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Abstract

Implementation issues such as synchronization of shared data, implementation of 
abstract data types, and scheduling of processes are usually not addressed in the formal 
derivation of parallel programs. We seek to redress the situation by considering these 
issues in the context of developing an efficient implementation of an actual parallel 
program. The computational problem that we selected is motivated by work in align­
ing sequences of genetic material. We proceed by developing an algorithm in Unity 
and investigating the issues that arise in producing an efficient C implementation of 
the resulting algorithm. Along the way, we develop some theorems about program 
refinements, and illustrate the usefulness of the theorems in the context of refining the 
original Unity program.
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1 Introduction

The usefulness of program derivation through stepwise refinement has been demonstrated 
repeatedly [1, 2, 3, 4, 6]. However, for this approach to be widely used for writing efficient 
parallel programs, implementation issues such as synchronization of shared data, implemen­
tation of abstract data types, and scheduling of processes need to be addressed formally. In 
this paper, we seek to redress the situation by investigating in some detail the steps required 
to. refine a high-level Unity solution to a specific problem to an efficient C implementation. 
In the process, we develop some theorems about program refinements. Though by no means 
complete, these theorems are adequate for the following problem that we consider from the 
domain of genetic sequence analysis.

We are given a number of finite strings over some finite alphabet (for DNA/RNA ex­
periments, this alphabet is usually {a,c,g,t} or {a,c,g,u}). Some patterns over the alphabet 
are defined to be “critical”. (For brevity, we omit the conditions under which a pattern 
is critical.) Two or more strings that share a critical pattern can be “pinned” or aligned 
together by that pattern. For example, consider the following two strings:

aaugacggguacacauaucaacuucacaggagcu
acuuacgcgcacaucucaacuucacagcagcu

If the pattern ‘caacuucaca’ is “critical”, then it “pins” the two sequences. Such “pinning” 
can be used to establish overall correspondences, and then attempts are normally made to 
“align” the regions between pins [7]. The algorithm that we implement constructs the set of 
all “pins”, given the positions of occurrences of critical substrings. We chose this particular 
problem because its specification is very simple and we are able to deal with implementation 
issues without getting lost in details.

We carry out our program development in Unity, a formalism developed by Chandy and 
Misra [1] for deriving programs and reasoning about them. We give a brief introduction 
to Unity in the next section. In Section 3, we present some theorems about program 
transformation that are used later. In Section 4, we discuss the formal specification of 
the problem and our solution strategy. In Section 5, we present the initial solution and a 
program refinement that deals with implementation of the abstract data type of sets. In 
Section 6, we discuss the partitioning of the statements over a set of processes and also 
specify and use an underlying scheduling mechanism to schedule these processes. In Section 
7, we use an underlying mutual exclusion algorithm to address the problem of synchronizing 
shared resources. Section 8 includes concluding remarks. Finally, the appendix contains a 
C program that corresponds (albeit roughly) to the final Unity program.
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2 The Unity Formalism

It is difficult to do justice to the entire scope and breadth of Unity in a few pages. What 
we present here has been much simplified; the reader may wish to consult [1] for the full 
details. We present the Unity syntax in Section 2.1 and the Unity logic in Section 2.2.

2.1 The Unity Syntax

A Unity program consists of four sections — a declare section that declares the variables 
used in the program, an always section that consists of a set of proper equations, an 
initially section that describes the initial values of the variables, and an assign section 
that consists of a non-empty set of assignment statements. The declare and the initially 
sections are not discussed any further, as all variable declarations are left implicit in our 
programs, and the initially section consists simply of a predicate on the program variables.

The always section is used to define certain program variables as functions of other 
variables. One of the main advantages of defining a variable this way is that decisions 
concerning how the variable is actually going to be implemented can be deferred to a later 
point. This eases program refinements as we worry about evaluations and implementations 
of variables one at a time.

The assign section consists of a non-empty set of assignment statements. An assignment 
statement consists of one or more assignment components separated by j. An assignment 
component is either an enumerated assignment or a quantified assignment. An enumerated 
assignment has a variable list on the left, a corresponding expression list in the middle, and 
a boolean expression on the right (which by default is true):

< variable-list > := < expression-list > if < condition >.

A quantified assignment specifies a quantification and an assignment that is to be instan­
tiated with the given quantification; a quantification names a set of bound variables and a 
boolean expression (the range) satisfied by the instances of the bound variables. 
Examples: Examples of enumerated assignments are:

1. Exchange x,y, provided predicate 6 holds.
x,y:-=y,x if b

2. Add A[i] into sum and increment i, provided i is less than N.
sum, i := sum + A[f], i + 1 if i < iV Ill-

Examples: Examples of quantified assignments are:

1. Assign all components of array A[0..Af] to 0.
(|* :0 <i < N :: A[i] := 0)

2



2. Given arrays .A[0..jV] and B[O..N] of integers, assign the maximum of A[i] and B[i] to 
j4[i], for all 0 < i < iV.

(ji : 0 < i < N :: A[i] := max(A[i], S[i])) □

An assignment component is executed by first evaluating all expressions and then as­
signing the values of the evaluated expressions to the appropriate variables, if the associated 
boolean expression is true\ otherwise, the variables are left unchanged.

The set of assignment statements is written down either by enumerating every statement 
singly and using [| as the set constructor, or by using a quantification of the form 

( | var : range : statement). The symbol [] is called the union operator.
A program execution starts from any state satisfying the initial conditions and goes on 

forever; in each step of execution some assignment statement is selected nondeterministically 
and executed. Nondeterministic selection is constrained by the following fairness rule: Every 
statement is selected infinitely often [1].

Examples: The following program assigns the maximum of variables x and y to variable z. 
Its assign section consists of two assignment statements each of which has one assignment 
component consisting of an enumerated assignment.

Program max 
initially z = 0 
assign

z := x if x > y 
^ z :—y if x <y

end

As another example consider the following program which sorts integer array A[0.. A], N > 0, 
in ascending order by swapping adjacent elements if they are out of order. Its assign section 
consists of N statements, one for every pair of adjacent positions.

Program sortl 
assign

( j] i: 0 < i < IV :: A[i], A[i + 1] := A[i + 1], A[i] if A[i] > A[i -f 1])
end

As another example, consider the following program which is obtained from the previous 
program by combining all the N assignment statements into two assignment statements, 
one for even i and the other for odd i. *

Program sort2 
assign

(\i ■. even{i) A[i], A[i1] := A[i+1], j4[j] if A[i] > A[i + 1])
| {||i : odd{i) :: A[i], A[i + 1] := A[i -f 1], A[i] if A[i\ > A[i -f 1])
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end

Observe that each assignment statement in the above program consists of one assignment 
component, which in turn consists of a single quantified assignment.

As a final example, consider the following program which is obtained by combining 
the two assignment statements of the previous program into a single assignment statement 
consisting of two assignment components.

Program sort3 
assign

(|z : even(z) :: A[i], A[i + 1] := A[i + l],A[i] if A[i] > A[i + 1])
| (||i : odd(i) :: A[i], A[i + 1] := A[i + 1], A[i] if A[i] > A[i + 1])

end

□

Notation: The fixed point of a program, usually represented by FP, denotes the state of 
the program upon termination; it is obtained by replacing the assignment symbol := by the 
equality symbol = in every statement of the program and taking the conjunction over all 
such predicates. For example, the fixed point of program max is

(x > y =$■ z = x) A (x < y =$■ z = y). □

2.2 The Unity Logic

Program properties are expressed using four relations on predicates — unless, invariant, ensures, 
and leads-to. The first two are used for stating safety properties whereas the last two are 
used for stating progress properties.

2.2.1 Unless

For any two predicates p and q, the property p unless q holds in a program iff for all 
statements s in the program 

{pA-y?} s {p V q}.
Informally, if p is true at some point in the computation, then either q never holds and p 
holds forever, or q holds eventually and p continues to hold until q holds.
Examples:

1. The value of x never decreases.
x = k unless x > k, or 
x > k unless false

2. Philosopher u stays hungry until eating.
hungry.u unless eating.u
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3. In Program max, variable z retains its old value until it gets max{x, y).
z = k unless z = max{x,y) □

Notation: If the property p unless false holds in some program, then we say that the 
predicate p is stable in that program. Note that the fixed point of a program is always 
stable. □

2.2.2 Invariant.

For any predicate p, the property invariant p holds in a program iff p holds initially and 
the program never falsifies p, i.e.,

initially p A p unless false.
Examples:

1. Variable x is always positive.
invariant a: > 0

2. An eating philosopher u has all the required forks.
invariant eating.u => has fork.u □

An invariant can be substituted for true and vice-versa in the context of a program. 
This referred to as the substitution axiom. Sometimes, for invariant p, we simply write p.

2.2.3 Ensures

For any two predicates, p and q, the property p ensures q holds in a program iff p unless q 
holds in the program and there exists a statement s in the program such that 

{pA-.g}s{g}.
Thus, if p is true at some point in the computation then q holds eventually and p continues 
to hold until q holds. Statement s that establishes q is called the helpful statement.

2.2.4 Leads-to

The relation leads-to is denoted as >—►, and is defined to be the strongest relation satisfying 
the following three rules.

• p ensures q => p >—> q,

• <1 A q >—>■ r) =>• p*-^ r, and

• For any set W, ■.
(Vm : m £W : p.m >-+ q) =$■ ((3m : m € W : p.m) i—► g).

The first two rules imply that >—► includes the transitive closure of ensures and the third 
rule allows us to induct over sets. Given that p >~* q in a program, we can assert that once 
p becomes true, eventually q becomes true. However, unlike p ensures q, we cannot assert
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that p will remain true as long as q is not.
Examples:

1. A hungry philosopher u eventually eats.
hungry.u eating.u

2. If a message m is sent, then it is eventually received.
send.m i—*• receive.m

3. In Program max,
true z = max(x, y) □

2.2.5 Program Composition by Union

Let F and G be programs with compatible declare sections (i.e., the declaration of the 
variables are compatible), compatible always sections (i.e., the two sets of equations are 
consistent), and compatible initially sections (i.e., the initial values of the variables are 
non-conflicting). Then, their composition is a new program denoted F ^ G\ every section of 
this program is obtained by a union of the corresponding sections of F and G. The following 
theorem follows from the definitions of unless and ensures.

• union theorem:
p unless g in .F J G = p unless q in F A p unless q in G, and

p ensures <7 in E [] G = (p ensures q in F A p unless g in G) V
(p unless q in F A p ensures q in G)

2.2.6 Program Composition by Superposition

Superposition is another mechanism to structure programs. Suppose we are given a program 
F and a statement r that does not assign to any of the variables of F. Then, the statement 
r can be superposed on program F in two ways - either it can be combined with a statement 
s of E to yield an augmented statement s||r, or it can be added by itself to F, thus resulting 
in the composite program E | r. In either case, all the properties of the original program 
are preserved. Moreover, the fixed point of the transformed program implies the fixed point 
of the original program. The above result is referred to as the superposition theorem.

3 Some Program Transformations

In this section we discuss three program transformations that preserve unless and leads- 
to properties (i.e., if the original program satisfies a unless or a leads-to property, then 
so does the transformed program), and preserve the fixed point (i.e., if the original pro­
gram terminates, then so does the transformed program and moreover, the fixed point of
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the transformed program implies the fixed point of the original program). We use these 
transformations to refine programs in Sections 4, 5, and 6. (For a formal proof of these 
transformations, see [8].)

3.1 Implementation of Abstract Data Types

Consider a program with a variable x such that x is initially a, and some statement in 
the program assigns f(x) to x. Here x represents an abstract data type and / represents 
an operation on the abstract data type. For example, x may be a set and / may be the 
operation of adding an element to the set. We wish to examine conditions under which 
the abstract data type x can be implemented by a concrete data type y. Continuing with 
the example of sets, y may be an array of elements and we ask the question when can y 
implement x.

Suppose we define (in the always section) a function H (called the abstraction function) 
from the type of y to the type of x, replace x = a in the initially section by y = b, and replace 
the assignment of /(x) to x by the assignment of g(y) to y. Then this transformation is 
correct if a = H(b) and H(g(y)) = f(H(y)) , for all y. The second condition can be restated 
by saying that the following diagram commutes.

3.2 Strengthening of Guards

Let F be a program and, s :: A if Q and t :: A if Q A R , be two statements. Let 
/ be a function with domain as the cartesian product of the types of the program variables 
and range as the natural numbers such that the value of the function never increases during 
computation, i.e.,

f < k unless false.

Then F [] t is a correct transformation of F J s if the following two conditions hold in F.

• Q R, and

• R A 'f = k unless -‘Q V f < k.

It is straightforward to show that the strengthening of guard preserves safety properties 
(in this case unless properties); so, we concentrate on showing (rather informally) why the
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above two conditions ensure that all leads-to properties are preserved. Because leads-to 
is defined inductively in terms of ensures, it is sufficient to show that if b ensures c is a 
property of the original program, then b ► c is a property of the transformed program.

Assume that statement s is the only helpful statement for the property b ensures c 
(otherwise, the proof follows from noting that the helpful statement is unchanged and all 
unless properties are preserved in the transformed program). Consider an execution of 
A [] t in which the predicate b A~<c becomes true at some point. Because the predicate Q 
must hold for an effective execution of statement s, eventually either statement t executes 
effectively (thus setting c to true), or the predicate b A ->c A Q becomes stable (becomes 
true and stays true). In the latter case, because of the two conditions described earlier, the 
predicate b A -<c A Q A R also becomes stable. That means that statement t is continuously 
enabled and therefore, will eventually execute effectively, thus setting c to true. (A formal 
proof appears in [8]). Observe that if R unless ->Q holds in F, then we can satisfy the 
second condition by choosing / to be any constant function.

3.3 Transforming Quantification

Let s :: A if (Bf : i € D :: p.i) and t :: ( |] i : i 6 jD :: A if p.i) be two 
statements such that the domain D is finite and variable i does not occur free in A. The 
transformation in which s is replaced by t in the context of a program (assuming that the 
transformation is syntactically legal) is correct if the program maintains each p.i as stable 
(i.e., satisfies the property p.i unless false, for each i). (The reverse transformation in 
which statement t is replaced by statement s preserves all unless, ensures, and leads-to 
properties unconditionally).

4 Specification of the Problem

We are given sets S.j (j ranging over some given domain) of pairs of natural numbers. Every 
set S.j corresponds to a DNA string and the pair (i, k) is an element S.j iff “identifier” i 
occurs at “position” k in the corresponding string. The number of identifiers in a particular 
string is expected to be much less than the size of the identifier space, i.e., each set S.j is 
sparse in the first component.

Notation: In the rest of this paper, variable i ranges over the “identifiers”, variable j ranges 
over the indices of the given sets, and variable k ranges over the “positions”. □

A maximal matching, or a pin, for a given identifier i, is the maximal set of pairs (j,k) 
where the pair (i, k) belongs to set S.j. In other words,

pin.i = {(j,*) : (i,k)eS.j}.

Set pins is defined to be a set of maximal matchings such that a maximal matching is in
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the set iff it has at least two pairs, i.e.,

pins = {(i,pin.i) : |pfn.i| > 1}. (P)
We are required to write a program that satisfies the following two conditions.

• true >-+ FP, (-40)
i.e., the program eventually terminates, and

• FP =$■ P, (Al)
i.e., at the fixed point of the program, the property P holds.

We design our solution using the following strategy. We first develop a very simple program 
that meets the above two conditions. Then, we transform that program one step at a time. 
Sometimes, these transformations are dictated by efficiency concerns and at other times by 
the choice of target architecture. However, all of these transformations preserve the above 
two conditions (AO) and (Al), i.e., if the original program satisfies the two conditions then 
so does the transformed program. The correctness of the final program then follows from 
the correctness of the initial program.

The program transformations and the order in which we carry them out are as follows. 
The first transformation deals with our choice of set implementation. The next transforma­
tion deals with the computation of the set pins. After that we target our transformations 
towards the specific computer architecture in mind, which in this case is a shared memory 
MIMD system. In these transformations, we illustrate a general scheme to assign statements 
to processes. We also specify an underlying scheduling mechanism and use its properties 
to schedule the processes. Our final transformation addresses controlling access to shared 
variables.

Note: The initial solution and the sequence of transformations discussed here is by no 
means the only one. Because our aim is to illustrate an application of formal methods for 
parallel processing, we choose and explain one (hopefully, a simple one) of these alternatives.

□

5 Initial Solution and Transformations

In this section we describe the initial solution and the first few transformations. The initial 
solution is developed in Section 5.1 and the transformations are discussed in the succeeding 
subsections.

5.1 Initial Solution

Observe that the set pins is defined in terms of the sets pin.i. Therefore, we first concentrate 
on computing the sets pin.i and delay decisions about the computation of the set pins 
by including property P in the always section. Let FP represent the fixed point of the
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program that we are going to derive. We propose that FP = P ■ Then the second condition 
of correctness, (.41), follows immediately. Because of property P, the first condition of 
correctness can be restated as follows. For all i,

true t—► (pin.i = {(j, k) : (i, k) £ S.j}) , 

or, equivalently, for all i, j,k, 

true i-+ (i, k) £ S.j = (j, k) £ pin.i.

We propose the following invariant for our program.

(j,k) £ pin.i => (i,k) £ S.j This invariant is made to hold initially by initializing each 
pin.i to the empty set, and maintained by adding the pair (j, k) to pin.i only if (i, k) £ S.j. 
Thus, the proof obligation for the first correctness condition, (.40), reduces to showing that, 
for alii, j, fc,

(i, k) £ S.j i-+ (j, k) £ pin.i.

The following program follows immediately from the above considerations.

Program solO 
always
pins = {(i, pin.i) : |pin.i| > 1} (SO)

initially
( [] i :: pin.i = 0) 

assign
( I i, J, k :: pin.i := pin.i U {(j,k)} if (i,k)eS.j) 

end

5.2 A Data Transformation

At this time we make a design choice about the concrete representation of sets pin.i. Led by 
the observation that the set of natural number pairs (i, k) is sparse in the first component, 
we use a hash table representation. The data items to be stored in the hash table are (i, j, k) 
where (i, k) is a member of S.j. We use a hash function h on the first argument i, and store 
the triple (i, j, k) at the fi(i)th cell of the hash table.

Notation: Variable m ranges over the cells of the hash table. We denote the mth cell of 
the hash table by bin.m. □

Now, we use the theorem about implementation of abstract data types stated in Section 3.1 
to transform program solO. We implement set pin.i as the set of all entries in the /i(i)th 
cell of the hash table that have i as their first component. Drawing a correspondence with 
the statement of the theorem in Section 3.1, here x, the abstract data type, is the set pin.i 
and y, the concrete data type, is the set bin.(h.i). Our abstraction function H (for a given
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i) is as follows.

H(bin.(h.i)) = {(j, k) : (i, j, k) e bin.(h.i)} (El)

In order to use the transformation correctly, we have to meet two proof obligations, the first ^ 
on the initial conditions and the second on the assignment statements. Because H(<f>) = <f>, 
the first obligation is met by initializing bin.(h.i) to the empty set. We discuss how the 
second proof obligation is met next.

For a given value of j and k, the function / that changes pin.i, our abstract data type, 
in program solO is given by:

f (pin.i) = pin.i U {(j, k)}

Accordingly, we define our function g, the function that changes the concrete data type, by: 

g(bin.(h.i)) = bin.(h.i)U {(i, j,k)}

For a proof that the above definition of p satisfies the condition iJ(jf(6in.(/i.i))) = f(H(bin.(h.i))), 
which is our final proof obligation, observe the following.

H(g(bin.(h.i)))
={definition of <7}

H(bin.(h.i) U {(z, j, i)})
={definition of H and changing bound variables j, k to f, k1}

{(/> k') : (i,f, k') £ bin.(h.i)) U {(j, £)}
={definition of H and changing bound variables j, k to f, k'}

H(bin.(h.i))U {(j, £)}
={definition of /} 

f(H(bin.(h.i)))

The resulting program after these transformations is as follows.

Program so/1 
always
pins = {(i, pin.i) : \pin.i\ > 1} (EO)
(Hi:: pin.i = {(j, k) : (i,j, k) G bin.(h.i)}) (El)

initially
{ | m :: bin.m = 0) 

assign
(Obi,*." bin.(h.i) := bin.(h.i)l) {(i, j, k)} if (i,k)eS.j) 

end

The above program satisfies correctness conditions AO and A1 because program so/0 does 
so, and because our transformation preserves the fixed point.

J
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5.3 Computing pins

In this section we make some decisions about the computation of pins which we had delayed 
so far (by defining it in the always section). Because every cell of the hash table stores a 
disjoint part of the set, we partition pins into m'subsets, pins.m, one for each cell of the 
hash table, and then merge these partitions together to obtain pins. Sets pins.m are defined 
by the following equation included in the always section:

pins.m = {(i, pin.i) : h.i = m A |pin.z| > 1}. (^2)

In order to merge the sets pins.m, we add the following assignment statement (instantiated 
for each m) to the assign section.

pins := pins U pins.m if...

We discuss the missing predicate next.
Observe that the missing predicate should imply that the set pins.m has obtained its 

final value. By virtue of equation (£’2), this means that all the cells of the hash table have 
obtained their final value, i.e.,

(Vi, j, k : (i, k) E S.j :: (i,j,k) € bin.(h.i)).

In order to detect the above condition, we choose variables c.i.j.k, one for each i,j,k, and 
propose the following invariant.

c.i.j.k = (i, j, k) € bin.(h.i)

This invariant is made to hold initially by initializing variable c.i.j.k to false and by setting 
it to true when the corresponding triple is added to the hash table. With all these changes, 
we have the following program.

Program so/2 
always

{ [] i :: pin.i = {(j,k) : (i,j,k) G bin.(h.i)}) (El)
( |] m :: pins.m = {(i, pin.i) : h.i = m A |pin.i| > 1}) (E2)

initially 
pins = 0
| ( 0 m :: bin.m = 0)

■ fl ( 0 i>i, * c.i.j.k = false) 
assign

( | i, j, k :: bin.(h.i), c.i.j.k := bin.(h.i)U {(i,j,k)}, true if (i, k) G S.j A -'C.i.j.k)
P ( P m :: pins := pins U pins.m if l^li,j,k : (i,k) G S.j :: c.i.j.k) 

end

The above program terminates and its fixed point implies the fixed point of program so/1; 
therefore, it satisfies correctness conditions AO and Al.
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6 Assigning statements to processes

In this section we target our refinements towards the specific computer system in mind, which 
happens to be a shared memory MIMD system. We carry out the assignment of statements 
to processes by first identifying groups of statements that access common variables and then 
later partitioning these groups of statements over the set of processes. (This is reminiscent 
of identifying “schedulable units of work” [5].).

6.1 Partitioning the Statements

The assignment statements of program so/2 can be syntactically divided into two sets that 
are separated by a |] . For the first set of statements, we group together statements that 
access the same set S.j; we call this group of statements A.j. For the second set of state­
ments, we group together statements that access the same cell of the hash table; we call 
this group of statements B.m. Thus, the total number of groups equals the number of sets 
S.j plus the number of cells in the hash table. Formally, groups A.j and B.m are defined 
as follows:

A. j = ([| i, fc :: s.i.j.k if u.i.j.k) , and
B. m = t.m if v.m

where s.i.j.k, i.m, u.i.j.k, and v.m are defined as follows.

s. i.j.k:: bin.(h.i), c.i.j.k := bin.(h.i) U {(i, j,k)}, true

t. m:: pins := pins U pins.m

u. i.j.k :: (i, k) g S.j A -<c.i.j.k and

v. m :: (Wi,j, k : (i, k) g S.j :: c.i.j.k) .

With the above definitions the assign section of program sol2 can be abbreviated as follows: 

(Hi :: A.j)
D ( D m " B-m)

6.2 Assigning Statement Groups to Processes

In the previous section, we identified groups of statements that access common variables. 
In order to partition the groups over the set of processes, we assume the existence of an 
underlying program map (which is similar to a scheduler) with the following properties.

Notation: Variables n, n' range over the processes. Predicate p.j.n denotes that the group 
A.j is assigned to process n. Similarly, predicate q.m.n denotes that the set B.m is assigned 
to process n. • □
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(CO)
• ‘p.j.n A p.j.n' n = n', for all j, n, n', 

q.m.n A q.m.n' =>■ n = n', for all m, n, n', and

i.e., a group is assigned to at most one process.

• p.j.n unless false, for all j,n,
q.m.n unless false, for all m, n, and (Cl)

i.e., the assignments, once made, are not changed.

• true i—► (3n :: p.j.n), for all j, n,
true (-»■ (3n :: q.m.n), for all m,n, and (C2)

i.e., every group of statements is eventually assigned.

(C3) Program map terminates and does not modify any variables of program soli. (C3)

Note: There are various ways to implement the program map. One alternative is to par­
tition the sets and the cells of the hash table statically. Though simple, this solution may 
not perform well. Another solution is to have two variables that indicate, respectively, the 
next set and the next cell of the hash table to be assigned. Then the processes access these 
variables (using mutual exclusion), obtain an “unit of work” to be done, and then update 
these variables. However, the implementation of program map should not be our concern 
at this point.

It follows from condition (C3) and the superposition theorem that the the composite pro­
gram so/2 fl map also satisfies correctness conditions (AO) and (Al).

In the next refinement, we strengthen the guard of every statement by applying the 
transformation suggested in Section 3.2. The statements in group A.j are strengthened by 
the predicate (3n :: p.j.n) (predicates Q and R for this group are true and (3n :: p.j.n), 
respectively), and the statements in group B.m are strengthened by the predicate (3n :: 
q.m.n) (predicates Q and R for this group are true and (3n :: q.m.n), respectively). The 
first correctness condition of the transformations (i.e., true ■—» (3n :: p.j.n) and true t—»• 
(3n :: q.m.n)) follows from condition (C2). For the second correctness condition of the 
transformation, we choose the non-increasing function to be any constant function, and our 
proof obligations ((3n :: p.j.n) unless false and ((3n :: q.m.n) unless false) follow from 
applying disjunction on condition (Cl).

After applying the transformations, the set of assignment statements can be now rewrit­
ten as follows:

■ ( J j :: A.j if (3n :: p.j.n))
[] (J m :: B.m if. (3n :: q.m.n))

Next, we apply the transformation suggested by in Section 3.3. The correctness of this 
transformation follows from condition (Cl). We obtain the following set of statements.
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( 0 n :: ( 0 i :: ^ P-J-71))
|{[]n::([)m:: B.m if q.m.n}}

Reordering the statements we have the following program.

Program so/3 
always
(!]*:: pin.i -- {(j, k) : (i, j, k) G bin.(h.i)})
( | m :: pins.m = {(i, pin.i) : h.i = m A |pin.i| > 1})

(£1)
(E2)

initially 
pins — 0

( [] m :: bin.m = 0)
0 ( 0 i,j,k :: c.i.j.k = false) 

assign

( 0 « " ( 0 J :: A-3 if P-3-n)
[] ( | m :: B.m if q.m.n)

)

| map
end

The code for a process is then obtained by instantiating the body of the outermost quan­
tification (in the assign section); thus, the code for process n is as follows.

(Hi:: A-j if P-3-n)
| ( [) m :: B.m if q.m.n)

7 Synchronizing Access to Shared Resources

In this section we examine the program in order to identify the shared resources for which 
the processes may contend, and then use a mutual exclusion scheme to synchronize access to 
these resources. We observe the following shared resources in program so/3 - cells bin.m, for 
each m, and set pins and use a mutual exclusion scheme for each of these shared resources.

In order to carry out the mutual exclusion, we assume a program mutex and a set of 
variables mode.n.x for every shared resource x and every process n. Variable mode.n.x 
stores the state of process n with respect to the resource. It can take one of three distinct 
values - t, h, or e. These values are interpreted as follows: if mode.n.x — t then process n 
is not interested in resource x, if mode.n.x = h then process n is waiting to access resource 
x, and if mode.n.x — e then process n is accessing resource x. The sequence of state 
transitions if from t to fi to e to t. The specification of program mutex is as follows. (The 
above specification is based on the specification of the mutual exclusion problem in [1].)
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• The only transitions of mode.n.x that are made by mutex are from h to e, i.e., 
mode.n.x = t unless false, and mode.n.x = e unless false, for all n, x.

• Two different processes do not access a resource at the same time, i.e.,
mode.n.x = e A modem'.x = e =3>- n = n', for all n, n7, '

• If every process that has a resource eventually relinquishes it then every process that 
is waiting for a resource eventually gets it, i.e,
if mode.n.x = e >—>■ mode.n.x = t, for all n, x, then mode.n.x = h >—> mode.n.x = e, 
for all n, x.

• It terminates and does not modify any variables of program so!3.

Let s be any assignment statement of sol3 that accesses a shared resource x and Q be the 
guard for the statement. Observe that Q is local to the process (i.e., does not mention any 
shared variables) and is stable over the rest of the program. We carry out the following 
transformation for each such statement.

• augment the assignment statement mode.n.x := < if Q A mode.n.x = e to s, 
and add the statement mode.n.x := h if Q A mode.n.x = t

• strengthen the guard of s by adding the predicate mode.n.x = e.

Observe that the above transformation modifies variable mode.n.x in the correct sequence, 
i.e., from t to h and from e to t. Moreover, the transition from e to t occurs eventually (i.e., 
every process eventually gives up the shared resource) because the predicate Q is stable over 
the rest of the program.

For a proof of correctness of the above transformations, observe the following. The first 
step preserves correctness conditions (AO) and (Al) because it is a legal superposition and 
the superposed program terminates. The second step is justified (i.e., it preserves all unless 
and leads — to properties) by the theorem on strengthening of guards in Section 3.2. In 
order to apply the theorem, we have to show that two conditions are satisfied — first, we 
have to show that Q h-► mode.n.x = e in the rest of the program, and next, we have to 
show that there exists a non-increasing function f of the program variables such that

mode.n.x = e A f = k unless -><5 V f < k

in the rest of the program. This is shown next. (Here R, the predicate which is added to 
the guard of the statement is mode.n.x = e.)

For the proof of the first condition, observe that from step 1 of the transformation and 
because Q is stable, Q A mode.n.x = t Q A mode.n.x = h. Similarly, from the 
property of program mutex, Q A mode.n.x = h >—<• Q A mode.n.x = e. From these 
two properties, we have that Q A mode.n.x ^ e >-* Q A mode.n.x = e. Consequently, 
Q Q A mode.n.x — e.
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For the proof of the second condition of the theorem, consider the two types of statements 
that access shared resources separately. For the first type of statement which accesses the 
shared resource bin.(h.i), Q = u.i.j.k A. p.j.n . (Predicate u.i.j.k was defined earlier 
in Section 6.1.) Define the function / which maps a state of the program to the natural 
numbers as follows: given the sets S.j and the hash table, it returns the number of elements 
in the sets that have not been added to the hash table. Thus, the function / is bounded 
from below by 0 and non-increasing for our program. Observe that every transition of 
mode.n.(bin.(h.i)) from e to t decreases the function /. Therefore,

mode.n.(bin.(h.i)) — e A f = k unless f < k

holds for the rest of the program. The required proof then follows from weakening of the 
the right hand side of the above property.

Next, consider the other type of statements that accesses the shared resource pins. Here, 
Q = v.m A q.m.n. Because statement s is the only statement that modifies the variable 
mode.n.pins when it equals e,

mode.n.pins = e unless false

in the rest of the program. Thus, as observed in Section 3.2, we can define / to be any 
constant function and our proof obligation follows once again from weakening of the the 
right hand side of the above property.

This completes the proof of correctness of the above transformation and the resulting 
program is as follows.

Program so/4 
always

( 0 * = {(j> k) '■ (*> Ji k) £ bin.(h.i)})
( [] m :: pins.m = {(i, pin.i) : h.i = m A |pin./| > 1}) 

initially 
pins = 0

{ [] m :: bin.m = 0)
0 ( D hj>k "■ c.i.j.k = false)

assign
( J n :: ( |] j :: A.j if p.j.n)

Q ( Q m :: B.m if q.m.n)
)

[j map 
Q mutex 

end

where sets of statements A.j and B.m are as follows.

A.j=(^i,k:: mode.n.(bin.(h.i)) := h if u.i.j.k A mode.n.(bin.(h.i)) = t

(El)
(E2)

17



Q s.i.j.k if u.i.j.k A mode.n.(bin.(h.i)) = e
)

and
B.m = mode.n.pins := /i if v.m A mode.n.pins = t 

Q t.m if v.m A mode.n.pins = e

where s.i.j.k, t.m, u.i.j.k, and v.m are defined as follows.

s. i.j.k:: bin.(h.i), c.i.j.k, mode.n.(bin.(h.i)) := bin.(h.i) \J {(i, j,k)}, true, t

t. m:: pins.mode.n.pins := pins U pins.m, t

u. i.j.k :: (i, k) € S.j A -‘C.i.j.k and

v. m :: (Vijj, k : (i, k) £ S.j :: c.i.j.k) .

This concludes our program development.

8 Discussion

We hope to have shown by the preceding exercise that it is possible to carry out a lot of 
the implementation of a parallel program in the formal domain without losing any of the 
efficiency. Usually, during the derivation process a number of important design decisions 
that affect the simplicity of the final program (and therefore, the success of the formal 
method) are made. For example, we first decided to implement the sets by a hash table, 
then assigned statements to processes, and finally addressed the question of synchronization. 
Carrying out the derivation in a different order leads to a complicated solution and all the 
advantages of a formal derivation are lost. In general, the implementation of abstract data 
types should be addressed first, assignment of statements onto processes should be addressed 
next, and synchronization issues (such as locking and level of atomicity) should be addressed 
last.

The point where one stops the formal derivation process is also an important design 
decision. When all the important design decisions about the target architecture have been 
made, there is not much use continuing further. For example, we stopped our formal deriva­
tion when we had made our choices about implementation of sets, processes, and locking. 
We did not indicate explicitly how the sets pins.m are computed as it was not an important 
design issue. The final step in obtaining a “running” program is to translate the final derived 
program to a “real” programming language supported on the. target architecture. Because 
many of the important design decisions have already been made, this final step should not be 
difficult. In the appendix, we show a C program that was obtained by translating program 
so/4.

Our intent in presenting the C program is not to argue that it could be eventually auto­
matically compiled from the Unity solution. Rather, we believe that the execution sequences 
of the C program are a subset of the execution sequences of the Unity program, and there-
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fore, our proof of correctness for the Unity program is also valid for the C implementation.
Perhaps the biggest advantage of a formal program development is that refinements for 

different architectures share a lot of the initial development. For example, if we are to 
develop a solution to the same problem for process networks, our derivation is a lot similar; 
only now instead of locking shared resources, we define a communication scheme. Our 
partitioning of statements into groups is similar; we define groups A.j as before, we merge 
all the groups B.m into a single group B, and define a new group of statements C.m, one 
for every cell of the hash table, that computes set pins.m. (This set was earlier defined in 
the always section.) Each of these groups is assigned to a different process.

The process assigned to group A.j takes the set S.j as input and adds the elements of 
this set to the appropriate cell of the hash table by sending messages to processes in charge 
of the cell, i.e., the group C processes. For example, if the pair (i, k) is an element of the 
set S.j, then the process A.j will send a message (i, j, k) to the process assigned to group
C.(h.i). The process assigned to group C.m takes the messages sent by the group A pro­
cesses as input and outputs the set pins.m to the group B process. The process assigned to 
group B takes all these sets pins.m as input and produces the set pins as the final output. 
A process network for 3 sets and 2 cells is illustrated below.

H A.2

Figure: A process network for 3 sets and 2 bins
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Appendix: An Equivalent C Program

We implement program mutex by a locking scheme that is provided by C routines. For this 
purpose, we declare a lock variable with each shared object and define a few macros that 
ensure the correct transition of the lock variables. A t to h transition is implemented by a 
requesting a lock, an h to e transition is ensured by the underlying locking mechanism, and 
an e to h transition is implemented by releasing a lock. The complete set of macros is as 
follows. (For brevity, we skip the definition of the macros.)

• Macro DEC-MUTEX declares a mutual exclusion variable.

• Macro MODE JNIT initializes a mutual exclusion variable to the state t.

• Macro MODEJTTTO-H defines the transition of a mutual exclusion variable from t 
to h.

• Macro MODESJTOTT defines the transition of a mutual exclusion variable from e 
to t.

We implement program map by two macros MAP-GETSET(j) and MAPJGETSIN{m) 
that define the next set to be loaded in to the hash table and the next cell of the hash table 
to be added to the set pins, respectively. Thus, macro MAP-GET-SET(j) implements the 
p predicates and macro MAP-GETSIN{in) implements the q predicates. The complete 
set of macros is as follows.

• Macro DEC-MAP declares the variables required to implement program map.

• Macro MAPJNIT initializes the variables declared by the above macro.

• Macro MAP-GETSET(j) implements the p predicates and sets j to the next set to 
be loaded into the hash table; j is set to -1 if all the sets have been allocated.

• Macro MAP-GETSIN{m) implements the q predicates and sets m to the next cell 
of the hash table to be added to the set pins\ m is set to -1 if all the cells have been 
allocated.

Recollect from program so/4 that we use boolean variables c.i.j.k to indicate that the pair 
(i, k) from set S.j has been loaded into the hash table. Because it is difficult to implement 
all these variables (the cartesian product of the three domains may be quite large), we make 
a design decision. Instead of implementing variable:c.i.j.k, we implement a single variable 
fs that counts the number of sets that have been loaded into the hash table. Then, if fs 
equals the total number of sets (ts), then all the sets have been loaded. Thus, the predicate 
fs — ts detects the predicate (Vi, j, k : (i, k) £ S.j : c.i.j.k) [1], This means that predicate 
v.m in program so/4 can be replaced by the predicate fs — ts. Also, because we implement
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the sets as a linked list that is processed sequentially, we no longer need the predicate c.i.j.k 
as a part of the predicate u.i.j.k. Since, predicates v.m and u.i.j.k are the only places that 
we use the definition of boolean variable c.i.j.k, our design decision is appropriate.

Because now we decide to display the final output, we need to detect the fixed point of 
the Unity program. For this purpose, we use another variable fb that counts the number of 
cells of the hash table that have been added to the pins. Thus, the fixed point is reached 
when fb equals the number of cells in the hash table, NC.

We use the following macros for implementing variables fs and fb. (As before, we skip 
the definition of the macros for brevity.)

• Macro DECSYNCH declares the variables used.

• Macro SYNCH JiNIT initializes the variables declared by the above macro.

• Macro INC-S increments the number of loaded sets by one.

• Macro COMPS tests if all the sets have been loaded into the hash table.

• Macro INC-C increments the number of cells added to set pins by one.

• Macro COMP JO tests if all the cells have been added to set pins.

This completes the discussion of the macros used in the C implementation. Next, we discuss 
the data structures that are used.

We use the following constants in our C program.

NP : The number of processes (actual UNIX processes).
NC : The number of cells in the hash table.
MS : The maximum number of sets in the input.
MR : The maximum number of pairs in any single set.

Data structure pin-set is used to store the natural number pairs corresponding to a 
particular input set. It is a record consisting of an “id” for the set and a set of 2-tuples. 
The set of 2-tuples is implemented as a singly-linked list each node of which of the type 
pin-entry.

struct pinset {
struct pinset *link; 
int i;
struct pinsntry {

struct pinsntry *link; 
int j; 
int k;

} *pinslements]
}
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The following are the global variables used in our program: Array S stores the given sets 
of natural number pairs, array tnum stores the total number of pairs in each set, variable 
ts stores the total number of sets, array bin stores the hash table entries, and variable 
pins stores the final result. Macro DEC-MUTEX declares the mutual exclusion variables 
associated with the shared data structures, which (as discussed in Section 7) consist of set 
pins and every cell of the hash table. Macros DEC-M AP and DECSYNCH declare 
the variables needed for program map and for synchronization of the computation phases, 
respectively.

struct global {
struct two-tuple { 

int i\ 
int fc;

} S[MS][MR]] 
int tnum[MS]j 
int ts;
struct pinset *bin[NC]; 
struct pinset *pins;
DEC-MUTEX (pins Jk);
DEC-MUTEX(binJk[NC]);
DEC-MAP;
DECSYNCH;

} *glob;

This completes the discussion on the data structures used by the C implementation. Next, 
we discuss the subroutines that are used in the implementation.

The main program of the implementation first allocates the global memory, then reads 
the input sets and computes the required result, and finally prints the output.

main()
{

glob = (struct global *) g_malloc(sizeof(struct global));
readJnputQ;
compute-pinsQ;
present-outputQ;

} /

Subroutine compute-pins corresponds to the final Unity program so/4. It first calls the sub­
routine initsection to initialize all the variables (this corresponds to the initially section), 
and then forks the required number of slave processes (subroutine slave is defined later) 
to execute the assign section of the Unity program. Subroutine initJocalsnv sets up the 
environment for dynamic memory allocation.
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compute-pins()
{
int x]

initsectionQ;
for (x = 1; a: < NP) a: + +) { 

create(slave);
}
initJocal -envQ) 
execute-assignsectionQ)

}
Subroutine slave is as follows.

slaveQ
{

initJocal -envQ] 
execute-assignsectionQ]

Subroutine initsection initializes the variables and corresponds to the initially section of 
the Unity program.

initsectionQ
{

int x;
glob—> pins = NULL]
MODEJNIT{glob-> pinsJk)]
MAPJNIT]
for (x = 0; x < NC) x + +)
{

glob—> bin[x] = NULL]
MODEJNIT(glob—> binJk[x]))

}

}

The subroutine executesssignsection corresponds to the set of assignment statements that 
is executed by each process. It corresponds to the following set of statements from the Unity 
program.

{ D i :: A.j if p.j.n)
(].( | m :: B.m if q.m.n)

Subroutine executesssignsection first calls compute-A to execute the set of assignment 
statements corresponding to the following set of Unity statements.

24



( [] j :: A.j if p.j.n)

Next, it waits until all the sets have been loaded into the hash table (as pointed out ear­
lier, macro COMPS implements the predicate v.m of the Unity program), and then calls 
computes to execute the set of assignment statements corresponding to the following set 
of Unity statements.

[] ( [] m :: B.m if q.m.n)

Finally, it calls the subroutine COMP JO in order to wait until a fixed point has been 
reached.

execute-assign sectionQ
{

compute-AQ;
COMPS;
computeSQ;
COMP-C;

}

Subroutines compute-A and computes are defined as follows. 

compute-AQ
i
int j;

MAPjGETSET(j); 
while (j!= —1)
{

procset-A(j);
INCS;
MAPjGETSET(j);

}
}

computeSQ
{
int m;
struct pin- *pinsjm; 
struct pinset *procJ)inS2Q;

MAP-GETSIN(m); 
while (m!= —1)
{

pinsjm = procJbinS2(m);
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procJ>inJ3{pinsjm)\
INCJC)
MAPJSETJBIN{m)\

} \

}

Subroutine procset-A corresponds to the assignment statement A.j of the Unity program, 
and is implemented as follows. Subroutine h implements the hashing function.

procjset-A(j) 
int j]
{

int x, hJ;
struct pinset *p\
struct pinjentry *pe\

for (a: = 0; a: < glob—> tnum[y]; ar + +)
{

hJ = h(glob—> S[.7'][a;].i);
MODEJTPTO-H(glob—> binJk[hJ]) 
for (p= glob—> bin[hJ]]

p&&(p—> i!= glob—> 5[j][a;].i); 
p = p—> link);

if (i>)
{

p— (struct pinset*) ujnalloc(sizeof(struct pinset));
p—> link = glob—> bin[hJ];
glob—> bin[hJ] = p;
p—> i = glob—> 5[j][ar].i;
p—> pinslements = NULL;

}
pe = (struct pinsntry *) u_malloc(sizeof(struct pinsntry)); 
pe—> link = p—> pinslements; 
pe—> j - j;
pe—> k = glob—> 5[j][x].i; 
p—> pinslements = pe;
MODE J! PTO PT(glob-> binJk[hJ]);

}

}

Subroutine proc-binPB corresponds to the assignment statement B.m of the Unity program, 
and is implemented as follows.
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♦ •« 

* r

procJ)inJB{pinsjrn) 
struct piruset * pins.m-,
{
struct pin-set **pl; 

if (pins-m)
{

for (pi = &cpins-m;*pl;pl = &((*pl)—> link))-,
MODE J'JTOJI{glob—> pins.lk)\
*pl = glob—> pins-, 
glob—> pins = pinsjm-,
MODEJEJTOJP{glob—> pinsJk)]

}
}

The following subroutine, proc-binJ£2, implements equation E2 in the always section of 
the Unity program.

struct pinset * procJbinJE2{m) 
int m;
{
struct pinset * pins-m, *p2, *p3; 

pinssn = NULL-, 
p2 — glob—> 6in[m]; 
while (p2)
{

if (p2—> pinslements—> link)
{

p3 = p2—> link-, 
p2—> link = pinsjm-, 
pinsjm = p2; 
p2 = p3;

}
else

p2 = p2—> link-,
}
return(pins_m);

27


