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Thermal and electrical conductivities

of high purity tantalum
Scott Lee Archer

Under the supervision of Gordon C. Danielson
From the Department of Physics
Iowa State University

The eleetrical resistivity and thermal conductivity of three high
purity tantalum samples have been measured as functions of temperature.
over a temperature range of 5K to 65K. Sample purities ranged up to a
resistivity ratio of 1714. The highest purity sample had a residual
resistivity of .76 x 10_lOQ—m. The intrinsic resistivity varied as
T3'9 from 10K to 31K. The thermal conductivity of the purest sample
had a maximum of 840 W/mK at 9.8K. The intrinsic thermal resistivity
varied as T2'4 from 10K to 35K. At low temperatures electrons were
scattered primarily by impurities and by phonons with both interband

and intraband transitions observed. The electrical and thermal resis-

tivity is departed from Matthiessen's rule at low temperatures.



CHAPTER I: INTRODUCTION

Litefature'Review

Tantalum is a group 5 b transition metal below vanadium and niobium
in the periodic table. Tantalum exhibits a valence of five and, to a
lesser extent, three (1). The metal has a body—centeredvcﬁbic structure
at 20°C with a lattice constént of 3.30262. It is a type 11 supercon-
ductor with a.critical tempefature of 4.483K; however the temperature
varies somewhat with sample purity (2). Several different values of
the Debye temperature are reported (1,2,3,4) varying from 230K to 266K.
Killean and Lisher (4), using previously measured elastic constants,
calculated'a Debye temperature of 266K.

The first relatively pure ductile tantalum-was‘produced in 1903
by Von Bolton (2). Tantalum is mined as the mineral columbite-tantalite
(Fe,Mn)(Nb,Ta)206. Once the niobium and tantalum are obtained from the
ore, one of several commercial methods is used to separate the tantalum
from the niobium. They include: electrolysis of molten potassium
fluotantalate, reduction of potassium fluotantalate with soaium, and
reacting tantalum carbide with tantalum oxide (2).

Tantalum, with a melting point of 2996°C, is used in alloys with
desirable propertics such as high melting point, high strength and good
ductility.

- Early investigations of the low temperature transport properties

of tantalum were hampered by the relatively impure sampies available.

The high concentration of impurities lead to impurity scattering, which



is dominant at low temperatures, and masks any intrinsic effects of the
lattice.

Mendelsébhn and Olson, in 1950 (5); Mendelssohn and Roseﬁberg, in
1952 (6); and White and Woods, in 1959 (3), measured the low temperé-
ture the;mal conductivity of téntalum with purities up to 99.98%.
This purity corresponds to a relative resistivity ratio (RRR) of 590.
The RRR is the ratio of the resistivity at 295K to the resistivity at-
4.2K and is a commonly cmployed method to determine the amount of
impurities. . These samples were of sufficient purity to exhibit a
maximum in the thermal conductivity around 24K. The largest value
obtained for this maximum was 148 W/m-K by White and Woods. The peak
shifted to lower temperatures as purity increased but never lower than
21K. Powell and Blanpied (7) reported that between 8K and 23K the
intrinsic thermal resistivity (the reciprocal of conductivity) of
tantalum varied as TZ'O.

White and Woods have also investigated the electrical resistivity
-of 99.9% pure tantalum. They report a constant low temperature resis-

99 - m below 7K° and a smoothly

tivity due to impurities of 2.1 x 10
increasing resistivity above this temperature. When the impurity
resistivity was subtracted from the total resistivity, the resulting
. R e e . 3.8
intrinsic resistivity varied as T between 8K and 23K.

Jung et al. (8) have studied the transport properties of high purity
vanadium, another superconducting transition metal similar to tantalum.

They conclude that electrons scattering from other electrons make up

a very small part of the low temperatufe scattering which is comprised



mostly of'electron—phonon scattering. Investigation by Webb (9) of
niobium, a high temperature superconducting transition metal, does not
show electron-electron scattering but does exhibit.strong electron-
phonon scattering. The transport properties of several other transi- -
tion metals which are not superconductors or very low temperature super-
éonductors have also been investigated. Strong electron-electron.
scattering has beeﬁ found in tungsten by Wagner et al. (10), in

rhenium, palladium and osmium by Schriempf (11-13), in platinum by

Anderson et al. (14) and in nickel by White and Tainish (15).

Purpose of this Research

The purpose of this research was to measure the electrical resis-—
tivity and thermal conductivity of high purity tantalum from 4.5K to
65K. The high purity (RRR up to 1714) is necessary to investigate the
intrinsic electron scattering mechanisms in tantalum that have been
masked at low temperatures-by electron-impurity scattering in earlier
work. Comparision of the results to theoretical models of the transport
properties in transition metéls was also done to determine if tantalum
fits into fhe scheme of other high fempérature superconducting transi-

tion metals, namely vanadium and niobium.



CHAPTER II1: THEORETICAL REVIEW

The electrical conductivity of a metal (o) is the transfer of charge
by electrons. The reciprocal of the electrical conductivity is the
electrical resistivity. (p), which, according to Matthiessen's rule,

can be separated into two parts

p(T) = o  + 0, (T). )

The total electrical resistivity, p(T), is comprised of a residual
electrical resistivity, po, and an intrinsic electrica; resistiVipy,
pi(T). To first‘order the residual resistivity is independent of
temperature and, for a given metal, depends only on the sample purity.
The intrinsic electrical resisqivity is a property intrinsic to the
metal and is a function of temperature. |

The thermal conductivity of a metal (}) is the conduction of energy
by electrons and phonons. These two contributions add to give the total

thermal conductivity, A(T),

AT = AT + A (T), (2)

where Ae(T) is the electronic thermal conductivity and Ag(T) is the
phonon, or lattice, thermal conductivity. In good metals electrons are
so mobile that, although lattice conduction is present, electron thermal
conduction is by far the major contribution (16). The lattice thermal
conductioh in most discussions, including this one, is ignored. The
reciprocal of thermal conductivity, the thermal resiétivity (W), has its
énalog to Matthiessen's rule,

Ww(T) = WO(T) + wi(T). : . (3)



Both the residual thermal resistivity, WO(T), and the intrinsic thermal
resistivity, wi(T), are functions of temperature.
The Wiedemann-Franz-Lorenz (WFL) rule is

A(T)

= 1. s (4)
At low and high temperatures L, called the Lorenz ratio, is a constant,

2
Tr2 kB]

L = — ——1 - 2.45 x 1078 v¥/x? 5
e

Vo/KS,

where kB is the Boltzmann constant and e is the electronic charge.

The transport properties of metals have been reviewed by Wilson
(17), Ziman (18), Mott (19), Lifshits et al. (20) and others.

In equilibrium, electrons in a metal aré distributed in momentdm‘

space according to the well-known Fermi Dirac distribution, fo(g),
£9(k) = [1 + exp{(E(k) - E_F)/kBT}]_l , (6)

where E(k) is the electron energy and E_ is the Fermi energy. Three

F
ways in which f(k) changés with time are now considered.

External fields will exert a force on the electrons causing a time

rate of change in the k-vector of each carrier.

F/h =k = ~(E + v(k) x H). (7
Therefore, due to the fields, the distribution of electrons changes at
the rate
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where Vk, the gradient in k-space, is 2 .



The equilibrium electron distribution can also be disturbed by
a temperature gradient (VT).  An electron with a velocity y(k) moving
through a temperature gradient will experience a time rate of change

of temperature.

T - vwvr. 9

Due to the temperature gradient, the electron distribution will change

at the rate

3£ (k) 3T f (k) BE (k)
3t ']t =% ot o YV

(10)
A third effect on the electron distribution is caused by scatter-
ing from one k state to another. Althoﬁgh the effect of scattering is

more complicated, by considering elastic scattering only one obtains

a rate of change of f(k)(17,18)

af (k) ~ .
ai~) J are J{f(k')(l-f(k)) - £(k) (1-£(k")) Ik, k")dk'.  (11)
scatt

The process of scattering from k fo k' depends on f(k), the number of
carriers in state k, and (1-f(k')), the number of vacancies in state
k'. The product of these weighting functions and the basic transition
probability, Q(g,g'), givés the rate of transition from k to k'. The
competing process of a transition from k' back to k has the same basic
transition probability and is weighted by f(k') (1-f(k)). These two
terms are summed over al; possible final-scattered states k', to give

the time rate of change of f(k).



The Boltzmann equation states that for any k, at any point, the

net rate of change of f(k) is.zero.

3 (k)

af (k)
+ g
ot

ot

of (k)
at

] ] | - o
field temp scatt ‘
Using equations 8, 10, and 11 in 12 results in a linear integro-differ-
~ ential equation which is véry'difficult to solve in this form. To
simblify the calculations the relaxation approximation is used for the

scattering term.

3£ (k)
at

£O(k)-£(k)  -g(k)
(k) T o1(k)

] (13)
scatt

The deviation of the electron distribution from equilibrium, g(k), and
the relaxation time, t(k), are thus introduced. This approximation -

and equétions 8, 10, and 12 result in the steady state condition

2E(k)  g(k)
aT - T (k)

- #1E + v(&) x H]V, £(k) + v(k)-VT (14)

Ziman (18) states that a more advanced quantum mechanical technique
using density matrices and Green functions to calculate the transpoft
coefficients is peculiarly subtle and has only been carried out in a
few simple cases. Fortunately, these confirm almost all the results
obtained by the Boltzmann method. |

The electric current density is

J

- 2 Je v swax | as)
an |

integrated over all k space.



From the definition of electrical conductivity in Ohm's law,

J = ok, o ' (16)

it is seen that in general, 0 is a tensor. Wilson (17), using equations

14, 15, and 16 with H and VT equal to zero, has shown

2 T (K)v. (k)v, (k)ds
%Gy = 3 J — VlEzk)J ) an
3 4q I kM. I
Fermi
Surface

where dS is an incremental area of the Fermi surface and vy and vj are
the electron velocities at the Fermi energy. In an istropic, cubic

metal, ¢ becomes a scalar,

.2 f Ovlas 2 j__ |
o= ‘ = — ¢ (k)ds, (18)
1203 |V E ) | 12124 € o
Fermi Fermi
Surface_ Surface

where Eé(g) is the effective mean free path for electric conduction
given by Te(E)Y(E) = E;(%). The subscript on T distinguishes the relax-
ation time for the electric current case.

The heat current density Q, is

2
(2m)

Q= 3

[ [E(k) - Eplv(k)g(k)dk (19)
integrated over all k space. The thermal conductivity is defined by
Q = .—loVT, ‘ ) (20)

where again it is seen that A is a temsor. In a cubic metal A becomes

a scalar and, at low temperature (kBT << EF), is (17)



K °T v GOvi(kyas kT _ <
- = . k)d 21
A= 36m J [TEW] 367 J 2y, (k)dS, (21)
Fermi Fermi
Surface - Surface

where E&(k) is the effective mean free path for thermal conductioq.

This is calculated from equations 14, 19, and 20 with the electric
current density equal to zero.

From the similar forms for o and A it is easily seen that the W;F.L.
_ rﬁle holds if thg relaxation times for electrical'(Te) and thermal (TA)
conductivities are equal. At low temperatures where nearly elastic
electron-phonon scattering is dominant, the electronic and thermal
relaxation times are equal. However at intermediate temperatures where
inelastic electron-phonon intéractions are present, the W.F.L. rule
does not hold.

With only an electric field and a constant temperature, equation 14
is rewritten, substituting the integral expression for the scattering

N , .
term (equation 6). “iman (17,21), assuming elastic scattering, has shown

v(k)-E = TeJ[V(k) - v(k")]-E q(k,k")dQ’, (22)

where q(k,k') is the new scattering probability taking into account the
effective electrons near the Fermi surface only, and dQ' is an element
of solid angle for the direction of k' after scattering. With a spheri-

cal Fermi surface q(k,k') becomes a function of the angle between the

two wavevectors only. With these conditions satisfied
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L

T
e

= j(l-cose)q(e)dﬂ'. | (23)
It is seen fhat the relaxation time is inversely proportional to
an integral of the scattering probability but weighted by (l-cos®).
Therefore the important thing is not that the electrén was scattered,
but by how much the electron's compohent of velocity in thé-direétion
of the electric field, is changed; Electrical conduction can be viewed
as a displacement of the Fermi surface in k space with one side of ﬁhe
Fermi surface gaining electrons and the other side losing electrons.
A scattering event réstores equilibrium by mo?ing an electron from the
excess side of the Fermi surface to the deficient side.. Therefore large
" angle scattering (eléstic), which restores the equilibrium more.rapidly,
ié characterized by a short reléxation time.
A temperature gradient causes a change in the eleétrbn distribution
by increasing the electron'; energy on one side of the Fermi surface
and decreasing it on the other side. Now two types of scattering becpme
effective in restoring equilibrium. Elastic scattering, which éhanges
the electron's direction, but not its energy, will restore equilibrium
with a characteristic relaxation time depending upon the scattering'
angle as shown in equation 23, and the W.F.L. rule holds. 1Inelastic
scattering, which changes the electron's energy, but not‘necessarily
its direction, also restores equilibrium; however, there is no angular

dependence in the relaxation time in this scattering,



11

HIH

- f q(8)de’, - (24)
A . . .

and the W.F.L. rule breaks down.

Most électron—phonon scattefing is inelastic at low temperétures
(22). Howcver,'at'temperatures low enough, the low energy phonons
become-inefféctive in scattering and the electrical and thermal con-
ductifities of a pure metal increase without bound as the tempefature
approaches zero. Ionized impurities and crystal defects can, however,
restore the elec;ron distribution. Thus, at very low‘temperatures, the
mean free paths for electrical conductivity, equation 18, and for thermal
conductivity, equation 21, are equal and depend primarily 6n impurities
and defects and are temperature independent. The W.F.L. rule holds in
this region.

As the temperafure increases phonons populate higher frequencies
and their scattering contribution becomes important. The geﬁeral
expression for electron-phonon interaction is |

k +q=Kk'+B, ‘ (25)

where k and k" are the initial and final electron wavevectors respec-

~ ~

tively, q is the phonon wavevector emitted or absorbed, and B is a
reciprocal lattice vector. With B = 0 electron-phonon momentum is
conserved. This normal scattering occurs at all temperatures. However,
electron-phonon momentum is not conserved in Umklapp scattering where

B # 0. U-processes occur when the phonon wavevector is greater than

or equal to q' where
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Q' =B -2k, | : L (26)
and EF is the electron Fermi wavevector. This type of scattering .
reduires a temperature sufficiently high so that phdnons are populated
to wavevectors equal to or greater than q'. Klemens and Jackson (23)
have shown that U-processes occur at low temperatures in metals which
have Fermi surfaces which touch the Brillouin zone boundary. Umklapp
‘processes are an important scéttering mechanism since they move an
electron through a large scattering angle across the Fermi surface.
The intrinsic electrical resistivity of a metal.was first solved
by Bloch (24). Bloch assumed normal electron-phonon scattering, a
Debye phonon spectrum, a spherical Fermi surface and electrical con-

duction in one parabolic band. He showed that

_ T.5 : , :
where A is a constant proportional to the electron-phonon interaction, .

8 is the Debye characteristic temperature, and Js(%) is the Debyé

integral for N = 5,

a/T < N
3] X d
3@ = [ S (28)
(e-1)(1-e )
At low temperatures (T < 0/20), JS(%) is a‘constant and
o, (T) = 497.6A(§)5. (29)

Mott (19) in 1936, aﬁd Wilson (25) in 1938, changed Bloch's model to

include electronic conduction in a normal parabolic s band and an
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inverted d band that overlaps the s band in at least one direction.
This is the situation in transition metals. Since the d band electroné
- have a much higher effective mass, any scattering event from the s to
the d band would increase the electrical resistivity greatly. Mott and

Wilson showed

o (sa) = 4@’ 3,&), | (30)

where d is an electron-phonon interaction constant and

, 8/T X, 3
1,8 = f —= X (31)
6in (& -1)(1-e ™) :
T
The constant 6__, is defined by
min
kBemin - vo‘gd - ESI’ o (32)

where v, is the velocity of sound and kd - ksl describes the minimum
phonon wavevector needed to cause an s-d transition. If 6 in is set

equal to zero the Wilson integral, equation 31, becomes a constant at

temperatures below 8/5 and
o, (sd)eT. | (33)
The effect of electron-electron interactions have been examined
theoretically ‘by Baber (26) in 1937 and Pines (27,28) in‘1955 and 1956.
They conclude that these interactions may contribute a component of

resistivity proportional to T2 which may be appreciablé at very low

temperatures in some transition metals. Therefore
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pi(ee)«T . ‘ (34)
The total expression for electrical resistivity at low temperatures,

recalling Matthiessen's rule, .becomes

2 3 5
p(T) = p + oee? to gt +o T o (35)

" The intrinsic thermal resistivity Wi(T) of a metal was derived

by Wilson (29) with the same assumptions as those used by Bloch. Wilson

showed
W.(T) = S (36)
i A (T)
1
5 . E. .- 2 :
_ LA T 3 F 9. _ 1 .
WD =11 @ (L+—55 @ N 7 97| . (37)
o) 2w 27

The constant A is proportional to the square of the electron-phonon

interaction constant C, Lo is the Lorenz ratio, E_ is the Fermi energy,

F

and

E,/D = 21/3N2/3,

(38)
where N is the effective number of conduction electrons per atom.
Equation 37 deals with electron phonon scattering dnly.( The firsg term
is the thérmal resistance due to elastic scattering, the second term

is the thermal resistance due to inelastic'scattering, and the third
term is a correlation term, since these two scattering events do not

act independently. At low temperatures (T < 8/20) the inelastic scatter-

ing dominates and
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wi(T)«TZ. - ' _ (39)

Kémp.gg_gl. (30) have shown thét both electron~phonon intraband (s-s)

and interband (s~d) scattering ére included in this T2 term. Ziman (21) .
has shown that the electrons scatter off each other via a screened

Coulomb interaction. This electron-electron scattering causes the

thermal resistivity to vary linearly with T. Then equation 39 is
rewritten to include hoth terﬁs,

_ 2
W (T) =W T+ WepT s ‘ (40)

2 .
where the term WepT contains all electron-phonon scattering. At very
low temperatures the thermal conduction is limited only by scattering

from impurities and crystal defects. Equation 21 shows this conductien

to vary linearly with temperature where lk(k) is now the mean free

path for electrons between impurity and defect scattering. Therefore

1
W (T) = ———
0 AO(T)

Bl

(41)

The residual thermal resistance varies inversely with temperature. The
thermal equivalent to Matthiessen's rule is used to combine equations
40 and 41 and this expression is multiplied by T to produce

WIF =W +W T2+W T3. i (42)
o) ee ep

In thils expression WO is independent of temperature.
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CHAPTER III: LEXPERIMENTAL PROCEDURE
Sample Preparation and Characterization

The polycrystalline tantalum samyle used in this research was
prepared at the Ames Laboratory by F. A. Schmidt by the electrotrans-
port techniqug. The'elecgrétransport technique for purifying metals
involyeS'paSSing large electrical currents through cylindrical sampleé,
causing resistive heating and impurity migration. The tantalum
sample Qas'placed in a vacuum‘of 3.6 x 10—lO torr and heated fo
2100°C by passing a current density of 3400 A/cm2 through it for 189
hoﬁrs. Gaseous impurities are driyen off because of the high vacuum
and high temperature. Interstitial so;utes, notably carbon, ni;régen,
oxygen and hydrogen migrateAto one end of the cylindrical rod due to
the high current density. Details of the apparatus have been discussed
by Peterson and Schmidt (31) and Peterson Eﬁ.ﬂl' (32). The interstitial
impurities C, N, O, and H migrate in the direction of the applied . |
elect;ic field in tantalum (33) thereby causing an inpurity gradient
in the direction of the electric field. |

The electroﬁransported sample was cut into four sections of varying
purity and their resistivity ratios determined. The sample chafacter—

istics are shown in Table 1.
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Table 1. Sample characteristics

Section Length Diameter ‘Resistivity

(cm) (cm) _ Ratio
p298/p4.2
A 4.21 ' .238 : 666
B 4.38 .239 1052
C 4.42 .239 1714
D

4.11 . .238 ’ 1345

- Section D was not.used in this invésﬁigation since it had a sharp
rise in impurity concentration where it came in contact with the sample
holder in the electrotransport apparatus.

The highest purity sample, section C, was analyzed by wvacuum
fusion to determipe the oxygen, hydrogen and nitrégen concentrations;
by combuéion chromatography to determine carbon concentration and by
spark source mass spectroscopy to determine the concentration of all
other impurities. The results of the analwsis are listed in Table 2.
the largest impurities present in section C in at ppm are: H - 181,

Nb - 100, C - <75, O - 57 and N - 13,

Measurement Techniques

The sample holder used in this investigation is a guarded longi-
tudinal heat flow apparatus. It is immersed in liquid helium in a
cryostat of conventional design. Although the range of temperature for

this work was 4.2K to 65K, by replacing the liquid helium with liqﬁid



‘Table 2. Elemental impurities in section C (in atomic ppm)

H He
181

Li Be o B Cc N o F Ne

1 <.01 : <.,3 <75 13 57 <2 <.3

Na Mg ' , Al Si P S cl Ar
<4 <.5 <.1 <2 <3 <9 2 <3

K Ca Se¢ Ti V Cr Mn Fe Co ®i Cu 2Zn Ga Ge. As Se Br  Kr
<1 '<.3 <.09 .9 5.8 2 <.2 2 <1 1 1.2 <.1 <.08 <.2 <.04 <.06 <.08 <.2

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag cd In Sn Sb Te I Xe
<.02 <.1 <.5 5 100 2 <.7 <2 <.5 <.09 <.1 <.07 <.3 <.1 <.1 <.08 <.9
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nitrogen, the temperature range is extended to room temperature. The
apparatus was designed and built by W. Jung  (34) and is discussed in
detail in hi; thesis.

The eléctrical resistivity and thermal conductivity measurements
were made with the four probe technique. Figure 1 is a schematic of
the experimental teéhnique. The samples used were cylindrical with
cross sectional area A. The distance between the voltage and ther-
mometer probes is £. The temperature of the "cold" probe is T and
when heat, Q, is passed through the sample; the temperature of the
"hot"' probé is T + AT. The copper voltage and thermometer -probes are
referenced to the bath temperature (liqﬁid helium) where they make
junctions with the leads of the potentiometer. As electrical current,
I, or heat current, Q, passes through the sample, AV is the voltage
measured by the potentiometer.

Electrical resistivity measurements are made with the sémpie
isothermal (AT = 0). With electrical current, I, passing through, the

sample, the resistivity, p(T), is

v
v

|k

p(T) = - (43)

-Thermal conductivity measurements are made by passing heat; Q,
through the sample when I = 0. The thermal conductivity, A(T), of the
sample will vary between the probes as the temperature varies from

‘T + AT to T. The heat current 1is,
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Figure 1. The four probe electrical resistivity and thermal conduc-
tivity technique. ' ’
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T+AT |
A(T')dT'. ‘ . (44)
T

=

This integral equation can be solved by expanding the thermal conduc-
_tivity to first order,

A(T') = B + CT". (45)
This first order expansion is good for metals at low and high tempera-
tures if AT is not too large. The temperature differences between the
two probes varied from .02K at low temperatures to .6K at higher temp-
eratures for this work. With this thermal conductivity approximation

the heat current is

Q =-% [B + C(T + %I)]AT (46)
JA L en 4 ATy |
=3 A(T + 5 YAT. - (47)

Thus the thermal conductivity is

| 1, LQ -
AT + 5 AT) = T AT for small AT. (48)

At intermediate temperatureé the thermél conductivity isAa‘fapidly
varying function of temperature and the 1inear‘apprqximation made in
equation 45 is not valid. >In this temperature region several measure-
ments of sample temperature difference,. AT, and heater power,'Q; were
made for one ambient temperature setfing. The temperature gradients
varied from 0.1K to 0.6K. To solve equation 44 the thermal conductivitf

was expanded as
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_ 2 . n-1 : '
CMT) = kg A kT kTT L+ kT (49)

where n is the number of measurements of AT and T vs. Q at a constant
ambient temperature. The solution to the heat flow equation 44 in
terms of this expansion is

k, C
= l@+ 1" - 1)

A .
2 . (50)

[ ol =}

Q=
i=]1

The n coefficients, ki’ were calculated from the n data points T and

AT vs. Q using a least squares fit procedure. Thus at the temperature

[T; + L AT, ] (51)

' =
T - L 2

=l
(-

i
the thermal conductivity is
n i-1 '
A(T') = & ki(T') . . - (52)

i=1

When n = 1 the above general expansion equals the linear expansion.

Guarded Lbngitudinal Heat Flow Apparatus

The low temperature measurement of electrical resistivity is
difficult for two reasons. First, at low temperatures fhe residual
resistance of the tantalum samples measured was as low as 0.25uQ.
Currents as large as 0.75A were paséed through the samples in order
to obtain sample voltages of 0.2uV. Since electrical resistivity is
" measured when the sample is isothermal, it ié necessary tg have large
current leads anchored to the sample in order to prevent Joule heating

in the current leads which would heat the sample. Secondly, in
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measuring voltages in this range, minimization of thermally generated
emnfs is‘very important. The.volfage clamps and leads are all construct-—
ed of the same metal, copper. Care is taken to insure that any juné—
tions in the voltage leads are at a constant temperature.

The measurement of thermal conductivity requires that the sample
gradient heapef be thermally insulated from its environment. Therefore,
the sample current leads for the electrical'resistivity runAmust be
removed prior to the thermal conductivity run, however the voltage and
thermometer probe separation remain undisturbed. Two mofe‘difficulties
afise in measuring thermal conductivity. First, it is necessary to
accurately measure the .ambient temperature of the sample and the sample
temperature gradient. This is accomplished by the use of two chpomel
vs., Au - 0.03% Fe thermocouples. One absolute thermocbuple measured
fhe temperature of the '"cold" thermométer clamp and was referenced to
the refrigerant bath. The second differential thermocoﬁple measured
the temperature gradient bétween the "cold" and '"hot" thermométef
clamps. This was also referenced to the refrigerant bath. Secondly,
all heat leaks to or from the sample must be minimizedT Heat loss.
from radiation was minimized by the use of three radiation shields.

The inner shield was constructed of stainless steel with a gradient
heater at the lower end (see Figure 2). This heater produces a temper-
ature gradient along the shield which‘closély matches the sample
temperature gradient. Since radiative heat loss is propdrtiongi to the

temperature difference between the sample and its environment, radiation
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ioss is greatly reduced by this method. To further reduce radiated
heat loss, the entire cavity between the sample.and gradient radiation
shield and between the gradient shield and first isothermal shield were
filled with insulation. The lead wire heat loss was reduced by choos-
ing leéds of low thermal conductivity and small cross sectional area.
In addition, gll leads to the sample were thermaily anchored to the
gradient shield at positionsAcofreéponding to their locations on the
sample. If the sample side of the leads are at the same température

as the shield side, no heat will be conducted through the leads.

Figure 2 shows the wiring and associated electronics. . The design,

construction and calibration of the apparatus are detailed by Jung (34).

Techniqueé for Data Taking

The form factor‘(voltage probe separation divided by the sample
cross—-sectional area) of a special sample holder was measured with a
traveling microscope. The electrical resistance of each sample was
then measured at liquid nitrogen temperature (77K) and the resistivity
calculated. The sample was then mounted in the electrical resistivity
and thermal conductivity holder and the resistance at 77K was again
measured. The form factor, F, for this probe was then calcuiated from

R »
F = 77K } (53)

P77x
After the sample was mounted in the holder, a #20 copper wire was
soldered to the sample gradient heater and the shield gradient heater
to produce a complete electrical curcuit during the electrical resis-

tivity runs.
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An a.c. temperature controller regulated the ambient temperature.
The sample current was turned on after the sample reached thermal
equilibrium. The approach to equilibrium could be monitored by the.

differential thermalcouple. The absolute thermocouple voltage, VT’

and the bath pressure, PB’ were recorded. The sample voltage, VS, and
the voltage across the standard resistor, V in series with the

STD’

sample were recorded for both forward and reverse current directions.
The resistivity of the sample was
+
VS(F) VS(R)

1 .
pP=x R (54)
F Voo (F) + Voo (R) 7STD

where RSTD is the resistance of the standard resistor.

The #20 Cu wire was removed from the sample during the thermal
conductivity runs. The ambient sample temperature was regulated by

the a.c. temperature controller and allowed to come to equilibrium.

AT ° and bath pressure

The differential thermocouple offset voltage, V
were recorded. The shield gradient heater and sample gradient heater
were turned on. After a steady state heat flow was achieved the

absolute thermocouple voltage, V the differential thermocouple

T’
voltage, VAT’ the sample gradient héater voltage, VH, and the sample
gradient heater voltage, VI’ across the standard resistor, RSTD’ were

recorded for forward and reverse gradient heater current directionms.
The temperature of the '"cold" thermoéouple, T, was found by first cal-

culating the reference temperature of the bath from P then by using

B’

VT and a calibrated thermocouple fit. The temperature of the samﬁle
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during the electrical resistivity runs was calculated in the same way. .
The sample temperature difference, AT, was calculated from T and

VAT - VA% using the -differential thermocouple fit. The thermal con-

ductivity of the sample was
L [V (F) + V(R IV (F) + V,(R)]

“A(T + 5 AT) = F
2 4Rgo AT

(55)

At intermediate temperatures -the thermal conductivity is calculated

as shown in equations 44, 49-52,

Experimental Error

The sources of experimental error were discussed in detail by
Jung (34) with the conclusion that the largest experimental uncertainty
arose from measurement of the form factor. Other uncertainties are
the results of temperétﬁre and temperature difference uncertainty, and
sample heat loss. The maximum systematic error found by Jung was less
than 3% for the thermal conductivity and 1.3% for the electrical con-
ductivity.

The experimental uncertainty wasted by measuring tﬁe electrical
resistivity and thermal conductivity of electrolytic iron, SRM734,
obtained from the National Bureau of Standards. Ihe low temperature
transport praperties of this material are well-documented by N.B.S.

The electrical resistivity of SRM734 is shown in Figure 3 along
with the N.B.S. results. Figure 4 ié a plot of the thermal conductivity

'éf SRM734 compared to N.B.S. Figure 5 shows the percent deviation of
our measurements from the N.B.S. results for the two transport proper-

ties. A systematic deviation in the low temperature electrical
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resistivity of less than 3% is noted in Figure 5. The rest of the data
displays random error also less than 3% for both electrical resistivity

and thermal conductivity.
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CHAPTER IV: RESULTS

Electriéal Resistivity
Figqre 6 is a plot of the electrical resistivity of tantalum as a
function of temperature from 5ﬁ3K to 65K. All three samples had a
smoothly varying electrical resistivity over thelentire temperature
range. At lower temperatures the residual resistivity became domi-
nant with the highest purity‘sample, section C, exhibiting the lowest

lQm. The lowest purity sample,

0

residual resistivity df 6.97 x 10_1
section A, had a residual resistivity of 1.82 x 10_1 Qm.' The fluctua-
tion in electrical resistivity below 7K for sections A and B is be-
lieved to be caused by small time varying thermal emfs in the apparatus
and do not rebresent any physical phenomenon. Sample voltages were
read for both forward and reverse current directions, and then averaged
to eliminate errors éaused by thermal emfs in the apparatus. However,
at low temperatures where sample voltages as low as 10 nanovolts were
measured, any vafiation in thermal emfs between the forward and reverse
current readings would have a large effect. The residual resistivity
affected the total resistivity of all three samples over the ghtire
temperature range. 'At each temperature, the samples of higher purity,
as measured by their residual resistivity ratios (RRR), exhibited
lower total electrical resistivity.

In order to separate the residual and. ideal (intrinsic) resis-

tivities, Matthiessen's rule was applied.

pI(T) = p(T) - Py ' (56)
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wheré pI(T) is the intrinsic electrical resistivity, p(T) is the total
resistivity ‘and N is the residual resistivity. The residual resis-
tivity of each sample was determined by a least squares fit program.

To determine the temperature dependenée of the intrinsic electrical
resistivity, a plot of log Py vs. -log (T) was made as shown in Figure 7.
'As seen in this plot, the ideal resistivity varied as T3'9 between 10K
and 31K. White and Woods (3) made a similar analysis of a lower purity
tantalum sample with a resistivity ratio of 62.1. They report a

T3'8 temperature dependence between 8K and 23K. All three  samples had
nearly identical intrinsic electrical resistivities indicating that

the differences in total electrical resistivities over this temﬁerature
range were due to point impurity scattering. The écatter of poiﬁts

below 10K is the result of subtracting terms of nearly equal value in

evaluating Py

Thermal Conductivity

"The thermal conductivity of tantalum as a function of temperature
is plotted in Figure 8. As can be seen in the figure, the three samples
had quite similar thermal conductivities above 22K with the, highest
purity sample, section C, exhibiting a slightly higher conductivity.
At lower Lemperatures-a maximum 1s shown. Both the height and position
of this maximum varied with sample purity. The lowest purity sample;
section A, had the smallest maximum occurring at the highest temperature.
Sections B and C had nearly equal thermal conductivity maximums of

828 W/mk at about 10K. Earlier investigations of less pure tantalum by
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White and Woods_(3) shows.é maximum in ghermal conductivity'at 21K,
but only 18% as great as that of section C.

The thermal equivalent of Matthiessen's rule was applie&'to-the
thermal resistivity. |

W (T) = W(T) - W_/T, | (57)
‘where WI(T) is the intrins;c thermal resistivity, W(T) is the total
resistivity and WO/T is the fesistivity caused by point impurity
‘scafte;ing. To determine the impurity constant WO for each sample,
the expressién

[W(T).]T = [WI(T)]T + W . (58)

was least squares fit to temperature., Section B had the smallest

impurity constant of 7.42 x lO—SmKZ/W. The temperature dependence of

the intrinsic thermal resistivity was determinéd by plotting log.wI
vs. log T as shown in Figure 9. Again, a scattering of points below
lOk results from sﬁbtracting terms of nearly equal value. From 10K to
35K the intrinsic thermal resistivities of all three samples are nearly
identical and exhibit a T2'4 temperature dependence. This value is

~ greater than the TZ.O temperature dependence reported by. Powell and

Blanpied (7) between 8K and 23K.

Lorenz Ratio
The Lorenz ratio of tantalum as A function of temperature is
plotted in Figure 10. The low temperature region of these curves vary
widely between samples. The Lorenz rétio can be determined by multiply-

ing the thermal conductivity by the electrical resistivity at one.
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temperature then dividing by thatftemperature; Since the thermal
conductivity is'an extremely rapidly varying function at low tempera-
tures, the erratic behaﬁiar of the left hand tails of the curves'is

not surprising. However, Figure 10 has three important features.

First, at low to intermediate temperatureg, a minimum in the Lorenz
‘ratio is obsexvéd due to inelastic electron-phonon scattering. This
minimum is dependent on sample purity. The highest purity sample had

a minimum of 0.76 V2/K2 at 10.5K. As the purity of the samples de-
creased, the minimum became less pronounced and its position shifted_td
higher temperatures. Secondly, as the temperature increased and elastic
electron-phonon scattering became more dominant, the Lorenz ratios of
the three samples converged. ' This occurred at temperatures greéter

than 40K. Thirdly, the Lorenz ratio of all three samples was less than
the Sommerfeld wvalue (LO = 2.45 x 10“8 V2/K2) over.the entire tempera-

‘ture range, but as the temperature increased and the three curves

converged, the Lorenz ratio increased toward the Sommerfeld value.
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CHAPTER V: DISCUSSION

Thermal Conductivity
At low temperatures the expression for thermal resistivity (the
reciprocal of conductivity) was shown to be

‘ _ 2 . ‘ ’
W(TV) = wo/'r + WeeT + WepT . (59)

The residual thermal resistivity (WO/T) is caused by electrons scatter-
ing from impurities and has a T_l temperatﬁre dependence as shown by
Wilson (17). The electron-electron resistivity contributioﬁ (weeT)
was shown to vary linearly with temperature by Ziman (21). The
electron-phonon term (WepTz) contains the effects of interband and
intraband‘scattering,both of which possess a T2 temperature dependence
aécording to Kemp et al. (30).

The total electronic thermal resistivity times temperature was
fepresented by the equation

W IT = W_+W_T? + w_1°. | (60)
o ee ep

The thermal resistivity data was least squares fit to three different
expressions representing all possible combinations of terms in equation
60 for each sample. The‘léast squares fit to a polynomial computer
program was modeled after Bevington (35).‘ The program calculated the
coefficients of the specified polynomial by minimizing xz, the goodness
of fit to the data. No weighting factor was used with the data. A
foot—mean—square<percent deviation wés also generated for each fit.

Since the'data spanned several orders of magnitude it was felt that a



42

percent deviation for each boint would give a more accurate measure of
fit than an absolute deviation which would place more emphasis on the -
lower temperature poinﬁs. The program also shows the percent erro?
_of each point from the best fit function. The results are shown in
Table 3 along with the temperéture range of the data and the rms per-
cent deviation for each expression. |

It is. assumed that all temperature coefficients are pésitive,
corresponding to a real physical contribution. With thislrestriction,
the best possible fit of the data to the model used is obtained by
representing the thermal resistivity times temperature by

WI =W +W T. . (61)
o ep '

In comparing each point to this best fit expression it is seen that'
the scatter is not completely random indicating that another tefm in
equation 61 may be needed to fit the data more accurately. - A contri-
bution from Umklapp scattering may be helpful. However, no further
reductions of the rms percent deviation is obtained by including the
electron-electron scattering term since this fit results in a unphysical
negative weef Representing the intrinsic thermal resistivity by the
electron-electron term aléne produces a much larget percent deviation
for each sample and very pronounced systematic scattering of poiﬁté;
“The large value for WU fof section C is disturbing and probably fesults
from the small number of points analyzed. These results would seem to
indicate that the.dominant scattering process determining the low

temperature intrinsic thermal resistivity of tantalum is electron-phonon



Table 3. The cocfficients W,, Wee and Wep for various expressions
for the thermal resistivity times temperature of tantalum.
The rms percent deviation for each fit is included

Resistivity RMS Percent Wo "Wee Wep
times Temp, WT Deviation x1072m-k2/W  x10~%4m/w %x10~5m/K-W
SECTION A 5.5k - 21.6k
W o+ W T .99 669 0.990
(o} ee )
W o+w T .18 .04 0.525
o ep
W +W T2 +W T .35 .23 ~0.495 0.776
) ee ep
SECTION B 5.4k - 20.3k
W o+ W T .38 .389 0.016
o ee
Wo+W T .86 742 ' 0.533
o ep
W +W TP +W T .27 .859 ~0.313 0.691
o ee ep
SECTION C. 5.8k - 20.1k
W o+ W T .19 .410 1.026
(o] ee
Wo+w T .89 .817 L 0.515
o ep
2 5,04 1.307 ~1.132. 1.054

W +W T°+W T
o ee ep
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scattering. Since both interband and intraband scattering have the
same temperature dependence, nothing can be said about the relative

contributions of each term from this data alone.

Electrical Resistivity
At low temperatures the expression for the total electrical resis-

tivity of a tranmsition metal due to normal processes was shown to be

_ 2 3, 5
p(T) =n  + 0, T +o T +op T (§2)

The residual electrical résistivity (po) is dﬁe to séat;ering of elec-.
trons by impurities and other point defects. Matthiessen's rule states
that this impurity term is indepéndent of temperature and independent
of the other scattering terms. The second term (beeTz) is the resis-
tivity caused by electrons scattering from other electrons. The T2
temperature dependence is pyedicted by Baber.(26) and Pines (27,28).
Electrons scattered by phonons with the electrons remaining in the
parabolic s conduction band give rise to the pssTS contribution to the
total electrical resistivi;y as predicted by Bloch (24). Mott (19) and

Wilson (25) have shown that conduction can occur in both the normal s -

band and .in the d band typical of transition metals.

2 2
ne n,e
0 = =5 T s = T4 (63) .
m m :
s d

* *
where mS and md are the electron effective masses in the s and d

Bands, nS and nd are the electron concentrations in the s and d bands

and Ts and Td are the electron relaxation times for the s and d bands.
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Mott argued that, in transition metals, conductivity in the s band is
much greater than cbnductiﬁity in the d band due to the small effective
"mass of the s band electrons. Therefore,lan elecfron—phonon inter-
action which scatters the electron from the s to the d band traps

the electron in the high resistivity band and'increases the total .
resistivity. Wilson has shown that s to d band transitions can occur
if the phonon wavevector is larger than the difference in wavevectors
of'the s and d band electrons.

q > kg -k ] | (64)

Band calculations by Petroff and Viswanathan (36) have shown that the

s and d bands of tantalum ovérlap at the Fermi surface in some regions.
Therefore a very low energy pﬁonon will cause an s to d band transition
and this contribution to the total'resistivity will be present at low
temperatures. This interband electron-phonon process varies at T
according to Wilson.

For each sample, seven different expfessions for the electrical
resistivity, representing all possible combinations of the terms in
equétion 62, was fit to the data. The results are shown in Table 4
A along with the temperature‘range of the data.

It is assumed that all température coeffiéients in equation 62
are positive, therefore any polynomial with negative coefficients
represent an unphysical fit and will be ignored. It is seen from

Table 4 that using Pee’ Psg °T Pgq separately produces the worst fit

sd

for each sample with the electron-electron term alone being the worst



Table 4. The coefficients py, Pees Pgd and pgg for various expressions for the electrical
resistivity of tantalum. The rms percent deviation for each fit is included

o ee psd ss

-10 -12 2 -13 -16

Resistivity, p RMS_Percent p p o)
Deviation x10 T TQ-m  x10 TTQ-m/k %10 Q—rﬂ/k3 x10 Q—m/k5

SECTION A 5.5k — 21.6k
. 2 - : .
o +p T 9.59 1.38 1.07
(o] ee .
+ o T2 4.29 1.72  0.576
po . psd . * ' :
o . | o B
o+ | LT 5.08 2.00 | C1.66
o ss : -
+po TP 4+p 1 2.01 2.00 ~0.795 0.987
'po pee psd ‘ ‘ ¢ :
2 . 5 .
o +p T+ o T 1.26 1.77 0.370 1.14
(] ee SS
o+ b T4+ T 1.28 1.84 - ' 0.306 0.803
o) sd ss o * ) :

2
p_+ peeT + deT‘ f pSST 1.23 1.81 0.171 9.165 0.958

9%



Table 4. (continued)

-0.186

Resistivity, p RMS Pgrcent s Pee Paq Pss
-3 - -13. -
Deviation x10 ‘OQ—m x10 12Q—m/k2 x10 13Q—m/k x10 16Q—m/k5
SECTION B 5.4k - 20.3k
o +p T 14.10 0.665 0.993
(o] ee
+ T3 6.92 0.962 0 530
o Psd . . :
p. + p T5 7.91 1.180 1.470
(o] SS
+p T4 T 4,27 1.210 -0.753 0.914
po pee psd : " * :
: 2 . 5 '
b +p T+ p T 3.79 0.997 0.330 1.030
(o] ee Ss
o+ 6o To4+p T 3.74 1.060 0.271 0.740
o sd ss *
b +p T4p T +p T 3.74 1.030 0.120 0.903
ee sd ss *

LYy



Table 4. (continued)

Re31st1v1ty{ p RMS Percent p0 pee de ss

Deviation xlO—IOQ-m x10_129~m/k2 XlO_l3Q—ﬁ/k3 xlO_lGQ—m/k5

SECTION C 5.8k - 20.1k
o+ p 2 35.69 - 0.015 1.115
-0 ee
o + o T3 - 15.46 0.453 - 0.571
o sd
o+ ' o T 5.57 © 0.803 1.533
(o] sSS .
+p T +p 9 2.19 0.991 ~1.248 1.180
po pge psd . : o * *
L N 2 5 :

b +p T+ o T 3.90 0.657 0.192 1.299
o ee SS‘ .
o + 6o T +p T 345 0.697 0.164 1.111
o sd ss - o .

2 3 5

P +_peeT‘ + deT +'pssi 2.06 .0.864 -0.689 | 0.7;6 0.521

8y
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fit of the three. In each case the.scatter of points was systematic-
indicating the need for another term. The combination of electron-
electron scattering and interband (s-d) electron—phononAscattering
':produced a negative peé for'eacﬁ sample. The inclusion of all three
scattering terms results in negative electron-electron coefficients
in sections B and C. "In section A the rms percent deviation did not
decrease significantly below .the deviation for the Pee™P and

Ss

p

ee—p%a fits as might be expécted with the inclusion of an extra

degree of freedom in the -least squares fit. The focus, theréfore,
falls on two expressions for the resistivity: the elgctron—electron
term in combination with the intraband term and the interband term
together with the intraband term. Neither expression has a signifi-
cantly lower deviation for any of the sections. The scatter of poiﬁts
with respect to the fitted curve is random for both expressions for

all three sectiops. The pee-pss fit for section A appears to have a
small systematic scatter from 12K to 21K. On the basis of this analysis
alone it is very difficult t6 determine the best expression; however,
the thermal conductivity analysis indicated that electron-electron
scattering plays a very small role ip low temperature transport prop-
erties of tantalum. On the basis of this result and the above analysis
it is suggested that the'eléctrical resistivity is best represented by

_ 3 5 )
p=r, + deT + pSST . (65)

Table 5 shows the coefficients for the best fit for each section.
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Table 5. The coefficients pgy, Pgq and pgg Oof the electrical
resistivitonf tantalum; p = Py + psdT3 + pSST5

SECTION - A B c
-10 :
o, (x10™%2-m) 1.84 1.06 0.697
-13__ .3 - B
by (k107 20-m/K) ~0.306 0.271 0.164
o (x10 eqom/x’ 0.803 0.740 1.11

As sample purity increaseé the electrical resistivity contribu-
tion from interband (s-d) electron-phonon scattefing is seen to de-
crease while the intraband (s—-s) contribution becomes more dominant.
At 5K interband scattering is responsible for 947% of the intrinsic
resistivity of‘the least pure sample while interband scattering
accounts for only 86% of the intrinsic resistivity of the most pure
sample. At 20K the inferband contributions fall to 49% for the least
pure sample and 277 for the most pure sample. The remainder of the
intrinsic resistivity in each case is due to the intraband elect?on-
phonon scattering in accord with Matthiessen's rule.

p(T) = p  + pI(T) (66)
where
_ 3 5
pI(T) = psdT + pSST ' ‘67)

Using the coefficients listed in Table 5 at any given temperature, it
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is'seen that the total intrinsic resistivity decreases as sample purity
increases. This purity dependent intrinsic resistivity is a departure
from Mat;hiessen's rule. Similar variatidns of Pr with samplé purity
have been observed in other metals and récently in potassium by
Newrock and Maxfield (37) and in vanadium by Jung et al. (8). Bass (38)
has written a comprehensive review of deviations from Matthiessen's
rule (DMR). He proposes severél physical mechanisms as sources of
DMR. They‘include:
(1) Changes iﬁ the Fermi surface, electronic wavefunctions or
electronié'structure upon addition of impurities.
(2) Changes in the effective number of electrons ﬁpon addition
of impurities.
(3) Changes in the phonon spectrum due to differences between
the average masses or force constants of the impurities
and host metal,
(4) 'Quasi-local modes' in the phonon spectrum with the addition
of heavy impurities.
(5) 1Inelastic electron-impurity scattering.
(6) Anisotropic electron~-impurity scattering due to anisotropy
of the impurity. potential.
Petroff and Viswanathan's investigation (36) of the band structure of
tantalum revealed é crossing of the s.and d bands at 0.5 ev below the
Fermi energy aﬁd a critical point in the s band at the Fermi energy.

Scattering phenomenon associated with these two regions are very
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sensitive to any change in the Fermi energy such as those suggested
by (1) and (2) above. |

The relaxation times for s to d band electron-phonon scattering
are the same for electrical and thermal conduction (17,30), thus the
interband scattering term for thermal resistivity (wsd(T)) and for

electrical resistivity (pSd

'T3) are related by the WFL rule.
o .
_ _8sd 2 :
W (D) = L T . ‘ (68)

Thus, by this method, the intrinsic thermal resistivity can be separ-

ated into interband and intraband contributions.
W (T) = (W _+W )T2. ’ ->(69)
I ss sd . .
Table 6 shows the coefficients for the best fit of the thermal resis-

tivity data for each sample.

Table 6. The coeff1c1ents Wo> Wgg and Wgq of the thermal re31st1v1ty
of tantalum; W = W /T + (Wgg + wsd)T

SECTION A B c
-2 2 '
W (x10m — K*/W) 1.04 0.742 0.817
W GA0Tm/K - W) . 4.00 4.22 4.48

Wy (x10‘6m/K - W 1.25 1.11 0.669
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The total'infrinsic thermal resistivity remains féirly constant -as
sample purity changes; but similar to the electrical resistivity case,
intraband s-s scattering becomes more favored at the expense of inter-
band s-d electron-phonon écgttering as sample-purity is increased.

In the purest sample; interband scattering accounts fof only-l3% of
the total intrinsic resistivity.

Tantalum appears to fit .the pattern of niobium and Vanadium all
of which are good superconducting transition metals. For all three
metals the strong electron-phonon interaction and weak electron-
electron interaction (9,34) are undoubtedly related to their high
superconducting transition temperatures., Other transition metals
which are not superconductors~of very low temperature superconductqrs
such as tungsten, rhenium, palladium, osmium, platinum and nickel éhow

strong electron-electron scattering (9-15).
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CHAPTER VI: SUMMARY

The thermal and electrical conductivities of high pufity tantalum
from 5K to 23K were limited by "impurity electron scatte%ing and elec-
tron-phonon interactions. In addition to the normal s-~band électron—
phonon interactions, interband electrﬁn scattering between the s and d
. bands were also oB;erved, There was no evidence of electron-electron
scattering in this temperature range. The thermal conductivity -data
however, didn't. fit the proposed modél exactly, leaving room perhaps,
for another scattering mechaﬁism; Deviations from Matthiesen's rule
were also observed in this temperatufe range. The Lorenz ratio was
less than the Sommerfeld value over the entire temperature rangé. A
minimum in the Lorenz ratiq was observed in each sample owing to in-
elastic electron-phonon scattering.

Tantalum, with a supe;conducting transition temperature of 4.48K,
is consistent in its lack of electron-electron scattering with two.A
other superconducting transition metals: wvanadium and. niobium. Most

normal transition metals exhibit strong electron-electron scattering.
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