••••■■•

U-i Qd- U + Qd-l ~ U-l +94-2 +94-3 H----- +94-1 +94-2 +94-3 + ...

U <ld ~ h +94-1 +94-2 H----- +94 +94-1 +94-2 + ...

Table 4.1: Accuracy increase at tail node of each ascending chain

Iteration Index
0 1 2 d d+1 d+2

h

0 =

Ej=i(Pd-j - ij) +Po +Pi + ... +P4-1 +Po +pi + •••

h II ts
> R

.
1

1 +P4-1 +Po + ••• +P4-2 +P4-1 +Po + •••

h Ej=3(Pd-j ~ lj) +P4-2 +P4-1 + ... +Pd—3 +P4-2 +P4-1 + ...
; ; l •m ; ; ; ; ;

h Ei=i(pd-j - lj) +Pd-i+l +Pd-i+2 + ... +Pd-i +P4—1+1 +P4-i+2 + •••

: :::::::

h-i Po - Id -h Pi - ld-1 +P2 +P3 + •• +pi +P2 +P3 + ...

id Po ~ U +Pl +P2 + •• +Po +Pl +P2 + • ■ •

Table 4.2: Accuracy increase at tail node of each ascending chain

44

Lemma 4.5 Given a cycle of length C with d ascending chains of lengths l\, I2, ■ ■ ■, Id, respec­

tively. If

Pi = L(i + for j = 0,1,..- 1, (4.22)

then w an integer partition of C. Further, if

d

j=i

then

i=i
for i = 1,2, ...,d and n > 1.

Proof: Since ^ + c» f°r some 0 < e < 1, by assumption

xC, ,.c.
Pi = +

..c .c. . . .c.

= Lfj + Lif + «J-l>fj

^ ifj
> 1

and

4-1 4-1 r r

Ew = ELW + i)7J-Lj7J
0 0

= L-f J - L07J
= c.

therefore {po,pi,.. .,Pd-i} is an integer partition of C. Moreover

(4.23)

(4.24)

n%<£ Q
^Pd-i+j = l{d-i + n%d+l)-\ - l(d-i + l)-\
i=i

= L(n%<f+l-t)^J “ U1-*)^]- (4.25)

45

Substituting (4.25) into (4.21), we have

Ki = Bw-j-'s)+l5JxC+l(»?W+l-i)£j-L(l-i)§J
i=*

= - W + LL^J x C + (n%d+1 - of J - L(1 - of J
i=*

= E(w-i-lj) + L(lfj x<l + n?M+l-ofj - LU-Of J
3=i

= Etw-j - 0) + L(" +1 - *)fj - L(i - *)f J
i=*

= Sbd-i - Zi) + L(n + 1 - O^rJ +
j=* i=i

= S Pd-j - 2 + Kn + 1 “ *)^J
j=i i=»

= c-Eo + Kn + i-ofj
3=i

Q. E. D.

For a cycle of length C with d ascending chains, the set of integers, {po,Pi, • ■ •

defined in (4.22) is called the natural partition of C with respect to d. Let us use Example 2

again but choose the initial orders specified by (4.23), that is, based on the natural partition

{2,2,2} of the cycle of length 6. The accuracy increase pattern is:

Order of Accuracy
Node Iteration No

No 0 1 2 . 3 4 5 •••
1 0 2 4 6 8 10 •••
2 1 3 5 7 9 11 •••
3 1 3 5 7 9 11 •••
4 1 3 5 7 9 11 • ••
5 2 4 6 8 10 12 •••
6 2 4 6 8 10 12 •••

Accuracy Increase
Node Iteration No
No 0 1 2 3 4 5 •••

1 2 2 2 2 2
2 2 2 2 2 2 •••
3 2 2 2 2 2 •••
4 2 2 2 2 2 •••
5 2 2 2 2 2 •••
6 2 2 2 2 2 •••

From the table we see that the phenomena described in Theorem 4.4 and Lemma 4.5 are

satisfied. Next we examine how one cycle interacts with the remainder of a graph.

46

4.2.3 Accuracy Increase in General Graphs

We now discuss general graphs. Our analysis technique will be to analyze part of the graph

and consider driving terms from other parts of the graph. These driving terms are the branches

oxtering the part of the graph selected for analysis. The orders on the nodes at the start of

these branches may, or may not, reduce the order of subsequent iterations of nodes in the

selected part of the graph.

Prom Lemma 4.5 we see that, for a cycle of length C with d ascending chains, if the initial

orders at all nodes of the cycle are chosen properly and if a driving term, if there is my, does

not interfere with the order of accuracy in this cycle, then at the nth waveform Gauss-Seidel

iteration, the order of accuracy at each node of the cycle can be expressed as /3 + |_(n + 7)7]

for some constant integers /3 and 7. If such a cycle is the only cycle in a system’s dependency

graph, then sill the nodes in the dependency graph that are reachable from this cycle will have

a similar pattern for their accuracy increase. (A node U is reachable from a cycle if there exists

a directed path from my node in this cycle to U.)

Now let’s look at m example first, which shows that result in Lemma 4.5 is satisfied not

only by the nodes in the cycle with minimum C jd but also by my node that is reachable from

that cycle.

Example 3: Consider a dependency graph that has two cycles md nodes are ordered as shown.

Since cycle Ai has smaller C/d ratio, we choose the initial orders inside A\ according to

(4.23) in Lemma 4.5. That is the natural partition {2,2,3} of 7, length of Ai, is considered.

Below we list the order of accuracy md accuracy increase at each node.

0 w

© © A, = {(1,4),(2,7,8),(5,6)}; CM = V*
I2 = {(1,4),(2,3,6)}; C2jd2 = 5/2

V

47

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 0 3 5 7 10 12 14 17 19 21 24 •••
2 0 2 5 7 9 12 14 16 19 21 23 •••
3 4 3 6 8 10 13 15 17 20 22 24
4 1 4 6 8 11 13 15 18 20 22 25 •••
5 1 3 5 8 10 12 15 17 19 22 24 •••
6 2 4 6 9 11 13 16 18 20 23 25 •••
7 1 3 6 8 10 13 15 17 20 22 24 •••
8 2 4 7 9 11 14 16 18 21 23 25

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 3 2 2 3 2 2 3 2 2 3 •••
2 2 3 2 2 3 2 2 3 2 2 •••
3 -1 3 2 2 3 2 2 3 2 2
4 3 2 2 3 2 2 3 2 2 3 ...
5 2 2 3 2 2 3 2 2 3 2 •••
6 2 2 3 2 2 3 2 2 3 2 •••
7 2 3 2 2 3 2 2 3 2 2 •••
8 2 3 2 2 3 2 2 3 2 2 •••

Prom the accuracy increase table, we see that the result in Lemma 4.5 is satisfied by all the

other nodes, besides the nodes in cycle A\, in the graph.

Next we want to see what will occur if the initial accuracies are not specified with the

natural partition of 7. Let us use the partition {1,2,4} of 7 to specify the initial accuracies and

list the order of accuracy and accuracy increase at all nodes.

48

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10
1 0 4 5 7 10 12 14 17 19 21 24 •••
2 1 2 6 7 9 12 14 16 19 21 23 •••
3 4 3 7 8 10 13 15 17 20 22 24 •••
4 1 5 6 8 11 13 15 18 20 22 25 •••
5 2 4 5 9 10 12 15 17 19 22 24 •••
6 3 4 6 9 11 13 16 18 20 23 25 •••
7 2 3 7 8 10 13 15 17 20 22 24 •••
8 3 4 8 9 11 14 16 18 21 23 25 •••

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 4 1 2 3 2 2 3 2 2 3 •••
2 1 4 1 2 3 2 2 3 2 2 •••
3 -1 4 1 2 3 2 2 3 2 2
4 4 1 2 3 2 2 3 2 2 3 •••
5 2 1 4 1 2 3 2 2 3 2 •••
6 1 2 3 2 2 3 2 2 3 2 •••
7 1 4 1 2 3 2 2 3 2 2 •••
8 1 4 1 2 3 2 2 3 2 2 •••

In this case we see that the partition {1,2,4} does not appear in the accuracy increase table,

whereas the natural partition {2,2,3} of 7 does. Let us try another partition {1,1,5} of 7 to

specify the initial orders and see how it affects the accuracy increase pattern.

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 0 5 5 7 10 12 14 17 19 21 24 •••
2 1 2 7 7 9 12 14 16 19 21 23
3 4 3 8 8 10 13 15 17 20 22 24 •••
4 1 6 6 8 11 13 15 18 20 22 25 •••
5 3 4 5 10 10 12 15 17 19 22 24 •••
6 4 4 6 9 11 13 16 18 20 23 25 •••
7 2 3 8 8 10 13 15 17 20 22 24
8 3 4 9 9 11 14 16 18 21 23 25 •••

49

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 5 0 2 3 2 2 3 2 2 3 ...
2 1 5 0 2 3 2 2 3 2 2 •••
3 -1 5 0 2 3 2 2 3 2 2 •..
4 5 0 2 3 2 2 3 2 2 3 ..
5 1 1 5 0 2 3 2 2 3 2 ...
6 0 2 3 2 2 3 2 2 3 2
7 1 5 0 2 3 2 2 3 2 2
8 1 5 0 2 3 2 2 3 2 2 •••

From the last table we see that this partition {1,1,5} of 7 is also not preserved in the

accuracy increase pattern. From above discussions we may conclude that when a dependency

graph contains more than one cycle, non-natural partitions of the length of the cycle with

minimum C/d in the graph may not be preserved in the accuracy increase pattern when it is

used to specify the initial orders.

□

Now we select for analysis any cycle with a minimum value of C/d. We will call this the

minimum cycle. Let us initialize the orders in the graph such that the nodes in this cycle follow

the pattern specified in (4.23) and all other nodes in the graph are infinitely accurate. (This

is not possible in practice, but is used to show that the minimum cycle determines the average

accuracy increase.) We know from Lemma 4.5 that the minimum cycle will maintain an average

order increase of Cjd unless a driving term restricts the order of some node in the cycle. Since

all other nodes were initially set to order infinity, the only way for this to happen is for the

orders of a chain of nodes starting from some point on the minimum cycle and ending on the

minimum cycle (called the nodes on a sidetrack path of the minimum cycle) to be lowered by

the minimum cycle so as to reduce the order of the minimum cycle. Suppose the chain is as

shown in Figure 4.1 on the sidetrack path from node U to node V on cycle A, where cycle A

is a minimum cycle.

For the remaining part of this section, we want to show that the order in cycle A will not

be lowered by any sidetrack path.

Let h,l2, ■ ■ ■ ,ld be the lengths of the d ascending chains of cycle A. Then ^2j=i h ~ (-'-

50

Sidetrack path

Figure 4.1: A minimum cycle with a sidetrack path

Let B be the cycle consisting of any sidetrack path of A from U to V and the path from V to

U on A. Suppose B has d ascending chains of length .. - ,n2j and rrij = C. By

assumption, C/d < C/d. We now number the ascending chains on both cycles such that node

U- is in the sth chain of both cycles and node V is in the dth chain of cycle A and in the (Ith

chain of cycle B. This means rrij = lj for j = 1, 2,..s — 1. Furthermore we assume node U

is the k*/1 node in chain s and node V is the k*]1 node in chain d of cycle A. (Note the indexing

of a node in a chain starts with 0.) So node V will be the (mj — Id + kd)th node in chain d of

cycle B.

Now we show that the order coming into node V from the path on A is no greater than the

order coming from the sidetrack path.

Theorem 4.6 Let (Wn^kJ denote the order of the kf1 node in chain i of cycle A (B)

at the nth iteration. If

d C
Zj + K1 _ + ki f°r nodes on cycle A

j=*

Wo,.',* =
Wo,t,fct- = oo

and
for nodes on path V to U
for nodes on the sidetrack path,

Then

(4.26)Wn,d,ki—l — i^+fc^)—1'

Note that the (kj — l)*** node on chain d of cycle A and the ((m^ - Id + kj) — l)£/l node on

chain d of cycle B are predecessors of node V. (There may be others; they can be considered

by the same mechanism.)

Proof: From Figure 4.1 we can see that the order of node U propagating through the sidetrack

path will not affect node V until d — s + 1 iterations later. So the first possible lowering of

order at node V by the sidetrack path will happen at the (d — s + l)t/l iteration. Thus we first

show that

Wd-.+l,d,ki-l - ^<i-«+l1<i,(ma-U+fca)-r (4-27)

Since

= wJ-.+ij - ,md ~+ kd'l ~ 1

= + + M
d-1

= + 2 mi + (Tnd-l<i+ kd)
J=*+l

d-1

= w£s + ma - 1 + m3 + (mJ -U + kd)

j — 3 + l
d

= W^ + Y^j-ld + kd-l
i=>

d C *
= C1 - ^ + li2 - 'O'J-I + S mj -ld + kd-1

j=s 3=i

- '52li+ L(2 - + Yrni ~ ld + kd ~ 1
j=i j=s

3—1 <£
= m mf + l-(2 _ 5)7J +Yrnj~ld + kd-l

j=l a j=s

— C + [(2 — s)—\ — Id + kd — l

52

and

W~r d—3+1,4,kd—l wLs+i,d + ^ -1

C — /j + [(d — 3 + 1 + 1 — d)—J + kd — 1a

C -ld+[(d-s + 2)^-C\+kd-l a

L(d — 5 + 2)-^-J — ld + kd — l,

to prove (4.27) it suffices to show that

L(i-. + 2)|j <d+L(2-.)^j.

This is easy, since ^ ^ < C, and hence

[(d - a + 2)—J = \d— + (2 - s)—J < [C + (2 - s)—J = C + [(2 - s)—J.

In subsequent iterations we have

^n+d-s+lJ^m^U+ki)-! ~ Wn+l,t + X! m0 ld + k;d 1
j=3

C
= C [(ti + 2 — 3)—J — ld -\- kd — \

■ a

and

^n+d-s+l,d,kd-l ~ L(n + d - 3 + 2)—J - ld + kd - l

from which (4.26) follows directly.

Q. E. D.

Theorems 4.3 and 4.6 are the key results used to prove Theorem 4.7 in the next section

which is the main result of this chapter.

4.3 Average Accuracy Increase

We define the average accuracy increase of a node to be the limit of pn/n as n —> oo where pn

is the order of accuracy of a node and n is the iteration number. The average accuracy increase

of a numbered graph is the minimum average accuracy increase over all nodes. Theorem 4.3

53

shows that the average accuracy increase in a waveform Gauss-Seidel method can not exceed

the Cfd oi the minimum cycle. Theorem 4.6 shows that if the minimum cycle is initialized

to the natural accuracy (accuracy specified by the natural partition of its length) and the

remaining nodes are infinitely accurate, no sidetrack paths destroy the natural accuracy. These

results can now be combined to show that the average accuracy increase for the waveform

Gauss-Seidel method is exactly the C jd of the minimum cycle in the dependency graph of a

given system after partitioning and ordering.

Theorem 4.7 Suppose a minimum cycle in the dependency graph of a given system is of length

C and has d ascending chains. Then the waveform Gauss-Seidel method applied to this system

has average accuracy increase Cjd.

Proof: Consider two identical dependency graphs, Gi and G2j with N nodes and identical

numberings. If we start with all initial orders of accuracy on both graphs set to zero and run the

waveform Gauss-Seidel iterations on both synchronously, the order of accuracy of corresponding

nodes on the two graphs will be the same at all steps.

After M iterations, we will perturb the iteration on G2 in the following way: lower the

order of accuracy at the nodes in the minimum cycle, A2, of G2 following (4.23), i.e. using the

natural partition of G. Then resume waveform Gauss-Seidel iterations on both graphs. The

accuracy at any node in G2 will never surpass the accuracy of its corresponding node in Gi-

This is easy to see inductively: the new accuracy at a node being integrated is equal to one plus

the minimum accuracy of its predecessors on a graph. If the accuracy of every node in Gi is at

least as large as the accuracy of its corresponding node in G2, then the same condition holds

after the integration and hence before the next integration. Therefore, the average accuracy

increase of G2 is a lower bound for the average accuracy increase of the unperturbed problem

on Gi.

It remains to show that the average accuracy increase for G2 is C jd. Since M is fixed, the

first M iterations can be ignored in computing the average. The important step is to choose

M large enough that the orders of accuracy of the nodes not in the minimum cycle .42 of G2

are effectively infinite at the perturbation', so that the result in Theorem 4.6 applies. Note

that (i) after M iterations starting from accuracy 0, all nodes have accuracy > M, and (ii)

54

when a cycle is set to the accuracy specified by its natural partition as in (4.23), the accuracies

assigned are < N. Hence the nodes not in Az will have an order of accuracy at least M — N

greater than those in Az after the perturbation.

Now consider iterations on Gz after the perturbation. If the average accuracy increase is

less than C/d, the graph Gz — Az must be lowering the order of Az (Theorem 4.6 implies that

the propagation of an accuracy from A2 into Gz — Az and back to Az can not be responsible for

lowering the accuracy). Since the order of accuracy of Gz — Az cam be made arbitrarily higher

than that of Az at the perturbation (M - N higher), the average accuracy of G2 — A2 must be

less than C/d. The argument can now be completed by induction on the size of the graph: It

is certainly true for iV = 2. Assume it is true for 2 < iV < AT — 1. If |d?2| = AT than either G2

has no cycles ot \G2 — A2\ < K — 2 where A2 is a minimum cycle. Hence the average accuracy

increase of G2 — A2 is at least C/d so it can not lower the order of A2.

Q. E. D.

This tells us what the average is, but not how to number the graph to minimize that

average. Finding such a numbering appears to be NP-hard, so a heuristic approach will almost

certainly have to be used. The result above suggests using heuristics that attempt to maximize

the length of ascending chains are appropriate, particularly those in short cycles.

Next we look at some examples to illustrate this result.

Example 4: Consider a dependency graph that has four cycles and the nodes are ordered as

shown.

55

©-

M

I

-^©

© ©

0-t—©—*-©

Ax = {(1,6,13), (11), (7,10), (5,14), (3.9)}
A2 = {(1,6,13), (11), (7,12,14), (3.9)}
13 = {(2,8), (4,7,10), (5,14))}
14 = {(2,8), (4,7,12,14)}

Ci/di = 10/5
^2/^2 = 9/4
C3/d3 = 7/3
C4/(I4 = 6/2

From the graph we see that cycle Ai is the minimum cycle. We would like to see how the

minimum cycle affects the remaining cycles in the graph. First we use the same initial orders

for all nodes in the graph and list the order of accuracy and accuracy increase at all nodes.

Order of Accuracy
Node Iteration No
No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 3 5 7 8 11 13 15 17 18 21 23 25 27 28 •••
2 0 1 3 5 6 9 11 13 15 16 19 21 23 25 26 29 •••
3 0 1 3 5 6 9 11 13 15 16 19 21 23 25 26 29 •••
4 0 1 3 5 7 8 11 13 15 17 18 21 23 25 27 28 •••
5 0. 1 3 4 7 9 11 13 14 17 19 21 23 24 27 29 •• •
6 0 2 4 6 8 9 12 14 16 18 19 22 24 26 28 29 •
7 0 1 2 5 7 9 11 12 15 17 19 21 22 25 27 29 •••
8 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30 •••
9 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30 •••
10 0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30 •••
11 0 1 4 6 8 10 11 14 16 18 20 21 24 26 28 30 •••
12 0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30 •••
13 0 3 5 7 9 10 13 15 17 19 20 23 25 27 29 30 •••
14 0 2 4 5 8 10 12 14 15 18 20 22 24 25 28 30 •••

56

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 •••
. 1 1 2 2 2 1 3 2 2 2 1 3 2 2 2 1 •••

2 1 2 2 1 3 2 2 2 1 3 2 2 2 1 3 •••
3 1 2 2 1 3 2 2 2 1 3 2 2 2 1 3 ...
4 1 2 2 2 1 3 2 2 2 1 3 2 2 2 1 •••
5 1 2 1 3 2 2 2 1 3 2 2 2 1 3 2 •••
6 2 2 2 2 1 3 2 2 2 1 3 2 2 2 1 •••
7 1 1 3 2 2 2 1 3 2 2 2 1 3 2 2 •••
8 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 •••
9 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3
10 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 •••
11 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 •••
12 . 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 •••
13 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 •••
14 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 •••

Prom the table we see that after every 5 iterations the accuracy at each node increases

by 10, the cycle length of Aj. And the increase pattern at each node is {2,2,2,1,3}, or its

circular shifts, which happens to be the ascending chain lengths of A\ in reverse orientation.

Next we choose the initial orders inside Ai such that the natural partition {2,2,2,2,2} of Ci is

considered.

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 • • •
1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 •••
3 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 •••
4 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 • • •
5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 •••
6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 •••
7 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 •••
8 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 •••
9 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 •••
10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 •••
11 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 •••
12 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 •• •
13 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 •••
14 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 •••

57

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 •••
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••
14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 •••

From the table we see that all the nodes in the graph have the same accuracy increase

pattern, the natural partition of C\.

□

Example 5 Consider a dependency graph that has two cycles and one of the cycles is reachable

by the other, but not vice versa.

Ar = {(2,8), (6), (4,10)}; CrM = 5/3
I2 = {(1,5),(3,7)}; C2/d2 = 4/2

Again we list the order of accuracy and accuracy increase at all nodes after each waveform

Gauss-Seidel iteration. From the table we can see that the minimum cycle dominates the

accuracy increase for the entire graph. Had the coupling from node 1 to node 4 via 9 been in

the alter direction, cycle A\ would have sustained an average increase of 5/3 while cycle A2

and node 9 an average increase of 4/2.

58

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
2 0 1 3 4 6 8 9 11 13 14 16 •••
3 0 1 3 5 6 8 10 11 13 15 16 •••
4 0 1 2 4 6 7 9 11 12 14 16 •••
5 0 2 4 5 7 9 10 12 14 15 17 •••
6 0 1 3 5 6 8 10 11 13 15 16
7 0 2 4 6 7 9 11 12 14 16 17 •••
8 0 2 4 5 7 9 10 12 14 15 17 •••
9 0 2 3 5 7 8 10 12 13 15 17 •••

10 0 2 3 5 7 8 10 12 13 15 17 •••

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 1 2 1 2 2 1 2 2 1 2 •••
2 1 2 1 2 2 1 2 2 1 2 •••
3 1 2 2 1 2 2 1 2 2 1 •••
4 1 1 2 2 1 2 2 1 2 2
5 2 2 1 2 2 1 2 2 1 2 •••
6 1 2 2 1 2 2 1 2 2 1 •••
7 2 2 2 1 2 2 1 2 2 1 •••
8 2 2 1 2 2 1 2 2 1 2 •••
9 2 1 2 2 1 2 2 1 2 2 •••

10 2 1 2 2 1 2 2 1 2 2 •••

□

4.4 Conclusion

We assumed that each node in a system’s dependency graph belongs to at least one cycle in

this chapter . The reason for such an assumption is that any nodes that do not belong to a

cycle have no effect (except the source node at the first iteration) on the accuracy increase of

the remaining nodes; hence they can be ignored when discussing the accuracy increase property

for the whole system.

We have proved that the accuracy of a subsystem after each iteration sweep would be one

order higher than the minimum accuracy of its incoming subsystems. We also showed that

after a system is partitioned and the subsystems are ordered, the average accuracy increase

59

for the whole system is min C/d, where C and d are determined by partitioning and ordering,

respectively. Hence we may want to partition a system and order its subsystems so that

the value minC/d is maximized. But such an optimization problem is probably NP hard so

not computationally feasible. However, the result suggests heuristics that could be used to

maximize the lengths of ascending chain in short cycles.

Although the waveform Gauss-Seidel is usually thought of as a serial method, there are

several ways in which it can be used for parallel computation. In one approach, the integration

of later nodes can be staggered in time. The first node is integrated over a small interval of

time, [to, ti]. Its output is then ready to be used for the integration of the second node over that

interval while the first node is integrated over a second interval, [fi, 12], and so on. In the m-th

step, the i-th node is being integrated over the (m + 1 — t)-th time interval for * = 1,..., m.

Its inputs for that time interval firom earlier variables with lower i values have already been

computed. In the (m+ l)-st step, the first node begins the second iteration of the first interval

while each of the others advance.

In another approach, several nodes can be integrated in parallel. In this approach, for a p

processor system, up to p nodes can be numbered with each number in the sequence so long as

there are no branches between nodes with the same number. At each step of a single waveform

Gauss-Seidel sweep, all nodes with the same number cam be integrated in parallel. Since they

are mutually independent, the order result of Theorem 4.1 applies, and hence all results in this

chapter apply.

60

Chapter 5

Variant Gauss-Seidel Approaches

In this chapter we will discuss various approaches for solving systems with special type of

dependency graphs; graphs whose nodes can be sequentially ordered within each cycle. That

is, there is only one ascending chain in each cycle. By the results in Chapter 4, the accuracy

increase in one sweep of Waveform Gauss-Seidel is bounded by the minimum cycle length of

the corresponding dependency graph. In Section 5.1 we will examine some examples and see

that more accuracy increase may be achieved by treating each cycle of minimum length in a

given dependency graph as a new component so that the minimum cycle length of the reduced

dependency graph is larger than before.

For systems with special type of coupling, it is possible to achieve more accuracy increase

with a variant Gauss-Seidel method than the plain Gauss-Seidel does after each iteration sweep.

This approach is to apply Gauss-Seidel iteration to shorter cycles more frequently than longer

ones. That is, at each iteration sweep in addition to the sequential computation of all subsys­

tems, more computations are performed, also sequentially, on components that form smaller

cycles in the dependency graph. We call this approach Hierarchical Gauss-Seidel (HGS). From

the same examples we will see that the accuracy increase after one sweep of Hierarchical Gauss-

Seidel is bounded by the maximum cycle length of the given dependency graph. In Section 5.2

we use a measure to compare the efficiencies of Gauss-Seidel and hierarchical Gauss-Seidel. We

introduce a method to determine when it is more efficient to use hierarchical Gauss-Seidel than

regular Gauss-Seidel for problems with a special type of dependency graph.

61

5.1 Hierarchical Gauss-Seidel and Regrouping

In this section, we investigate four examples to study the accuracy increase property in Gauss-

Seidel scheme with or without local relaxation. In these examples we also show that it is possible

to improve accuracy increase after one sweep of Gauss-Seidel iteration by repartitioning. From

these examples we see that the accuracy increase after one sweep of Gauss-Seidel like scheme are

related to the cycle lengths in the dependency graph being used. This motivates us to choose

a partition for a system such that the resulting dependency graph has a larger minimum cycle

length. To simplify the computation and clarify the ideas, from now on we assume that the

order of accuracy after the computation of each subsystem is exactly one above the minimum

of its inputs.

Example l:Suppose a system’s adjacency matrix has the following structure.

' X X '
X X

X X
X X

XXX

Its corresponding dependency graph drawn below has two cycles, {1, 5}, and {1, 2, 3, 4, 5}.

(1) - (2)
I \ (5-1)

(5) - (4) - (3).

From the dependency graph we can easily compute the order of accuracy for each component

by picking the minimum order of accuracy among all its incoming components and adding 1

to the minimum. Proceed with every component in the numerical ordering we then construct

the accuracy table for the system such that the (i, j) entry of the accuracy table contains the

order of accuracy of the ith component after its computation at the jth Gauss-Seidel iteration

sweep. The accuracy table for the given system is:

62

Order of
Accuracy

Iteration Index
0 1 2 3 4

1 0 1 3 5 7
Node 2 0 2 4 6 8

3 0 3 5 7 9
Index 4 0 4 6 8 10

5 0 2 4 6 8

From the accuracy table we can see that after the iteration stabilizes the accuracy increase after

each W GS iteration sweep is 2, which is the length of the shortest cycle in the dependency

graph shown in (5.1).

We now solve the system by W GS with local relaxation on the shortest cycle {1,5}, i.e.

besides solving each component once, more computations are performed on components 1 and

5 alternately until their accuracies fail to improve. We then have the following accuracy table.

Order of
Accuracy

Iteration Index
0 1 2 3

1 0 13 5 6 8 10 11 13 15
Node • 2 0 2 7 12

3 0 3 8 13
Index 4 0 4 9 14

5 0 2 4 5 7 9 10 12 14 15

In this table we list the order of accuracy for each component whenever it is computed within

an iteration sweep. So the accuracy for each component after one iteration sweep is indicated

by the last nonzero entry at each row within an iteration index column. We can see from this

table that after one sweep of W GS with local relaxation, the accuracy increase becomes 5,

which is the largest cycle length of the dependency graph in (5.1).

Since {1, 5} forms the smaller cycle in the original dependency graph, we can group these

two components together and consider the following dependence relation.

(2)
/ \ (5.2)

(1,5) - (4) - (3).

Applying Gauss-Seidel to the new partitioning, we have the following accuracy table.

63

Order of
Accuracy

Iteration Index
0 1 2 3 4

Compo- 1,5 0 1 5 9 13
nent 2 0 2 6 10 14

3 0 3 7 11 15
Index 4 0 4 8 12 16

From the table, we see that the accuracy increase for W GS under this partition is 4, the length

of the only cycle in graph (5.2).

Example 2: Consider a system with adjacency matrix:

X X
x x

x x
x xx

X X

The corresponding dependency graph is:

(1) - (2)
T \ \ (5.3)

(5) ^ (4) 4- (3).

It is easy to see that there are two cycles, {1, 4, 5} and {1, 2, 3, 4, 5}, in the dependency

graph. Follow the dependence relation we construct the following accuracy table of Waveform

Gauss-Seidel applied on the given system.

Order of
Accuracy

Iteration Index
0 1 2 3 4

1 0 1 4 7 10
Node 2 0 2 5 8 11

3 0 3 6 9 12
Index 4 0 2 5 8 11

5 0 3 6 9 12

As we expect, after a few sweeps the accuracy increase after each sweep is 3, the length of the

shortest cycle in the dependency graph (5.3). Now applying W GS with local relaxation on its

64

shortest cycle {1, 4, 5}, we have the following accuracy table.

Order of
Accuracy

Iteration Index
0 1 2 3 4

1 0 1 4 6 9 11 14 16 19
Node 2 0 2 7 12 17

3 0 3 8 13 18
Index 4 0 2 4 7 9 12 14 17 19

5 0 3 5 8 10 13 15 18 20

Prom this table we see that the accuracy increase after each compound sweep is 5, the maximum

cycle length of the dependency graph shown in (5.3).

Next we group the components 1, 4, and 5 together and consider the following partitioning.

(2)

T \ (5.4)
(1,4,5) «- (3)

The accuracy table of W GS applied to the new dependency graph (5.4) is:

Order of
Accuracy

Iteration Index
0 12 3 4

Compo­
nent
Index

1,4,5
2
3

0 1 4 7 10
0 2 5 8 11
0 3 6 9 12

The accuracy increase after each W GS sweep is now 3, the only cycle length on graph (5.4). .

Example 3: Consider a system with the following adjacency matrix.

x x
X X

X X
XXX

X X

The corresponding dependency graph has two cycles, {1, 2, 4, 5} and {1, 2, 3, 4, 5} in it.

65

(5.5)
(1) - (2)

(1) - (1) - (3)

Use the dependency graph we can construct the accuracy table of Gauss-Seidel easily. It is:

Order of
Accuracy

Iteration Index
0 1 2 3 4

1 0 1 5 9 13
Node 2 0 2 6 10 14

3 0 3 7 11 15
Index 4 0 3 7 11 15

5 0 4 8 12 16

Prom the table we see that the order of accuracy after each iteration sweep increased by 4, the

minin-mm cycle length of the dependency graph shown in (5.5).

If solving the same system by W GS with local relaxation on its shortest cycle {1, 2, 4, 5}

we have the following accuracy table.

Order of
Accuracy

Iteration Index
0 1 2 3 4

1 0 1 5 6 10 11 15 16 20
Node -2 0 1 6 7 11 12 16 17 21

3 0 3 8 13 18
Index 4 0 3 4 8 9 13 14 18 19

5 0 4 5 9 10 14 15 19 20

The table shows that accuracy increase after each sweep is 5, the maximum cycle length of the

dependency graph shown in (5.5). If we group all four components, 1, 2, 4, 5 together, we have

the dependence relation below.

(1, 2,4, 5) <—> (3)

It is easy to conclude that the accuracy increase under this partition will be 2 after each W GS

sweep.

Example 4: Consider a system whose adjacency matrix has the following structure.

66

X X
XXX

X X
XX X

X X
X X

The corresponding dependency graph is drawn below,

(5) - (1) - (2)
1 \ I (5.6)

(6) -> (4) - (3)

which has three cycles, {2, 3}, {4, 5, 6}, and {1, 2, 3, 4, 5}. Proceed as before, the order of

accuracy at each W GS iteration is listed in the following table.

Order of Iteration Index
Accuracy 0 1 2 3 4 5 6

1 0 1 3 7 9 11 13
Node 2 0 1 3 5 7 9 11

3 0 2 4 6 8 10 12
4 0 1 4 7 9 11 13

Index 5 0 2 5 8 10 12 14
6 0 3 6 9 11 13 15

Prom this table we see that after iteration stabilizes the accuracy increase after each sweep is

2, the minimum cycle length in the dependency graph (5.6).

Next we use Gauss-Seidel with local relaxation on both the cycles {2, 3} and {4, 5, 6} in

graph (5.6). In the following accuracy table we list the order of accuracy for each component

whenever it is computed. Therefore the accuracy of one component after a complete iteration

sweep is indicated by the last nonzero entry on its corresponding row within an iteration index

column.

67

Order of
Accuracy

Iteration Index
0 1 2 3

1 0 1 6 11
Node 2 0 12 2 4 6 7 9. 11 12

3 0 2 3 3 5 7 8 10 12 13
4 0 1 4 7 9 12 14

Index 5 0 2 5 8 10 13 15
6 0 3 6 9 11 14 16

From this table we see that the accuracy increase after each sweep is now 5, the maximum

cycle length in the original dependency graph (5.6).

If we solve the internal components of the shortest cycle simultaneously, i.e. we group 2

and 3 together to form a bigger component, the new reduced dependency graph now becomes

(5) - (1)
I \ \ (5.7)

(6) - (4) <- (2,3).

Applying Gauss-Seidel to this new partitioning and the accuracy table is:

Order of
Accuracy

Iteration Index
0 1 2 3 4 5

Compo- 1 0 1 3 6 9 12
nent 2,3 0 2 4 7 10 13

4 0 1 4 7 10 13
5 0 2 5 8 11 14

Index 6 0 3 6 9 12 15

The accuracy increase after each sweep is now 3, the minimum cycle length in the reduced

dependency graph shown in (5.7). When Gauss-Seidel is used, this partitioning has better

accuracy increase than the one shown in (5.6). If we now only group 4, 5, and 6, the internal

components of another cycle in graph (5.6), together, and apply Gauss-Seidel to the following

reduced dependency graph.

(1) ^ (2)
T l (5.8)

(4,5,6) <- (3)

68

The new accuracy table is:

Order of
Accuracy

Iteration Index
0 1 2 3 4 5 6

Compo- 1 0 1 4 6 8 10 12
nent 2 0 1 3 5 7 9 11

3 0 2 4 6 8 10 12
Index 4,5,6 0 3 5 7 9 11 13

Prom the table we see that the accuracy increase after each W-GS sweep is 2, the minimum

cycle length in the reduced dependency graph shown in (5.8). This approach does not improve

the accuracy increase when compared with the first approach in this example.

5.2 Efficiency for Variant Gauss-Seidel Approaches

Different GS like approaches can achieve different accuracy increases by different amounts of

work. We could compare different approaches with a measure of efficiency. Ideally, we define

efficiency as (accuracy increase per sweep) / (total work per sweep). If the cost of the integration

of node i is Wi then the total work per sweep is W = J2iel wii where / is a multiset containing

an entry for each integration of each node. In general, we do not have the relative size of Wi,

but could proceed assuming all to,- = 1 to get W =|| I ||, the number of elements in W. Thus

we have the following definition:

Eff ' ' accuracyincrease per sweeP
total units of work per sweep

Using this definition, we now measure the efficiencies for the Gauss-Seidel without and with

local relaxation in first three examples. They are

Efficiency GS HGS
Example 1 2/5 5/9
Example 2 3/5 5/8
Example 3 4/5 5/9

From these data we see that it is not always more efficient to use Gauss-Seidel with local

relaxation. And for systems with a special type of dependency graph, we have found a criterion

to determine when it is more efficient to use Gauss-Seidel with local relaxation.

69

Theorem 5.1 If there are only two cycles of different lengths in a system’s dependency graph

and these two cycles have at least one common node, then the Gauss-Seidel method without

local relaxation is more efficient when the ratio of the length of the smaller cycle to the length

of the larger cycle exceeds , the reciprocal of the golden ratio.

Note: we have assumed that all internal nodes of each cycle have been solved sequentially in

cyclic order.

Proof: Let the lengths of these two cycles be m and n, respectively, with m < n said let

p = Since m < n, we have p > 2. If the system is solved by Gauss-Seidel without local

relaxation, it is easy to show that the accuracy increase in on sweep is exactly m, length of the

smaller cycle. Since n units of work increases the order of accuracy by m, the efficiency for the

Gauss-Seidel method is

EF(GS) = —.
n

If, besides solving each node once, we perform p — 1 more Gauss-Seidel iterations on the smaller

cycle, the accuracy increase at each node now becomes min(n, m) = n. This shows that

it is always possible to achieve accuracy increase by n after one sweep of Gauss-Seidel with

local relaxation for this type of problems. And to achieve “n order increase” in one sweep, we

need do ra + ([^ — 1])m units of work, so the efficiency for the Gauss-Seidel method with local

relaxation is

EF(HGS) =
n

« + ([£] - l)m'

The difference in efficiency of these two schemes is

EF(HGS) - EF(GS)

_ n _ m
n+(p—l)m n

_ n2 —(mn+(p—l)m2)
“ n(n+(p—l)m) (4.4a)

From the definition of p we have

70

p- 1 < nm < P

n
P

< m < A (4-46)
h2 < mn < (At"2

(4.46) =► < m2 < Af"2
=> < (p - l)m2 < A"2
=> ^n2 < mn + (p — l)m2 < An2 (4-4c)

i.e. when m < n/2, from (4.4c) we have mn + (p - l)m2 < |n2

(4.4a), this implies

EF(HGS) > EF(GS).

When p = 2, that is when m > ^, by (4.4c) we have

-n2 < mn + (p — l)m2 < 2n2.

This inequality does not help deciding which scheme is more efficient but it does tell us that for

some n/2 < m < n, Gauss-Seidel with local relaxation is less efficient. In order for EF(HGS) >

EF(GS) to hold, from (4.4a) we need to solve

n2 — mn — m2 > 0,

which in turn requires that
^ Vs-im < ---------n.

2

Therefore Gauss-Seidel with local relaxation is more efficient for the special type of problems

when 21 < 1 the reciprocal of the golden ratio.

Q. E. D.

If we compare the efficiencies in the first three examples, we can see that they all follow

this criterion.

71

Chapter 6

Numerical Experiments

In this final chapter, we analyze the numerical results obtained from an experimental package

WRODE for solving system of ordinary differential equations using multirate techniques in

waveform relaxation setting.

In section 6.1 we describe some implementation issues. In section 6.2 some experimental

results are presented, the experiments in this section are designed to show how the selection of

different Gauss-Seidel numberings and the Jacobi approach on waveform relaxation affects the

efficiency. We also test the effects of window length on the overall performance of waveform

relaxation. We present the statistical results of the waveform relaxation process both in table

and graph formats. In the fined section we examine the efficiency of the WGS method.

6.1 Implementation

WRODE is a code written in C to implement the waveform Gauss-Seidel and Jacobi iteration.

It performs the direct method if no partitioning of a system is chosen. Users must provide

the partitioning and numbering (ordering) of a given system and the coupling relations among

all subsystems. WRODE will determine the window size automatically according to a user

specified ratio of window length to maximum stepsize among all subsystems. At each waveform

iteration sweep over a window, multirate integration method is used. A multirate integration

method is one in which different equations are integrated using different time steps. The

main objective of a multirate method is to reduce the integration time by using larger time

stepsizes for those variables having slow behavior when compared to the fastest variables. This

72

approach obviously should use less computing time because the toted computing time is roughly

proportioned to the number of integration steps taken for each equation, and in this approach

we can reduce the number of steps taken by the slow components. Besides the reduction

in the number of intergration steps, there are extra savings in matrix computations if implicit

methods are used. Instead of solving a large system, several smaller subsystems are solved. The

work required is roughly N?) compared to iV,-)3). These savings are partially

offset by the cost of interpolations used to compute approximations of variables integrated with

large steps so that the derivatives of variables integrated with small steps cam be computed.

However,these additional costs are reduced if the system is sparse, because not all variables

need to be interpolated or extrapolated to evaluate derivatives.

The basic approach of the implementation is

Repeat

1. Pick a window.

2. Perform waveform relaxation over the window until all waveforms converged.

Until whole integration interval is covered.

Note that if we treat each window as a time step and the waveform relaxation process as the

predictor-corrector process in regular ODE integrator, then the waveform relaxation approach

can be seen as a large scale ODE integrator.

For the rest of this section we discuss some issues that have been implemented in the code.

Data Representation

In WRODE the Nordsieck representation,

, h2y" hky^
’ 2! k\

is used. Using this representation, no recomputation of coefficients is needed when the stepsize

is changed, only scaling is required. At each step, a matrix multiplication by a Pascal triangle

is performed for the predictor. The arithmetic work involved is proportional to both the size

of the system and the square of the order. Therefore this representation is suitable for smaller

systems and lower order methods. In multirate integration methods, we partition a big system

into severed smaller subsystems, then integrate each subsystem independently. Because of the

small size of each subsystem, Nordsieck vector representation seems a good choice.

73

Mesh Point Synchronization

For further saving in computation time and reduction in error, it is desirable to reduce

unnecessary interpolations by synchronizing the mesh points among all subsystems, that is, to

force the mesh of slower components to be a subset of that of faster components. This can be

achieved by letting the stepsize of a component be an integer multiple of the stepsize of the

next faster component (if fixed step methods are used). To achieve as much synchronization as

possible in variable step methods, we will limit stepsize changes to halving, doubling or powers

of the same. A step may be halved at any time, but it may be doubled only when (t - tQ)/h

is even, where h is the current stepsize and to is the initial time point of the current window.

(This scheme guarantees that (t — to)/his an integer and tells us how far the integration has

proceeded, measured in units of the current stepsize.)

Selection of Window Length

In general, after integrating the current time point, fc, the integrator recommends a new

stepsize, hnew and at the beginning of integration a scheme suggested by Shampine [13] is

used to choose an initial stepsize, hin;t. Based on the stepsizes suggested by the integrator

for each subsystem, we have experimented with different choices of window length by choosing

a two’s-power multiple of the largest suggested stepsize among all subsystems at the start of

a new window as the new window length. We maintain the window-length to stepsize ratio

throughout entire integration interval.

System Partitioning and Numbering (Ordering)

The purpose of partitioning is to use as large a stepsize as possible for each subsystem to

gain efficiency. Hence system partitioning plays a critical role in the overall performance of

multirate methods. The order in which subsystems are integrated affects the rate of convergence

in the Gauss-Seidel approach significantly. In the implementation we use static partitioning

and ordering, i.e. we use the same partitioning and ordering throughout entire integration

interval. But a lot of experiments sire designed to see the effect of these two factors on the

performance of WRODE and the numerical results all match the theoretical results discussed

in Chapter 4.

Partial Waveform Convergence Exploitation

74

After each waveform has been computed, we need to check whether a waveform has con­

verged over a window. If it has not, we first determine how far it has converged. Based on this

information we can then locate the starting point of reintegration (over the same window) for

each subsystem. We observe how much work can be saved by exploiting this property in the

experiments.

Interpolation Methods

From the discussion in [3], we know that the order of discretization convergence of a multi­

rate integration method depends partially on the order of the interpolation methods used. In

the code the second order Hermitian interpolation method is used.

6.2 Numerical Results

In this section we compare the efficiency of different Gauss-Seidel numberings and the Jacobi

approach on waveform relaxation. We also test the effects of window length on the overall per-

formance of waveform relaxation. We present the statistical results of the waveform relaxation

process both in table and graph formats.

At the upper left comer of each table is the label of the example. If the label is followed

by ‘/’ and a number, then this number indicates, the number of subsystems being used. The

partitioning and ordering used follows the example label. Each table contains the following

fields (CPU time maybe missing in some tables) :

CPU time : Total time used (in seconds) for the waveform relaxation process. This does not

include the time spent for reading inputs and setting up the initial waveforms.

total iterations : Total number of window iterations performed. If there are two numbers in

this field separated by ‘/’> the first one is the total iterations in convergent windows1 and

the second number denotes the total number of window iterations performed.

window numbers : Total number of convergent windows.

iteration/window : Average iterations needed to reach convergence in a window.

lA convergent window is a window over which WGS or WJ converges in less than or equal to five iterations.

75

steps performed : Total number of successful integration steps performed.

non-converged steps : Number of successful integration steps that are actually needed (con­

vergent steps2 Me excluded) to be performed to reach convergence.

steps redundant (%) : The percentage of convergent steps that are reintegrated.

interpolations : Total number of interpolations performed. Note that interpolations may be

needed when evaluating the derivatives at an intergration step as well as when comparing

two successive waveforms to detect convergence.

function evaluations : Toted number of function evaluations performed.

In the graphs we present the profiles of cpu time, integration steps, interpolations, non-

converged steps and average iterations with respect to different ratio of window-length to

stepsize. We also show the comparison of average iterations between Jacobi and Gauss-Seidel

in different numbering or the comparison between different partitioning.

6.2.1 Linear Problems

In this subsection we consider linear systems of the following form :

y = A(y - <i>(t)) + 4>(t), y(o) = 4>(o), 0 < t < 10, (6.1)

It is easy to see that the exact solution to this type of problem is y(t) =

In the following five examples we consider five different matrices A’s. In examples 6.1, 6.2

and 6.3, we examine matrices of size 4. Using 6.1 and 6.2, we study how WRODE performs on

systems with different minimum cycle lengths. In example 6.3, we examine how the coupling

factor affects the performance of WRODE. For the last two experiments, example 6.4 and 6.5,

we consider matrices of size 6 and we show how the size of couplings between the fast and slow

components affects the performance of WRODE. The Jacobian for these two examples has the

2 by 2 matrices on the diagonal

’ -50 49
49 -50

-6 5 "
5 -6 ’

-1 0
0 -1 or -1 1

1 -1

JA convergent step is an integration step that provides the same answer as the previous iteration (within
desired error tolerance).

76

which have eigenvalues -99 and -1, -11 and -1, -1 and -1 or -2 and 0, respectively. Thus

considered as systems by themselves, the slow class is stiff, the medium class is mildly stiff and

the fast class is not stiff at all.

77

1

Figure 6.1: Dependency Graph of Example 6.1

Example 6.1 : In this example, we consider

'-10 0 1 '
! -S 0 0
0 1 -10 0
0 0 1 -20

and

<f>(t) — (cos(t),sin(t),cos(2Qt),sin(20t))T.

We use Gauss-Seidel and Jacobi schemes in WRODE to solve this system and analyze their

performance. Note that node 2 and node 3 are the fast components.

Partitioning the system into four subsystems each containing only one equation, labeled by

(0), (1), (2), and (3), respectively. The dependency graph under this partitioning has a single

cycle of length four. (See Fig 6.1) We compare the effects of different Gauss-Seidel numberings

on the speed of convergence.

The label of each subsystem is fixed throughout different numberings. If a subsystem label,

say (a), takes the precedence of another one, say (b), in a numbering, then subsystem (a) is

integrated before subsystem (b). For example, the numbering (3102) means that subsystem (3)

is integrated first, followed by subsystem (1), then subsystem (0) and subsystem (2) is integrated

last. Under different numberings the cycle is partitioned into one, two, or three ascending

chains, respectively. According to Theorem 4.7 the average order of accuracy increase after

each Gauss-Seidel iteration is, respectively, 4/1, 4/2, and 4/3 for one, two and three ascending

chains. Practically, we can not know exactly how many terms have been picked up after each

iteration but from the numerical results obtained, among all Gauss-Seidel numberings, the

numbering with one ascending chain has the best speed of convergence, which is expected,

78

while the numbering with three ascending chains has the worst speed of convergence. The

Jacobi approach has only one order of accuracy increase after each iteration so its speed of

convergence is worse than any of the Gauss-Seidel numbering. (See Graphs 6.1.1 - 6.1.3.)

After comparing the efficiency among different numbering schemes, we then test the effects

of window length on the overall performance of waveform relaxation. We list the statistics in

Table 6.2.1. Since the computing time is roughly proportional to the toted number of integration

steps, from Table 6.2.1 we notice that for Jacobi scheme the most efficient ratio of window length

to the maximum step size is 4, while 16 is the most efficient ratio for the Gauss-Seidel scheme

under the numbering, (2 3 0 1). Prom the tables we also see that we can reduce the computing

time from 16% to 39% by exploiting the partial waveform convergence .

Over all, we can see that the numbering (2 3 0 1) in Gauss-Seidel gives the best perfor­

mance. This is not totally unexpected. The reason is that the constant extrapolation over a

window is needed only when the fast component (2) is first integrated and we can expect small

extrapolation error when the extrapolation work is performed on the slow component (1).

□

79

(6.1/4) (2)(3)(0)(l)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 367.42 279.24 244.88 219.84 266.76 285.16
toted iterations 348 101 44 24 16 9
window numbers 123 34 15 8 5 3
iteration / window 2.829 2.970 2.933 3 3.2 3
steps performed 17344 12936 10753 9033 10119 9690
non-converged steps 12367 8709 7297 6192 6154 7171
steps redundant (%) 28.69 29.74 32.14 31.45 39.18 25.99
interpolations 9841 8995 7820 5973 7947 7818
function evaluations 39084 28726 23699 19702 21941 21186
(6.1/4) (2)(3)(0)(1)
Jacobi

window length / max step size
2 4 8 16

CPU time (second) 638.42 599.22 1114.12 2321.74
total iterations 491 169/179 142/237 139/354
window numbers 123 35 29 28
it eration / window 3.992 4.829 4.897 4.964
steps performed 29298 26909 48999 99030
non-converged steps 20250 19672 38959 82869
steps redundant (%) 30.88 26.89 20.49 16.32
interpolations 14914 17240 38958 65828
function evaluations 67470 60357 108778 217996

Table 6.1: Table 1 of Example 6.1

80

5

4.75-

4.5-

4.25-

4-

Average
Iteration Nb 3.75 —
per Window

3.5-

3.25-

3- • •

2.75-

2.5- 1 1
ABCDEPGHI

Window Length / Max Step Siie — 8
Ordering Effects on Speed of Convergence

Example : 8.1
Gauss-Seidel (A - J) | Jacobi (JAC)

A : 0 1 2 3 (4/1)
B : 3 0 1 2 (4/1)
C : 2 3 0 1 (4/1)
D : 1 2 3 0 (4/1)
E : 0 1 3 2 (4/2)
F : 0 2 1 3 (4/2)
G : 0 2 3 1 (4/2)
H : 0 3 1 2 (4/2)
1:0 3 2 1 (4/3)
J : 3 2 1 0 (4/3)

Figure 1 of Example 6.1

j_____i_
J JAC

81

CPU
Time

(seconds)

1200 -

1100 -

1000 -

900-

700 -

800 -

500 -

400 -

300 -

200 -

100 -

ABCDEFGH I J JAC

Window Length / Max Step Sise = 8
Ordering Effects on Speed of Convergence

Example : 8.1
Gauss-Seidel (A - J) j Jacobi (JAC)

A : 0 1 2 3 (4/1)
B : 3 0 1 2 (4/1)
C : 2 3 0 1 (4/1)
D : 1 2 3 0 (4/1)
E : 0 1 3 2 (4/2)
F : 0 2 1 3 (4/2)
G : 0 2 3 1 (4/2)
H : 0 3 1 2 (4/2)
1:0 3 2 1 (4/3)
J : 3 2 1 0 (4/3)

Figure 2 of Example 6.1

82

50000

45000 -

40000 -

35000-

30000 -

Nb of
Times 25000 -

20000 -

15000 -

10000 -

5000 -

0

- laUfrtU** SUp« */*• Pvtial CMTW(<aca

duk«4 - taUfrUisa SUpt». PirtUl CaaTugtaca

mIM - laUrpaUlMU

. i : i ; i : i
: i
: i

l l I i l l i l i
ABCDEPGHI

Window Length / Msx Step Sise = 8
Ordering Effects on Speed of Convergence

J JAC

Example : 4c
Gauss-Seidel (A - J)] Jacobi (JAC)

A : 0 1 2 3 (4/1)
8:30 12(4/1)
C: 2 3 0 1 (4/1)
D : 1 2 3 0 (4/1)
E : 0 1 3 2 (4/2)
F : 0 2 1 3 (4/2)
G : 0 2 3 1 (4/2)
H : 0 3 1 2 (4/2)
1:0 3 2 1 (4/3)
J : 3 2 1 0 (4/3)

Figure 3 of Example 6.1

83

Average
Iteration Nb
per Window

4.5-

4.25-

3.75-

3.5-

3.25-

2.75 -

Log2 (Window Length / Max Step Size)

GS, JAC : (2)(3)(0)(1)

Figure 4 of Example 6.1

84

2400

CPU
Tune

(seconds)

2200-

2000 -

1800 -

1800-

1400 -

1200 -

1000 -

800 -

800-

400-

200-

0--

1 2 3 4 5 8

Log2 (Window Length / Max Step Size)

CPU Time for Direct Method : 109

Example : 8.1

GS : (2)(3)(0)(1)

JAC

.......

_L _ I I

Figure 5 of Example 6.1

85

20000

18000 -

18000 -

14000-

12000 -

10000 -

8000 -

6000 -

4000 -

2000 -

0-.
1 2 3 4 5 6

Log2 (Window Length / Max Step Sise)

Example : 6.1

GS : (2)(3)(0)(1)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 6 of Example 6.1

86

100000

90000-

80000 -

70000-

80000-

50000-

40000-

30000-

20000-

10000-

0--

1 2 3 4 5 8

Log2 (Window Length / Mix Step Sise)

Example : 8.1

JAC : (0)(1)(2)(3)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

: '

I I I I I

Figure 7 of Example 6.1

87

1

Figure 6.2: Dependency Graph of Example 6.2

Example 6.2 : In this example, we consider

‘ -1 0 0 1 '
1 -S ° 0
0 1 -10 1
0 0 1 -20

and

<f>(t) = (cos(t), sin(t), cos(20t), sin(20t))T.

This matrix differs in one position from that of Example 6.1. By changing the value at position

(3,4) from 0 to 1, we construct a dependency graph with a completely different structure.

The dependency graph has two cycles of length four and two, respectively. (See Fig 6.2) In

this example, we test the effects of partitioning on the speed of convergence, and observe that

proper regrouping indeed improves the speed of convergence. If the system is partitioned into

four subsystems then, by Theorem 4.7, the average accuracy increase is two; if the system is

partitioned into three subsystems, i.e. equation 2 and equation 3 which are mutually coupled

are grouped as a subsystem, then the average accuracy increase becomes three and hence the

resulting Gauss-Seidel scheme converges faster. The comparisons axe shown in the following

graphs and tables. Theoretically, we expect that the second paxtitioning strategy provides a

better performance because of the larger increase in order of accuracy. But from the statistics

shown in Table 6.2, we can not be so sure about this in terms of processing time consumed.

By simultaneously solving two variables differ only in phase shift, we may reduce the total

number of interpolations, but these savings might be offset by the increase of the total number

of integration steps and the number of function evaluations resulting from choosing smaller

stepsizes.

88

(6.2/3) (0)(1)(23)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

total iterations 368 102 51 25 16 13
window numbers 123 34 17 8 5 4
iteration / window 2.992 3 3 3.125 3.2 3.25
steps performed 21504 16467 15354 15931 17190 17393
non-converged steps 15712 11673 10826 10481 10597 10725
steps redundant (%) 26.93 29.11 29.49 34.21 38.35 38.34
interpolations 9371 7778 7470 7737 8205 8200
function evaluations 51755 37964 34953 35953 38714 39165
(6.2/3) (0)(1)(23)
Jacobi

window length / max step size
2 4 8 16

toted iterations 449 162 89 44/54
window numbers 123 34 17 9
iteration / window 3.650 4.765 4.944 4.889
steps performed 26334 25758 24726 35021
non-converged steps 19696 19088 18761 28799
steps redundant (%) 25.20 25.89 24.12 17.77
interpolations 8620 10139 9987 14304
function evaluations 63295 59327 56331 79045
(6.2/4) (0)(1)(2)(3)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

total iterations 368 117 56 31 17 12
window numbers 123 33 15 8 5 3
iteration / window 2.992 3.545 3.733 3.875 3.4 4
steps performed 21724 17649 15196 13617 12215 14381
non-converged steps 16130 12325 10855 9876 9438 10799
steps redundant (%) 25.75 30.16 | 28.56 27.47 22.73 24.90
interpolations 16631 17762 15542 12024 13007 17369
function evaluations 50003 39538 33594 29725 26493 31484
(6.2/4) (0)(1)(2)(3)
Jacobi

window length / max step size
2 4 8 16

total iterations 492 172/182 159/304 154/409
window numbers 123 35 32 31
iteration / window 4 4.914 4.968 4.968
steps performed 29399 27133 64824 112071
non-converged steps 23170 21597 54791 98962
steps redundant (%) 21.18 20.40 15.48 11.69
interpolations 18869 24404 60220 104055
function evaluations 67761 60931 143823 246389

Table 6.2: Some Statistics of Example 6.2

89

5.25

Average
Iteration Nb
per Window

Log2 (Window Length / Max Step Sise)

Example : 6.2

GS-3, JAC-3 : (0)(1)(23)
GS-4, JAC-4 : (0)(1)(2)(3)

Figure 1 of Exsunple 6.2

90

40000

36000 -

32000 -

28000 -

24000 -

20000 -

16000-

12000 -

8000 -

4000-

o_.
1 2 3 4 5 6

Log2 (Window Length / Max Step Sise)

Example : 6.2

GS-3 : (0)(l)(23)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 2 of Example 6.2

91

40000

38000 -

32000 -

28000 -

24000-

20000 -

18000 -

12000 -

8000 -

4000 -

0--

1 2 3 4 5 8

Log2 (Window Length / Max Step Site)

Example : 8.2

JAC-3 : (0)(l)(23)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 3 of Example 6.2

92

25000

22500 -

20000-

17500-

15000-

12500 -

10000 -

7500-

5000 -

2500 -

0--

1 2 3 4 5 5

Log2 (Window Length / Mix Step Size)

Example : 8.2

GS-4 : (0)(1)(2)(3)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 4 of Example 6.2

93

120000

110000 -

100000-

90000 -

80000-

70000-

80000 —

50000 -

40000-

30000 -

20000-

10000 -

0 J_____________ |______________1______________ |______________|_

1 2 3 4 5

Log2 (Window Length / Max Step Sisej

Example : 8.2

1
8

JAC-4 : (0)(1)(2)(3)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 5 of Example 6.2

94

10

Figure 6.3: Dependency Graph of Example 6.3

Example 6.3 : In this example, we consider

‘ -1 0 0 10-'

, 1-5 0 0
A~ 0 1 -10 1

0 0 1-20

and

= (cos(t),sin(t),cos(20t),sin(20t))T.

The system’s Jacobian matrix has the same zero-nonzero structure as that of the Example

6.2 does, but the value at position (1,4) has been changed from 1 to 10.

These two examples have the same dependency graphs but differ at one coupling factor.

(See Fig 6.3) This example is designed to show how the size of coupling between the fast

and slow components affects the performance of WRODE. From the statistical results, we see

that the numbering of nodes is very sensitive to the coupling factor since some Gauss-Seidel

numberings and the Jacobi scheme fail to work for this system (integration fails to converge).

During the experiment, if node “0” was integrated before node “3” inside each Gauss-Seidel

iteration sweep, the waveform relaxation broke down. This is because that the error at node

“3” is amplified ten times after propagating to node “0”. One possible solution for monitoring

the propagation of interpolation (extrapolation) error from one component to another is that

we may use a tighter error control at the component whose error will be amplified.

We list the statistics for the numbering (3)(0)(l)(2). From the table and the graph for CPU

time, we notice that the CPU time may be a function of the sum of numbers of interpolation

and function evaluation.

95

(6.3/3) (23)(0)(1)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 334 258 260 297 404 421
total iterations 336 98 54 27 15 15
window numbers 117 33 18 8 4 4
iteration/ window 2.872 2.970 3 3.375 3.75 3.75
steps performed 17094 14493 14303 15180 18174 18379
non-converged steps 12071 9750 9658 10289 12399 12403
steps redundant (%) 29.38 32.73 32.48 32.22 31.78 32.52
interpolations 5627 5161 5323 5824 7335 7078
function evaluations 40537 33245 32522 34290 40992 41448
(6.3/4) (3)(0)(1)(2)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 470 392 381 352 339 368
toted iterations 347 108 60 29 19 16
window numbers 116 32 16 8 5 4
it eration/window 2.991 3.375 3.75 3.625 3.8 4
steps performed 19884 16074 15348 13340 12346 12606
non-converged steps 14365 11386 10819 9846 9194 9504
steps redundant (%) 27.76 29.16 29.51 26.19 25.53 24.61
interpolations 17650 17457 16377 12933 13131 10094
function evaluations 45411 35832 33933 29088 26794 27427

Table 6.3: Some Statistics of Example 6.3

□

96

4.25

Average
Iteration Nb
per Window

4 -

3.75-

3.5-

3.25 -

3 -

2.75- -
1 2 3 4 5 .8

Log2 (Window Length / Max Step Size)

Example : 8.3

GS-3 : (23)(0)(1)
GS-4 : (3)(0)(1)(2)

Figure 1 of Example 6.3

97

CPU
Tune

(seconds)

400-

300 -

250-

200-

150-

100 -

Log2 (Window Length / Max Step Sise)

CPU Time for Direct Method : 107

Example : 8.3

GS-3 : (23)(0)(1)
GS-4 : (3)(0)(1)(2)

Figure 2 of Example 6.3

98

20000

18000

10000

14000

12000

10000

8000

6000

4000

2000

0
1 2 3 4 5 0

Log2 (Window Length / Max Step Sise)

Example : 6.3

GS-3 : (23)(0)(1)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 3 of Example 6.3

99

20000

18000 -

18000 -

14000 —

12000 -

10000 -

8000 -

8000 -

4000-

2000-

Log2 (Window Length / Mix Step Sise)

GS-4 : (3)(0)(1)(2)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 4 of Example 6.3

100

Figure 6.4: Dependency Graph of Example 6.4

Example 6.4 : In this example, we consider

' 49 -50 0 0 0 0 '
-50 49 0 0 0 0 .

1 1 -6 500
A~ 1 15-6 00

1 111-10
1 1110-1.

and

= (cos(0.5t), sin(0.5t),cos(t), sin(t),cos(20t),sin(20t))T.

Here we have a system whose Jacobian matrix is in lower block triangular form (1-way

coupling, See Fig 6.4). This experiment is designed to demonstrate that if the Jacobian matrix

is a lower block triangular matrix with M diagonal blocks, Gauss-Seidel scheme converges after

one iteration if each subsystem is sequentially solved following the dependence relations, the

second iteration is needed to detect waveform convergence and Jacobi converges within M

iterations, the last iteration is used to detect waveform convergence. In this particular example

two iterations are needed for Gauss-Seidel to reach convergence and less than four iterations

are needed for Jacobi. This can be seen from the field iteration / window in Tables 6.4 and

6.5. Some statistical residts are listed in Tables 6.4 and 6.5. In the tables, (6.3/3) and (6.3/4)

respectively refers to partitioning into three and four subsystems.

From the tables we can see that the average iteration numbers needed for convergence at

each window are the same for both partitionings. Notice that nodes ‘4’ and ‘5’ are uncoupled,

101

(6.4/3) (01)(23)(45)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 395 251 247 271 275 302
total iterations 460 58 32 12 8 6
window numbers 230 29 16 6 4 3
iteration / window 2 2 2 2 2 2
steps performed 16588 9664 9200 8904 8344 9476
non-converged steps 16588 9664 9200 8904 8344 9476
steps redundant (%) 0 0 0 0 0 0
interpolations 24776 16652 16012 16148 15152 17412
function evaluations 42414 22662 21382 20350 18982 21462
(6.4/3) (01)(23)(45)
Jacobi

window length / max step size
2 4 8 16

CPU time (second) 570 455 439 466
total iterations 653 113 63 23
window numbers 230 29 16 6
it eration/ window 2.839 3.897 3.9375 3.833
steps performed 25570 19366 18464 17734
non-converged steps 19878 13396 12942 12814
steps redundant (%) 22.26 30.83 29.91 27.74
interpolations 21650 24740 23901 24105
function evaluations 65594 45562 42946 40518

Table 6.4: Some Statistics of Example 6.4/3

they can be integrated independently at the cost of increasing the number of interpolations.

□

102

(6.4/4) (01)(23)(4)(5)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

total iterations 460 58 32 12 8 6
window numbers 230 29 16 6 4 3
iteration/window 2 2 2 2 2 2
steps performed 17744 10084 9508 8858 8834 7836
non-converged steps 17744 10084 9508 8858 8834 7836
steps redundant (%) 0 0 0 0 0 0
interpolations 54760 34928 33412 32184 32440 28264
function evaluations 42892 22808 21382 19590 19494 17166
(6.4/4) (01)(23)(4)(5)
Jacobi

window length / max step size
2 4 8 16

toted iterations 652 113 63 23
window numbers 230 29 16 6
it eration/window 2.834 3.897 3.9375 3.833
steps performed 27173 20171 19030 16287
non-converged steps 21161 13968 13354 11397
steps redundant (%)d 22.12 30.75 29.83 30.02
interpolations 48573 51797 49783 45738
function evaluations 66185 45783 42844 36016

Table 6.5: Some Statistics of Example 6.4/4

103

4

3.75-

3.5-

3.25-

3-
Average

Iteration Nb
per Window

2.75 -

2.5-

2.25-

2 -

1.75- ■

JAC-l, JAC-4

1
1

<33-3,03-1

_|________ |_____ |__ |________ i________ L
2 3 4 5 8

Log2 (Window Length / Max Step Site)

Example : 8.4

GS-3, JAC-3 : (0)(1)(23)
GS-4, JAC-4 : (0)(1)(2)(3)

Figure 1 of Example 6.4

104

CPU
Tune

(seconds)

550 -

500-

450-

400-

350-

300-

..........250-

200 -

150-

100 -

Log2 (Window Length / Max Step Sise)

CPU Time for Direct Method : 178

Example : 8.4

GS-3, JACj-3 : (01)(23)(45)

Figure 2 of Example 6.4

105

80000

54000 -

48000 -

42000 -

38000 -

30000-

24000-

18000 -

12000-

8000 -

0-■
1 2 3 4 5 8

Log2 (Window Length / Max Step Site)

Example : 8.4

GS-3 : (01)(23)(45)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

I I I I

Figure 3 of Example 6.4

106

52000

48000 -

44000-

40000 -

38000-

32000-

28000-

24000-

20000-

16000-

12000-

8000-

4000-

12 3 4 5

Log2 (Window Length / Mu Step Sise)

Example : 8.4

8

JAC-3 : (01)(23)(45)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 4 of Example 6.4

107

80000

54000 -

48000 -

42000 -

38000-

30000 -

24000-

18000 -

12000 -

8000 -

1
2

1
3

j_________ |_________L
4-5 8

Log2 (Window Length / Max Step Site)

Example : 8.4

GS-4 : (01)(23)(4)(S)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 5 of Example 6.4

108

52000

48000 -

44000 -

40000 -

38000-

32000 -

28000 -

24000 -

20000 -

18000 -

12000 -

8000 -

4000 -

0
2 3 4 5

Log2 (Window Length / Max Step Site)

Example : 8.4

1
8

JAC-4 : (01)(23)(4)(5)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 6 of Example 6.4

109

Figure 6.5: Dependency Graph of Example 6.5

Example 6.5 : In this example, we consider

and

A =

49 -50 0 0 -0.25
-50 49 0 0 0

1 1-6 5 0
1 15-6 0
0 Oil -1
0 0 11 1

<£(£) = (cos(Q.5t),3in(0.5t),cos(t),sin(t),cos(20t),sin(20t))T.

In this example we partition the system into three subsystems and treat each subsystem as a

node, thus the dependency graph has a cycle of length 3. In the experiments we consider three

different numberings, (01)(23)(45), (45)(01)(23), and (45)(23)(01). Under these numberings

the cycle is partitioned into one, one and two ascending chains. According to Theorem 4.7 we

can expect better performance from the first two numberings. But it is difficult to compare

the efficiencies of these two numberings. From the results we notice that the first numbering,

(01)(23)(45), is more efficient when the ratio of window length to maximum stepsize is greater

than 8 and the second numbering, (45)(01)(23), is more efficient when the ratio is less than 8.

We list the statistics in Table 6.7. From this table we also observe that the efficiency

deteriorates very fast as the ratio of window length to maximum stepsize increases, especially

in the Jacobi approach.

□

110

(6.5/3) (01)(23)(45)
Jacobi

window length / max step size
2 4 8 16

CPU time (second) 675.76 690.34 1514.4 4314.26
total iterations 691 151/171 147/282 144/439
window numbers 230 31 30 29
iteration/window 3.004 4.871 4.9 4.966
steps performed 32224 34386 74640 205272
non-converged steps 26514 26612 61066 182898
steps redundant (%) 17.72 22.61 18.18 10.90
interpolations- 13267 23507 51452 143366
function evaluations 85162 81254 174538 474118

Table 6.6: Some Statistics of Example 6.5, Jacobi

111

(6.5/3) (01)(23)(45)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 642.02 366.62 410.84 544.8 1309.42
total iterations 690 88 58 26 22/37
window numbers 230 29 16 6 5
iteration/window 3 3.034 3.625 4.333 4.4
steps performed 30160 17694 19588 23676 54544
non-converged steps 22324 12822 12154 14380 37608
steps redundant (%) 25.98 27.53 37.95 39.26 31.05
interpolations 20591 14158 16227 20578 42597
function evaluations 79662 42226 45882 54274 124330
(6.5/3) (45)(01)(23)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 467.16 300.32 399.72 867.86 1833.64
total iterations 639 88 61 35/50 32/67
window numbers 230 29 16 8 7
it eration/ window 2.778 3.034 3.8125 4.375 4.571
steps performed 23038 15054 17864 38374 78796
non-converged steps 16910 10098 10904 24236 56212
steps redundant (%) 29.72 32.92 38.96 36.84 28.66
interpolations 12424 9996 12799 30067 62273
function evaluations 58898 35250 41482 87694 178970
(6.5/3) (45)(23)(01)
Backward Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 515.8 405.74 535.06 1465.12 3534.04
total iterations 649 115 80/90 77/152 78/228
window numbers 230 29 17 16 16
iteration/window 2.82 3.965 4.706 4.8125 4.875
steps performed 25246 19982 25762 69100 161554
non-converged steps 20084 14158 17332 53200 136462
steps redundant (%) 20.45 29.14 32.72 23.01 15.53
interpolations 11562 14085 19251 53182 126470
function evaluations 65226 46978 59930 159022 368634

Table 6.7: Some Statistics of Example 6.5, Gauss-Seidel

112

4500

CPU
Tim«

(•ceondf)

4000 -

3500-

3000-

2500-

2000 -

1500 -

1000-

500 -

0--

1 2 3 4 5 8

Log2 (Window Length / Mix Step Siie)

CPU Time for Direct Method : 180.24

Example : 8.5

GS-3A : (01)(23)(45)
GS-3B : (45)(01)(23)
GS-3C : (45)(23)(01)

/ QS-4C

OS-JB

Figure 1 of Example 6.5

113

Average
Iteration Nb
per Window

Log2 (Window Length / Max Step Siie)

Example : 6.5

GS-A : (01)(23)(45)
GS-B : (45)(01)(23)
GS-C : (45)(23)(01)
JAC : (01)(23)(45)

Figure 2 of Example 6.5

114

80000

54000 -

48000 -

42000-

38000-

30000 -

24000-

18000 -

12000-

8000-

0 -
1 2 3 4 '5 8

Log2 (Window Length / Mu Step Sise)

r

Example : 8.5

GS-3A: (01)(23)(45)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 3 of Example 6.5

115

80000

72000 -

84000-

56000 -

48000-

40000-

32000 -

24000-

16000-

8000-

0--

1 2 3 4 5 6

Log2 (Window Length / Max Step Siie)

Example : 6.5

GS-3B : (45)(01)(23)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

I

Figure 4 of Example 6.5

185000 -

150000 -

135000 -

120000 -

105000-

90000 -

75000 -

80000 -

45000-

30000-

15000 -

Log2 (Window Length / Max Step Sue)

Example : 6.5

GS-3C : (45)(23)(01)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

: / : /

I I I

Figure 5 of Example 6.5

117

200000 -

180000 -

180000 -

140000-

120000-

100000-

80000 -

60000-

40000-

20000-

; i ; i ; i
: /: /: i : »: i

0 1
1

J____________ i_____________l

2 3 4
1
5

Log2 (Window Length / Max Step Site)

Example : 6.5

1
6

JAC-3 : (01)(23)(45)

dotted - # of Integration Steps w/o. Partial Conrergence
dashed - # of Integration Steps w. Partial Conrergence

solid - # of Interpolations

Figure 6 of Example 6.5

118

Figure 6.6: Dependency Graph of Example 6.6

6.2.2 Solution of a Wave-Like Equation

We analyzed the performance of WRODE on linear problems in previous subsection. In this

subsection we will use the same approaches to solve a nonlinear problem, a “travelling wave”

equation.

Example 6.6 :

ii = Vi-i ~ *t
y,- = -((jk + X)e20(v.+l)(x<-0.5) + (y. _ 1)e20(y<-l)(x,-+0.5))

with j/o = VM and 2:^(0) = yi(0) = —1% for i = 1,2 ..., M.

This is a highly nonlinear problem which was designed by Gear to simulate a series of

capacitors and flip-flops and was used as an example of a multirate system. The capacitor Xi

is slowly charged by its input 2/{_i- When this capacitor reaches .5 the flip-flop yi is triggered.

119

This allows the following capacitor Xi+i to slowly discharge and when its value falls below -.5,

the next flip-flop yi+i is triggered, etc. The behavior of the components is illustrated in figure

6 and 7.

Since the signal flows in one direction and flows back after some delay, a feedback loop

is formed. (See Fig 6.6) Because of the circular dependence relations, the dependency graph

of this system is a cycle of length equal to the number of subsystems. We want to test the

efficiencies of the forward and backward Gauss-Seidel and Jacobi methods on this system.

To use waveform relaxation method to integrate this system over [0,T], we partition the

system into M subsystems, (z;, yi),i — 1,2,..., M, and integrate each subsystem independently

or sequentially. In the forward (backward) Gauss-Seidel numbering we munber each subsystem

in the (reverse) direction of the signal flow which breaks the cycle into either one or M — 1

ascending chains. The statistics in Table 6.8 are the results for the case M = 3. From

Table 6.8 and graphs, we see the expected result that forward Gauss-Seidel has the fastest

speed of convergence while Jacobi has the slowest. If we break the original system into M

subsystems, (j/^z^i), i = 1, 1, ..., M-l, and (yM,xo), then the system becomes extremely

stiff and the integrator breaks down very quickly.

□

(6.6/3) (0l)(23)(45)
Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 75.68 73.70 67.88 79.98 82.5 80.5
total iterations 108 44 27 15 8 5
window numbers 48 19 11 6 3 2
iteration/ window 2.25 2.316 2.455 2.5 2.667 2.5
steps performed 5254 5398 5052 5362 5498 4782
non-converged steps 4660 4248 4060 3642 3704 3032
steps redundant (%) 11.30 21.30 19.63 32.07 32.63 36.59
interpolations 1779 2255 2177 2400 2669 2193
function evaluations 13570 13310 12418 13006 13222 11550
(6.6/3) (45)(23)(01)
Backward Gauss-Seidel

window length / max step size
2 4 8 16 32 64

CPU time (second) 95.78 85.16 89.98 101.48 85.26 208.94
total iterations 129 51 35 19 10 11/16
window numbers 48 19 11 6 3 3
iteration/window 2.6875 2.684 3.182 3.167 3.333 3.667
steps performed 6754 6282 6696 6672 5632 13032
non-converged steps 4440 4206 3768 2946 2596 5494
steps redundant (%) 34.26 33.04 43.72 55.84 53.90 57.84
interpolations 2591 2959 3084 3349 3122 6941
function evaluations 17394 15490 16474 16166 13518 31470
(6.6/3) (01)(23)(45)
Jacobi

window length / max step size
2 4 8 16

CPU time (second) 99.2 99.14 98.06 164.16
totad iterations 137 55 37 27/32
window numbers 48 19 11 8
it eration/window 2.854 2.895 3.364 3.375
steps performed 7058 7182 7166 11032
non-converged steps 4514 4264 3812 5032
steps redundant (%) 36.04 40.62 46.8 54.38
interpolations 2429 3142 3146 5387
function evaluations 18202 17690 17594 26750

Table 6.8: Some Statistics of Example 6.6

121

3.75

3.5

4

3.25

Arer&ge
Iteration Nb 3
per Window

2.75

2.5

2.25

2
1 2 3 4 5 6

Log2 (Window Length / Max Step Sise)

Example : 8.8

GS-3 : (0l)(23)(45)
GSB-3 : (45)(23)(01)
JAC-3 : (01)(23)(45)

OSB-4

OS-3

J_________ I________ I_________ I

Figure 1 of Example 6.6

122

CPU
Time

(seconds)

Log2 (Window Length / Mix Step Sise)

CPU Time for Direct Method : 28.44

Example : 8.8

GS-3 : (01)(23)(45)
GSB-3 : (45)(23)(01)

Figure 2 of Example 6.6

123

6000

5500 -

5000-

4500-

4000-

3500-

3000-

2500-

2000-

1500-

1000-

500-

0 J_____________ 1______________1_____________ |______________ |_

1 2 3 4 5

Log2 (Window Length / Mix Step Sise)

Exunple : 6.8

6

GS-3 : (01)(23)(45)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 3 of Example 6.6

124

15000

13500-

12000-

10500-

9000-

7500 -

8000-

4500-

3000 -

1500-

0-.
1 2 3 4 5 8

Log2 (Window Length / Max Step Sise)

• •......

I I I I

Example : 8.8

GSB-3 : (45)(23)(01)

dotted - # of Integration Steps w/o. Partial Conrergence
dashed - # of Integration Steps w. Partial Conrergence

solid - # of Interpolations

Figure 4 of Example 6.6

125

12000

11000 -

10000 -

9000 -

8000-

7000-

8000-

5000-

4000-

3000 -

2000-

1000 -

0 J_____________|______________ |______________ |______________ 1_

1 2 3 4 5

Log2 (Window Length / Max Step Sise)

Example : 6.8

1
6

JAC-3 : (01)(23)(45)

dotted - # of Integration Steps w/o. Partial Conrergence
dashed - # of Integration Steps w. Partial Convergence

solid - # of Interpolations

Figure 5 of Example 6.6

126

cr$rrm-yw> -1-0* fc
-2.00 *—

O.CX3

Viaij*.. _ _____ ■;hMkniimsMcaSMlMi&liSU&i- ItfiBsias
..v .. v'.-'V./w-,.- ■■■

Figure 6 of Example 6.6

Travelling waves generated by Gauss-Seidel scheme

127

Figure 7 of Example 6.6

Travelling waves generated by Jacobi scheme

128

M Tout
CPU Time

Best RatioWGS Direct
2 4 8 16 32 64

3 10.0 19.24 16.48 15.48 17.36 18.42 15.68 5.44 2.846
20.0 39.80 33.98 33.36 35.12 38.60 45.26 11.24 2.968

9 10.0 19.86 17.12 18.12 18.70 19.20 20.22 23.62 0.725
20.0 47.18 41.24 58.88 52.24 51.56 49.00 50.50 0.817
30.0 68.44 59.70 85.56 76.36 72.08 70.58 68.60 0.870
40.0 120.60 83.94 110.62 131.14 118.78 120.36 101.32 0.828

15 10.0 23.38 21.68 19.86 20.26 19.62 23.70 58.98 0.333
20.0 43.94 43.32 43.24 40.78 41.02 44.14 124.20 0.328
30.0 108.08 71.50 79.68 75.92 94.06 89.14 168.56 0.424
40.0 147.64 93.28 105.36 98.02 118.4 253.56 0.368

Table 6.9: Efficiency of WGS method

6.3 Efficiency of WGS

In this final section we look at two more examples to observe the efficiency of the WGS method

when system size grows.

First example we use the same system of wave-like equations as described in Example 6.6.

We experiment the CPU times used by the WGS method for M = 3,9,15, where 2* M is the

number of equations in the system.

We define the “Best Ratio” as follow:

Best Ratio =
the least CPU time used by the WGS method

CPU time used by the direct method

So when the best ratio is greater than one, this indicates that the direct method outperforms

the WGS method. In Table 6.9 we compare the efficiency of WGS method with that of the

direct method. From the table we notice that as the size of the system grows, the WGS method

becomes more efficient.

129

Figure 6.7: Dependency Graph of Example 6.7

Example 6.7 : In this example we consider the following system :

yi = —10 itj + tx,_i + a + 0.1 cos(0.1 f) t = l,...,n —1

yn = -10 tt„ + un_i + 20 cos(20t)

u0 = 0,

tii = yi-sm(O.lt) t = l,...,n—1

= J/n - Stn(201)

yi(0) = 0 i = 1,..., n. •

The Jacobian matrix of this system has the following structure :

■ -10 0 0 0
1-10 0 0
0 1-10 0
0 0 1 -10

0 a
0 a
0 a
0 a

0 0 0 0 1 -10

and its dependency graph is shown in Figure 6.7.

We integrate this system from t = 0 to t = 4 with n = 21 and vary the size of a. The first

20 components form the slow class and the last component is the fast class. We consider the

following three different partitionings : (a) the slow components, 0 to 19, forms one subsystem

and the fast component, 20, itself forms the other subsystem; (b) the slow components, 0 to

9 and 10 to 19, form the first two subsystems and the fast component 20 forms the third

subsystem; (c) the slow components, 0 to 4, 5 to 9, 10 to 14, and 15 to 19 form the first

four subsystems and the fast component 20 forms the fifth subsystem. The subsystem to be

integrated first is either the fast component or the slow subsystem containing component 0 and

the order of integration follows the dependence relations.

The results of CPU time consumed by the WGS and the direct method with different

coupling factors, a, are given in Table 6.10. The WGS method performs quite well when

the coupling factor is small. From the table we also notice that when the coupling factor is

large, the entire integration interval is divided into a very large number of windows so big page

swapping overhead may occur.

In Table 6.11 we list the efficiencies of the WGS method under different partitionings.

From the table we notice that when the size of a subsystem is large, even it contains all slow

components, the subsystem is forced to use very small stepsize which limits the length of window

to be chosen. Hence total number of windows increases in the entire integration interval and

this causes poor performance on WRODE.

Since all the slow components depends on the single fast component in this system, no

matter how we partition the system the reduced dependency graph always has a minimum

cycle of length “2”. The speed of convergence under these three partitionings are all the same

(this can be observed from the table).

At the beginning of this chapter we mentioned that am advantage of using multirate method

is the saving in matrix computation time at each integration step if an implicit method is used.

The work required in solving a full linear system is roughly 0(N3) where N is the dimension

of the linear system. In this example under the three partitionings, (a), (b), and (c), the

most matrix computation work required at each integration step is O(203), O(103), and 0(53),

respectively. Total matrix computation work for a partitioning depends on total number of

integration steps been performed under this partitioning. From the table we can see that under

partitioning (c) less number of windows is needed to cover the entire integration interval, which

indicates that larger stepsize is used and hence less number of integration steps is performed.

131

Sub­
system

#
a

CPU Time
Best B^itioWGS Direct

2 4 8 16 32 64
2 0.D0 22.06 21.30 17.66 17.80 14.94 13.50 45.22 0.298

32.32 30.16 25.06 26.82 22.70 22.06 0.488
l.D-3 65.56 43.22 48.28 37.02 37.06 24.36 45.00 0.541

80.24 67.36 67.18 74.78 74.98 43.22 0.960
l.D-2 97.60 105.36 97.38 85.00 77.36 67.62 44.90 1.506

98.46 98.22 100.34 90.98 84.12 73.42 1.635
l.D-1 295.34 220.50 168.18 127.02 108.56 96.74 44.68 2.165

186.28 145.86 131.48 124.50 110.66 97.36 2.179

Sub­
system

#
a

Total Iter # / Window #
WGS

2 4 8 16 32 64
2 0.D0 28/14

= 2
18/9
= 2

10/5
= 2

8/4
= 2

4/2
= 2

4/2
= 2

40/14
= 2.857

24/9
= 2.667

14/5
= 2.8

12/4
= 3

6/2
= 3

6/2
= 3

l.D-3 122/61
= 2

40/20
= 2

31/15
= 2.067

14/7
= 2

8/4
= 2

4/2
= 2

134/61
= 2.197

54/20
= 2.7

42/15
= 2.8

21/7
= 3

11/4
= 2.75

6/2
= 3

l.D-2 217/108
= 2.009

105/39
= 2.692

79/28
2.821

44/15
= 2.933

24/8
= 3

12/4
= 3

216/108
= 2

93/39
= 2.385

77/28
= 2.75

45/15
= 3

23/8
= 2.875

12/4
= 3

l.D-1 501/218
= 2.298

221/77
= 2.870

102/34
= 3

45/15
= 3

24/8
= 3

12/4
= 3

436/218
= 2

162/77
= 2.104

81/34
= 2.382

43/15
= 2.867

23/8
= 2.875

12/4
= 3

Table 6.10: Efficiency of WGS wrt Coupling Factors

132

Sub­
system

#
a

CPU Time
Best RatioWGS Direct

2 4 8 16 32 64
2 l.D-1 295.34 220.50 168.18 127.02 108.56 96.74 44.68 2.165

186.28 145.86 131.48 124.50 110.66 97.36 2.179
3 l.D-1 109.7 68.66 62.60 58.76 55.08 56.64 44.68 1.232

62.24 64.16 59.44 58.60 59.26 62.06 1.312
5 l.D-1 50.06 45.04 45.82 36.36 41.86 37.54 44.68 0.814

47.60 45.06 47.58 37.60 45.90 39.60 0.842

Sub- Toted Iter # / Window #
system a WGS

2 4 8 16 32 64
2 l.D-1 501/218 221/77 102/34 45/15 24/8 12/4

= 2.298 = 2.870 = 3 = 3 = 3 = 3
436/218 162/77 81/34 43/15 23/8 12/4
= 2 = 2.104 = 2.382 = 2.867 = 2.875 = 3

3 l.D-1 219/75 57/19 30/10 18/6 9/3 9/3
= 2.92 = 3 = 3 = 3 = 3 = 3
150/75 54/19 28/10 17/6 9/3 9/3
= 2 = 2.842 = 2.8 = 2.833 = 3 = 3

5 l.D-1 51/17 27/9 18/6 12/4 9/3 6/2
= 3 = 3 = 3 = 3 = 3 = 3
47/17 24/9 17/6 11/4 9/3 6/2
= 2.765 = 2.667 = 2.833 = 2.75 = 3 = 3

Table 6.11: Efficiency of Different Partitioning

It is therefore clear that partitioning (c) has the best performance, that is, it consumes the

least CPU time among the three partitionings, because of the least number of integration steps

and the least matrix computation work required at each step.

In summary, the experiments in this chapter show that care must be used in selecting

the numbering and partitioning when using WRODE. If use correctly WRODE can perform

well even on small systems but is best suited for large system with a high percentage of slow

components. The code will not perform well if the slow components are strongly dependent on

the fast.

133

Chapter 7

Summary

From the results obtained in chapter 6, we see that the total work is basically proportional to

the total number of integration steps been performed. (The profile of CPU time for different

ratios of window length to stepsize is similar to the profile of the toted number of integration

steps.) Thus the ratio of window length to stepsize, which use the least number of integration

steps, is the most efficient one.

Note that in shorter windows the advantage of multirate process is lost because of the

restriction on the choice of stepsize, but the time grids for different subsystems are highly

synchronized so it will reduce the number of interpolations significantly and it usually takes

less iterations to reach convergence; in longer windows each subsystem can choose its stepsize

as large as possible which will reduce the total number of integration steps, but it may need

more iterations to reach convergence inside each window. When window length is short the

total number of windows will increase and a lot of overhead occurs, for instance, the start up

time for each waveform integration, the page swapping from subsystem to subsystem and from

window to window. Observing the interaction among all the factors that affect the performance

of waveform relaxation was the main goal of this experimental code.

From the tables we can see that the total number of function evaluations is roughly propor­

tional to the total integration steps, so if we can reduce the number of integration steps we can

save some computing time. To achieve this we should exploit the partial convergence behavior

of successive waveforms and by doing this we can save from 7 % to 55 % of integration steps.

When a large ratio between window length and maximum step size was used, a lot of work

134

was wasted (especially in the Jacobi approach). This can be noticed from the huge number of

integration steps and a large difference between the total number of window iterations been

done and toted number of iterations inside convergent windows.

Prom the execution profile we found that about 20 percent of the time was spent on number

comparison and in subroutine vjptJocQ. This subroutine is called when interpolation is needed

for computing approximations of input variables to evaluate the derivatives in a subsystem. It

will locate the proper time point in the waveforms of input variables. Since we did not use a

sophisticated strategy to locate a time point in a waveform (we always search the time point

from the beginning of a waveform, a lot of floating point number comparisons will be performed

when the target time point is near the end of a waveform.), we should be able to save at least

10 percent of the time if we can modify this routine. The result is shown in the following table.

CPU Time WGS Direct
2 4 8 16 32 64

w/o. FP coprocessor 75.68 73.70 67.88 79.88 82.50 80.50 28.44
w. FP coprocessor 21.46 18.54 17.52 21.20 22.18 23.56 5.48
efficient wpt_loc() 19.24 16.48 15.48 17.36 18.42 15.68 5.48
saving (%) 10.34 11.11 11.64 18.11 16.95 33.45

When a subsystem is being integrated, it must reside in main memory, as do those variables

which appear on the right hand sides of the equations defining the variables being integrated.

The multirate approach has less page swapping compared to the traditional one when a large

system is solved. In the traditional approach, at each time point, all variables have to reside

in main memory, so a lot of page swapping is expected. In the multirate approach, at each

time point of each subsystem, page swapping is far less frequent because of the smaller size of

each subsystem; the large amount of page swapping occurs when integration moves from one

subsystem to another inside a window and when integration moves from one window to another

window. So the toted page swapping will be proportional to the number of subsystems times

the total number of windows being used. Using larger ratio of window length to maximum

stepsize will reduce the number of windows to be used and hence reduce page swapping. How

large the ratio should be chosen such that the speed of convergence will not deteriorate needs

further study.

135

Bibliography

[1] J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications”, North Holland, 1976.

[2] R. F. Curtain and A. J. Pritchard, “Functional Analysis in Modern Applied Mathematics”,

Academic Press, 1977.

[3] C. W. Gear, “Automatic Multirate Methods for Ordinary Differential Equations”, Proc.

IFIP 1980, 717-722, North-Holland Publishing Company.

[4] C. W. Gear and D. R. Wells, “Multirate Linear Multistep Methods”, BIT 24 (1984),

484-502.

[5] F. Juang, “Accuracy Increase in Waveform Relaxation”, Report No. UnJCDCS-R-88-1466,

Department of Computer Science, University of Illinois at Urbana-Champaign, 1988.

[6] F. Juang, C. W. Gear, “Accuracy Increase in Waveform Gauss-Seidel, Report No.

UIUCDCS-R-89-1518, Department of Computer Science, University of Illinois at Urbana-

Champaign, 1989.

[7] E. Lelarasmee, “The Waveform Relaxation Methods for The Time Domain Analysis of

Large Scale Nonlinear Dynamical Systems”, Ph.D. dissertation, University of California,

Berkeley.

[8] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, “The Waveform Relax­

ation Method for Time-Domain Analysis of Large Scale Integrated Circuits”, IEEE Trans,

on CAD of IC and Sys. Vol. 1, No. 3, pp. 131-145, July 1982.

136

[9] U. Miekkala and O. Nevanlinna, “Convergence of Dynamic Iteration Methods for Initial

Value Problems”, REPORT-MAT-A230, Helsinki University of Technology, Institute of

Mathematics, Finland, 1985.

[10] L. W. Nagel, “SPICE2: A Computer Program to Simulate Semiconductor Circuits”, Elec­

tronic Research Laboratory Report No. ERL-M520, University of California, Berkeley,

May 1975.

[11] O. Nevanlinna, “Remarks on Picard-LindelSf Iteration”, REPORT-MAT-A254, Helsinki

University of Technology, Institute of Mathematics, Finland, December 1987.

[12] R. D. Skeel, “Waveform Iteration and The Shifted Picard Splitting”, SIAM J. Sci. Stat.

Comput. Vol. 10, No. 4, pp. 756-776, July 1989.

[13] L. F. Shampine “Starting an ODE Solver”, Numerical Mathematics Division 5122, Sandia

Laboratories, Albuquerque, NM 87115

[14] D. R. Wells, “Multirate Linear Multistep Methods for The Solution of Systems of Ordi­

nary Differential Equations”, Report No. UTUCDCS-R-82-1093, Department of Computer

Science, University of Illinois at Urbana-Champaign, 1982.

[15] J. K. White, “The Multirate Integration Properties of Waveform Relaxation, with Applica­

tions to Circuit Simulation and Parallel Computation”, Report No. ERL-85/90, University

of California, Berkeley, 1985.

[16] J. White, F. Odeh, A.S. Sangiovanni-Vincentelli and A. Ruehli, “Waveform Relaxation:

Theory and Practice”, Memorandum No. UCB/ERL M85/65, 1985, Electronics Research

Laboratory, College of Engineering, University of California, Berkeley.

[17] S. Wolfram, Mathematica, A System for Doing Mathematics by Computer, Addison-Sesley

Publishing Company, Redwood City, CA, 1988. Mathematica is a trade mark of Wolfram

Research, Inc.

137

00E F 1332.16 (lb<84)
(Formerly RA-427)

U. S. DEPARTMENT OF ENERGY

OMB Approval
No. 1910-1400

UNIVERSITY CONTRACTOR. GRANTEE. AND COOPERATIVE AGREEMENT
RECOMMENDATIONS FOR ANNOUNCEMENT AND DISTRIBUTION OF DOCUMENTS

St$ Instructions on Rtvtrst Side

1. DOE ReponNo. 3. Title
DOE/ER/25026/34 WAVEFORM METHODS FOR

1 DOE Contract No. ORDINARY DIFFERENTIAL EQUATIONS

DEFG0287ER25026

4. Typt of Oocumtnt ("x" one)
Sciintific and tachnieal raport

Ob. Conference wen
Titla of confaranca_________________

Data of confaranca__________________

Exact location of conference_________

Spoiuoring organization_____________

Jpc. Othar(Specify) Ph.D. Thesis

5. RKommandad Announcamant and Distribution (“x” ona)
^a. Unrastrictad unlimited distribution.
Ob. Maka available only within DOE and to DOE contractors and othar U. S. Government agencies and their contractors.
Oe. Othar (Specify)___

6. Reason for Recommandad Restrictions

7. Patent and Copyright Information:
Does this information product disclose any new equipment, process, or material? ^ No □ Yes If so, identify page nos.____________________
Has an invention disclosure been submitted to DOE covering any aspect of this information product? AJ No □ Yes

If so, identify the DOE (or other) disclosure number and to whom the disclosure was submitted.
Are there any patent-related objections to the release of this information product? M No o Yes If so, state these objections.
Does this information product contain copyrightad malarial? fa No □ Yes

If so, identify the page numbers______________________________ and attach the license or other authority for the government to reproduce.

8. Submitted by Name and Position (Please print or type)
C. W. Gear, Professor and Principal Investigator

Organizatii

Department of Computer Science, University of Illinois at Urbana-Champaign
Phone

217/333-0195 January 1990

FOR DOE OR OTHER AUTHORIZED
USE ONLY

9. Patent Clearance CV one)
Qa. DOE patent clearance has been granted by responsible DOE patent group.
ab. Report has been sent to responsible DOE patent group for clearance.

BIBLIOGRAPHIC DATA !• Report No. 2.
SHEET UIUCDCS-R-90-1563 3. Recipient's Accession No.

4. Title and Subtitle
WAVEFORM METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS

5. Report Date
January 1990

6.

7. Author(s)
Fen-Lien Juang

8. Performing Organization Rept.
No.

9. Performing Organization Name and Address
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. Project/Task/Work Unit No.

11. Contract/Grant No.'

DOE DEFG0287ER25026
12. Sponsoring Organization Name and Address

Department of Energy
Chicago Operations Office
Argonne, Illinois 60439

13. Type of Report 6c Period
Covered
Ph.D. Thesis

14.

IS. Supplementary Notes

16. Abstracts

The traditional approach for solving large dynamical systems is time consuming.
Waveform method, an iterative technique for solving systems of differential equations,
can be used to reduce the processing time. Waveform method has been shown to converge
superlinearly on finite intervals. In this thesis, a measure of speed of convergence
is defiped and is used to compare the value of different waveform methods. This
measure is the rate of increase of order of accuracy.
The speed of the waveform Gauss-Seidel method depends on the numbering of the equations
The numbering of the equations corresponds to a numbering of the directed graph
specifying the coupling relations among all equations. We show how to compute the rate
of order increase from the structure of the numbered graph and hence the optimum
numbering, that is, the one which maximizes the speed of convergence. Finally, in a
variety of numerical experiments, conducted on a Sun 3/60, we demonstrate the different

17. Key Wards aad Document Analysis. 17a. Desuiptors, . .. , . , ,speeds of convergence correspond xo different numberings and the effectiveness of the
waveform Gauss-Seidel method for large sparse systems.

waveform relaxation
waveform Gauss-Seidel
waveform Jacobi
order of accuracy
accuracy increase

17b. Identifiers/Open-Ended Terms

17e. COSATI Field/Group

18. Availability Statement

unlimited
19.. Security Class (This

Report)
n^rT.AS.SlFTFD

20. Security Class (This
Page

UNCLASSIFIED

21* No. of Pages

146
22. Price

FORM NTIS-JS 110-70) USCOMM-OC 403JO-P7 1

