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In i t ia l Energy Density of Quark-Gluon Plasma
in Relativistic Heavy-Ion Collisions

Cheuk-Yin Wong
Oak Ridge National Laboratory, Oak Ridge, TN 37831

Recently, there is considerable interest in the central rapidity region of
highly relativist ic heavy-ion collisions.1"5 Such an interest stems from the
possibility of creating hadron matter of high energy density which may exceed
the cri t ical energy density for a phase transition between ordinary confined
matter and frie unconfined quark-gluon plasma.6 The experimental searches and
identification of the quark-gluon plasma may provide a new insight into the
question of quark confinement. Furthermore, the creation of a domain of high-
energy density may allow one to study matter under unusual conditions such as
those which exist in the history of the early universe.

The estimate of the in i t ia l energy density is quite uncertain. The in i t ia l
energy density is nonetheless an important physical quantity. I t is one of the
factors which determines whether the produced matter can undergo phase transi-
tion cr not. In Ref. 1 i t was assumed that In a central collision a nucleon in
one nucleus only makes a single collision with nucleons in the other nucleus.
The number of collisions a nucleon suffers in traversing the other nucleus has
not been properly treated. The energy density has also been estimated previous-
ly by using the color neutralization model of Brodsky et a l . 7 However, the
color neutralization model gives a central rapidity muTti'pTicity in heavy-ion
collision too low by a factor of two.1* For this reason, we wish to obtain a
better estimate of the energy density (in the central rapidity region).

As is well known, a simple Glauber-type multiple collision model can repro-
duce the total multiplicity and multiplicity plateau near the central rapidity
region to within 30%.8 The simple multiple collision model has an approximate
validity as a gross description of the reaction process. We shall adopt a semi-
empirical approach. Using the multiple collision model and the thickness func-
tion of Glauber,9 we obtain analytical functional form for all the quantities in
question. A single parameter, rrms, is adjusted to f i t the experimental central
rapidity multiplicity data. The semi-empirical results provide a useful tool to
extrapolate to the unknown central rapidity region of heavy-ion collisions.

In the multiple collision model, a nucleon in one nucleus makes many in-
elastic collisions with nucleons in the other nucleus, the probability of co l l i -
sion being given by the thickness function and the total nucleon-nucleon in-
elastic cross section. A nucleon may change its identity during its passagae
through the other nucleus, but its baryon number remains unchanged. Each
nucleon-nucleon or baryon-baryon collision degrades the energies and momenta of
the colliding baryons and produces particles outside the nucleus10 in accordance
with the experimental nucleon-nucleon particle production data. Thus, the in i -
t ia l multiplicity distribution shortly after the two nuclei interpenetrate each
other comes from nucleon-nucleon collisions in an additive manner. For a given
configuration, the degree of this additivity is related to the number of
nucleon-nucleon collisions n(b) when the two nuclei pass through each other.



We discuss f i r s t the crudest approximation in which one takes the multipli-
city distribution to be the same for each nucleon-nucleon or baryon-baryon
col l is ion. Then, the in i t ia l multiplicity distribution for the collision of
nuclei A and B at an impact parameter b is related to the multiplicity distribu-
tion for nucleon-nucleon collision dN/dy for the same nucleon-nucleon center-of-
mass energy by

(1)

When we ayerage over the impact parameters, the average multiplicity distribu-
tion- is given by
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where o-jn is the nucleon-nucleon inelastic cross section and â B is the nucleus
nucleus inelastic cross section.

With a Gaussian form of the thickness function, we obtain the following
functional form for the multiplicity distribution

where
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Here, r ^ j is the root-mean-square radius parameter and ep = 0.68 fm is the
standard deviation of the nucleon-nucleon thickness function. The functional
form of the ratio of the average multiplicity distributions is then
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I f we mindlessly apply Eqs. (3) and (4) by using the root-mean-squared
radius parameter as determined by electron scattering, the theoretical results
consistently exceed the experimental values. In order to correct for this



systematic discrepancy, we shall adopt a semi-empirical approach. This consists
of assuming the functional form of Eqs. (3) and (4) with its only parameter r r m s
so chosen as to fit the available central rapidity multiplicity data. We found
that rrrac = 1.15 fm gives good fits to the experimental central multiplicity
data 1 1"" of pa, dd, aa, Si+Ag, and Ca+C (Table I). The results of Eqs. (3) and
(4) can be used to discuss the collisions of other nuclei.

Using the relationship between dN /dy
and the energy density e as given by Ref. 1,
we can calculate the energy density in the
central rapidity region. The energy density
e(b) in the collision of nuclei A and B with
an impact parameter b is given by

Table I
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Nuclei

A

P

P

d

a

SI

Ca

B

P

a

d

a

Ag

C

[dNAB/dy)/(dN/«y)

exp

1

1.18 ± 0.07

1.4 * 0.10

1.74 ± 0.09

~ 95

~ 25

Theory

1

1.19

1.42

1,71

96.0

27.1

where T(b) is the normalized thickness func-
t ion and can be approximated by

T(b) = exp[-b2/202]/27rg2,

,jtf(b) is the transverse overlap area of the two nuclei , and e0 is a bombarding-
energy-dependent unit of energy density. At the time of 1 fm/c after the nuclei
col l ide with each other, particles are produced. The energy density unit e0 at
that time is 0.84 GeV/fm3 for /s/A = 11.8 GeV, 1.14 GeV/fm3 for /s/A = 31.4 GeV,
and 1.80 GeV/fm3 for /s/A = 270 GeV. We calculate the i n i t i a l energy density
for head-on coll isions of two equal nuclei. In Fig. 1 we show this quantity as
a function of A. The numerical result can be parameterized as

0.709

Figure 1

= 0.10 A

which goes approximately as A2/3, as
expected from Eq. (5). We also cal-
culate the energy density in units
of e0 as a function of the impact
parameter for the collision of 2 3 8U
on 2 3 8U. The results are shown in
Fig. 2. The energy density is about
5 units of e0. It oscillates as a
function of the impact parameter
with an amplitude of about 0.5 e0.
Our energy density estimates are
greater than those of the previous
estimates1'1* as the detailed treat-
ments are different. At an incident
energy of /s/A = 30 GeV per nucleon,



th is corresponds to an energy density of about 5 GeV/fm3 which exceeds the
energy density of 2 GeV/fm3 estimated to be the c r i t i ca l energy density for a
phase t rans i t ion . 4
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