DEPARTMENT OF COMPUTER SCIENCE

O S
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

mim Tlil"]-«"
RIANE RN

\\\‘\\fl ‘ -

by
oy

THE NeW ADDITION

REPORT NO. UITUCDCS-R-90-1563 UILU-ENG-90-1701
DOE/ER,/25026/34

WAVEFORM METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS

by

Fen-Lien Juang

January 1990

DISTRIBUTION OF THIS NOCUMENT 1S UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

DOE/ER/25026--34
DE90 006593

REPORT NO. UIUCDCS-R-90-1563

WAVEFORM METHODS FOR
ORDINARY DIFFERENTIAL EQUATIONS

by

Fen-Lien Juang

January 1990

DEPARTMENT OF COMPUTER SCIENCE
1304 W. SPRINGFIELD AVENUE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, IL 61801

Supported in part by DOE Grant DEFG0287ER25026 and
submitted in partial fulfillment of the requirements of
the Graduate College for the degree of Doctor of Philosophy.

MASTER .

DCISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This work is lovingly dedicated to my parents
Kuei-Wei Juang and Yeh Hsieh,
my grandmother, Hsiao-Luan Hsieh

and my husband, Hsin-Fong Chen.

iii

Acknowledgement

I would like to express my deep appreciation and gratitude to my thesis advisor, Professor C.
William Gear, for his guidance and financial support during the years of my graduate study. I
am also grateful to my advisor for his careful reading of the preliminary drafts and numerous
comments during the preparation of this thesis. I also like to thank the other members on my
committee, Professors Sameh, Saylor, Skeel, and Gallivan for their interest in my work and to
all who have helped me throughout my academic life.

Thanks to the former and current occupants in 31 corridor, Ben, Dan, Jerry, Jim, John,
Mike, Ren-Li, Ruth, Steve, Tam, Tom, Tony and Mr. Xu for their friendship. Special thanks
to Sohail for his expert help in so many things.

I thank my parents and my grandmother for a lifetime of love and support. Finally, I am
glad to thank my husband Hsin-Fong not only for his suggestion on the content and style of

this thesis but also for his constant encouragement and support.

iv

Contents

1 Imtroduction @ @ . i i it e e e e e 1
2 Waveform Relaxationt iiieneeenn. 3
21 BasicIdea e e e e e 4
2.2 Generallteration Formula 0o 8

3 Accuracy Increase in Waveform Relaxation 12
3.1 Taylor Series and Waveform Relaxation 13
3.1.1 Picard Method e, 15

3.1.2 Waveform Relaxation 17

3.2 Order of Accuracy and Accuracy Increase 0. 20

4 Accuracy Increase in Waveform Gauss-Seidel 31
4.1 Accuracy Increase for A Subsystem0 e 32
4.2 Accuracy Increase and Dependency Graphs 35
4.2.1 Accuracy Increase and Ascending Chains 36

4.2.2 Accuracy Increase ina Single Cycle 41

4.2.3 Accuracy Increase in General Graphs 47

4.3 Average Accuracy Increase e 53
4.4 Comnclusion e e e e e e 59

5 Variant Gauss-Seidel Approaches 61
5.1 Hierarchical Gauss-Seidel and Regrouping 62
5.2 Efficiency for Variant Gauss-Seidel Approaches 69

6 Numerical Experimentsttt 72
6.1 Implementation ¢ . . i e e e e e e 72
6.2 Numerical Results 0 i v it it it it bt e et ittt e o 75

6.2.1 Linear Problems e e e e e e e e e e e e e e e 76

6.2.2 Solution of a Wave-Like Equation 119

6.3 Bfficiency of WGS i i i i i i ittt it e i e e e e e 129

T SUMMALY . . . ¢ ¢ttt ot i et et ot et ot st ot s et o s a s ot o st s o 134
Bibliography. e e e e e 136

vi

Chapter 1

Introduction

Large dynamical systems are likely to be described by variables that change at very different
rates. The traditional approach to solving this kind of problem is to discretize all the variables
with an identical mesh. This forces one to choose a mesh that is fine enough to accurately
reflect the behavior of the most rapidly changing variable. Stiffness may force the use of implicit
integration methods. The application of an implicit method involves the solution of a system of
nonlinear algebraic equations. Due to the large dimension of a big system and the size of a fine
mesh, an enormous processing time is inevitable. In addition to the cost consideration, real time
and interactive applications require fast response. Approaches to reduce the processing time
by taking advantage of the multirate property of a large system of ODEs have been suggested
by Gear and Wells in (3, 4, 14]. These approaches are, first, to partition a big system into
several subsystems, then to solve each subsystem independently (i.e. using different time steps
or different methods for each subsystem). These approaches are called multirate integration
methods.

One major problem of classical multirate integration (as discussed, for example, in [4, 14])
is the overhead of coordination between the subsystems. The coordination is needed at each
step to pass current information between subsystems. The wa.veform relaxation method (see
(7, 8, 15, 16]) is an approach which circumvents these problems by iterating the integrations
using the old information from other subsystems. In this thesis, the waveform iteration will be
studied under the assumption that the integrations are performed exactly.

Waveform relaxation has been shown to converge superlinearly on finite intervals by Nevan-

linna in [11]. In this thesis the order of accuracy of solutions generated by the waveform relax-
ation method is discussed. The order of accuracy of an iterate is characterized by the number
of correct terms in its Taylor series. (A term in an iterate’s Taylor series is correct if it matches
the corresponding term in the true solution’s Taylor series.) We will show that the accuracy at
each step of the iteration is at least one order higher than the accuracy at previous step. Under
some certain conditions the increase'in order of accuracy after each iteration can be improved
dramatically.

The waveform relaxation method is reviewed in Chapter 2 and two iterative approaches,
Waveform Gauss-Seidel (WGS) and Waveform Jacobi (WJ) are discussed briefly. Sev-
eral waveform relaxation methods based on different splittings are discuésed. The waveform
relaxation method is a generalized Picard method. Each approximate solution generated by
the Picard method has one more correct term in its Taylor series than its previous one. In
Chapter 3 we use some examples to show how the correct terms in the Taylor series of iterate
generated by different waveform relaxation methods increase. Then we define the order of
accuracy of an approximate solution and show that the order of accuracy of successive approx-
imate solutions generated by the waveform relaxation method is increasing. In Chapter 4 we
will show that the increase in the order of accuracy after each Waveform Gauss-Seidel iteration
sweep is related to a system’s partitioning and ordering. After a system is partitioned, the
coupling relations among all subsystems can be indicated by a directed graph. Such a directed
graph is called a system’s dependency graph. We will prove that the average accuracy increase
in waveform Gauss-Seidel is equal to the minimum ratio of C/d among all cycles in a system’s
dependency graph , where C is a cycle length and d is the ﬁumber of times the numerical num-
bering of nodes in this cycle decreases. In Chapter 5 we will discuss some variant Gauss-Seidel
approaches which can achieve better accuracy increase when being used to solve systems with
special type of dependency graphs. In Chapter 6 we will discuss some implementation issues
of the multirate integration method in waveform relaxation setting. We will present some nu-
merical results from an experimental package for solving systems of differential equations by
waveform Jacobi or waveform Gauss-Seidel. From the results we can see that the numerical

results matches the theoretical results discussed in Chapter 4.

Chapter 2

Waveform Relaxation

Waveform methods were first proposed [7, 8] in the context of VLSI circuit simulation where
they were used to solve differential-algebraic equations (DAEs). In this thesis we will examine
their effectiveness for the solutions of ordinary differential equations (ODEs) which are special
case of DAEs. The high cost of fabrication makes it important to verify the design of an
integrated circuit by using simulation. One technique is to first construct a system of nonlinear
ODE:s that describe the given circuit, and then to solve the system with a numerical integration
method. This is called circuit simulation [10].
The standard approach of solving ODE systems is based on three techniques {3, 10, 16]:

1. Usiﬁg implicit integration methods to discretize the system of differential equations. (If

the equations are stiff, stiffly stable methods must be used.)

2. Using a functional iteration or modified Newton method to solve the system of nonlinear
algebraic equations obtained at each time point of the discretization. (If the equations
are non stiff, only one functional iteration is needed, if stiff, an average of slightly more

than one Newton iteration is needed.)

3. Using a direct method to solve the system of linear algebraic equations generated by

Newton’s method. (If the equations are non stiff, this last step is not necessary.)

As the size of ODE system grows, the standard approach can become inefficient. This is
because the large systems usually contain variables that change at very different rates. The

direct application of integration methods forces one to discretize all the variables identically

and the discretization must be fine enough to accurately reflect the behavior of the most
rapidly changing variable. If each variable in the system could use the largest possible timestep
that would accurately reflect its behavior, i.e. if we could use different stepsizes for different
variables, then the efficiency of the simulation could be improved greatly. Approaches that
allow different stepsizes for different components in solving systems of ordinary differential
equations are called Multirate Integration Methods (3, 4, 14].

In contrast, waveform methods apply the iteration first to define, by a sequence of differen-
tial equations, a sequence of functions of time (“waveforms”) which converge to the solution of
the differential equations. The discretization of the resulting differential equations is done as a
second step. Waveform methods can result in systems of ODEs which are mutually decoupled.
This not only reduces communication requirements (in parallel processing) but also permits
simple implementation of multirate integration.

Since the main computational bottleneck in solving stiff ordinary differential equations
is the implicitness of the ODEs (numerical stability), it may be conceptually beneficial to
apply iterative techniques in continuous time before discretization to handle implicitness [12].
Waveform Relazation method is a class of continuous-time iterafive methods, which was first
used to speed up the simulation process of integrated circuit design [7] by allowing the individual
variable of the systems to use different timesteps.

In this chapter we will review the basic idea of Waveform Relazation method. Two fopu—
lar approaches, Waveform Gauss-Seidel and Waveform Jacobi, will be presented in Sec-
tion 2.1. General iteration formula of waveform relaxation will be given and several convergence

properties will be discussed in Section 2.2.

2.1 Basic Idea

Waveform relaxation is a family of iterative methods that are applied to solve systems of
ordinary differential equations. One of its basic ideas is to partition a big system into loosely
coupled subsystems and to solve each subsystem independently over a part of the integration
interval called a window. The coupling between subsystems is neglected in the sense that at

each iteration sweep each subsystem is solved by using past values of other subsystems over

the window. The iterative process is continued until satisfactory convergence is obtained for
each subsystem in a window. The same iterative process is performed in every window along
the time axis until the entire integration interval has been considered. At each iteration sweep
of waveform relaxation, every subsystem is discretized differently according to its behavior in
the window. At the first iteration sweep, zero-th order (constant) extrapolations are usually
used to approximate the values of variables in other subsystems; at later iteration sweeps,
interpolations within the window are used to approximate the needed values. A waveform is a
continuous representation of a solution component on a window.

Consider the following autonomous system of ordinary differential equations
a = F(u), u(0) = ug \ (2.1)

where u € R®,and F : R™ — R". Using waveform relaxation to solve (2.1), the system is first

partitioned into m coupled subsystems

1:‘1 = fl(ul,UZ,...,%), ’ul(O) s ul,o
Um = ,fm(‘!l1,u2,..., Um), um(o) = Um,0
where u; € R™, u = (uf,ul,...,ul)T, fi +: R" > R™, F = (FF, . B, 1<i<m,

and Y %, n; = n; then each subsystem

i"i = fi(uly- ooy Uju1y Ugy Uity . --’um)a U{(O) = Uio0

1 < i < m, is solved independently by using past values of uy,...,%;i—1, Uity .y Um.
For simplicity, in this section we only discuss systems which are partitioned into two sub-

systems, that is, the case m = 2.

W = fi(u,u) w(0)=wp (2.2)

s = fa(ur,ua) u2(0) = uz 0 _ (2.3)

The extension to arbitrary m is straightforward.

The idea of waveform relaxation will be illustrated using the two-time-scale system charac-
terized by Eqgns. (2.2) and (2.3). We assume ¢ € [0, T, a finite interval.
Waveform Gauss-Seidel)

In this approach, an initial guess to the solution of (2.2) or (2.3) is required to start the
iterative process. Let us assume ugol(t) = ug,0, is the initial guess. We integrate Equation (2.2)

with respect to u;,

1.‘1 = fl(u11 u[20])9 UI(O) = u1,0
to obtain the first approximation, ugll, to the solution. We then plug u?] into Equation (2.3)

and integrate (2.3) with respect to u,,
2 = fo(ul, u), u2(0) = ugp.

We obtain u[21] as an approximation to the solution. Next u[21] is plugged back into Equation (2.2)
and this equation is reintegrated to obtain u&zl, which is a better approximation to the solution.

This iterative process can be written in the form

i = (Y, ul(0) = uyo
fork > 1,
il = fo(ulM, o),) ul(0) = uz

ul¥(t) = ug 0.

The process is terminated when the differences between the successive iterates are suf-
ficiently small. To summarize, the waveform Gauss-Seidel method can be described by the

following:

Algorithm 2.1: (Waveform Gauss-Seidel Algorithm for solving Eqn (2.1))

1. Partition system u into a number of subsystems, uj,..., Um.
2. Set the iteration count, k£ = 0.
3. Guess initial waveforms for all variables, for example, u[-k](t) = w0 VE € [0,T).

2

4. Repeat

(a) Increase iteration count, k = k + 1.
(b) For each (i € {1,...,m}) { solve

() = A, WM et ey o¥(0) = u

cea Ui gy Uy ULy

for (ul(2); t € [0, £]) }

(¢) Until (max;<;<m max,¢fo,1 || uEk](t) - u?'-ll(t) |I< €, a small positive number.)

Note that the differential equation in Algorithm (2.1) has only one unknown variable

The variables ugﬁ_—lll, L’-‘. Y are known from the previous iteration and the variables

-ugk], . uEkII have already been computed.

[k]

Waveform Jacobi

In this approach, initial guesses ugol and u[zol are both required. Assume u&ol(t) = uy,0 and
u.[zol(t) = ugp for t € [0,T]. Then the following equations
W o= filu,), u1(0) = up
Uy = fz(u[1°], ug); u2(0) = uzo
(1] [(o]

are integrated to produce better approximations u; ' and u.

oL))

are replaced by u;" and u;

Then the initial guesses u; " and
, and the process is repeated to obtain u[12] and u?], the new
approximations.

The iterative process can be written as follows:

il = A, w0 = uig
for k> 1,
il = folul), 4 (0) = w2
u[lol(t) = uy,0, u[zol(t) = ug .

The process is ended when both approximations converge. This method is suitable for
implementation on multiprocessor computers since each subsystem can be handled by a different

processor. The Waveform Jacobi method can be summarized by the following:

Algorithm 2.2: (Waveform Jacobi Algorithm for solving Eqn (2.1))

1. Partition system u into a number of subsystems, u;,...uUm.
2. Set the iteration count, k = 0.
3. Guess initial waveforms for all variables, for example, ugk](t) = uo Vt € [0,T).
4. Repeat
(a) Increase iteration count, k = k + 1.
(b) For all ti € {1,...,m}) { solve
ﬂgkl(t) = f,-(ugk-ll, ceny uyf__ll], uEk], ugﬁ__lll, ceey ufn'll) uEk](O) = U9

for (ugk](t); tefo,¢)}

(c) Until (max; <i<m maX;eo,7] || u.Ek](t) - uE-k_I](t) || €, a small positive number.)

The obvious attraction of WJ method is that each subsystem can be integrated indepen-
dently of the others in parallel. In the WGS method, the subsystems are integrated in sequence
using the most recent values of the other subsystems. Both of these are particular examples of

the general idea of splitting which will be discussed in next section.

2.2 General Iteration Formula

The idea of partitioning an ODE system can be genéralized as splitting the right hand side of
the ODE system in (2.1). Let F(u,v) be chosen so that F{u,u) = F(u) and u = F(u,v) is

easy to solve for any given v. Then the iteration formula is
aletll = f(u[k*"l],u["]),' u[k+1](0) = up
with ul’(¢) = ug. If we choose the splitting such that

a = F(u,v)
= G(u,v)+ F(v) - G(v,v)

or

1 - G(u,v) = F(v) - G(v,v), (2.4)

the general iteration formula for waveform relaxation is then

a1~ G(ul+ ulf) = P(ul®) - g(ul¥, ul), ulk+1(0) = ug (2.5)

where ul*! is the k** approximate solution generated by waveform relaxation. Suppose G
is chosen so that the Jacobian matrix in Eqn (2.5) is block diagonal or block triangular, it
is equivalent to the ODE system being decoupled into smaller subsystems and hence each
subsystem can be solved independently or sequentially.

Different iterative methods can be derived from different splittings of the right hand side
of the ODE system. Several iterations based on different splittings of the 1;ight hand side of
Eqn (2.1) are listed below.

Example 1: If G = (g1,92,...,9m)* and

gi(ul 1wy = g, Wl Wl), 1<i<m

-1 1 m
where F = (f1, f2y- -+, fm)', then, by the definition of G, G(ul®, u*) — F(ul*) = 0 in (2.5). So
a1l = g(alt+t], o), ul**+1(0) = u,,

is the iteration formula of waveform Jacobi. Under this splitting, the Jacobian matrix of the
iteration formula is block diagonal, so each subsystem can be solved simultaneously. Hence

waveform Jacobi is suitable for parallel computation.

Example 2: If G = (91,92,.-.,9m)t and

ule+1l, ul) = filuy "“] ul e M ,uldly, 1<i<m

ey Uy 2 Yy yUipgoe--

gi(

where F = (f1, fay. .+, fm)!, then, by the definition of G, G(ul*], ul*) —F(u["]). = 0 too in (2.5).

So the iteration formula of waveform Gauss-Seidel is

a1l = g(ul+1, o), ul*+1(0) = ug.

Under this splitting, the system is partitioned into loosely coupled subsystems and the Jacobian
matrix of the iteration formula is in lower block triangular form, so each subsystem will be solved

in sequence.

Example 3: If G is chosen so that
oF
G(u,v) = 5—(v)-u,
where g—ﬁ—(v) is the total derivative of F' at v then we get the waveform Newton method:
alk+1] = pralkly 1 OF (lkly | (ullert] _ M [k+1](g) =
a = F(u)+%-(u) (u - u™) u**4(0) = uy,
or
oF oF
alfe 1] _ 22 (qlily L i+l = Ry — 22 (ule]y .l e+1}(0) = u,.
a 3u(u)-u F(u'*) Bu(u)-u u*TH(0) = uo

In this iterative approach, the Jacobian matrix of the original system has to be computed at

each iteration sweep, so if the system is very large it is impractical.

Example 4: If we choose the splitting G(u, v) = 0, that is,
alktl = p(ald), uf*+1(0) = u,

then we have the classical Picard method. As an iterative method, Picard is superlinearly
convergent on any finite intervals [11].

]

We want to choose a splitting to accomplish several objectives: we want fast convergence,
and for this, G(u, v) should, in some senses, be like F(u); and we would also like the ODE
(2.4) to be easy to integrate (by choosing a very simple function G). The Picard method yields
the simplest integration: it is only a quadrature. However, its convergence is slow unless F'
is almost independent of v. WJ and WGS require slightly more complex integrations, but
they are simpler than the original problem because it has been reduced to a number of simpler

subsystems. The important characteristic of these two splittings is that no communication

10

from other subsystems is needed during the integration of a single subsystem; it can happen
prior to the integration. The goal of fast convergence is achieved by methods like waveform
Newton in which we choose

G(u,v) = g—i(v) ‘u.

For this, G(u, v) “looks like” F(u) in that their first derivatives are identical at u = v. Note

that the error in successive iterates of a waveform method, €l®l = ul*l — u satisfies
*tl 4 Guet = (Fy — Gy)e® — O(elM + F+11)2, (2.6)

In waveform Newton, the first term on the right-hand side vanishes.

| The fast convergence properties of waveform Newton are offset by the greater cost of each
iteration. First there is the expensive computation of 3F/dv at each step. Second, when the
system of ODEs is very large and we try to integrate them on a parallel processor, there will
be extensive communication between subsystems which destroys the potential advantages of
parallel execution.

Finally, we summarize some convergence properties of waveform relaxation method. In
order to guarantee that waveform relaxation applied to Eqn (2.1) will converge to the systems’
solution, we first must guarantee that Eqn (2.1) has a solution. If we require that F is Lipschitz
continuous with respect to u, then a unique solution for the system exists [3]. In [16] it is shown
that the waveform relaxation algorithm is a contraction mapping in an exponentially scaled
norm and in [11] waveform relaxation is proved to converge superlinearly on any finite intervals.
In the following chapter we will look at waveform relaxation from a different point of view.
Instead of discussing the convergence property of waveform relaxation, we will discuss how the

order of accuracy of successive approximate solutions increases.

11

.Chapter 3

Accuracy Increase in Waveform
Relaxation

In this chapter, we will look at waveform relaxation from a different point of view. Instead of
discussing the convergence property of waveform relaxation, we will discuss how the order of
accuracy of successive approximate solutions increases. We use Taylor expansions to demon-
strate that the waveform relaxation method is Picard-like. That is, the waveform relaxation
method can be considered as a generalization of the classical Picard method in the sense that
the Taylor series expansions of successive approximate solutions generated by both methods
have more and more terms coinciding with the Taylor series expansion of the exact solution. So
when many iterations are performed the iterative solution will be a good approximant of the
exact solution. In the Picard method each successive approximate solution gains exactly one
more term in its Taylor series expansion, while in the waveform relaxation method the gains
can be more than one. We will assume continuity of as many derivatives as necessary for our
analysis.

In Section 1 we study some examples to see why waveform relaxation method can be
considered as a generalized Picard method. From the examples given , we can see that the
Taylor series expansion at each iteration matches a certain degree Taylor polynomial of the
exact solution. As the iteration continues, the degree of the matching Taylor polynomial gets
higher. This phenomenon motivates us to discuss the idea of order of accuracy.

In Section 2 we define the order of accuracy of an approximate solution and use it to prove

Theorem 3.2 and Theorem 3.6, and a corollary that tell us how the order of accuracy increases

12

after each iteration sweep.

3.1 Taylor Series and Waveform Relaxation

Different splittings yield different waveform methods with different convergence properties.
All waveform relaxation methods converge superlinearly on any finite interval so it is not
possible to use a measure like rate of convergence to compare different splittings. In this
section we consider, instead, the rate of increase in the order of successive approximations.
In order to understand the motivation for discussing the order of accuracy of approximate
solutions generated by iterative methods, in this section we will use some instructive examples to
demonstrate how the Taylor expansions of the exact solution and of the approximate solutions
generated by waveform relaxation method are related.

Consider Picard applied to the simple problem y’' = y, y(0) = 1 starting from the approxi-
mation yl%(¢) = 1. The k-th iterate is y/*I(t) = 14t +¢2/2!4...+t*/k!. Each successive iterate
has one additional correct term in its power series. This is not peculiar to simple problems.

A Riccati equation, which will be solved by Picard and two forms of waveform relaxation is
discussed below. (All the coefficients of the Taylor series and of the error terms in this section
were computed with Mathematica [17].)

Consider the following Riccati equation:
4 =u-2u:, u0)=3. (3.1)
The exact solution to this equation is

u= 1
~ 5 _5_.-¢°
2—§€ ¢

It’s Taylor series expansion up to the 32" power of ¢ is listed below.

165t2 905¢3 19855t 108901¢°

2 2 i 8 8

u(t) = 3—15t+

3583811¢° 137595781t7+6037499171t8 2980310913012°
48 336 2688 24192

13

16346453844611¢1° 986230018285381¢1! + 843006100707823¢t12
241920 2661120 414720

4628356194666449701¢3 + 32309043760005503401¢14
415134720 528353280

29239505816778281278981¢15 + 233270223372513639093961116
87178291200 126804787200

18404309961487713094078777t!7 306765595387775957286905743¢18
1824038092800 5543180697600

2461574341203724092547697936581¢° n 24547781348408817799272276401161¢2°
8109673360588800 14744860655616000

31101848795043084083102556266254501¢%!
3406062811447296000

17956619491960181819371716933802579t22
358532927520768000

473435349147450279208574442279954018181¢23 +
1723467782592331776000

62258668047051949431137854715289788971¢24
41321904877338624000

8545468760110628823706819494174008019180901¢2° .
1034080669555399065600000

110784380414997447820372572944112167974909801¢2¢
2444190673494579609600000

180466652226091733172811894474698971158885683781¢t27 N
725924630027890144051200000

2519557578871559600479694682858617505769096999561¢%8
1847808149161902184857600000

14

339104535032848365272025326877910367266529638957177¢2° +
45342369198665138228428800000

495810658108561686421031761267011876081732764790997t3°
12087166088502668427264000000

123334295585299653836548664678319848443928666583855493381¢3! 4
548189243611861521181704192000000

115758851421793863092416150504705011017048892087489560633t32
93807785003099297742323712000000

o(t)*
3.1.1 Picard Method

The traditional forms of Picard method are written as either
t
ult+1(8) = ug + / F(ul(r))dr
0

or

a1 = P(u) u(0) = u,.

From the second equation we see that Picard is actually a special case of waveform relaxation
by choosing
G(u[k+1], ulf) = G(ul, ul*) = o,

i.e. no splitting is used. To see how the approximate solutions, in their Taylor series expansions,
generated by Picard are related to the exact solution, we now use Picard to solve the Riccati

equation given in (3.1). The iteration scheme used is as follow:

,&[k+1] — u[k] _ 2(u[k])2’ u[k+1](0) = 3.
The first five approximate solutions generated are listed below, where u(?) is the exact solution:

utl(t) = wu(t)+

15

—165t2 + 905t% 19855t 4 1089015 35838118 +
2 2 8 8 48

1375957817 60374991718 298031091301¢° 16346453844611¢10
336 2688 24192 241920

o(t)ll
u2(t) = u(t)+

605t 198554 + 108901t 3583811t N 1375957817
2 8 8 48 : 336

60374991718 4 298031091301t° 16346453844611¢1°
2688 24192 241920

O(t)ll

uBl(t) = u(t) +

—6655t4 N 72721t5 3187811t6 N 135435781t
8 8 48 336

60374991718 + 298031091301¢° 16346453844611¢1°
2688 24192 241920

O(t)ll
u[q(t) = u(t)+

14641t° 1199231t6+74422381t7 43425003718
8 48 336 2688

16

2530368225012 15211790292611¢1°
24192 241920

O(t)n

ul(t) = u(t) +

—161051t6+18462301t7 1525247471t 114556106401¢t°

48 336 2688 + 24192
8430151455011¢1° 11
241920 +0()

From this example it is easy to see that after each Picard iteration exactly one additional
correct term is picked up by the new approximation. And as the iteration continues, the number

of correct terms in an approximation gets larger.
3.1.2 Waveform Relaxation

In the following we will see that same behavior occurs in waveform relaxation method. After
each iteration one or more than one additional correct terms will be picked up, and the number
of additional correct terms to be picked ui) after each iteration is related to the iteration scheme
used.

First we use the following scheme

ﬁ[k+1] _ u[k+1] — _2(u[k])2’ u[k+1](0) = 3.

to solve the Riccati equation given in Equation (3.1). The splitting is G(ul**+1l, uldl) = yle+1],

The first five approximate solutions with their error terms up to t*! are listed below.

W) = u(t) +

49654 N 27225t5 298651t8 N 1638045t7
2 2 4 4

—~90t% + 450t% —

17

503124931¢3 + 8278641425t° 1362204487051t1°
224 672 20160

O(t)u
WAty = u(t)+

2866509¢t7 125781381¢8
360t% — 2610t* + 13536¢° — 746941% + - +

7 56
1034830127t° 28379260199t .
84 420
o(t)"!
uBlie) = () +
—1080¢* + 103685 — 7124415 + 412992¢7 — 31481001¢° N 86193864t°

14 7

9460505191£1° +

Otll
140 (t)

ulfl(t) = w(t)+

78271722t° 2287886688¢10
7 B 35 +

2592t5 — 31104t% + 257472¢7 — 17936645 +
O(t)u

WLl(t) = u(t) +

523584t 5019408t8 39830832t° 201552948t1°

- 18
5184t° + 7 7 + 7 z

18

O(t)n

From above listing we can see that again exactly one additional correct term is picked up
after each iteration and the leading error coefficient is different from that of the Picard method.
Next we use a different waveform relaxation scheme to solve the same Riccati equation by

using the splitting, G(ul*+1], ul*l) = (1 — 4ul*)ul*+1l, The scheme used is now
alttl _ (1 = qulFlyulet1) = a2 yk+1(0) = 3.
In the following we list the first four approximate solutions with a few error terms.

ulll(t) =" u(t) +

23565t 142615t® 1616955t7 8955375¢8

1503 — 1650¢4
T3 7 4 4

24818061035¢% 136200799141¢1°
2016 2016

O(t)u
uPl(t) = u(t)+

45000¢t7 928125t8+ 11167875t% 207445425t10
7 7 7 14

1301077875t 5991092225t}2 9926905947025¢13

11 7 t 1716 -
189613674132775¢14
5096 +0(?)

uBlit) = u(t)+

19

270000000£1° 1062703125016 N 3866146875000£17
49 49 833

59839216593750¢18 + 157062483419343750¢1° 154718051530702500t2°
833 174097 15827

O(t)21

ul(t) = u(t) +

145800000000000000¢3! 11168650195312500000¢32
74431 74431

O(t)33

In this scheme we see that more than one correct term is picked up after each iteration. Actually,
the number of correct terms in the Taylor expansion of an approximation almost doubles after
each iteration.

From these examples we see that the degree of the leading error term at each approximate
solution generated by waveform relaxation method increases as the iteratiosn continues. In next

section we will show that the behavior we observe in these examples is that normally expected.

3.2 Order of Accuracy and Accuracy Increase

In this section we begin with the definition of the order of accuracy. Then we show that the
increase in the order of accuracy after each iteration sweep will be at least one for different
iterative schemes. By using the Fréchet derivative we also show that the increase can be in
geometrical progression if the splitting is chosen carefully.

From the examples given in the previous section we see that exactly one additional correct
term is picked up in each iteration. The reason is evident from a consideration of the error
term, e*1(t) = ul*l(¢) — u(t), which satisfies (2.6). If the partial derivatives in that equation are

evaluated at suitable points near the solution, the higher order terms can be ignored in that

20

equation, so we find that
t
et = / G(7)M(r)dr
0
where G is the Greens function for the left hand side of (2.6). Clearly, if el*l(t) is a power series
starting with t*+1 then e*+1l(t) will be a power series starting with t*+2. This leads us to
define the order of accuracy of an approximation as follows. Let u;(t) be the ith component of

the exact solution and z;(t) be the i** component of an approximate solution to Equation (2.2).

Definition 3.1 If z(t) — w(t) = O(t)M*! over a fized, finite interval [0, T|, then the order of
accuracy, N(z), of zi(t) is M; for 1 < i < n. The order of accuracy of z(t), denoted by N(z),

is defined as min;<i<n N(z)

The first basic theorem of accuracy increase in waveform relaxation is stated and proved

below.

Theorem 3.2 Suppose that the ezact solution of (2.1) can be written as
A v
u(t) = Y at' + ()M (3.2)
=0
that is, u(t) € CM. Given z(t), an approzimate solution, which satisfies z(0) = uo, define
M) :
R(t) = z(t) - u(t)= > bit' +O0(t)M*. (3.3)
1=N(z)+1

Let y(t) be the solution to the following system
v - G(y,z) = F(z) - G(z,1), (3.4)

where G : R*™ — R™, F and G are sufficiently smooth and define

M
E(t) =y(®t)-u(t)= > et +0(t)"*. (3.5)
i=N(y)+1

Then, if F(z) and G(y, z) are sufficiently differentiable,

N(y)2 N(z) +1.

21

Proof: In Equation (3.3), it is easy to see that ?,,—(0) RM@©O)=0for k=1, 2,...,
N(z). To prove the inequality N(y) > N(z) + 1, it suffices to show that E(*)(0) = 0 for
k=1, 2,...,N(z)+1.

Consider the system

u(t) = F(u(t)), wu(0)=

First subtract G(u(t),(t)) from both sides of this system, we have
a(t) - G(u(t), 2()) = F(u(t) - G(u(t), a(2)).
Next subtract this equation from (3.4), we get
| (@) - @) - (G(y(2),2(t)) - G(u(t), 2(2)))
(F(=(2)) - G(a(2),2(2))) — (F(u(?)) - G(u(?), z(2)))- (3.6)

Before we continue the proof, for convenience we introduce the following notation

* * - b
%ff(?l) 3—‘;’,‘(?1) e 52(ph)

Sw: -
Lw([p3,p3s...,00] = 331 (Pz) a,,, (Pz) e ﬁf(?z

wn 8 n. 2] n.
3::1 (Pn) a‘:, (Ph) .- a:,-’,, (pr)]
where

w = w1(21,22,---,3n)

Wy = 'U}2(231, T2y..ny zn)
w:

Wy = Wn(Z1,Z2y...,20)

is defined for all points p = (z1,...,2,) in an open set D and pj,...,p} € D.
Let
| Ja(o(v(8)) = G(¥(t),3(2)) (3.7)
and

Qa(e)(v(2)) = F(v(t)) - G(v(2), 2(2)), (3.8)

22

then apply Mean-Value Theorem, we have

9a(e)(¥ (1)) — gu(e)((2)) = (Log(yy[P1s - - - PR (¥ (2) — u(t))

and
Qx()(8(2)) — Qu(r)(u(?)) = (Lgeylais - - -» aa])(5(2) — u(?))

where p},...,p}, are points lying in the line segment which joins y(t) and u(t) and ¢7, ..., g, are
points lying in the line segment which joins z(¢) and u(t). Note that p} = a; y()+ (1 — ;) u(?)
and ¢f = B; z(t) + (1 — B;) u(t) where 0 < a; < 1,0 < 3; <1 for i =1,...,n. Because of the
smoothness of u(t), z(t) and y(t), p3,...,p}, and qj,...,q; are sufficiently smooth as well.

Replacing 2(t) — u(t) by R(t) and y(t) — u(t) by E(t) respectively in (3.6), this equation
becomes

E(t) = Lg:(:)(t) E(t) + LQz(g)(t) R(t) (3'9)

Differentiate Equation (3.9) k times with respect to ¢, we obtain the following general form

k+1 Sk & ke—j AN | (k=3)
B+)(t) = Z d_tj'ngu)(t)E(J)(t) + Z : EEI’Qz(z)(t)R 7(t) (3.10)

j=0] 7=0 J
Since R()(0) = 0 for £ = 0,1,...,N(z) and E(0) = 0, by induction we can see that
E(®)(0) = 0 for k = 0,1,...,N(2z) + 1. Thus the proof is complete. Note that E(N(2)+2)(0) may
not be zero since RV (2)+1)(0) # 0.

Q.E.D.

This theorem tells us that the accuracy of current iteration is at least one order higher
than that of the previous iteration. Here we emphasize the word “accuracy”. In general, the
increase of order of accuracy does not imply the convergence of the iterative scheme. But from
this theorem we can see that as the iteration continues more and more terms of the Taylor

expansion of each iterate coincide with the Taylor expansion of the exact solution.

Corollary 3.3 Use the same notations as in Theorem 3.2. Let F(u) = Au and G(w,z) =
B w, where both A and B are constant matrices. If RIN(2)(0) is not in the null space of A— B,

then N(y)=N(z)+1

23

Proof: Equation (3.10) becomes
E(+1) (k)& B E(-9) (k)& B)R(k-3) 3
0=3(;)& O+L () mUa-pr0. e
Since both A and B are constant matrices, the equation (3.11) is reduced to
EC*+)(¢) = BE®(2) + (4 — B)R™)(¢). (3.12)
Thus EXV()+2)(0) = (4 — B) RV (3)+1)(0) # 0, and the proof is complete.

Q.E.D:

Theorem 3.2 gives an inequality. Normally this is an equality unless there is cancellation,
sparsity, or a special nature of the problem or splitting as described in Corollary 3.3. Cancella-
tion is exploited in the waveform Newton method, while sparsity will be exploited in the WGS
method which will be discussed in next chapter. Naturally we would like to know the exact
accuracy increase for each iterative scheme. But this is a very hard problem to answer, even
for the Picard method, the simplest WR method. We would expect the accuracy increase after
one Picard iteration to be exactly one, but it is not always true. A problem with a special
character is § = t*ly. It increases in accuracy by n at each iteration starting from to = 0,
although that accuracy increase does not occur from other starting points.

Before we state and prove Theorem 3.6, we review the Fréchet derivative and the Taylor’s
Theorem for vector functions [2] which are needed for proving the aforementioned theorem.

Consider w : X —-> Y, where X and Y are normed linear spaces. Given z € X, if a linear
operator dw(z) exists which is continuous such that

jo I W@+ h) — w(z) - dw(2)h Iy

=0
lInf|—o0 Il h|lx

then w is said to be Fréchet differentiable at x, and dw(z) is said to be the Fréchet differential
of w at z with increment h. dw(z) € L(X,Y), the space of all bounded linear operators from
X to Y. If both X and Y are Banach spaces and the Fréchet derivative of w is a continuous

linear operator, then £(X,Y) is again a Banach space, and hence we may consider the Fréchet

differential of dw(-): X — L(X,Y).

24

If this differential exists we will denote it by d?w(z) and it is clear that d*w(z) € L(X, L(X,Y)).

However it can be shown that £(X, £(X,Y)) is isometrically isomorphic to £(X x X,Y) and
d*w(-): X - L(X x X,Y). We may obviously continue this process so that

d'w(): X - L(X xX x...xX,Y).
Note that d*w(z) is a bounded symmetric multilinear operator.

Theorem 3.4 (Taylor’s Theorem) Let E be an open subset in a Banach space X, and Y

another Banach space. Then if w: E — Y is n times differentiable at a point z € E,

w(z+h) = w(z) + dw(z)h + %dzw(z)h2 404 ;lid"w(z)h” +
r(z,h) (3.13)
where

. r(=h) Iy

= 0.
A= || A (1%

The terms d"w(z)h™ need some explanation. d"w(z)h™ is amap from X x X x...x X (n
times) into Y, so that its evaluation at the point (hy, A2, .y hn)is

d*w(z)(h1, ha,y ..., hn).
The symbol d"w(z)h" is used to represent the above expression when hy = hy =...=h, = h.
Definition 3.5 Use the same notation as in Theorem 3.4, we say that
w(z + k) — w(z) = O(R)¥
ifdw*(z) =0 fork=1,2,...,K ~ 1.

Let us revisit the Riccati example with the waveform Newton method. We use the splitting

G(u["+1], u[k]) =(1- 4u["])u["+1]. The iteration is

alt) — (1 — qulF) et = g(utk)2) k4t (0) = 3.

25

The first three approximate solutions are

o) = u(t) +1506% + O(2)*

7
at) = u(e) + 20% L oy
15
u[3](t) = u(t)+ &O:;OM_ + O(t)1°

In this scheme we see that more than one correct term is picked up after each iteration. Actually,
the number of correct terms in the Taylor expansion of an approximation almost doubles after
each iteration because of the quadratic convergence of the Newton iteration.

This behavior is a particular case of Theorem 3.6 below which relates the order increase to

the “closeness” of G(v,u) to F(v). We define
Qu(v) = G(v,u) - F(v).

If Q is zero, then the “splitting” leads to the solution in one iteration. If Qu(v) is relatively
insensitive to changes in v near v = u, we get rapid convergence. If we add one more assumption

to Theorem 3.2, we can obtain an iterative scheme which has geometric accuracy increase.

Theorem 3.8 Same assumptions as given in Theorem 3.2, In addition, we assume that

Qz()(2(t)) — Qzry(u(t)) = O(z — w)X.

Then
N(y) 2 K (N(z)+1).

In particular, if K = 2,that is, dF(u(t)) = dG(v(t),z(t)) w.r.t. v at v = u, this iteration
scheme is the Waveform Newton method and it converges quadratically, i.e., we get orders of

accuracy 0, 2, 6, 14, 30, ..., when starting with a constant zeroth iterate.
Before we prove this theorem, we discuss one possible method to solve systems of the form
x(t) = A(t)x(t) + £(t), =x(a)=c¢ (3.14)

where we assume that all the entries of A(¢) and f(t) are smooth functions of t. We begin with

the following definition.

26

Definition 3.7 The transition matriz ®(t,a) of the system (3.14) is the solution of the system
d
z*i(t, a) = A(t)®(t,a), ®(a,a)=Irxn.

Notes that #(t,a) is an n X n matriz.

The relationship between the transition matrix and the solution of the system (3.14) is

given by the well known theorem:
Theorem 3.8 The solution of the system (3.14) is given by

x(t) = &(t,a)c+ /:Q(t,s)f(s)ds

= &(t,a)c+ &(ta) /., $(a, 5)£(s)ds. (3.15)

Now we are ready to prove Theorem 3.6.

Proof: First we recall Equation (3.6)
F@) - at)) - (G(y(t),2(t)) - G(u(t), z(t)))
= (F(z(t)) - G(2(2),2(2))) — (F(u(t)) - G(u(t), 2(t)))-
Let
ga((v(t)) = G(v (1), 2(2)), - (3.16)

and

 Qu(v(t)) = F(v(2)) - G(v(2), (t)) (3.17)

then apply Mean-Value Theorem to Equation (3.16), we have

9a(2)(¥ (1)) = Ga(e)(u(?)) = (Lgg(y[Pls - - -, PRI(¥ () — u(?))-

Equation (3.6) becomes

(F(2) = (8)) = Lggylph,--- P2l (¥(2) - u(t)) +

(Qz(2)(2(t)) = Qa(ry(ul?))). (3.18)

27

We now prove the following statement: If
z—u=0(t)"
where Ny = N(3)+ 1 and

Qz(t)(z(t)) - Qz(t)(u(t)) =O(s - u)K’

then -
| Qs(t)(3(t)) — Qa(ey(u(?)) = O(t)* M=
By definition,
! ok K
Qz(t)(’(t)) - Qz(t)(u(t) = E‘id Qz(t)(u(t))(z —u)” +r(u,z —u)
where
Lr(wz-w) _,
la—uflo ||z —u|l¥
Hence
Qz(t)(z(t)) - Qz(t)(u(t))
lim | " ||
3 dXQapy(u(t))(z ~ W)X r(u,z—u) I
=Y I K!tNzK tNzK
d¥Quy(u(t) (557, -, 257) : -
(t) 550 o r(wz—u) | (z2-u) g
, -u zZ—u
< oK' I % Qa(ey(u()) || ||(th vero g) T+
| r(wz-w)|. | (z2-u) g
e Py | o
. 1] zZ—-u z—1u z—u

< K I dKQz(t)(u(t)) i 11_1,% Il (tNz > Nz ' §Na M-
The last line is bounded, since lim; o || 257" || is bounded. Thus the proof of the statement is
complete.

28

Replace the last part of system (3.18) by f(t) and note that y(0) — u(0) = 0. Let &(t,0)

be the transition matrix of system (3.18), by Theorem 3.8 we obtain

y(t) - u(t) = &(t, 0) /o * 8(0, 5)£(s)ds. (3.19)

We have

. Js 8(0, 5)f(s)ds
e Ry Y o5

_ o $(0,t)f(t) . L
- P—Io% (NzK + 1)thK (by L'Hospital's rule)

- : £(t)
= #(0,0)lim (VK +)Mk

£(¢)
t—0 (NzK + l)thK

which is bounded by the previous statement, that is
/o " 8(0, $)E(s)ds = O(t) K+,
Note that ®(0,0) = I,xn. Therefore,
y — u= 0(t)Vz&+1,
and
N(y)> NzK = (N(z) + 1)K.
Q. E.D.

From Theorem 3.2 and Theorem 3.6, we see that the degree of the leading érror term
in the approximate solution generated by waveform relaxation method increases as iteration
continues. And from the proofs we can see that the coefficient of the leading error term depends
on derivatives of F(u), the right hand side of the original equation, and G(u, z), the splitting
function used. Suppose both F' and G are sufficiently smooth, then their derivatives over any

finite interval are bounded. If ¢ is chosen sufficiently small, the error will approach 0 when

29

enough iterations are performed. Therefore, waveform relaxation methods converge over any
small interval and converge superlinearly (see [11]), both can be seen from (3.5) and (3.10).
This kind of convergence property in waveform relaxation also explains the phenomenon stated
in [7] and [15] that the length of the convergent part is increasing after each iteration.

Note that ¢ > 1 in Theorem 3.6 for any smooth F and G, but the case ¢ = 2 is the only
other “practical” one. As noted, for large systems even it is not practical because of the cost of
computation of the Jacobian and the communication involved. For the WJ method, ¢ =1 so
there is little that can be done to get faster order increase. In the next chapter wé will examine

WGS.

30

Chapter 4

“Accuracy Increase in Waveform
Gauss-Seidel

In previous chapter we defined the order of accuracy of approximate solutions generated by the
waveform relaxation method and showed that the accuracy of whole system after one iteration
sweep is at least one order higher than before the sweep starts. In this chapter we will discuss
the accuracy increase property for a special approach, the Waveform Gauss-Seidel method.
In ti‘Le Gauss-Seidel approach a numerical ordering (numbering) of the subsystems is chosen
to determine the order when a subsystem is to be solved within an iteration sweep. The
accuracy increase in WGS is dependent on the numbering of the equations, so a “good™ choice
of numbering is very important in Gauss-Seidel approach.

In Section 4.1 a result, which is similar to the accuracy increase property for a whole
system in Theorem 3.2, is obtained for each subsystem after its computation. One subsystem
affects another if any of its variables appear on the right hand side of the differential equations
describing the other and such a subsystem is called the incoming subsystem of the other. At
each Gauss-Seidel sweep each subsystem is solved f;ollowing the designated numerical ordering,
(using the most recently computed values of other subsystems,) the accuracy increase in a
subsystem after its computation can then be accumulated in the subsystem being computed
next. The accuracy increase after one sweep of Waveform Gauss-Seidel is, therefore, usually
greater than one.

The coupling relation between two subsystems is an oriented relationship and an adjacency

matrix can be used to describe these coupling relations among all subsystems. A directed

31

AN
AN

graph that is built from the adjacency matrix is called the dependency graph of a system. If
a system’s dependency graph is acyclic we could get the exact solution with only one sweep of
Waveform Gauss-Seidel when each subsystem is sequentially solved in a proper order; otherwise
iteration sweeps are needed until a sufficiently accurate solution has been computed. Since each
subsystem is to be solved as whole, it is denoted as a node in the dependency graph. In Section
4.2 we will introduce ascending chains in a cycle and discuss some accuracy increase properties
in thg Waveform Gauss-Seidel method under the assumption that the accuracy increase for
each subsystem after its computation is exactly one over its incoming subsystems.

In Section 4.3 we will show that the average accuracy increase for the waveform Gauss-Seidel
method is equal to the minimum value C/d among all cycles in the dependency graph, where C
is the length of a cycle and d is the number of times the numbering of successive nodes around
the cycle decreases. Note that the value C' depends on the coupling relation after a system is
partitioned and the value d depends on the numbering of nodes in the system’s dependency
graph that is imposed by the Gauss-Seidel approach. So after a system’s partitioning, we should

order the nodes to maximize this minimum.

4.1 Accuracy Increase for A Subsystem-

In Waveform Gauss-Seidel we solve each subsystem sequentially and independently. When a
subsystem is solved at one Gauss-Seidel sweep, the remaining subsystems are given approxi-
mants to the exact solutions. We then discuss how the accuracies of the remaining subsystems

affect the accuracy of a subsystem after it is solved.
Theorem 4.1 Consider the equation for the ith component after partitioning,

U = fi(Urye ooy Uiseneyum)y, wi(0) = uip. (4.1)

The equation to be solved after applying the Gauss-Setdel scheme is

a£k+1] _ fi(U-[lk+1], u[k+1] [e+1] [k] (k+1]

vt Ly =0, T (0) = . (4.2)

32

Assume that

[R+1]
E}kﬂ] = u&kﬂ] —u; = O(t)NiM1 for j <4,
: (4.3)
[%] . .
EE-"] = “.[1'k] —u; = o@)Mi for j>i.
and all the E}k] and EU"H] s are sufficiently smooth. Then
N; [fe+1] > min(N; [k+1] NEETI],N,[_':_]I, N,[,’,‘]) + 1, withequalityunlessthereiscancellation.
(4.4)
Proof: Let
M= mz’n(Nl[k+1] N,[kTIJ,Nt[f_II, ,[,’f]),
then forr=0,1,2,....M -1
f:,E[kH]() =0 for j=1,2,...,i—1,
(4.5)
dt,E[k](O) = 0 for j=i+1,...,m
From (4.1) and (4.2) we have
E£k+1] = f,(u [e+1] yeees uEk+1], “E‘Iﬂp ces ugi]) = filugy ooy Uiy Uip1y e vy Um)
= LB fB 4 Y R (4.6)
i<i >

By (4.2) and (4.5) we see that EE"H](O) = 0 from (4.6). Now differentiate (4.6) w.r.t. t to get

Bkl {dt fo ER g Bl

Z{dt’f‘ﬂ ¥ B k+1}+z{dtfw EM 4 f B k]} (47)

i<i J>i

33

Since

5H{k+1] _ [=+1] _ .
ESTN(0) = EFT(0)=0 for j <1,
alk) - g = c S g
EF(0) = E;7(0)=0 for j >4,

from (4.3) and E.P"H](O) = 0, we have E’EHI](O) =0

Differentiate Equa.tion (4.6) = times, we get the following general form

z r\ d dart
dtr+1 E[k+1](t) = Z (;) Ef‘.,i(t)FE[k+1](t) +
=0

ZZ() 'f"J)dtr—!E[k+1](t)+

i<il=0
T3 (1) gt («9)
=7 fii(8) 5 BV (2)- 4.8
Siice dt! dtr!
By induction we get %EU‘H](O) = ——;—;—:tMT E[kH](O) will not be zero if there exists some

j # t such that WE[HII(O) # 0 for some j < 7 or -—ME k](O) # 0 for some j > 7 with the

corresponding f; ; # 0, unless there is numerical cancellation.

Q. E. D.

Note that only those j's actually appearing on the right hand side of Equation (4.1) affect
the derivations in the proof. Thus we have proved that after the computation of a subsystem,
its accuracy is at least one order higher than the minimum accuracy of all its input subsystems.

In particular , we consider a system of three equations,

B T AN
ﬁ[2k+1] - fz(ug.k+1], u[2k+1], ugk])
i‘gk+1] — fs(u[lkﬂ] , ugk+1], u:[,k'H]).
H [} N
u; —uy = O(t)™M
)~y = o)
u:[,k] —uz = O(t)Ny],

34

then from previous theorem we have

Nl[k+1] > min(N._Ek],N:Ek]) +1
N£k+1] > min(Nl[kH], Ng']) +1

N > () Nl g

This theorem assumes that all variables appear in all equations. If variable j; appears in
the equation for variable ¢ only if j € I; where I; is a subset of [1,...,m], then (4.4) can be
replaced by ‘

[k+1] : (ke+H(i-7)]
NP > min(})+ 1, (4.9)

where H(i— j) = 1if i > j and 0 otherwise. (A similar result holds for WJ with H identically

zero.)

4.2 Accuracy Increase and Dependency Graphs

In the Gauss-Seidel scheme the numbering of the subsystems is important since it determines
the order of their sequential solution. One subsystem affects another if any of its variables
appear on the right hand side of the differential equations describing the other. This coupling
is an oriented relationship and an adjacency matrix can be used to describe the coupling
relations among all subsystems. A directed graph that is built from the adjacency ma;rix is
called the dependency graph of a system. If a system’s dependency graph is acyclic we could
get the exact solution with only one waveform Gauss-Seidel iteration when each subsystem is
sequentially integrated in a proper order; otherwise iterations are needed until a sufficiently
accurate solution has been computed. (From now on a subsystem is referred to as a node in a
dependency graph.)

From Theorem 4.1, we know that the order of accuracy at one node after one waveform
Gauss-Seidel iteration is at least one greater than the minimum order of its incoming nodes,
and possibly more if there is fortuitous cancellation. But the fortuitous cancellation can only
occur under very special conditions, so it will be ignored in general. Hence we assume equality

in that theorem and investigate some examples to study the accuracy increase of the waveform

35

Gauss-Seidel method. From these examples we will see that the accuracy increase in the
waveform Gauss-Seidel method is related to the coupling and the numbering on a given system’s

dependency graph.
4.2.1 Accuracy Increase and Ascending Chains

It is instructive to consider some simple examples. In these examples the notation C/d = a/b
means that there is a cycle of length C with d ascending chains in it (for detailed déﬁnition of
ascending chains see def 4.2).

Example 1 : Consider a system with the following dependency graph after partitioning and
ordering. This graph has two cycles and all the nodes inside each cycle are sequentially ordered,

i.e. there is only one decrease in the numbering of all nodes around each cycle.
O—@

N\

O—0-—O

The two cycles are 4; = {(1,2,3,4,5)} of length C; = 5 and A; = {(1,4,5)} of length C; = 3.
Ci/dy = 5/1 and C3/d; = 3/1. The sole numbering decrease is the branch (5,1) shown as
a dashed arrow. We list the order of accuracy and accuracy increase after each waveform

Gauss-Seidel iteration in the following tables assuming that we start with u(®)(¢) = u,.

Order of Accuracy

Node Iteration No
No 0 1 2 3 4 5 6 7 8 9 10
1 0 1 4 7 10 13 16 19 22 25 28
2 0 2 5 8 11 14 17 20 23 26 29
3 0 3 6 9 12 15 18 21 24 27 30
4 0 2 5 8 11 14 17 20 23 26 29
5 0 3 6 9 12 15 18 21 24 27 30

36

Accuracy Increase
Node Iteration No

No |01 2 3 4 5 6 7 8 9 10

1 1 1 3 3 3 3 3 3 3 3 3
12 2 3 3 3 3 3 3 3 3 3
3 3 33 3 3 3 3 3 3 3

4 2 3 3 3 3 3 3 3 3 3

5 3 33 3 3 3 3 3 3 3

Form the second table we see that, after the waveform Gauss-Seidel iteration stabilizes,
the accuracy increase after one iteration is equal to the minimum cycle length which is “3” in
this example. The internal nodes of the cycle with minimum length in this example have been
ordered sequentially around this cycle. In general, the internal nodes of a cycle may not be
ordered sequentially; if this is the case, we can not achieve the accuracy increase equal to the
cycle length in one waveform Gauss-Seidel iteration. However, we will show that, in the case
of dependency graph with a single cycle, an accuracy increase equal to the length of the cycle

will occur in some number of iterations.

a

Let us consider another example in which the nodes are not sequentially ordered around a

cycle.

Example 2 : Consider a dependency graph which contains only one cycle and nodes inside

the cycle are not sequentially ordered,

O—O—

A l

: v A=1{(1,4,6),(2,5),3); C/d=6/3
O O—0
where (1,4,6),(2,5) and (3) are ascending chains of length 3, 2, and 1, respectively, in the

given cycle. The tables of order of accuracy and accuracy increase are given below.

37

Order of Accuracy

Node Iteration No
No 01 2 3 4 5 6 7 8 9 10
1 01 2 4 17 8§ 10 13 14 16 19
2 0 1 4 5 7 10 11 13 16 17 19
3 0 1 3 6 7 9 12 13 15 18 19
4 0 2 3 5 8 9 11 14 15 17 20
5 0 2 5 6 8 11 12 14 17 18 20
6 0 3 4 6 9 10 12 15 16 18 21

Accuracy Increase
Node Iteration No
No 01 2 3 4 5 6 7 8 9 10
1 1 1 2 3 1 2 3 1 2 3
2 13 1 2 3 1 2 3 1 2
4 2 1.2 3 1 2 3 1 2 3
5 2 31 2 3 1 2 3 1 2
6 3 1.2 3 1 2 3 1 2 3

a

We see in Example 2 that the accuracy increase of “six” , the cycle length, is achieved in
three iterations. That is, after the iteration stabilizes, we can pick up six more correct terms
in the Taylor expansion of the approximate solution in every three iteration sweeps. We might
notice that “three” is the number of times the numbering of successive nodes is “out of order”
around the cycle. This is not a coincidence, and it will be seen as a general result, Theorem 4.3,
for which we need to define the concept of an ascending chain in a cycle.

Suppose an ordering for the Gauss-Seidel method applied on a graph containing a cycle A
of length C has been chosen. Number the nodes of the graph according to the Gauss-Seidel

ordering.

Definition 4.2 An ascending chain of length | in a cycle A is a sequence of nodes with numer-
tcal ordering jo,J1,-..,J1-1, such that (1) jo < j1 < ++- < ji—1, (2) there ezists an edge from
node j; to node j;41 fori=0,1,...,1 - 2 in the cycle, and (3) no ascending chain in cycle A

contains {jo,j1,-..,J1-1} as a subsequence (in other words, it is as long as possible).

It follows from the definition that any cycle can be decomposed into a mutually exclusive set

of ascending chains and the number of ascending chains in a cycle equals the number of times

38

the numbering of successive nodes around the cycle decreases. By the equality assumption
in Theorem 4.1, we know that after one waveform Gauss-Seidel iteration, each node, j;, in
an ascending chain can not have order of accuracy more than one greater than the order of
accuracy of its predecessor node, j; — 1, in the chain at this itera.tibn, while the first node in
an ascending chain can not have order of accuracy greater than one plus the order of accuracy,
prior to the iteration, of its predecessor, the last node in the chain that precedes it. (If no
other node except its predecessor in the cycle is connected to a node k, it will achieve exactly
this order increase.)

Now we introduce some simple notations to express these ideas.

Let A be a cycle of length C with d ascending chains. Let I1,[,...,[be the lengths of the d
ascending chains that follow the orientation of A and W, ; »; be the order of accuracy of the kt*
node of the i** ascending chain at the n®® waveform Gauss-Seidel iteration. For convenience,
define l;1 4 = I; and W,, ;14 = Wh i for all i. Then by assuming equality in Theorem 4.1, we

have

Woikie1 < Woar +1

Wn+1,i+1,o < Wn,i,l.'—l +1

for k; = 0,1,...,1; — 2,and n > 1. For ease of derivation later, we define W,{' ; = Whio and
W;f{ = Whil—1, e W:{:i (W,ﬁ) denotes the order of accuracy at the tail (head) node of the

ith ascending chain at the n** waveform Gauss-Seidel iteration. And it is easy to see that

Waiki < Witk (4.10)
Wrﬁ-l,i < Wf,-_l + (4.11)
Wi < Wiy + i (4.12)

Based on these relations, we then have the following result which says that the accuracy increase

after number-of-ascending-chains iteration sweeps is bounded by the cycle length.

Theorem 4.3 If a cycle A of length C consists of d ascending chains, then, after the first
iteration, the accuracy increase at the internal nodes of A due to d waveform Gauss-Seidel

iterations is bounded by C.

39

Proof: By Eqn (4.12) forn > 1

T T
Wordi = Waigira
T

< Woia-ri4d-1 t liva
< Witd-zivd—z T livd-2 + livd
< wWZT_. L. R
s ndlitl Thtr + oo+ hipaa
< WEi+lLi+bhp+-+ligan
< n,t

wr. +cC.
The proof for the remaining nodes in an ascending chain is similar:

Watdije; = Watditdk

IN

Wi iivat+ ki

IA

Wﬁ-d—l,wd-; +1+k;

IA

Wrﬁd—é,ﬁd—z +lipa—1+ 1+ k;

IA

Wg{-d—s,i+d—3 + liyd-2+ livd-1+ 1+ k;

IN

Wrﬁ-l,i+1 +lia+ o+ lirgr+Hlhipa 1 +1+kE;

IA

Wfi +lhpr+ b+ lpg—2 Fligg-1 + 1+ ks

IN

Wi +li—1=k1+ L+l +-- o+ liga2 +liva1 + 1+ &

d
Wik + Z l;
—

Wik + C.

Q.E.D.

In particular, when d = 1, that is all the internal nodes of a cycle are solved in cyclic order,
the accuracy increase in one waveform Gauss-Seidel iteration is then bounded by the cycle

length; which is the result we saw in Example 1.

40

If we assume that each node of a cycle has no other nodes connected to it except its
predecessor in the cycle, then its order of accuracy after each waveform Gauss-Seidel iteration

is exactly one over its predecessor’s in the cycle, i.e.

Woikiv1 = Woie +1 (4.13)

Wi = Wik+1 (4.14)
for all ¢+ and k;’s. Thus

Wik = Wii+k ~ (4.15)

whki = WE_ +1 (4.16)

W:{+1,i. = Wrz:i-—l + lioq (4.17)

for k; =0,1,...,l;-1,i=1,2,...,d and n > 1. Hence for a single cycle the average accuracy
increase in each iteration is C'/d. Ignoring fortuitous cancellation, a cycle can not have a greater
average accuracy increase, so it is clear that a bound on the average accuracy increase for a
graph is given by min;(C;/d;) where ¢ indexes all the cycles in the graph. We will show that
this bound is realized by all the graphs in section 4.3, so that we should order the nodes to

maximize this minimum.

4.2.2 Accuracy Increase in a Single Cycle

If we examine the tabies in Example 2 carefully we see that the accuracy increase at a given
node at successive iteration followed a repetitive pattern after some initial irregularity. For some
it was (1,2,3), for others it was (2,3,1), and for the remainder it was (3,1,2). The important
property of these patterns is that they are circular shifts of a partition of the cycle length
C = 6, where there are d = 3 members in the partition. In general we say that a set of d
strictly positive integers {q1,92,...,94} is an integer partition of C, if Z‘;l ¢ =C.

We now show that given a cycle of length C with d ascending chains of lengths {1, 1, ...,
and lg, and an integer partition, {q1,q2,-..,q4}, of C, if the initial orders of accuracy at all
nodes of the cycle are chosen carefully, then the accuracy increase at each node at every d

successive waveform Gauss-Seidel iterations is {qq4,gq-1,-..,¢2,q1} or its circular shifts.

41

Theorem 4.4 Let A be a cycle of length C with d ascending chains of lengths, l1,la,...,1a,

and let {q1,92,...,94} be an integer partition of C. If the initial order of accuracies are chosen

such that
wWE = Tiuei-1) fori=1,2,...,d
Wo,ik; = Woz:,-+ki for k; =0,1,...,5; -1,
then
Wik = Wneiik; + Gion (4.18)

for k; =0,1,2,...,0;—1,i=1,2,...,d, and n > 1, where g, = ¢n%q and n%d = n mod (d)

for any integer n.

Proof: By Eqn (4.15), Wy ik, — Whno1,ik; = WZ:,- - WE—L;', i.e. all the nodes in an ascending
chain have the same accuracy increase after each waveform Gauss-Seidel iteration, so it suffices

to show that

Wfi = WT—l,i + Gi-n (4.19)

n

fori:=1,2,...,dand n > 1.
We prove this theorem by induction on n. When n = 1 and 7 = 1,2,...,d, from Eqn (4.17)

and the choice of initial orders, we have

WII:i = Wo]:i—1‘+‘li—1
d

= Z (‘11' - l.‘i) + i

j=i-1
d

= S(a 1) + 0

j=i

= Wg:,' + ¢i-1-

Hence, (4.19) holds for n = 1. Assume that the statement is true for n < m and ¢ =
1,2,...,d, i.e.
Wi =Wi i+ diom. (4.20)

42

Then consider n =m + 1 and i = 1,2,...,d, from Eqns (4.16), (4.17), and (4.20) we have
Wi, = Whig+lia
= Wrﬁ—l,i—-l + q(i-1)-m + L
= WZi:+4uz1)-m
= WZI.+ g (m+)
Hence, by mathematical induction, Eqn (4.19) holds for all n > 1.

Q. E. D.

From Eqn (4.18) and the periodic behavior of ¢;’s we have

n+d

Wn+d1ivk1' = Wnoivki + Z qi“]
j=n+1

d
Wik + Z g;

Jj=1
Wn,i,k.' + C’

which are exactly the results we saw in previous examples. Since all the nodes in an ascending
chain have the same accuracy increase after each waveform Gauss-Seidel iteration, without loss
of generality from now on we can use the head or tail node at each ascending chain to discuss the
accuracy increase property. In Table 4.1 we list the accuracy increase at the tail node of each
ascending chain after each waveformm Gauss-Seidel iteration using the result in Theorem 4.4.
From this table it is easy to see that the accuracy increase at any node in every d successive
iterations is {q4,q94-1,...,¢1} or its circular shifts. To avoid the decreasing subscripts in g;’s
as iteration proceeds, we let p; = ¢4_; for j = 0,1,...,d — 1 and rewrite Table 4.1 to obtain
Table 4.2.

Using this new table with some simple manipulations we have the following formula for the

order of accuracy at the nt* waveform Gauss-Seidel iteration:

d n%d
n
Wi = (Pa—j =) + 5] X C + Y pacitss (4.21)

j=i j=1
fort=1,2,...,dand n > 1.

If we choose a specific integer partition of the cycle length C', we will not only have a nice
formula for the order of accuracy at each node, but will have an accuracy increase pattern that

can not be destroyed by other cycles in the same graph that do not have a smaller C/d.

43

Iteration Index

0 1 2 v d d+1 d+2
0=
b | ¥3i(e—h) 94 Hga1 t- t@ e g1+
h—-q=
b | Yia(ei-1) +a te et e+ e
h-gtlh-q= }
s | 2dslei - 1) 92 @ o+ e @ e
Z;.I(lj -q) =
L Zj:i(qg' - 1;) +¢i-1 FT¢-2 F--- +g +¢i-1 +qi-2 +---
li1 | ga—la+qi1—lag-1 +qa-2 +g4-3 +--+ +q4—1 +¢a-2 +qd-3 +---
lq 9d — ld +qi-1 +gi-2 +--+ +dd +94—1 +qd-2 +---
Table 4.1: Accuracy increase at tail node of each ascending chain
Iteration Index
0 1 2 e d d+1 d+2
0=
L ?:1 (pa—j — 1) +Po +m +:++ +pi-1 +Po +P1
Iy S (Panj — 1) +pi-1 +Po 4+ +pa—2 +pi-1 +Po
I3 E?:s(?d—j - 1;) +Pd—2 +Pd-1 +-++ +Ppd-3 +Pd-2 +Pd-1
L ?:i(Pd—j - 1;) +Pd—i+1 +Pd—i+2 t°'* +DPd—i +Pd-i+1 tPd-it2
li1 {po~la+p1—la_1 +p2 +Ps3 +-r 0 +P2 +Ps3
L4 po — lg +Pp1 +p2 +--- +po +p1 +p2

Table 4.2: Accuracy increase at tail node of each ascending chain

44

Lemma 4.5 Given a cycle of length C with d ascending chains of lengths 11, 1s,. .., 1, respec-

tively. If

. ¢ ..c ,
Pj=[(1+1)EJ—[JEJ forj=0,1,...,d~ 1,

then {po,p1,--.,Pd-1} s an integer partition of C. Further, if

) .
WE=Cc-Y L+la-i)g)

J=i
then
d c
Wii=C=3 Li+[n+1-i)—]

i=i

fori=1,2,...,d and n > 1.

Proof: Since —g— = I_%J + ¢, for some 0 < € < 1, by assumption

G+0g]- 1)

= Lo+ 1G) e - i)
[SI+ UGS e -
=]

1

p;

v

v

and
d—1 d-1
Sh o= LG+ - i)

. ,C c
g =~ (0%

= C,

therefore {po, p1,...,Pd-1} is an integer partition of C. Moreover

n%d C
d

Zpd—""'j = L(d—z+n%d+1) J—L(d—-l‘f‘l)%J
j=1

C
FER

L(n%d-{—l—i)%J ~-l(1-9)

45

(4.22)

(4.23)

(4.24)

(4.25)

Substituting (4.25) into (4.21), we have

wT,

n,s

alq

d
S(pas ~)+ 151 x O+ (% + 1~ i)] ~ (1 -)5

j=i

; I i xC+(n%d 2)&
S (pans = 3) + LL3) X O+ (w%d+1-)] - (1=)]

=

3 { n d %d ., C A C
g(!’d—j‘)+ WG xd+n%d+1-d)=] - [(1-i)—]

d

JZ_;_(Pd-j L)+ l(n+1- i)%J -1(1- i)%]
d c il
> (pai =)+ [(n+1=9)=) + 3 pag
J-; ,) =
Yopai = b+t 1-i)7)

d
C-k+ln+1-9%)

Q. E. D.

For a cycle of length C with d ascending chains, the set of integers, {po,p1,...,Pd-1},

defined in (4.22) is called the natural partition of C with respect to d. Let us use Example 2

again but choose the initial orders specified by (4.23), that is, based on the natural partition

{2,2,2} of the cycle of length 6. The accuracy increase pattern is:

Order of Accuracy Accuracy Increase
Node Iteration No Node Iteration No
No 0 1 2.3 4 5 .. No 0 1 2 3 4 5
1 0 2 4 6 8 10 1 2 2 2 2 2
2 1 3 5 7 9 11 2 2 2 2 2 2
3 1 3 5 7 9 11 3 2 2 2 2 2
4 1 3 5 7 9 11 4 2 2 2 2 2
5 2 4 6 8 10 12 5 2 2 2 2 2
6 2 4 6 8 10 12 6 2 2 2 2 2

From the table we see that the phenomena described in Theorem 4.4 and Lemma 4.5 are

satisfied. Next we examine how one cycle interacts with the remainder of a graph.

46

4.2.3 Accuracy Increase in General Graphs

We now discuss general graphs. Our analysis technique will be to analyze part of the graph
and consider driving terms from other parts of the graph. These driving terms are the branches
entering the part of the graph selected for analysis. The orders on the nodes at the start of
these branches may, or may not, reduce the order of subsequent iterations of nodes in the
selected part of the graph.

From Lemma 4.5 we see that, for a cycle of length C with d ascending chains, if the initial
orders at all nodes of the cycle are chosen properly and if a driving term, if there is any, does
not interfere with the order of accuracy in this cycle, then at the nt® waveform Gauss-Seidel
iteration, the order of accuracy at each node of the cycle can be expressed as 8 + [(n + 7)9]
for some constant integers 8 and . If such a cycle is the only cycle in a system’s dependency
graph, then all the nodes in the dependency graph that are reachable from this cycle will have
a similar pattern for their accuracy increase. (A node U is reachable from a cycle if there exists
a directed path from any node in this cycle to U.)

Now let’s look at an example first, which shows that result in Lemma 4.5 is satisfied not
only by the nodes in the cycle with minimum C/d but also by any node that is reachable from
that cycle.

Example 3: Consider a dependency graph that has two cycles and nodes are ordered as shown.

@ "il = (174)7(2’ 7’8)7(5,6)}? C1/d1 = 7/3

{
l . As ={(1,4),(2,3,6)}; Cy/dy = 5/2
v

O~-©—6

Since cycle A; has smaller C/d ratio, we choose the initial orders inside A; according to

(4.23) in Lemma 4.5. That is the natural partition {2,2,3} of 7, length of A, is considered.

Below we list the order of accuracy and accuracy increase at each node.

47

Order of Accuracy

Node Iteration No
4 5 6 T 8 9 10
10 12 14 17 19 21 24
9 12 14 16 19 21 23
10 13 15 17 20 22 24
11 13 15 18 20 22 25
10 12 15 17 19 22 24
11 13 16 18 20 23 25
160 13 15 17 20 22 24
11 14 16 18 21 23 25

2
)

W= DB W] =
NN RROO| O
Wl R W[WIN]| W]
e I e o A 2 = AR A S
W| 00| | 00| Co| GO ~3| 3| &

Accuracy Increase
Node Iteration No
5 6 7

2
(<]

o
—
o

(NS MR N o

'
—

Q@ ~I| DO]I
NINIDN| N W

Wlwind| N win] N
NN W W NN NN W
NI NN W] N W] W
W[N] W] |
NN w W NN NN
RN N W W
WIWIN|N W] WIS oo
NIN]W| WO
NINININ[GL NN W

From the accuracy increase table, we see that the result in Lemma 4.5 is satisfied by all the
other nodes, besides the nodes in cycle A4, in the graph.

Next we want to see what will occur if the initial accuracies are not specified with the
natural partition of 7. Let us use the partition {1,2,4} of 7 to specify the initial accuracies and

list the order of accuracy and accuracy increase at all nodes.

48

Order of Accuracy

Node Iteration No
4 5 6 7 8 9 10
10 12 14 17 19 21 24
9 12- 14 16 19 21 23
10 13 15 17 20 22 24
11 13 15 18 20 22 25
10 12 15 17 19 22 24
11 13 16 18 20 23 25
10 13 15 17 20 22 24
11 14 16 18 21 23 25

2
)

o| | @ ol] o] o~
wlinvlwl v ~iwnl~lolo
| o] |] o] o o] |~
o| |l o<l v
0| oo| || o] oo| <]~

Accuracy Increase
Node Iteration No
5 6 T

2
o

o
[y
(=]

[G

00| 3| S| U]] | D]+
NS ESIE RS BN AN A BN
e eI LS B R)
| oo]| o] ol
Ll w i) | ol e
IR EINIRN] ENC) F XY A
IR b:to'w IR
|)] o] oo
NN W WININ| NN O
N oo o] o] e

el Ll i LSS

In this case we see that the partition {1,2,4} does not appear in the accuracy increase table,
whereas the natural partition {2,2,3} of 7 does. Let us try another partition {1,1,5} of 7 to

specify the initial orders and see how it affects the accuracy increase pattern.

Order of Accuracy
Node Iteration No
4 5 6 7 8 9 10
10 12 14 17 19 21 24
9 12 14 16 19 21 23
10 13 15 17 20 22 24
11 13 15 18 20 22 25
10 12 15 17 19 22 24
11 13 16 18 20 23 25
10 13 15 17 20 22 24
11 14 16 18 21 23 25

2
o

Q@ 00| | 31w

1

[=]

QI DO W=
Wl W AR OO
W] oY~
Wl O OB 0O} ~3j U N

Nl e o N{=]

49

Accuracy Increase
Node Iteration No
No |0 1 2 3 4 5 6 7 8 9 10
1 5 0 2 3 2 2 3 2 2 3
2 15 0 2 3 2 2 3 2 2
3 <150 2 3 2 2 3 2 2
4 5 0 2 3 2 2 3 2 2 3
5 115 0 2 3 2 2 3 2
6 0 2 3 2 2 3 2 2 3 2
7 1 5 0 2 3 2 2 3 2 2
8 1 5§ 0 2 3 2 2 3 2 2

From the last table we see that this partition {1,1,5} of 7 is also not preserved in the
accuracy increase pattern. From above discussions we may conclude that when a dependency
graph contains more than one cycle, non-natural partitions of the length of the cycle with
minimum C/d in the graph may not be preserved in the accuracy increase pattern when it is
used to specify the initial orders.

a

Now we select for analysis any cycle with a minimum value of C/d. We will call this the
minimum cycle. Let us initialize the orders in the graph such that the nodes in this cycle follow
the pattern spéciﬁed in (4.23) and all other nodes in the graph are infinitely accurate. (This
is not possible in practice, but is used to show that the minimum cycle determines the average
accuracy increase.) We know from Lemma 4.5 that the minimum cycle will maintain an average
order increase of C/d unless a driving term restricts the order of some node in the cycle. Since
all other nodes were initially set to order infinity, the only way for this to happen is for the
orders of a chain of nodes starting from some point on the minimum cycle and ending on the
minimum cycle (called the nodes on a sidetrack path of the minimum cycle) to be lowered by
the minimum cycle so as to reduce the order of the minimum cycle. Suppose the chain is as
shown in Figure 4.1 on the sidetrack path from node U to node V on cycle A, where cycle A
is a minimum cycle.

For the remaining part of this section, we want to show that the order in cycle A will not
be lowered by any sidetrack path.

Let I1,l3,...,l4 be the lengths of the d ascending chains of cycle A. Then Z‘le I, =C.

50

Sidetrack path

S

Figure 4.1: A minimum cycle with a sidetrack path

Let B be the cycle consisting of any sidetrack path of A from U to V and the path from V to
U on A. Suppose B has d ascending chains of length m;, ms,...,m; and E§=1 m; = C. By
assumption, C/d < C/d. We now number the ascending chains on both cycles such that node
U is in the st* chain of both cycles and node V is in the d** chain of cycle A and in the dt*
chain of cycle B. This means m; = l; for j = 1,2,...,s — 1. Furthermore we assume node U
is the kt* node in chain s and node V is the k* node in chain d of cycle A. (Note the indexing
of a node in a chain starts with 0.) So node V' will be the (m; - I + kq)t* node in chain d of
cycle B.

Now we show that the order coming into node V from the path on A is no greater than the

order coming from the sidetrack path.

Theorem 4.6 Let W, ; , (’Wn,,“k‘) denote the order of the kfh node in chain i of cycle A (B)

at the nt? iteration. If

d
C .
Woik, = C — le + (1 - l)-&-J + k; for nodes on cycle A
i=
and
Wo,ik; = Wik, for nodes on path V to U
Wo,i,k; = 00 for nodes on the sidetrack path,

51

Then

and»kd-l S n,d.,(m&—ld-i-kd)—l : (4.26)

Note that the (k4 — 1)*» node on chain d of cycle A and the ((mj — lg + k4) — 1)** node on
chain d of cycle B are predecessors of node V. (There may be others; they can be considered
by the same mechanism.)

Proof: From Figure 4.1 we can see that the order of node U propagating through the sidetrack
path will not affect node V until d — s + 1 iterations later. So the first possible lowering of
order at node V by the sidetrack path will happen at the (ci — 5+ 1) iteration. Thus we first

show that
Wi et1,diea—1 < WJ—:+1,J,(m&—ld+kd)_1' (4.27)
Since
7 =T
WJ—3+1yti»(m&—1¢+k¢)-1 = WJ—s+1,J + (mzi —la+ kd) -1
= Wd{{s,d.—l + (mg - ld + kd)
R d-1
= Wﬁ-f— Z mj+(mg—ld+kd)
Jj=s+1
X d-1
= WL+tm,—1+ > mj+(mg—lg+kq)
J=s+1

d
= WL +Y mi—latka—1

Jj=s
d c d
= C’—Zl,--}—[(z—s)gj +> mi—lg+kg—1
j=s j=t

s—1 d
= Z j+L(2—5)%J+ij—ld+kd—1

J=1 Jj=s

s—1 C (i

= mj+|_(2—s)—d-_|+2mj—ld+kd—-1
=1 j=s

J

- C
= C+L(2—S)EJ_ld+kd_1

52

and

T
WJ—4+1,d,k¢—1 = Wci—:+1,d + kd -1
o C
= C_ld+L(d—3+1+1—d)EJ+kd'—l
5 C
= C—14+|_(d—3+2)-2—c_|+kd—1

5 c
= L(d—3+2)EJ"I¢i+kd"11

to prove (4.27) it suffices to show that

alQ

(d-s+2)5] <C+|2-95).

This is easy, since % < % = tf% < €, and hence

(=3 +2)2) = 45 +(2-9)] < [C+2-9T] = C+|(2-9)7).

In subsequent iterations we have

d
— T)
Wn+ti—d+1,d.,(md~—-ld+k¢)—-l - Wn+1,: + Z mJ - Id + kd -1

j=s

. C
= C+|_(n+2"3)g_l-ld+kd—1

and

A ~ C
Wrdositdhg—r = L+ d=s+2)=] —la+ka—1

n

from which (4.26) follows directly.
Q. E.D.

Theorems 4.3 and 4.6 are the key results used to prove Theorem 4.7 in the next section

which is the main result of this chapter.

4.3 Average Accuracy Increase

We define the average accuracy increase of a node to be the limit of p,/n as n — oo where p,
is the order of accuracy of a node and = is the iteration number. The average accuracy increase

of a numbered graph is the minimum average accuracy increase over all nodes. Theorem 4.3

53

shows that the average accuracy increase in a waveform Gauss-Seidel method can not exceed
the C/d of the minimum cycle. Theorem 4.6 shows that if the minimum cycle is initialized
to the natural accuracy (ac;urqcy specified by the natural partition of its length) and the
remaining nodes are infinitely accurate, no sidetrack paths destroy the natural accuracy. These
results can now be combined to show that the average accuracy increase for the waveform
Gauss-Seidel method is exactly the C/d of the minimum cycle in the dependency graph of a

given system after partitioning and ordering.

Theorem 4.7 Suppose a minimum cycle in the dependency graph of a given system is of length
C and has d ascending chains. Then the waveform Gauss-Seidel method applied to this system

has average accuracy increase C/d.

Proof: Consider two identical dependency graphs, G; and G,, with N nodes and identical
numberings. If we start with all initial orders of accuracy on both graphs set to zero and run the
waveform Gauss-Seidel iterations on both synchronously, the order of accuracy of corresponding
nodes on the two graphs will be the same at all steps.

After M iterations, we will perturb the iteration on G, in the following way: lower the
order of accuracy at the nodes in the minimum cycle, A,, of G, following (4.23), i.e. using the
natural partition of C. Then resume waveform Gauss-Seidel iterations on both graphs. The
accuracy at any node in G, will never surpass the accuracy of its corresponding node in G1.
This is easy to see inductively: the new accuracy at a node being integrated is equal to one plus
the minimum accuracy of its predecessors on a graph. If the accuracy of every node in G, is at
least as large as the accuracy of its corresponding node in G, then the same condition holds
after the integration and hence before the next integration. Therefore, the average accuracy
increase of G, is a lower bound for the average accuracy increase of the unperturbed problem
on G.

It remains to show that the average accuracy increase for G is C/d. Since M is fixed, the
first M iterations can be ignored in computing the average. The important step is to choose
M large enough that the orders of accuracy of the nodes not in the minimum cycle A, of G
are effectively infinite at the perturbationm, so that the result in Theorem 4.6 applies. Note

that (i) after M iterations starting from accuracy 0, all nodes have accuracy > M, and (ii)

54

when a cycle is set to the accuracy specified by its natural partition as in (4.23), the accuracies
assigned are < N. Hence the nodes not in A, will have an order of accuracy at least M — N
greater than those in A, after the perturbation.

Now consider iterations on G, after the perturbation. If the average accuracy increase is
less than C/d, the graph G2 — A, must be lowering the order of A, (Theorem 4.6 implies that
the propagation of an accuracy from A, into G — A, and back to A, can not be responsible for
low;.ring the accuracy). Since the order of accuracy of G2 — A, can be made arbitrarily higher
than that of A, at the perturbation (M — N higher), the average accuracy of G, — A, must be
less than C/d. The argument can now be completed by induction on the size of the graph: It
is certainly true for N = 2. Assume it istruefor 2 < N < K -1. If |G2| = K than either G,
has no cycles or |G, — A;| < K — 2 where A, is a minimum cycle. Hence the average accuracy

increase of G — A, is at least C /d so it can not lower the order of A,.
Q.E. D.

This tells us what the avera.gé is, but not how to number the graph to minimize that
average. Finding such a numbering appears to be NP-hard, so a heuristic approach will almost
certainly have to be used. The result above suggests using heuristics that attempt to maximize
the length of ascending chains are appropriate, particularly those in short cycles.

Next we look at some examples to illustrate this result.

Example 4: Consider a dependency graph that has four cycles and the nodes are ordered as

shown.

55

A; = {(1,6,13),(11),(7,10),(5,14),(3.9)}
A, = {(1,6,13),(11),(7,12,14),(3.9)}
Az = {(2,8),(4,7,10),(5,14))}

@ | 24 = {(2’ 8)’ (4, 7,12, 14)}
@ C1/dy = 10/5
Ca/d; = 9/4

C3/d3 = 7/3
] Ca/ds = 6/2

From the graph we see that cycle Aj is the minimum cycle. We would like to see how the

N

minimum cycle affects the remaining cycles in the graph. First we use the same initial orders

for all nodes in the graph and list the order of accuracy and accuracy increase at all nodes.

Order of Accuracy

Node) . Iteration No
No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 3 5 7 8§ 11 13 15 17 18 21 23 25 27 28
2 01 3 5 6 9 11 13 15 16 19 21 23 25 26 29
3 0 1 3 5 6 9 11 13 15 16 19 21 23 25 26 29
4 6 1 3 5 7 8 11 13 15 17 18 21 23 25 27 28
5 0.1 3 4 7 9 11 13 14 17 19 21 23 24 27 29
6 0 2 4 6 8 9 12 14 16 18 19 22 24 26 28 29
T 0 1 2 5 7 9 11 12 15 17 19 21 22 25 27 29
8 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30
9 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30
10 {0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30
11 0 1 4 6 8 10 11 14 16 18 20 21 24 26 28 30
12 0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30
13 0 3 5 7 9 10 13 15 17 19 20 23 25 27 29 30
14 0 2 4 5 8 10 12 14 15 18 20 22 24 25 28 30

56

Accuracy Increase
Node Iteration No
No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 122 213 222 1 3 2 2 2 1
2 122132 221 3 2 2 2 1 3
3 122132221 3 2 2 2 1 3
4 122 213 222 1 3 2 2 2 1
5 . 1213 22 213 2 2 2 1 3 2
6 2 2 2 213 222 1 3 2 2 21
7 113 22213 2 2 2 1 3 2 2
8 2 22132221 3 2 2 2 1 3
9 2 22132 221 3 2 2 2 1 3
10 21 3 2 2 2 1 3 2 2 2 1 3 2 2
11 13 2 2 2 1 3 2 2 2 1 3 2 2 2
12 213 2 2 2 1-3 2 2 2 1 3 2 2
13 3 22213 22 2 1 3 2 2 2 1
14 2 21 3 2 2 2 1 3 2 2 2 1 3 2

From the table we see that after every 5 iterations the accuracy at each node increases
by 10, the cycle length of A;. And the increase pattern at each node is {2,2,2,1,3}, or its
circular shifts, which happens to be the ascending chain lengths of A, in reverse orientation.

Next we choose the initial orders inside A; such that the natural partition {2,2,2,2,2} of C; is

considered.

Order of Accuracy

Node Iteration No
No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
4 1 2 4 6 8§ 10 12 14 16 18 20 22 24 26 28 30
5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
7 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
8 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
9 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
11 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
12 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
13 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
14 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

57

Accuracy Increase
Node Iteration No
No |0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 22 2 2 2 22 2 2 2 2 2 2 2
2 122 2 2 2 2 2 2 2 2 2 2 2 2
3 2 22 2 22 22 2 2 2 2 2 2 2
4 1 22 2 2 2 2 2 2 2 2 2 2 2 2
5 2 22 2 22 22 2 2 2 2 2 2 2
6 2 22 2 22 222 2 2 2 2 2 2
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8 2 22 2 2 2 2 2 2 2 2 2 2 2 2
9 2 22 2 22 222 2 2 2 2 2 2
10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12 22 2 2 2 2 22 2 2 2 2 2 2 2
13 2 22 2 22 22 2 2 2 2 2 2 2
14 2 22 2 22 2 2 2 2 2 2 2 2 2

From the table we see that all the nodes in the graph have the same accuracy increase
pattern, the natural partition of C;.

O

Example 5 Consider a dependency graph that has two cycles and one of the cycles is reachable

®. ®.

/, // \\\\\§ i / \\\\§
® — @

ol Jo—o @\@/@

A ={(2.8),6)(410); Ci/d =5/3
A, = {(1,5),(3,7)}; Cy/dy = 4/2

by the other, but not vice versa.

e
g

Again we list the order of accuracy and accuracy increase at all nodes after each waveform
Gauss-Seidel iteration. From the table we can see that the minimum cycle dominates the
accuracy increase for the entire graph. Had the coupling from node 1 to node 4 via 9 been in
the alter direction, cycle A; would have sustained an average increase of 5/3 while cycle A,

and node 9 an average increase of 4/2.

58

Order of Accuracy
Node Iteration No
No {001 2 3 45 6 7 8 9 10
2 01 3 4 6 8 9 11 13 14 16
3 0 1 3 5 6 8 10 11 13 15 16
4 01 2 4 6 7 9 11 12 14 16
5 0 2 4 5 7 9 10 12 14 15 17 ...
6 0 1 3 5 6 8 10 11 13 15 16 ---
7 0 2 4.6 7 9 11 12 14 16 17
8 |0 2 4 5 7 9 10 12 14 15 17
9 0 2 3 5 7 8 10 12 13 15 17
10 0 2 3 5 7 8 10 12 13 15 17

Accuracy Increase
Node Iteration No
No 01 2 3 4 5 6 7 8 9 10
1 1 212 212 2 1 2
2 1212 212 2 1 2
3 12 2 1 2 2 1 2 2 1
4 11 2 2 1 2 2 1 2 2
5 2 21 2 2 1 2 2 1 2
6 12 2 1 2 2 1 2 2 1
7 2 221 2 212 2 1
8 2 21 2 21 2 21 2
9 2 1 2 21 2 2 1 2 2
10 21 2 2 1 2 2 1 2 2

[

4.4 Conclusion

We assumed that each node in a system’s dependency graph belongs to at least one cycle in
this chapter . The reason for such an assumption is that any nodes that do not belong to a
cycle have no effect (except the source node at the first iteration) on the accuracy increase of
the remaining nodes; hence they can be ignored when discussing the accuracy increase property
for the whole system.

We have proved that the accuracy of a subsystem after each iteration sweep would be one
order higher than the minimum accuracy of its incoming subsystems. We also showed that

after a system is partitioned and the subsystems are ordered, the average accuracy increase

59

for the whole system is min C/d, where C and d are determined by partitioning and ordering,
respectively. Hence we may want to partition a system and order its subsystems so that
the value min C/d is maximized. But such an optimization problem is probably NP hard so
not computationally feasible. However, the result suggests heuristics that could be used to
maximize the lengths of ascending chain in short cycles.

Although the waveform Gauss-Seidel is usually thought of as a serial method, there are
several ways in which it can be used for parallel computation. In one approach, the integration
of later nodes can be staggered in time. The first node is integrated over a small interval of
time, [tg,1]. Its output is then ready to be used for the integration of the second node over that
interval while the first node is integrated over a second interval, (¢, t;], and so on. In the m-th
step, the i-th node is being integrated over the (m + 1 — 7)-th time interval for z = 1,...,m.
Its inputs for that time interval from earlier variables with lower 7 values have already been
computed. In the (m + 1)-st step, the first node begins the second iteration of the first interval
while each of the others advance.

In another approach, several nodes can be integrated in parallel. In this approach, for a p
processor system, up to p nodes can be numbered with each number in the sequence so long as
there are no branches between nodes with the same number. At each step of a single waveform
Gauss-Seidel sweep, all nodes with the same number can be integrated in parallel. Since they
are mutually independent, the order result of Theorem 4.1 applies, and hence all results in this
chapter apply.

60

Chapter 5

Variant Gauss-Seidel Approaches

In this chapter we will discuss various approaches for solving systems with special type of
dependency graphs; graphs whose nodes can be sequentially ordered within each cycle. That
is, there is only one ascending chain in each cycle. By the results in Chapter 4, the accuracy
increase in one sweep of Waveform Gauss-Seidel is bounded by the minimum cycle length of
the corresponding dependency graph. In Section 5.1 we will examine some examples and see
that more accuracy increase may be achieved by treating each cycle of minimum length in a
given dependency graph as a new component so that the minimum cycle length of the reduced
dependency graph is larger than before.

For systems with special type of coupling, it is possible to achieve more accuracy increase
with a variant Gauss-Seidel method than the plain Gauss-Seidel does after each iteration sweep.
This approach is to apply Gauss-Seidel iteration to shorter cycles more frequently than longer
ones. That is, at each iteration sweep in addition to the sequential computation of all subsys-
tems, more computations are performed, also sequentially, on components that form smaller
cycles in the dependency graph. We call this approach Hierarchical Gauss-Seidel (HGS). From
the same examples we will see that the accuracy increase after one sweep of Hierarchical Gauss-
Seidel is bounded by the maximum cycle length of the given dependency graph. In Section 5.2
we use a measure to compare the efficiencies of Gauss-Seidel and hierarchical Gauss-Seidel. We
introduce a method to determine when it is more efficient to use hierarchical Gauss-Seidel than

regular Gauss-Seidel for problems with a speci:;.l type of dependency graph.

61

5.1 Hierarchical Gauss-Seidel and Regrouping

In this section, we investigate four examples to study the accuracy increase property in Gauss-
Seidel scheme with or without local relaxation. In these examples we also show that it is possible
to improve accuracy increase after one sweep of Gauss-Seidel iteration by repartitioning. From
these examples we see that the accuracy increase after one sweep of Gauss-Seidel like scheme are
related to the cycle lengths in‘the dependency graph being used. This motivates us to choose
a partition for a system such that the resulting dependency graph has a larger minimum cycle
length. To simplify the computation and clarify the ideas, from now on we assume that the
order of accuracy after the computation of each subsystem is exactly one above the minimum

of its inputs.

Example 1:Suppose a system’s adjacency matrix has the following structure.

X X
X X
X X
X X
X X X

7 N\ (5.1)
(8) « (49 < (3)
From the dependency graph we can easily compute the order of accuracy for each component
by picking the minimum order of accuracy among all its incoming components and adding 1
to the minimum. Proceed with every component in the numerical ordering we then construct
the accuracy table for the system such that the (%,7) entry of the accuracy table contains the
order of accuracy of the it* component after its computation at the jt* Gauss-Seidel iteration

sweep. The accuracy table for the given system is:

62

Order of | Iteration Index
Accuracy ([0 1 2 3 4
10 1 3 5 7
Node 2|0 2 4 6 8
3/0 3 5 7 9
Index {40 4 6 8 10
5/0 2 4 6 8

From the accuracy table we can see that after the iteration stabilizes the accuracy increase after
each W GS iteration sweep is 2, which is the length of the shortest cycle in the dependency
graph shown in (5.1).

We now solve the system by W GS with local relaxation on the shortest cycle {1,5}, i.e.
besides solving each component once, more computations are performed on components 1 and

5 alternately until their accuracies fail to improve. We then have the following accuracy table.

Order of Iteration Index

Accuracy | 0 1 2 3
110]1 3 5|6 8 1011 13 15

Node 1 20 |2 7 12
310/|3 8 13

Index {4 |0 | 4 9 14
5102 4 5|7 9 10|12 14 15

In this table we list the order of accuracy for each component whenever it is computed within
an iteration sweep. So the accuracy for each component after one iteration sweep is indicated
by the last nonzero entry at each row within an iteration index column. We can see from this
table that after one sweep of W GS with local relaxation, the accuracy increase becomes 5,
which is the largest cycle length of the dependency graph in (5.1).

Since {1, 5} forms the smaller cycle in the original dependency graph, we can group these

two components together and consider the following dependence relation.

(2)

7/ N (5.2)
(1,5) — (4) — (3).

Applying Gauss-Seidel to the new partitioning, we have the following accuracy table.

63

Order of Iteration Index
Accuracy 01 2 3 4
Compo- {150 1 5 9 13
nent 210 2 6 10 14
3({0 3 -7 11 15
Index 4{0 4 8 12 16

From the table, we see that the accuracy increase for W GS under this partition is 4, the length

of the only cycle in graph (5.2).

Example 2: Consider a system with adjacency matrix:

X
X

The corresponding dependency graph is:

T\ N\ (5.3)

It is easy to see that there are two cycles, {1, 4, 5} and {1, 2, 3, 4, 5}, in the dependency
graph. Follow the der;endence relation we construct the following accuracy table of Waveform

Gauss-Seidel applied on the given system.

Order of | Iteration Index
Accuracy |0 1 2 3 4
110 1 4 7 10
Node (2|0 2 5 8 11
310 3 6 9 12
Index |40 2 5 8 11
5(0 3 6 9 12

As we expect, after a few sweeps the accuracy increase after each sweep is 3, the length of the

shortest cycle in the dependency graph (5.3). Now applying W GS with local relaxation on its

64

shortest cycle {1, 4, 5}, we have the following accuracy table.

Order of Iteration Index
Accuracy | 0 1 2 3 4
111011 416 9|11 14|16 19
Node 2 (02 7 12 17
3(0(3 8 13 18
Index |4({0({2 4|7 912 14|17 19
5/0(3 5|8 10|13 15|18 20

From this table we see that the accuracy increase after each compound sweep is 5, the maximum
cycle length of the dependency graph shown in (5.3).

Next we group the components 1, 4, and 5 together and consider the following partitioning.

(2)
T

N (5.4)
(1,4,5) «

(3)

The accuracy table of W GS applied to the new dependency graph (5.4) is:

Order of Iteration Index

Accuracy 01 2 3 4
Compo- | 14,5]0 1 4 7 10
nent 2|0 2 5 8 11
Index 310 3 6 9 12

The accuracy increase after each W GS sweep is now 3, the only cycle length on graph (5.4). :

Example 3: Consider a system with the following adjacency matrix.

X X

X X X

X
X X
X X

The corresponding dependency graph has two cycles, {1, 2, 4, 5} and {1, 2, 3, 4, 5} in it.

65

1 - @
T LN (5.5)
(6) « (4 < ()

Use the dependency graph we can construct the accuracy table of Gauss-Seidel easily. It is:

Order of Iteration Index
| Accuracy [0 1 2 3 4
110 1 5 9 13
Node | 2|0 2 6 10 14
3(0 3 7 11 15
Index |40 3 7 11 15
510 4 8 12 16

From the table we see that the order of accuracy after each iteration sweep increased by 4, the
minimum cycle length of the dependency graph shown in (5.5).
If solving the same system by W GS with local relaxation on its shortest cycle {1, 2, 4, 5}

we have the following accuracy table.

Order of Iteration Index

Accuracy | 0 1 2 3 4
1/10|1 5|6 10|11 15116 20

Node |2|0|1 6|7 11|12 1617 21
310(3 8 13 18

Index |4 (0!3 4|8 9113 1418 19
5104 5|9 10|14 15|19 20

The table shows that accuracy increase after each sweep is 5, the maximum cycle length of the
dependency graph shown in (5.5). If we group all four components, 1, 2, 4, 5 together, we have
the dependence relation below.

(1,2,4,5) — (3)

It is easy to conclude that the accuracy increase under this partition will be 2 after each W GS

sweep.

Example 4: Consider a system whose adjacency matrix has the following structure.

66

X X
X X X
X X
X X X
X X
X X

The corresponding dependency graph is drawn below,

LN ! (5.6)
6) — (4) < (3)

which has three cycles, {2, 3}, {4, 5, 6}, and {1, 2, 3, 4, 5}. Proceed as before, the order of

accuracy at each W GS iteration is listed in the following table.

Order of Iteration Index
Accuracy |0 1 2 3 4 5 6
110 1 3 7 9 11 13
Node (20 1 3 5 7 9 11
3(]0 2 4 6 8§ 10 12
410 1 4 7 9 11 13
Index | 5({0 2 5 8 10 12 14
60 3 6 9 11 13 15

From this table we see that after iteration stabilizes the accuracy increase after each sweep is
2, the minimum cycle length in the dependency graph (5.6).

Next we use Gauss-Seidel with local relaxation on both the cycles {2, 3} and {4, 5, 6} in
graph (5.6). In the following accuracy table we list the order of accuracy for each component
whenever it is computed. Therefore the accuracy of one component after a complete iteration
sweep is indicated by the last nonzero entry on its corresponding row within an iteration index

column.

67

Order of Iteration Index

Accuracy | O 1 2 3
1101 6 11

Node |2|0]1 2 2 4 6 7T 9 11 12
3{]0/]2 3 3 5 7 8 10 12 13
410 1 4 7 9 12 14

Index [5| 0 2 5 8 10 13 15
610 3 6 9 11 14 16

From this table we see that the accuracy increase after each sweep is now 5, the maximum
cycle length in the original dependency graph (5.6).
If we solve the internal components of the shortest cycle simultaneously, i.e. we group 2

and 3 together to form a bigger component, the new reduced dependency graph now becomes

(5) = (1)
AN N\ (5.7)
(6) — (4) < (2,3)

Applying Gauss-Seidel to this new partitioning and the accuracy table is:

Order of Iteration Index
Accuracy 01 2 3 4 5
Compo- 112 1 3 6 9 12
nent 2310 2 4 7 10 13
410 1 4 7 10 13
510 2 5 8 11 14
Index 6|0 3 6 9 12 15

The accuracy increase after each sweep is now 3, the minimum cycle length in the reduced
dependency graph shown in (5.7). When Gauss-Seidel is used, this partitioning has better
accuracy increase than the one shown in (5.6). If we now only group 4, 5, and 6, the internal
components of another cycle in graph (5.6), together, and apply Gauss-Seidel to the following
reduced dependency graph.

f 1 | (5.8)

The new accuracy table is:

Order of Iteration Index
Accuracy 0 1 2 3 4 5 6
Compo- 110 1 4 6 8 10 12
nent 210 1 3 5 7 9 11
310 2 4 6 8 10 12
Index |456|0 3 5 7 9 11 13

From the table we see that the accuracy increase after each W-GS sweep is 2, the minimum
cycle length in the reduced dependency graph shown in (5.8). This approach does not improve

the accuracy increase when compared with the first approach in this example.

5.2 Efficiency for Variant Gauss-Seidel Approaches

Different GS like approaches can achieve different accuracy increases by different amounts of
work. We could compare different approaches with a measure of efficiency. Ideally, we define
efficiency as (accuracy increase per sweep) / (total work per sweep). If the cost of the integration
of node 7 is w; then the total work per sweep is W = > .. w;, where I is a multiset containing
an entry for each integration of each node. In general, we do not have the relative size of w;,
but could proceed assuming all w; = 1 to get W =|| I ||, the number of elements in W. Thus
we have the following definition:

accuracy increase per sweep

EF = Efficiency =

total units of work per sweep

Using this definition, we now measure the efficiencies for the Gauss-Seidel without and with

local relaxation in first three examples. They are

Efficiency | GS | HGS
Example 1 | 2/5 | 5/9
Example 2 | 3/5 | 5/8
Example 3 | 4/5 | 5/9

From these data we see that it is not always more efficient to use Gauss-Seidel with local
relaxation. And for systems with a special type of dependency graph, we have found a criterion

to determine when it is more efficient to use Gauss-Seidel with local relaxation.

69

Theorem 5.1 If there are only two cycles of different lengths in a system’s dependency graph
and these two cycles have at least one common node, then the Gauss-Seidel method without
local relazation is more efficient when the ratio of the length of the smaller cycle to the length

of the larger cycle ezceeds 3/—52,;1— , the reciprocal of the golden ratio.

Note: we have assumed that all internal nodes of each cycle have been solved sequentially in
cyclic order.
Proof: Let the iengths of these two cycles be m and n, respectively, with m < n and let
p = [Z]. Since m < n, we have p > 2. If the system is solved by Gauss-Seidel without local
relaxation, it is easy to show that the accuracy increase in on sweep is exactly m, length of the
smaller cycle. Since n units of work increases the order of accuracy by m, the efficiency for the
Gauss-Seidel method is
EF(GS)= Z.
n
If, besides solving each node once, we perform p— 1 more Gauss-Seidel iterations on the smaller
cycle, the accuracy increase at each node now becomes min(n, [Z]m) = n. This shows that
it is always possible to achieve accuracy increase by n after one sweep of Gauss-Seidel with
local relaxation for this type of problems. And to achieve “n order increase” in one sweep, we
need do n + ([2 — 1])m units of work, so the efficiency for the Gauss-Seidel method with local

relaxation is

EF(HGS) =

n+([Z] - 1)m’

The difference in efficiency of these two schemes is

EF(HGS)- EF(GS)

= Afeem T on
n? —(mn+(p—1)m?2
nEn+(p(~£1)")t) : (4.4a)

From the definition of p we have

70

a3

I
oy
N
3
INA

3

& 5 < m < 33 (4.4b)
& an? < mn < (p—}ﬁnz
1
(440) = n? < m? < an

= e;',lnz < (p—1)m? < 4n?
= 2rlp2 < mn-{—(p—l)m2 < *p2 (4.4c)

p—1

When p > 3, i.e. when m < n/2, from (4.4c) we have mn + (p — 1)m* < %n? = n? and by
(4.4a), this implies
EF(HGS) > EF(GS).

When p = 2, that is when m > %, by (4.4c) we have

n® < mn+ (p - 1)m? < 20

W w

This inequality does not help deciding which scheme is more efficient but it does tell us that for
some n/2 < m < n, Gauss-Seidel with local relaxation is less efficient. In order for EF(HGS) >
EF(GS) to hold, from (4.4a) we need to solve

nz——mn—mzzo,

which in turn requires that
V5 -1

2

m < .

Therefore Gauss-Seidel with local relaxation is more efficient for the special type of problems

when 7t < 3/—%:'—1, the reciprocal of the golden ratio.
Q. E. D.

If we compare the efficiencies in the first three examples, we can see that they all follow

this criterion.

71

Chapter 6

Numerical Experiments

In this final chapter, we analyze the numerical results obtained from an experimental package
WRODE for solving systeﬁx of ordinary differential equations using multirate techniqués in
waveform relaxation setting.

In section 6.1 we describe some implementation issues. In section 6.2 some experimental
results are presented, the experiments in this section are designed to show how the selection of
different Gauss-Seidel numberings and the Jacobi approach on waveform relaxation affects the
efficiency. We also test the effects of window length on the overall performance of waveform
relaxation. We present the statistical results of the waveform relaxation process both in table

and graph formats. In the final section we examine the efficiency of the WGS method.

6.1 Implementation

WRODE is a code written in C to implement the waveform Gauss-Seidel and Jacobi iteration.
It performs the direct method if no partitioning of a system is chosen. Users must provide
the partitioning and numbering (ordering) of a given system and the coupling relations among
all subsystems. WRODE will determine the window size automatically according to a user
specified ratio of window length to maximum stepsize among all subsystems. At each waveform
iteration sweep over a window, multirate integration method is used. A muitirate integration
method is one in which different equations are integrated using different time steps. The
main objective of a multirate method is to reduce the integration time by using larger time

stepsizes for those variables having slow behavior when compared to the fastest variables. This

72

approach obviously should use less computing time because the total computing time is roughly
proportional to the number of integration steps taken for each equation, and in this approach
we can reduce the number of steps taken by the slow components. Besides the reduction
in the number of intergration steps, there are extra savings in matrix computations if implicit
methods are used. Instead of solving a large system, several smaller subsystems are solved. The
work required is roughly O(TX, N?) compared to O((TX, N;)?). These savings are partially
offset by the cost of interpolations used to compute approximations of variables integrated with
large steps so that the derivatives of variables integrated with small steps can be computed.
However,these additional costs are reduced if the system is sparse, because not all variables
need to be interpolated or extrapolated to evaluate derivatives.

The basic approach of the implementation is

Repeat
1. Pick a window.
2. Perform waveform relaxation over the window until all waveforms converged.
Until whole integration interval is covered.

Note that if we treat each window as a time step and the waveform relaxation process as the
predictor-corrector process m regular ODE integrator, then the waveform relaxation approach
can be seen as a large scale ODE integrator.

For the rest of this section we discuss some issues that have been implemented in the code.
Data Representation

In WRODE the Nordsieck representation,
h2y" By (k)

207777 R

ly, hy',

is used. Using this representation, no recomputation of coeflicients is needed when the stepsize
is changed, only scaling is required. At each step, a matrix multiplication by a Pascal triangle
is performed for the predictor. The arithmetic work involved is proportional to both the size
of the system and the square of the order. Therefore this representation is suitable for smaller
systems and lower order methods. In multirate integration methods, we partition a big system
into several smaller subsystems, then integrate each subsystem independently. Because of the

small size of each subsystem, Nordsieck vector representation seems a good choice.

73

Mesh Point Synchronization

For further saving in computation time and reduction in error, it is desirable to reduce
unnecessary interpolations by synchronizing the mesh points among all subsystems, that is, to
force the mesh of slower components to be a subset of that of faster components. This can be
achieved by letting the stepsize of a component be an integer multiple of the stepsize of the
next faster component (if fixed step methods are used). To achieve as much synchronization as
possible in variable step methods, we will limit stepsize changes to halving, doubling or powers
of the same. A step may be halved at any time, but it may be doubled only when (¢t — to)/R
is even, where h is the current stepsize and ? is the initial time point of the current window.
(This scheme guarantees that (t — ¢9)/h is an integer and tells us how far the integration has
proceeded, measured in units of the current stepsize.)

Selection of Window Length

In general, after integrating the current time point, t., the integrator recommends a new
stepsize, An., and at the beginning of integration a scheme suggested by Shampine [13] is
used to choose an initial stepsize, h;n;;. Based on the stepsizes suggested by the integrator
for each subsystem, we have experimented with different choices of window length by chooéing
a two’s-powe.r multiple of the largest suggested stepsize among all subsystems at the start of
a new window as the new window length. We maintain the window-length to stepsize ratio
throughout entire integration interval.

System Partitioning and Numbering (Ordering)

The purpose of partitioning is to use as large a stepsize as possible for each subsystem to
gain efficiency. Hence system partitioning plays a critical role in the overall performance of
multirate methods. The order in which subsystems are integrated affects the rate of convergence
in the Gauss-Seidel approach significantly. In the implementation we use static partitioning
and ordering, i.e. we use the same partitioning and ordering throughout entire integration
interval. But a lot of experiments are designed to see the effect of these two factors on the
performance of WRODE and the numerical results all match the theoretical results discussed
in Chapter 4.

Partial Waveform Convergence Exploitation

74

After each waveform has been computed, we need to check whether a waveform has con-
verged over a window. If it has not, we first determine how far it has converged. Based on this
information we can then locate the starting point of reintegration (over the same window) for
each subsystem. We observe how much work can be saved by exploiting this property in the
experiments.

Interpolation Methods

From the discussion in 3], we know that the order of discretization convergence of a multi-

rate integration method depends partially on the order of the interpolation methods used. In

the code the second order Hermitian interpolation method is used.

6.2 Numerical Results

In this section we compare the efficiency of different Gauss-Seidel numberings and the Jacobi
approach on waveform relaxation. We also test the effects of window length on the overall per-
formance of waveform relaxation. We present the statistical results of the waveform relaxation
process both in table and graph formats.

At the upper left corner of each table is the label of the example. If the label is followed
by ¢/’ and a number, then this number indicates. the number of subsystems being used. The
partitioning and ordering used follows the example label. Each table contains the following

fields (CPU time maybe missing in some tables) :

CPU time : Total time used (in seconds) for the waveform relaxation process. This does not

include the time spent for reading inputs and setting up the initial waveforms.

total iterations : Total number of window iterations performed. If there are two numbers in
this field separated by ¢/’, the first one is the total iterations in convergent windows! and

the second number denotes the total number of window iterations performed.
window numbers : Total number of convergent windows.

iteration/window : Average iterations needed to reach convergence in a window.

1A convergent window is a window over which WGS or WJ converges in less than or equal to five iterations.

75

steps performed : Total number of successful integration steps performed.

non-converged steps : Number of successful integration steps that are actually needed (con-

vergent steps? are excluded) to be performed to reach convergence.
steps redundant (%) : The percentage of convergent steps that are reintegrated.

interpolations : Total number of interpolations performed. Note that interpolations may be
needed when evaluating the derivatives at an intergration step as well as when comparing

two successive waveforms to detect convergence.
function evaluations : Total number of function evaluations performed.

In the graphs we present the profiles of cpu time, integration steps, interpolations, non-
converged steps and average iterations with respect to different ratio of window-length to
stepsize. We also show the comparison of average iterations between Jacobi and Gauss-Seidel

in different numbering or the comparison between different partitioning.
6.2.1 Linear Problems

In this subsection we consider linear systems of the following form :
¥ = A(y - 6(t) + 8(2), ¥(0) = 4(0), 0<t<10, (6.1)

It is easy to see that the exact solution to this type of problem is y(t) = #(t).

In the following five examples we consider five different matrices A’s. In examples 6.1, 6.2
and 6.3, we examine matrices of size 4. Using 6.1 and 6.2, we study how WRODE performs on
systems with different minimum cycle lengths. In example 6.3, we examine how the coupling
factor affects the performance of WRODE. For the last two experiments, example 6.4 and 6.5,
we consider matrices of size 6 and we show how the size of couplings between the fast and slow

components affects the performance of WRODE. The Jacobian for these two examples has the
2 by 2 matrices on the diagonal

-50 49 -6 5 -1 0] or -1 1
49 -50 |’ 5 —6 |’ 0 -1 1 -1

2A convergent step is an integration step that provides the same answer as the previous iteration (within
desired error tolerance).

76

which have eigenvalues -99 and -1, -11 and -1, -1 and -1 or -2 and 0, respectively. Thus
considered as systems by themselves, the slow class is stiff, the medium class is mildly stiff and

the fast class is not stiff at all.

77

@——O————0B

Figure 6.1: Dependency Graph of Example 6.1

Example 6.1 : In this example, we consider

-1 0 0 1
1 -5 0 0
4= 0 1 -10 0

and

#(t) = (cos(t), sin(t), cos(20t), sin(20t))T.

We use Gauss-Seidel and Jacobi schemes in WRODE to solve this system and analyze their
performance. Note that node 2 and node 3 are the fast components.

Partitioning the system into four subsystems each containing only one equation, labeled by
(0), (1), (2), and (3), respectively. The dependency graph under this partitioning has a single
cycle of length four. (See Fig 6.1) We compare the effects of different Gauss-Seidel numberings
on the speed of convergence. '

The label of each subsystem is fixed throughout different numberings. If a subsystem label,
say (a), takes the precedence of another one, say (b), in a numbering, then subsystem (a) is
integrated before subsystem (b). For example, the numbering (3102) means that subsystem (3)
is integrated first, followed by subsystem (1), then subsystem (0) and subsystem (2) is integrated
last. Under different numberings the cycle is partitioned into one, two, or three ascending
chains, respectively. According to Theorem 4.7 the average order of accuracy increase after
each Gauss-Seidel iteration is, respectively, 4/1, 4/2, and 4/3 for one, two and three ascending
chains. Practically, we can not know exac?ly how many terms have been picked up after each
iteration but from the numerical results obtained, among all Gauss-Seidel numberings, the

numbering with one ascending chain has the best speed of convergence, which is expected,

78

while the numbering with three ascending chains has the worst speed of convergence. The
Jacobi approach has only one order of accuracy increase after each iteration so its speed of
convergence is worse than any of the Gauss-Seidel numbering. (See Graphs 6.1.1 - 6.1.3.)

After comparing the efficiency among different numbering schemes, we then test the effects
of window length on the overall performance of waveform relaxation. We list the statistics in
Table 6.2.1. Since the computing time is roughly proportional to the total number of integration
steps, from Table 6.2.1 we notice that for Jacobi scheme the most efficient ratio of window length
to the maximum step size is 4, while 16 is the most efficient ratio for the Gauss-Seidel scheme
under the numbering, (2 3 0 1). From the tables we also see that we can reduce the computing
time from 16% to 39% by exploiting the partial waveform convergence .

Over all, we can see that the numbering (2 3 0 1) in Gauss-Seidel gives the best perfor-
mance. This is not totally unexpected. The reason is that the constant extrapolation over a
window is needed only when the fast component (2) is first integrated and we can expect small

extrapolation error when the extrapolation work is performed on the slow component (1).

(6-1/4) (2)(3)(0)(1)

window length / max step size

Gauss-Seidel 2 4 8 16 32 64
CPU time (second) 367.42 279.24 244.88 219.84 | 266.76 | 285.16
total iterations 348 101 44 24 16 9
window numbers 123 34 15 8 5 3
iteration/window 2.829 2.970 2.933 3 3.2 3
steps performed 17344 12936 10753 9033 { 10119 9690
non-converged steps | 12367 8709 7297 6192 6154 7171
steps redundant (%) | 28.69 29.74 32.14 31.45 | 39.18 | 25.99
interpolations 9841 8995 7820 5973 7947 7818 |
function evaluations | 39084 28726 23699 19702 | 21941 | 21186
(6.1/4) (2)(3)(0)(1) window length / max step size

Jacobi 2 4 8 16

CPU time (second) 638.42 599.22 | 1114.12 | 2321.74

total iterations 491 | 169/179 | 142/237 | 139/354

window numbers 123 35 29 28
iteration/window 3.992 4.829 4.897 4.964

steps performed 29298 26909 48999 99030

non-converged steps | 20250 19672 38959 82869

steps redundant (%) | 30.88 26.89 20.49 16.32

interpolations 14914 17240 38958 65828

function evaluations | 67470 60357 | 108778 | 217996

Table 6.1: Table 1 of Example 6.1

80

475+

4.5 — .

4.25 -

Average
Iteration Nb 3.75 —
per Window

3.5 —

3.28 —

2.75

—

2.5 L1 S T T SR N
A B C D BE F G H 1 I IAC

Window Length / Max Step Sise = 8
Ordering Effects on Speed of Convergence

Example : 8.1
Gauss—Seidel (A - J) | Jacobi (JAC)
10123 (4/1)
1301 2(4/1)
12301 (4/1)
:1230(4/1)
:0132(4/2)
021 3(4/2)
10231 (4/2)
1031 2(4/2)
10321 (4/3)
:3210(4/3)

Figure 1 of Examplie 6.1

81

1300
1200
1100 —
1000 —
900 —
800 —

CPU 700 —
Time
(seconds) 800 —

500 —
400 — |
300 \J
200 -
100 —
0] 1] i | I]] {] |

A B C¢C D E F G H 1 1 laC

Window Length / Max Step Size = 8
Ordering Effects on Speed of Convergence

Example : 6.1
Gauss-Seidel (A -J) | Jacobi (JAC)
A:0123(4/1)
B:3012(4/1)
:2301 (4/1)
:1230(4/1)
:0132(4/2)
10213 (4/2)
10231 (4/2)
:0312(4/2)
10321 (4/3)
3210 (4/3)

=N OTM®mOO

Figure 2 of Exa.rhple 6.1

82

50000

detied - [ntegralien Steps w/e. Partial Ceavergence
dashed - Integration Steps w. Partial Ceavergenes
solid - Interpelations

45000 —|

40000 —

35000.—

30000 —

Nb of

Times 25000

20000 —

15000 —

10000

5000 —

0 | ! | I ! 1 | | L

A B C D E F G H [

Window Length / Max Step Sise = 8
Ordering Effects on Speed of Convergence

Example : 4¢c
Gauss-Seidel (A - J) | Jacobi (JAC)
A:0123(4/1)
B:3012(4/1)
C:2301 (4/1)
D:1230(4/1)
E:0132(4/2)
F:0213(4/2)
G:0231(4/2)
H:0312(4/2)
1:0321(4/3)
J:3210(4/3)

Figure 3 of Example 6.1

83

JAC

JAC

4754
4.5 -

4.25 <

Average
Iteration Nb 3.75 —
per Window

3.5

3.25 <

.
.

0e?®

tes .
. oe

. ®aee,

2.75 —

2.5 | 1] 1]

Log2 (Window Length / Max Step Size)
Example : 6.1

GS, JAC : (2)(3)(0)(2)

Figure 4 of Example 6.1

84

2400

2200 —
2000 —
1800 —
1600 —
1400 <
CPU
Time 1200 —
(seconds)
1000 —
800 —
600 —

400 —

200 —

JAC

e
L RN
.
.....
e
e
.
.

...............
............................

Log2 (Window Length / Max Step Sise)
CPU Time for Direct Method : 109
Example : 6.1

GS : (2)(3)(0)(1)

Figure 5 of Example 6.1

85

20000
18000 —
16000 —
14000
12000 — .
10000

8000 —

8000 —

4000 —

2000 —

0 | ! | | | 1

1 2 3 4 5 8
Log2 (Window Length / Max Step Sise)

Example : 8.1

GS : (2)(3)(0)(1)

dotted - # of Integration Steps w/o. Partial Convergence
dashed - # of Integration Steps w. Partial Convergence
solid ~ # of Interpolations

| Figure 6 of Example 6.1

86

100000
90000 —
80000 — ' .:: K
70000 — ‘;' ,
60000 -
50000 —
40000 -
30000 —

20000 —

10000 —

Log2 (Window Length / Max Step Sise)
Example : 6.1
JAC : (0)(1)(2)(3)
dotted ~ # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 7 of Example 6.1

87

. 1
O@——0——0 6
_/
Figure 6.2: Dependency Graph of Example 6.2

Example 6.2 : In this example, we consider

-1 0 0 1
1 -5 0 0
A= 0 1 -10 1

and
#(t) = (cos(t), sin(t), cos(20t), sin(20t))7.

This matrix differs in one position from that of Example 6.1. By changing the value at position
(3,4) from 0 to 1, we construct a dependency graph with a completely different structure.
The dependency graph has two cycles of length four and two, respectively. (See Fig 6.2) In
this example, we test the effects of partitioniﬁg on the speed of convergence, and observe that
proper regrouping indeed improves the speed of convergence. If the system is partitioned into
four subsystems then, by Theorem 4.7, the average accuracy increase is two; if the system is
partitioned into three subsystems, i.e. equation 2 and equation 3 which are mutually coupled
are grouped as a subsystem, then the average accuracy increase becomes three and hence the
resulting Gauss-Seidel scheme converges faster. The comparisons are shown in the following
graphs and tables. Theoretically, we expect that the second partitioning strategy provides a
better performance because of the larger increase in order of accuracy. But from the statistics
shown in Table 6.2, we can not be so sure about this in terms of processing time consumed.
By simultaneously solving two variables differ only in phase shift, we may reduce the total
number of interpolations, but these savings might be offset by the increase of the total number
of integration steps and the number of function evaluations resulting from choosing smaller

stepsizes.

88

(6.2/3) (0)(1)(23)

window length / max step size

Gauss-Seidel 2 4 8 16 32 64

total iterations 368 102 51 25 16 13
| window numbers 123 34 17 8 5 4

iteration/window 2.992 3 3 3.125 3.2 3.25

steps performed 21504 16467 15354 15931 | 17190 | 17393

non-converged steps | 15712 11673 10826 10481 | 10597 | 10725

steps redundant (%) | 26.93 29.11 29.49 34.21 | 38.35 | 38.34

interpolations 9371 7778 7470 7737 | 8205 | 8200

function evaluations | 51755 37964 34953 35953 | 38714 | 39165

(6.2/3) (0)(1)(23) window length / max step size

Jacobi 2 4 8 16

total iterations 449 162 89 44 /54

window numbers 123 34 17 9

iteration/window 3.650 4.765 4.944 4.889

steps performed 26334 25758 24726 35021

non-converged steps | 19696 19088 18761 28799

steps redundant (%) | 25.20 25.89 24.12 17.77

interpolations 8620 10139 9987 14304

function evaluations | 63295 59327 56331 79045

(6.2/4) (0)(1)(2)(3) window length / max step size

Gauss-Seidel 2 4 8 16 32 64

total iterations 368 117 56 31 17 12

window numbers 123 33 15 8 5 3

iteration/window 2.992 3.545 3.733 3.875 3.4 4

steps performed 21724 17649 15196 13617 | 12215 | 14381

non-converged steps | 16130 12325 10855 9876 | 9438 | 10799

steps redundant (%) | 25.75 30.16 28.56 27.47 | 22.73 | 24.90

interpolations 16631 17762 15542 12024 | 13007 | 17369

function evaluations | 50003 39538 33594 29725 | 26493 | 31484

(6.2/4) (0)(1)(2)(3) window length / max step size

Jacobi -2 4 8 16

total iterations 492 | 172/182 | 159/304 | 154/409

window numbers 123 35 32 31

iteration/window 4 4.914 4.968 4.968

steps performed 29399 27133 64824 | 112071

non-converged steps | 23170 21597 54791 98962

steps redundant (%) | 21.18 20.40 15.48 11.69

interpolations 18869 24404 60220 | 104055

function evaluations | 67761 60931 | 143823 | 246389

Table 6.2: Some Statistics of Example 6.2

89

Average
Iteration Nb
per Window

5.25

4.75 <

4.5 —

3.75 -

3.5

3.25 -

2.78

JAC~4

Log2 (Window Length / Max Step. Sise)

Example : 8.2

GS-3, JAC-3 : (0)(1)(23)
GS~4, JAC-4 : (0)(1)(2)(3)

Figure 1 of Example 6.2

90

40000

36000 —

32000 —

28000 —

24000 —

20000 —

18000 —

12000

8000 —

4000 —

.
e
se®
[Xhd
e

......

- -
-
-
- -
S S e cccamccenccm e ===

] i] l]

2 3 4) 8
Log2 (Window Length / Max Step Sise) .
Example : 8.2
GS-3 : (0)(1)(23)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 2 of Example 6.2

91

40000
36000 —
32000 —

;
;
28000 S,
:
:
;

.......
e

24000 —)
20000 — g
16000 —
12000]
8000 —

4000 —

0 | L | | L
1 2 3 4 5 8

Log2 (Window Length / Max Step Sise)
Example : 6.2
JAC-3 : (0)(1)(23)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 3 of Example 6.2

92

25000

22500 —

20000 -

17500

15000 -

12500 —

10000 —

7500 —

5000 —

2500 —

0 ! | 1 ! ! |

1 2 3 N | 5 8
Log2 (Window Length / Max Step Sise)
Example : 8.2
GS—4: (0)(1)(2)(3)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid -~ # of Interpolations

Figure 4 of Example 6.2

93

" 120000
110000 —
100000 —
90000 —
80000 —
70000 —
60000 —
50000 —
40000 —

30000 —

20000 -

10000 —

0 | | ! | L

1 2 3 4 5 8
Log?2 (Window Length / Max Step Sise)
Example : 8.2
JAC-4 : (0)(1)(2)(3)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 5 of Example 6.2

94

10

Figure 6.3: Dependency Graph of Example 6.3

Example 6.3 : In this example, we consider

and

#(t) = (cos(t), sin(t), cos(20t), sin(20t))T.

The system’s Jacobian matrix has the same zero-nonzero structure as that of the Example
6.2 does, but the value at position (1,4) has been changed from 1 to 10.

These two examples have the same dependency graphs but differ at one coupling factor.
(See Fig 6.3) This example is designed to show how the size of coupling between the fast
and slow components affects the performance of WRODE. From the statistical results, we see
that the numbering of nodes is very sensitive to the coupling factor since some Gauss-Seidel
numberings and the Jacobi scheme fail to work for this system (integration fails to converge).
During the experiment, if node “0” was integrated before node “3” inside each Gauss-Seidel
iteration sweep, the waveform relaxation broke down. This is because that the error at node
“3” is amplified ten times after propagating to node “0”. One possible solution for monitoring
the propagation of interpolation (extrapolation) error from one component to another is that
we may use a tighter error control at the component whose error will be amplified.

We list the statistics for the numbering (3)(0)(1)(2). From the table and the graph for CPU
time, we notice that the CPU time may be a function of the sum of numbers of interpolation

and function evaluation.

95

(6.3/3) (23)(0)(1)

window length / max step size

Gauss-Seidel 2 4 8 16 32 64
CPU time (second) 334 258 260 297 404 421
total iterations 336 98 54 27 15 15
window numbers 117 33 18 8 4 4
iteration/window 2.872 | 2.970 3| 3375| 3.73| 3.75
steps performed 17094 | 14493 | 14303 | 15180 | 18174 | 18379
non-converged steps | 12071 | 9750 | 9658 | 10289 | 12399 | 12403
steps redundant (%) | 29.38 | 32.73 | 32.48 | 32.22 | 31.78 | 32.52
interpolations 5627 | 5161 | 5323 | 5824 | 7335 | 7078
function evaluations | 40537 | 33245 | 32522 | 34290 | 40992 | 41448
(6.3/4) (3)(0)(1)(2) window length / max step size

Gauss-Seidel 2 4 8 16 32 64
CPU time (second) 470 392 381 352 339 368
total iterations 347 108 60 29 19 16
window numbers 116 32 16 8 5 4
iteration/window 2.991 | 3.375 3.75 | 3.625 3.8 4
steps performed 19884 | 16074 | 15348 | 13340 | 12346 | 12606
non-converged steps | 14365 | 11386 | 10819 | 9846 | 9194 | 9504
steps redundant (%) | 27.76 | 29.16 | 29.51 | 26.19 | 25.53 | 24.61
interpolations 17650 | 17457 | 16377 | 12933 | 13131 | 10094
function evaluations | 45411 | 35832 | 33933 | 29088 | 26794 | 27427

Table 6.3: Some Statistics of Example 6.3

96

4.25

4_ -
3.75
Average
[teration Nb 3.5
per Window
3.25 —
3
2.75

cs—

Log2 (Window Length / Max Step Sisze)
Example : 6.3

GS-3 : (23)(0)(1)
GS—4 : (3)(0)(1)(2)

Figure 1 of Example 6.3

97

CPU
Time
(seconds)

- 500

450 —

400 —

350 —

250

200 —

150 —

100 —

50 —

Log2 (Window Length / Max Step Sise)
CPU Time for Direct Method : 107
Example : 6.3

GS-3 : (23)(0)(1)
GS—4 : (3)(0)(1)(2)

Figure 2 of Example 6.3

98

20000

18000 —

16000 —

14000 ~

12000 — ' N - L’

10000— _ -

8000 —

8000 —

4000 —

2000 —

Log2 (Window Length / Max Step Sise)
Example : 6.3
GS-3 : (23)(0)(1)
dotted - # of Integration Steps w/o. Partial Converg?nce

dashed - # of Integration Steps w. Partial Convergenc
solid ~ # of Interpolations :

Figure 3 of Example 6.3

99

20000
18000 —
18000 —
14000 —
12000 —

10000 —

8000 —

8000 —

4000 —

2000 —

Log2 (Window Length / Max Step Sise)
Example : 6.3
GS—4 : (3)(0)(1)(2)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 4 of Example 6.3

100

' N\
o) —(o) —(® ©
Figure 6.4: Dependency Graph of Example 6.4

Example 6.4 : In this example, we consider

49 -50 0 0 0 0]

-50 49 0 0 0 0

1 1 -6 5 0 0

4= 1 1 5 -6 0 0
1 1 1 1 -1 0

1 1 1 1 0 -1

and

#(t) = (cos(0.5t), sin(0.5¢), cos(t), sin(t), cos(20t), sin(20t))T.

Here w:e have a system whose Jacobian matrix is in lower block triangular form (1-way
coupling, See Fig 6.4). This experiment is designed to demonstrate that if the Jacobian matrix
is a lower block triangular matrix with M diagonal blocks, Gauss-Seidel scheme converges after
one iteration if each subsystem is sequentially solved following the dependence relations, the
second iteration is needed to detect waveform convergence and Jacobi converges within M
iterations, the last iteration is used to detect waveform convergence. In this particular example
two iterations are needed for Gauss-Seidel to reach convergence and less than four iterations
are needed for Jacobi. This can be seen from the field iteration / window in Tables 6.4 and
6.5. Some statistical results are listed in Tables 6.4 and 6.5. In the tables, (6.3/3) and (6.3/4)
respectively refers to partitioning into three and four subsystems.

From the tables we can see that the average iteration numbers needed for convergence at

each window are the same for both partitionings. Notice that nodes ‘4’ and ‘5’ are uncoupled,

101

(6.4/3) (01)(23)(45)

window length / max step size

Gauss-Seidel 2 4 8 16 32 64
CPU time (second) 395 251 247 271 275 302
total iterations 460 58 32 12 8 6
window numbers 230 29 16 6 4 3
iteration/window 2 2 2 2 2 2
steps performed 16588 | 9664 9200 | 8904 | 8344 | 9476
non-converged steps | 16588 | 9664 9200 | 8904 | 8344 | 9476
steps redundant (%) 0 0 0 0 0 0
interpolations 24776 | 16652 | 16012 | 16148 | 15152 | 17412
function evaluations | 42414 | 22662 | 21382 | 20350 | 18982 | 21462
(6.4/3) (01)(23)(45) window length / max step size

Jacobi 2 4 8 16

CPU time (second) 570 455 439 466

total iterations 653 113 63 23

window numbers 230 29 16 6
iteration/window 2.839 | 3.897 | 3.9375 | 3.833

steps performed 25570 | 19366 | 18464 | 17734

non-converged steps | 19878 | 13396 | 12942 | 12814

steps redundant (%) | 22.26 | 30.83 | 29.91 | 27.74

interpolations 21650 | 24740 | 23901 | 24105

function evaluations | 65594 | 45562 | 42946 | 40518

Table 6.4: Some Statistics of Example 6.4/3

they can be integrated independently at the cost of increasing the number of interpolations.

102

i
L

(6.4/4) (01)(23)(4)(5)

window length / max step size

Gauss-Seidel 2 4 8 16 32 64
total iterations 460 58 32 12 8 6
window numbers 230 29 16 6 4 3
iteration/window 2 2 2 2 2 2
steps performed 17744 | 10084 9508 | 8858 | 8834 | 7836
non-converged steps 17744 | 10084 9508 | 8858 | 8834 | 7836
steps redundant (%) 0 0 0 0 0 0
interpolations 54760 | 34928 | 33412 | 32184 | 32440 | 28264
function evaluations 42892 | 22808 | 21382 | 19590 | 19494 | 17166
(6.4/4) (01)(23)(4)(5) window length / max step size

Jacobi 2 4 8 16

total iterations 652 113 63 23

window numbers 230 29 16 6
iteration/window 2.834 | 3.897 | 3.9375 | 3.833

steps performed 27173 | 20171 | 19030 | 16287

non-converged steps 21161 | 13968 | 13354 | 11397

steps redundant (%)d | 22.12 | 30.75 | 29.83 | 30.02

interpolations 48573 | 51797 | 49783 | 45738

function evaluations 66185 | 45783 | 42844 | 36016

Table 6.5: Some Statistics of Example 6.4/4

103

JAC-3, JAC—
3.75 —~

3.5

3.25 A

Average
Iteration Nb

per Window
, 2.75

2.5

2.25 —

-
—

1.75]

Log2 (Window Length / Max Step Sise)
Example : 8.4

GS-3, JAC-3 : (0)(1)(23)
GS-4, JAC—4 : (0)(1)(2)(3)

Figure 1 of Example 6.4

104

CPU
Time
(seconds)

600

550 —

S00 —

450 —

400

350 —

300 —

250

200 —

150 —~

100 —

50 —

JAC-3

.
oet?
.
.t
ooooooooo
. .
..........
o
.o
eet?
..................

Log2 (Window Length / Max Step Size)
CPU Time for Direct Method : 178
Example : 8.4

GS-3, JACj-3 : (01)(23)(45)

Figure 2 of Example 6.4

105

60000

54000 —

48000

42000 —

36000

30000 —

24000 —

18000 —

12000 —

6000 —

e
b—
f—

Log2 (Window Length / Max Step Sise)
Example : 8.4
GS-3 : (01)(23)(45)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 3 of Example 6.4

106

52000
48000 —
44000 —
40000 —
36000 —
32000 —
28000 —
24000 — /___
20000 .

16000 — .
120004 00 TTTTmmmeese-

8000 —

4000 —

0 ! | | 1 L]
2 3 4 5]

-

Log2 (Window Length / Max Step Sise)
Example : 8.4
JAC-3 : (01)(23)(45)
dotted ~ # of Integration Steps w/o. Partial Convergence

dashed ~ # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 4 of Example 6.‘4

107

" 60000
54000 —
48000 —
42000 —
'3;wo .
30000 —
24000 —
18000 —
12000 —

6000 —

= on .
- - —
T e e o e e e g
o -

| ! | |]]

1 2 3 4]]

Log2 (Window Length / Max Step Sise)
Example : 6.4
GS— : (01)(23)(4)(5)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Corivergence
solid - # of Interpolations

Figure 5 of Example 6.4

108

§2000
48000 —
44000 —
40000 —
36000
32000 —
28000 —
24000 —
20000
16000 —
12000 —

8000 —

4000 —

vea,
oo,
LI
......
.
.
.
.
.
»
.
.
.
.
.
.

. .-

] ! L L 1

1 2 3 4 s s

Log2 (Window Length / Max Step Sise)
Example : 6.4
JAC—4 : (01)(23)(4)(5)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 6 of Example 6.4

109

/\{. /7~ N '
J O)—(d o)— (@ ©®

Figure 6.5: Dependency Graph of Example 6.5

Example 6.5 : In this example, we consider

49 -50 0 0 —-0.25 07
-50 49 0 0 0 -0.25

Ao 1 1 -6 5 0 0
1 1 5 -6 0 0

6 o 1 1 -1 1

L 0 o0 1 1 RS

and

#(t) = (cos(0.5t), sin(0.5t), cos(t), sin(t), cos(20t), sin(20t))%.

In this example we partition the system into three subsystems and treat each subsystem as a
node, thus the dependency graph has a cycle of iength 3. In the experiments we consider three
different numberings, (01)(23)(45), (45)(01)(23), and (45)(23)(01). Under these numberings
the cycle is partitioned into one, one and two ascending chains. According to Theorem 4.7 we
can expect better performance from the first two numberings. But it is difficult to compare
the efficiencies of these two numberings. From the results we notice that the first numbering,
(01)(23)(45), is more efficient when the ratio of window length to maximum stepsize is greater
than 8 and the second numbering, (45)(01)(23), is more efficient when the ratio is less than 8.

We list the statistics in Table 6.7. From this table we also observe that the efficiency
deteriorates very fast as the ratio of window length to maximum stepsize increases, especially

in the Jacobi approach.

110

(6.5/3) (01)(23)(45) window length / max step size

Jacobi 2 4 8 16
CPU time (second) | 675.76 | 690.34 | 1514.4 | 4314.26
total iterations 691 | 151/171 | 147/282 | 144/439
window numbers 230 31 30 29
iteration/window 3.004 4.871 4.9 4.966
steps performed 32224 34386 74640 | 205272

non-converged steps | 26514 26612 61066 | 182898

steps redundant (%) | 17.72 22.61 18.18 10.90

interpolations- 13267 23507 51452 | 143366

function evaluations | 85162 81254 174538 474118

Table 6.6: Some Statistics of Example 6.5, Jacobi

111

(6.5/3) (01)(23)(45)

window length / max step size

Gauss-Seidel 2 4 8 16 32 | 64
CPU time (second) 642.02 | 366.62 | 410.84 544.8 | 1309.42
total iterations 690 88 58 26 | 22/37
window numbers 230 29 16 6 - 5
iteration/window 3| 3.034| 3.625 4.333 4.4
steps performed 30160 | 17694 | 19588 23676 54544
non-converged steps 22324 | 12822 | 12154 14380 37608
steps redundant (%) 25.98 27.53 37.95 39.26 31.05
interpolations 20591 | 14158 | 16227 20578 42597
function evaluations 79662 | 42226 | 45882 54274 | 124330
(6.5/3) (45)(01)(23) window length / max step size
Gauss-Seidel 2 4 8 16 32 | 64
CPU time (second) 467.16 | 300.32 | 399.72 | 867.86 | 1833.64
total iterations 639 88 61| 35/50| 32/67
window numbers 230 29 16 8 7
iteration/window 2.778 3.034 | 3.8125 4,375 4.571
steps performed 23038 | 15054 | 17864 38374 78796
non-converged steps 16910 | 10098 | 10904 24236 56212
steps redundant (%) 29.72 32.92 38.96 36.84 28.66
interpolations 12424 | 9996 | 12799 30067 62273
function evaluations 58898 | 35250 | 41482 87694 | 178970
(6.5/3) (45)(23)(01) window length / max step size
Backward Gauss-Seidel 2 4 8 16 32 | 64
CPU time (second) 515.8 { 405.74 | 535.06 { 1465.12 | 3534.04
total iterations 649 | 115 | 80/90 | 77/152 | 78/228
window numbers 230 29 17 16 16
iteration/window 2.82 | 3.965 | 4.706 | 4.8125 4.875
steps performed 25246 | 19982 | 25762 69100 | 161554
non-converged steps 20084 | 14158 | 17332 53200 | 136462
steps redundant (%) 20.45 | 29.14 | 32.72 23.01 15.53
interpolations 11562 | 14085 | 19251 53182 | 126470
function evaluations 65226 | 46978 | 59930 | 159022 | 368634

Table 6.7: Some Statistics of Example 6.5, Gauss-Seidel

112

4500

4000

3500

3000

2500 —
CPU

Time

(seconds) 2000

1500 —

1000 —

500 —

Log2 (Window Length / Max Step Sise)
CPU Time for Direct Method : 180.24
Example : 8.5
GS-3A : {01)(23)(45)

GS-3B : (45)(01)(23)
GS-3C : (45)(23)(01)

Figure 1 of Example 6.5

113

4.75 —

4.5

4.25 <

Average
Iteration Nb

per Window
3.75 —

3.5

3.25 —

2.75]

1 2 3 4 5
Log2 (Window Length / Max Step Sise)
Example : 8.5
GS-A : (01)(23)(45)
GS-B : (45)(01)(23)

GS-C : (45)(23)(01)
JAC : (01)(23)(45)

Figure 2 of Example 6.5

114

60000

54000 —

48000 —

42000 —

38000 —

30000 —

24000 —

18000 —

12000 —

6000 —

Log2 (Window Length / Max Step Sise)
Example : 6.5
GS-3A : (01)(23)(45)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 3 of Example 6.5

115

80000

72000 —
64000 —
56000 —
48000 —
40000 —
32000 —
24000 —

16000 —

8000 —

Log2 (Window Length / Max Step Sise)
Example : 8.5
GS-3B : (45)(01)(23)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 4 of Example 6.5

116

165000 —
150000 —
1135000 — : ,
120000 —
105000 ~
90000 —
75000
60000
45000

30000 —

15000

Log2 (Window Length / Max Step Sise)
Example : 6.5
GS-3C : (45)(23)(01)
dotted — # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Coavergence
solid - # of Interpolations

Figure 5 of Example 6.5

117

200000 —

180000 —

160000 —

140000 —

120000 —

100000 —

80000 —

80000 —

40000 —

20000 —

]] |] |

1 2 3 4 .S s
Log2 (Window Length / Max Step Sise)
Example : 8.5
JAC-3 : (01)(23)(45)
dotted - # of Integration Steps w/o. Partial Convergence

dashed ~ # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 6 of Example 6.5

118

O=-O) 00| —(O—-

Figure 6.6: Dependency Graph of Example 6.6

8.2.2 Solution of a Wave-Like Equation

We analyzed the performance of WRODE on linear problems in previous subsection. In this
subsection we will use the same approaches to solve a nonlinear problem, a “travelling wave”
equation.

Example 6.6 :

Bo= g -z
gi = —'((yi + l)ezo(y‘+1)(”‘_0'5) + (yi _ 1)e2O(y.~-1)(:r..'+0.5))

with yo = yar and z;(0) = —16-1), 4 (0) = 1%, for : = 1,2..., M.

This is a highly nonlinear problem which was designed by Gear to simulate a series of
capacitors and flip-flops and was used as an example of a multirate system. The capacitor z;

is slowly charged by its input y;_;. When this capacitor reaches .5 the flip-flop y; is triggered.

119

This allows the following capacitor z;,; to slowly discharge and when its value falls below -.5, -
the next flip-flop y;41 is triggered, etc. The behavior of the components is illustrated in figure
6 and 7.

Since the signal flows in one direction and flows back after some delay, a feedback loop
is formed. (See Fig 6.6) Because of the circular dependence relations, the dependency graph
of this system is a cycle of length equal to the number of subsystems. We want to test the
efficiencies of the forward and backward Gauss-Seidel and Jacobi methods on this system.

To use waveform relaxation method to integrate this system over [0,T], we partition the
system into M subsystems, (z;, ¥:),¢ = 1,2,..., M, and integrate each subsystem independently
or sequentially. In the forward (backward) Gauss-Seidel numbering we number each subsystem
in the (reverse) direction of the signal flow which breaks the cycle into either one or M — 1
ascending chains. The statistics in Table 6.8 are the results for the case M = 3. From
Table 6.8 and graphs, we see the expected result that forward Gauss-Seidel has the fastest
speed of convergence while Jacobi has the slowest. If we break the original system into M
subsystems, (y;, 2i41), 1 = 1, 1, ..., M-1, and (yam, Zo), then the system becomes extremely

stiff and the integrator breaks down very quickly.

120

(6.6/3) (01)(23)(45)

window length / max step size

Gauss-Seidel 2 4 8 16 32 64
CPU time (second) 75.68 | 73.70 | 67.88 | 79.98 | 82.5 80.5
total iterations 108 44 27 15 8 5
window numbers 48 19 11 6 3 2
iteration/window 2.25 | 2.316 | 2.455 2.5 | 2.667 2.5
steps performed 5254 | 5398 | 5052 5362 | 5498 4782
non-converged steps 4660 | 4248 | 4060 3642 | 3704 3032
steps redundant (%) 11.30 | 21.30 | 19.63 | 32.07 | 32.63 | 36.59
interpolations 1779 | 2255 | 2177 | 2400 | 2669 | 2193
function evaluations 13570 | 13310 | 12418 | 13006 | 13222 | 11550
(6.6/3) (45)(23)(01) window length / max step size
Backward Gauss-Seidel 2 4 8 16 32 64
CPU time (second) 95.78 | 85.16 | 89.98 | 101.48 | 85.26 | 208.94
total iterations 129 51 35 19 10 | 11/16
window numbers 48 19 11 6 3 3
iteration/window 2.6875 | 2.684 | 3.182 | 3.167 | 3.333 | 3.667
steps performed 6754 | 6282 ! 6696 6672 | 5632 | 13032
non-converged steps 4440 | 4206 | 3768 2946 | 2596 5494
steps redundant (%) 34.26 | 33.04 | 43.72 | 55.84 | 53.90 | 57.84
interpolations 2591 | 2959 | 3084 | 3349 | 3122 6941
function evaluations 17394 | 15490 | 16474 | 16166 | 13518 | 31470
(6.6/3) (01)(23)(45) window length / max step size

Jacobi 2 4 8 16

CPU time (second) 99.2 | 99.14 | 98.06 | 164.16

total iterations 137 55 37| 27/32

window numbers 48 19 11 8
iteration/window 2.854 | 2.895 | 3.364 | 3.375

steps performed 7058 { T182 | 7166 | 11032

non-converged steps 4514 | 4264 | 3812 5032

steps redundant (%) 36.04 | 40.62 | 46.8 | 54.38

interpolations 2429 | 3142 | 3146 5387

function evaluations 18202 | 17690 | 17594 | 26750

Table 6.8: Some Statistics of Example 6.6

121

3.75 4
GSB-3

3.5 A

3.25 —

Average
Iteration Nb 3
per Window

2.75 S

2.5 -

2.25

Log2 (Window Length / Max Step Sise)
Example : 8.6
GS-3 : (01)(23)(45)

GSB-3 : (45)(23)(01)
JAC-3 : (01)(23)(45)

Figure 1 of Example 6.6

122

220

I GSB-3
200 — .
]
1
1
. 180 — N
‘ [}
1
1
160 — ac-3 ;
[}
. !
140 ','
]
1
CPU 120 '
t
Time II
(mond’) lw - ‘—‘-“ 'I
-~ - o !
Seo - - - S e 1
- Y]

80 - S et 200000 %00scntcnans,,
80 —
40 -
20 —
] i] ! |
1 2 3 - 4 S
Log2 (Window Length / Max Step Sise)

CPU Time for Direct Method : 28.44
Example : 8.8

GS-3 : (01)(23)(45)
GSB-3 : (45)(23)(01)

Figure 2 of Example 6.6

123

6000
5500 —
5000 —
4500 —
4000 —
3500 —
3000 —
2500 —
2000 —
1500 —
1000 —

500 —

.
eon
........

"""""""
oooooooo
. .
.....
""""
o,

-
~-a
.-

Log2 (Window Length / Max Step Sise)
Example : 6.5
GS-3 : (01)(23)(45)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 3 of Example 6.6

124

15000

13500 —
12000 —
10500 —
9000 —
7500 —
8000 -
4500 —
3000 —

1500 —

! | | 1]]

1 2 3 4 - § 6
Log2 (Window Length / Max Step Sise) .
Example . 6.6
GSB-3 : (45)(23)(01)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partial Convergence
solid - # of Interpolations

Figure 4 of Example 6.6

125

12000

11000 —
10000 —

9000 —

8000 -

7000 —

6000 —

5000 —

4000 —

3000

2000 —

1000 —

0 | | L L]
1 2 3 4 ~§ 6

Log2 (Window Length / Max Step Sise)
Example : 6.8
JAC-3 : (01)(23)(45)
dotted - # of Integration Steps w/o. Partial Convergence

dashed - # of Integration Steps w. Partia] Convergence
solid - # of Interpolations

Figure 5 of Example 6.6

126

5
S
2
bt
El
Ed

v

wig
oo Rirad’

e s ik 3 P K N R D i 4 AR AL i FAA AV 1 s

Figure 6 of Example 6.6
Travelling waves generated by Gauss-Seidel scheme

127

3
P

vaoluen

Figure 7 of Example 6.6
Travelling waves generated by Jacobi scheme

128

CPU Time
M | Tout WGS Direct | Best Ratio
2 4 8 16 32 64
3| 10.0 19.24 | 16.48 15.48 17.36 18.42 15.68 5.44 2.846
20.0 | 39.80 | 33.98 | 33.36 | 35.12 | 38.60 | 45.26 | 11.24 2.968
9| 10.0| 19.86 { 17.12 | 18.12(18.70 | 19.20 | 20.22 | 23.62 0.725
20.0 | 47.18 | 41.24 | 58.88 | 52.24 | 51.56 | 49.00 | 50.50 0.817
30.0| 68.44 | 59.70 | 85.56 | 76.36 | 72.08 | 70.58 | 68.60 0.870
| 40.0 | 120.60 | 83.94 | 110.62 | 131.14 | 118.78 | 120.36 | 101.32 0.828
15| 10.0 | 23.38 | 21.68 | 19.86 | 20.26 | 19.62 | 23.70 | 58.98 0.333
20.0 43.94 | 43.32 43.24 40.78 41.02 44,14 | 124.20 0.328
30.0 | 108.08 | 71.50 79.68 75.92 94.06 89.14 | 168.56 0.424
40.0 | 147.64 | 93.28 | 105.36 98.02 1184 253.56 0.368

Table 6.9: Efficiency of WGS method

6.3 Efficiency of WGS

In this final section we look at two more examples to observe the efficiency of the WGS method
when system size groWs. '

First example we use the same system of wave-like equations as described in Example 6.6.
We experiment the CPU times used by the WGS method for M = 3,9, 15, where 2 x M is the
number of equations in the system.

We define thé “Best Ratio” as follow:

the least C PU time used by the WGS method
CPU time used by the direct method

Best Ratio =

So when the best ratio is greater than one, this indicates that the direct method outperforms
the WGS method. In Table 6.9 we compare the efficiency of WGS method with that of the
direct method. From the table we notice that as the size of the system grows, the WGS method

becomes more efficient.

129

Figure 6.7: Dependency Graph of Example 6.7

Example 6.7 : In this example we consider the following system :

% = —10 u; + ui—1 + a up + 0.1 cos(0.1¢) i=1,...,n—-1
¥n = —10 up + un_y + 20 cos(20¢)
ug = 0,
u; = y;— sin(0.1¢) i=1,...,n—1
Un = yYn — $in(20¢)
w(0) = 0 i=1,...,n.

The Jacobian matrix of this system has the following structure :

-10 0 0 0 - 0 a]
1 -10 0 0 - 0 a
0 1 -10 0 - 0 a
0 0 1 -10 0 a

and its dependency graph is shown in Figure 6.7.

We integrate this system from t = 0 to t = 4 with n = 21 and vary the size of a. The first

20 components form the slow class and the last component is the fast class. We consider the

following three different partitionings : (a) the slow components, 0 to 19, forms one subsystem

and the fast component, 20, itself forms the other subsystem; (b) the slow components, 0 to

130

9 and 10 to 19, form the first two subsystems and the fast component 20 forms the third
subsystem; (c) the slow components, 0 to 4, 5 to 9, 10 to 14, and 15 to 19 form the first
four subsystems and the fast component 20 forms the fifth subsystem. The subsystem to be
integrated first is either the fast component or the slow subsystem containing component 0 and .
the order of integration follows the dependence relations.

The results of CPU time consumed by the WGS and the direct method with different
coupling factors, a, are given in Table 6.10. The WGS method performs quite well when
the coupling factor is small. From the table we also notice that when the coupling factor is
large, the entire integration interval is divided into a very large number of windows so big page

swapping overhead may occur.

In Table 6.11 we list the efficiencies of the WGS method under different partitionings.
From the table we notice that when the size of a subsystem is large, even it contains all slow
components, the subsystem is forced to use very small stepsize which limits the length of window
to be chosen. Hence total number of windows increases in the entire integration interval and

this causes poor performance on WRODE.

Since all the slow components depends on the single fast component in this system, no
matter how we partition the system the reduced dependency graph always has a minimum
cycle of length “2”. The speed of convergence under these three partitionings are all the same
(this can be observed from the table).

At the beginning of this chapter we mentioned that an advantage of using multirate method
is the saving in matrix computation time at each integration step if an implicit method is used.
The work required in solving a full linear system is roughly O(IN3) where N is the dimension
of the linear system. In this example under the three partitionings, (a), (b), and (c), the
most matrix computation work required at each integration step is 0(20%), 0(10%), and O(53),
respectively. Total matrix computation work for a partitioning depends on total number of
integration steps been performed under this partitioning. From the table we can see that under
partitioning (c) less number of windows is needed to cover the entire integration interval, which

indicates that larger stepsize is used and hence less number of integration steps is performed.

131

Sub- CPU Time
system a WGS Direct | Best Ratio
2 4 8 16 32 64
2 0.D0 22.06 | 21.30| 17.66 | 17.80 | 14.94 | 13.50 | 45.22 0.298
32.32 | 30.16 | 25.06 | 26.82 | 22.70 | 22.06 0.488
1.D-3 | 65.56 | 43.22 | 48.28 | 37.02 | 37.06 | 24.36 | 45.00 0.541
80.24 | 67.36 67.18 74.78 74.98 | 43.22 0.960
1.D-2 | 97.60 | 105.36 | 97.38 | 85.00 | 77.36 | 67.62 | 44.90 1.506
98.46 | 98.22 | 100.34 | 90.98 | 84.12 | 73.42 1.635
1.D-1 | 295.34 | 220.50 | 168.18 | 127.02 | 108.56 | 96.74 | 44.68 2.165
186.28 | 145.86 | 131.48 | 124.50 | 110.66 | 97.36 2.179
Sub- Total Iter # / Window #
system a WGS
2 4 8 16 32 64
2 | 0.D0 | 28/14 | 18/9 10/5 8/4 4/2 472
=2 =2 =2 =2 =2 =2
40/14 | 24/9 14/5 12/4 6/2 6/2
= 2.857 | = 2.667 | = 2.8 =3 =3 =3
1.D-3 | 122/61 | 40/20 | 31/15 | 14/7 8/4 42
=2 =2 = 2.067 | =2 =2 =2
134761 | 54/20 | 42/15 | 21/7 11/4 6/2
= 2.197 | = 2.7 = 2.8 =3 = 2.75 =3
1.D-2 | 217/108 | 105/39 | 79/28 | 44/15 | 24/8 12/4
= 2.009 | = 2.692 | 2.821 =2933 | =3 =3
216/108 | 93/39 77/28 45/15 23/8 12/4
=2 = 2.385 | = 2.75 =3 =2875| =3
1.D-1 | 501/218 | 221/77 | 102/34 | 45/15 | 24/8 12/4
= 2298 | =2.870 | =3 =3 =3 =3
436/218 | 162/77 | 81/34 | 43/15 | 23/8 12/4
=2 =2.104 | =2.382 | =2.867 | =2875 | =3

Table 6.10: Efficiency of WGS wrt Coupling Factors

132

It is therefore clear that partitioning (c) has the best performance, that is, it consumes the

least CPU time among the three partitionings, because of the least number of integration steps

Table 6.11: Efficiency of Different Partitioning

and the least matrix computation work required at each step.

In summary, the éxperiments in this chapter show that care must be used in selecting
the numbering and partitioning when using WRODE. If use correctly WRODE can perform
well even on small systems but is best suited for large system with a high percentage of slow

components. The code will not perform well if the slow components are strongly dependent on

the fast.

133

Sub- CPU Time
system a WGS Direct | Best Ratio
2 4 8 16 32 64
2 1.D-1 | 295.34 | 220.50 | 168.18 | 127.02 | 108.56 | 96.74 | 44.68 2.165
186.28 | 145.86 | 131.48 | 124.50 | 110.66 | 97.36 2.179
3 1.D-1| 109.7| 68.66 | 62.60 | 58.76 | 55.08 | 56.64 | 44.68 1.232
62.24 | 64.16 | 59.44 | 58.60 | 59.26 | 62.06 1.312
5 1.D-1 | 50.06 | 45.04 | 45.82 | 36.36 | 41.86 | 37.54 | 44.68 0.814
47.60 | 45.06 | 47.58 | 37.60 | 45.90 | 39.60 0.842
Sub- Total Iter # / Window #
system a WGS
2 4 8 16 32 64
2 1.D-1 | 501/218 | 221/77 | 102/34 | 45/15 24/8 12/4
=2.298 | =2.870 | =3 =3 =3 =3
436/218 | 162/77 | 81/34 | 43/15 | 23/8 12/4
=2 = 2104 | = 2.382 | =2.867 | = 2.875 | = 3
3 1.D-1 | 219/75 | 57/19 30/10 18/6 9/3 9/3
= 2.92 =3 =3 =3 = =3
150/75 | 54/19 | 28/10 | 17/6 9/3 9/3
=2 = 2.842 | = 2.8 = 2.833 | = =3
5 1.D-1 | 51/17 | 27/9 18/6 12/4 9/3 6/2
= 3 =3 =3 =3 = =3
47/17 24/9 17/6 11/4 9/3 6/2
=2.765 | = 2.667| =2.833 | =2.75 | =3 =3

Chapter 7

“Summary

From the results obtained in chapter 6, we see that the total work is basically proportional to
the total number of integration steps been performed. (The profile of CPU time for different
ratios of window length to stepsize is similar to the profile of the total number of integration
steps.) Thus the ratio of window length to stepsize, which use the least number of integration
steps, is the most efficient one.

Note that in shorter windows the adya.ntage of multirate process is lost because of the
restriction on the choice of stepsize, but the time grids for different subsystems are highly
synchronized so it will reduce the number of interpolations significantly and it usually takes
less iterations to reach convergence; in longer windows each subsystem can choose its stepsize
as large as possible which will reduce the total number of integration steps, but it may need
more iterations to reach convergence inside each window. When window length is short the
total number of windows will increase and a lot of overhead occurs, for instance, the start up
time for each waveform integration, the page swapping from subsystem to subsystem and from
window to window. Observing the interaction among all the factors that affect the performance
of waveform relaxation was the main goal of this experimental code.

From the tables we can see that the total number of function evaluations is roughly propor-
tional to the total integration steps, so if we can reduce the number of integration steps we can
save some computing time. To achieve this we should exploit the partial convergence behavior
of successive waveforms and by doing this we can save from 7 % to 55 % of integration steps.

When a large ratio between window length and maximum step size was used, a lot of work

134

was wasted (especially in the Jacobi approach). This can be noticed from the huge number of
integration steps and a large difference between the total number of window iterations been
done and total number of iterations inside convergent windows.

From the execution profile we found that about 20 percent of the time was spent on number
comparison and in subroutine wpt_loc(). This subroutine is called when interpolation is needed
for computing approximations of input variables to evaluate the derivatives in a subsystem. It
will locate the proper time point in the waveforms of input variables. Since we did not use a
sophisticated strategy to locate a time point in a waveform (we always search the time point
from the beginning of a waveform, a’lot of floating point number comparisons will be performed
when the target time point is near the end of a waveform.), we should be able to save at least

10 percent of the time if we can modify this routine. The result is shown in the following table.

CPU Time WGS Direct
2 4 8 16 32 64
w/o. FP coprocessor | 75.68 | 73.70 | 67.88 | 79.88 | 82.50 | 80.50 | 28.44
w. FP coprocessor 21.46 | 18.54 | 17.52 | 21.20 | 22.18 | 23.56 5.48
efficient wptoc() 19.24 | 16.48 | 15.48 | 17.36 | 18.42 | 15.68 5.48
saving (%) 10.34 | 11.11 | 11.64 | 18.11 | 16.95 | 33.45

- When a subsystem is being integrated, it must reside in main memory, as do those variables
which appear on the right hand sides of the equations defining the variables being integrated.
The multirate approach has less page swapping compared to. the traditional one when a large
system is solved. In the traditional approach, at each ltime point, all variables have to reside
in main memory, so a lot of page swapping is expected. In the multirate approach, at each
time point of each subsystem, page swapping is far less frequent because of the smaller size of
each subsystem; the large amount of page swapping occurs when integration moves from one
subsystem to another inside a window and when integration moves from one window to another
window. So the total page swapping will be proportional to the number of subsystems times
the total number of windows being used. Using larger ratio of window length to maximum
stepsize will reduce the number of windows to be used and hence reduce page swapping. How
large the ratio should be chosen such that the speed of convergence will not deteriorate needs

further study.

135

Bibliography |

[1] J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications”, North Holland, 1976.

[2] R.F. Curtain and A. J. Pritchard, “Functional Analysis in Modern Applied Mathematics”,
Academic Press, 1977.

[3] C. W. Gear, “Automatic Multirate Methods for Ordinary Differential Equations”, Proc.
IFIP 1980, 717-722, North-Holland Publishing Company.

[4] C. W. Gear and D. R. Wells, “Multirate Linear Multistep Methods”, BIT 24 (1984),
484-502.

[5] F. Juang, “Accuracy Increase in Waveform Relaxation”, Report No. UIUCDCS-R-88-1466,
Department of Computer Science, University of Illinois at Urbana-Champaign, 1988.

(6] F. Juang, C. W. Gear, “Accuracy Increase in Waveform Gauss-Seidel, Report No.
UIUCDCS-R-89-1518, Department of Computer Science, University of [llinois at Urbana-
Champaign, 1989.

[7] E. Lelarasmee, “The Waveform Relaxation Methods for The Time Domain Analysis of
Large Scale Nonlinear Dynamical Systems”, Ph.D. dissertation, University of California,
Berkeley.

[8] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni- Vincentelli, “The Waveform Relax-
ation Method for Time-Domain Analysis of Large Scale Integrated Circuits”, IEEE Trans.
on CAD of IC and Sys. Vol. 1, No. 3, pp. 131-145, July 1982.

136

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

U. Miekkala and O. Nevanlinna, “Convergence of Dynamic Iteration Methods for Initial
Value Problems”, REPORT-MAT-A230, Helsinki University of Technology, Institute of
Mathematics, Finland, 1985.

L. W. Nagel, “SPICE2: A Computer Program to Simulate Semiconductor Circuits”, Elec-
tronic Research Laboratory Report No. ERL-M520, University of California, Berkeley,
May 1975.

0. Nevanlinna, “Remarks on Picard-Lindelof Iteration”, REPORT-MAT-A254, Helsinki
University of Technology, Institute of Mathematics, Finland, December 1987.

R. D. Skeel, “Waveform Iteration and The Shifted Picard Splitting”, SIAM J. Sci. Stat.
Comput. Vol. 10, No. 4, pp. 756-776, July 1989.

L. F. Shampine “Starting an ODE Solver”, Numerical Mathematics Division 5122, Sandia
Laboratories, Albuquerque, NM 87115

D. R. Wells, “Multirate Linear Multistep Methods for The Solution of Systems of Ordi-
nary Differential Equations”, Report No. UIUCDCS-R-82-1093, Department of Computer
Science, University of Illinois at Urbana-Champaign, 1982.

J. K. White, “The Multirate Integration Properties of Waveform Relaxation, with Applica-
tions to Circuit Simulation and Parallel Computation”, Report No. ERL-85/90, University
of California, Berkeley, 1985.

J. White, F. Odeh, A.S. Sangiovanni-Vincentelli and A. Ruehli, “Waveform Relaxation:
Theory and Practice”, Memorandum No. UCB/ERL M85/65, 1985, Electronics Research

Laboratory, College of Engineering, University of California, Berkeley.

S. Wolfram, Mathematica, A System for Doing Mathematics by Computer, Addison-Sesley
Publishing Company, Redwood City, CA, 1988. Mathematica is a trade mark of Wolfram
Research, Inc.

137

DOE F 1332.16 (10-84) OMB Approval
(Formerly RA427)) No. 1910-1400
U. S. DEPARTMENT OF ENERGY

UNIVERSITY CONTRACTOR, GRANTEE, AND COOPERATIVE AGREEMENT
RECOMMENDATIONS FOR ANNOUNCEMENT AND DISTRIBUTION OF DOCUMENTS

Ses Instructions on Reverse Side

1. DOE Raport No. 3. Title
DOE/ER/25026/34 WAVEFORM METHODS FOR

2 DOE Contract No. ORDINARY DIFFERENTIAL EQUATIONS
DEFGO287ER25026

4. Type of Dacument ("x"* one)
8. Scientific and tachnical report
Ob. Confsrance paper:
Titis of confersnce

Dats of confersncs

Exact location of confersncs

Sponsoring organization
b:. Qther (Specify) Ph.D. Thesi;

5. Recommendad Announcament and Distribution (“x"* one)
Xa Unrestrictad unlimited distribution.
Cb. Maka available oniy within DOE and to DOE contractors and other U. S. Government agencies and their contractors.
Oc. Other (Specify)

6. Reason for Recommandsd Restrictions

1. Patant and Copyright Information:
Does this information product disciose any new equipment, process, or mateniai? ,& No O Yes If so, identify page nos.
Has an invention disclosure been submitted to DOE covering any aspect of this information product? AJ No O Yas
If s0, identify the DOE (or other) disclosure number and to whom the disciosurs was submitted.
Are thers any patent-rsiated objections to the reiease of this information product? No O Yas |f so, state these objsctions.
Ooes this informatian product contain copyrightad material? ‘Ne O Yas

1f s0, identify the page numbers and attach the licenss or othar authority for the government to reproduce.

8. Submitted by Namae and Position (Piease print or typs)
C. W. Gear, Professor and Principal Investigator

Organizat
Depaﬁ:x‘ent of Computer Science, University of Illinois at Urbana-Champaign

Signatuge _ Phone Date
L tan 217/333-0195 January 1990

S

FOR DCE OR OTHER AUTHORIZED
USE ONLY

9. Patent Clearance ("x" one}

Qas. DOE patent clearance has been grantsd by responsibis DOE patent group.
Ob. Report has been sent to responsible DOE patent group for clearance.

1. Report No.

IOGRAPHIC DATA
e CDAT UIUCDCS-R-90-1563

SHEET

2. 3. Recipient’s Accession No.

4. Ticle and Subeitle
WAVEFORM METHODS FOR

ORDINARY DIFFERENTIAL EQUATIONS

5. Report Date
1 January 1990

7. Author(s)
Fen-Lien Juang

8. ll;erfotming Organization Repr.
o.

9. Performing Organization Name and Address
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. Project/Task/Work Unic No.

11. Contract/Grant No.-

DOE DEFGO0287ER25026

12 Sponsoring Organization Name and Address
Department of Energy
Chicago Operations Office
Argonne, Illinois 60439

13. Type of Report & Period
Covered

Ph.D. Thesis

14.

15. Supplementary Noces

16. Abstracts

The traditiomal approach for solving large dynamical systems is time consuming.

Waveform method, an iterative technique for
can be used to reduce the processing time.

superlinearly on finite intervals. In this
is defined and is used to compare the value
measure is the rate of increase of order of

solving systems of differential equations,
Waveform method has been shown to converge
thesis, a measure of speed of convergence
of different waveform methods. This
accuracy.

The speed of the waveform Gauss~Seidel method depends on the numbering of the equations
The numbering of the equations corresponds to a numbering of the directed graph

specifying the coupling relatiomns among all
of order increase from the structure of the
numbering, that is, the one which maximizes
variety of numerical experiments, conducted

equations. We show how to compute the rate
numbered graph and hence the optimum

the speed of convergence. Finally, in a

on a Sun 3/60, we demonstrate the different

Key Words
spéeds o

17. d Document Analysis. 17a. Desari tors

convergence correspon

0 different numberings and the effectiveness of the

waveform Gauss-Seidel method for large sparse systems.

relaxation
Gauss-Seidel
Jacobi
accuracy
increase

waveform
waveform
waveform
order of
accuracy

17b. Identifiers/Open-Eaded Terms

17e. COSATI Field/Group

18. Availability Statement 19.. gecurity Class (This 21. No. of Pages
eport)
unlimited UNCLASSIFIED 146
20, Security Class (This 22. Price
Page .
SUNCI.ASSIFIED

FORM NTIS-38 (10-70)

USCOMM-DC 40329-P 71

