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Abstract

Procedures for identi~ing patterns in scatterplots generated in Monte Carlo sensitivity analyses are described and

illustrated. These procedures attempt to detect increasingly complex patterns in scatterplots and involve the

identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank

correlation coefficients, (iii) trends in central tendency as defined by means, medians and the IQuskal-Wallis

statistic, (iv) trends in variability as defined by variances “and interquartile ranges, and (v) deviations from

randomness as defined by the chi-square statistic. A sequence of example analyses with a large model for two-phase

fluid flow illustrates how the individual procedures can differ in the variables that they identify as having effects on

particular model outcomes. The example analyses indicate that the use of a sequence of procedures is a good

analysis strategy and provides some assurance that an important effect is not overlooked.
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1. Introduction

‘ Sensitivity analysis is now widely recognized as an essential component of studies based on mathematical

modeling (e.g., Refs. 1-6). Here, sensitivity analysis refers to the determination of the effects of uncertain model

inputs on model predictions. A number of methods have been proposed for sensitivity analysis, including differential

analysis, response surface methodologies, Monte Carlo techniques, and the Fourier amplitude sensitivity test.7.g.g

Monte Carlo techniques probably constitute the most widely used approach to sensitivity analysis due to their

flexibility, ease of implementation, and conceptual simplicity. When viewed abstractly, a Monte Carlo sensitivity

study invoIves a vector

x= [xl, x~, ..-, XnJ] (1)

of uncertain model inputs, where each xi is an uncertain input and n] is the number of such inputs, and a vector

of model predictions, where f is a function used to represent the model under consideration. each Yj is an outcome of

evaluating the model with the input X, and nO is the number of such outcomes. Distributions

Di, i= 1,2, . . ..nI. (3)

are used to characterize the uncertainty in each input xi, where Di is the distribution assigned to xi. Correlations and

other relationships between the xi are also possible.

A sampIing procedure such as simple random sampling or Latin hypercube samplingio is used to generate a

sample

xk= [xlk, x2k, . . ...rnl.k]. k= 1, 2, . . .. nS, (4)

from the population of x’s with the distributions in Eq. (3), where n.S is the size of the sample. Evaluation of the

model under consideration with the sample elements Xkin Eq. (4) then creates a sequence of results of the form

Y~=f(x~)= [yi~.y~, . ...yno.~], k= 1.2. . . ..n.S.

where each yjk is a particular outcome of evaluating the model with Xk. The pairs

(5)

(XI. y~), k = 1,2, . . ..nS.

1

(6)
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constim~e a mapping from model input Xkto model output y~ that can be explored with various sensitivity analysis

techniques to determine how the individual analysis inputs contained in X (i.e., the xi’s) affect the individud analysis

outcomes contained in y (i.e., the yj’s). Analysis possibilities include regression analysis, correlation analysis. and

examination of scatterplots.8,9,11-17

Although techniques based on regression analysis and correlation analysis are often successful in identifying the

relationships between model input and output embedded in the mapping in Eq. (6), these techniques may fail to

identi~ well-defined, but nonlinear, relationships. 7,1415,1* If the underlying relationship is nonlinear but monotonic,

then a rank transformation will linearize the relationship and result in successful sensitivity analyses with regression-

btied techniques.*9 However, the underlying relationship can be too complex to be linearized in any simple manner.

In these cases; sensitivity anaiysis techniques are needed that can identi@ patterns in the mapping in Eq. (6) without

recourse to specitilzed prespecified relationships (e.g., linear or monotonic). The ultimate test of whether or not

there is a relationship between art input variable xi and an output variable yj lies in determining whether or not the

points

(Xik, ~jk). k = 1,2, . . .. nS, (7)

constitute a random pattern conditional on the marginal distributions for xi and y} This paper will investigate the

implications from a sensitivity analysis perspective of a sequence of tests (i.e., hypotheses) for the relationship

between .~iand Yj. These hypotheses will run from very specific (i.e., a linear relationship) to quite general (i.e., a

nonrandom pattern).

The paper is organized as follows. Example simulation results that wiIl be used to motivate and illustrate the

sensitivity analysis procedures are presented in Sect. 2. Then, the analysis procedures are summarized in Sects. 3-7.

Specifically, the following five relationships are proposed as the basis for a sequence of sensitivity tests: (i) Linear

relationship: E(yLr) = f30+ ~1 x, where the subscripts have been dropped from Yj and xi for notational simplicity

(Sect. 3); (ii) Monotonic relation: ~r(y)lfix)] = y. + yl r(x), where r(x) and r(y) denote the ranks of x and y,

respectively (Sect. 4); (iii) Location (central tendency) of y depends on x (Sect. 5); (iv) Variability (spread) of y

depends on x (Sect. 6); and (v) y and x are statistically independent: P(YIX)= p(y), where p denotes the density

function for y (Sect. 7). Next, the ranking of variabIe importance and the use of the Iman and Conover20 top-down

correlation procedure to compare variable rankings are discussed in Sects. 8 and 9. Then, examples of the indicated

procedures are presented in Sect. 10, and a concluding discussion is given in Sect. 11. A following article discusses

Type I and Type 11errors and the robustness of analysis outcomes for independent samples.z[
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2. Test Problems

The test problems use results obtained in the 1996 performance assessment (PA) for the Waste Isolation Pilot

Plant (WIPP),]8 which was can-ied out to support the U.S. Department of Energy’s (DOE’s) application to the U.S.

Environmental Protection Agency (EPA) for the certification of the W_IPPfor the disposal of transuranic waste.zz In

particular, the test problems involve resuhs (Table’1 }calculated by the BRAGFLO model (Sect. 4.2, Ref. 18), which

was used to represent two phase (i.e., gas and brine) how in the vicinity of the repository. The BRAGFLO model

uses finite difference procedures (Fig. 1) to numerically solve a system of nonlinew partial differential equations

(@s. 4.2.1-4.2.6, Ref. 18) and requires a significant amount of computational resources (e.g., 4 to 5 hours of CPU

time on a VAX Alpha with VMS for a single model evaluation).

The 1996 WIPP PA used Latin hypercube sampling to propagate the effects of subjective (i.e., epis~emic)

uncertainty through the analysis. 1* As a result of guidance given by the EPA,23 the PA used a Latin hypercube

sample (LHS) of size 300 (Sect. 6.3, Ref. 18) from 75 uncertain variables, of which only 27 were used as inputs to

the BRAGFLO model in the calculation of the dependent variables in Table 1 (Table 2). To provide a test of the

robustness of the uncertainty propagation procedures, the indicated LHS was actually generated as 3 independent

sampIes of size 100 each (Sect. 6.4, Ref. 18). Each of these samples was generated with use of the Iman and

74’s to enforce specified correlations between three pairs of variables (theConover restricted pairing technique- ‘-

‘correlated pairs (ANHCOMP, ANHPRl@ and (HALCOMP, HALPRM) are used in the calculation of the results in

Table 1 and are described in Table 2) and also to ensure that

The outcome of this sampling was 3 LHSS of size 100 each:

Rl: Xlk = [Xlkl, Xl~~,. . ..x1k75]. k= 1,2, . . .. 100

R2: X2k = [X2kl,X2k~,. . ..xU75]. k= 1>2, . . .. 100

R3: x3k = [x3k1,x3k2, . . ..x3k75]. k= 1,2, . ..> 100.

uncorreIated variables had correlations close to zero.

(8)

(9)

(lo)

where x = [Xl, X2, . . .. X75] corresponds to the 75 uncertain variables indicated in Table 2 and RI, R2 and R3

designate the three replicated (i.e., independently generated) LHSS.

Once the LHSS in Eqs. (8) - (10) were generated, BRAGFLO calculations were performed for a variety of cases

(Table 6.9.1, Ref. 18). The two cases considered here are (i) undisturbed (i.e., EO) conditions, and (ii) a drilling

intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in the underlying Castile

Formation (i.e., E2 conditions or, in the more detailed descriptions given in Ref. 18, E2 conditions with the intrusion

occurring at 1000 yr). Results calculated by BRAGFLO are time-dependent. The time-dependent behavior of the

results is shown in Fig. 2 for replicate RI. For simplicity, the technique comparisons will use the values of the

variables at the end points of the individual curves in Fig. 2 (i.e., at 10,000 yr). However, nothing prevents analyses
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at other times and, in general, sensitivity analyses of time-dependent variables should also be time-dependent

(Chapts. 7,8, Ref. 18).

For perspective and motivation, regression-based results for the variables in Table 1 (obtained in Ref. 18 with

the STEP program26) are presented in Table 3 for both raw and rank-transformed data. In Table 3, a variable was

required to be significant at an u-value of 0.02 to e~er a regression model and to remain significant at an a-value of\

0.05 to be retained in a regression model; although there were no cases of a variable entering and then being dropped

from a regression model. As will be seen, the rank-transformation is often an effective procedure for improving the

resolution of regression-based sensitivity anaiyses. However, as will also be seen, nonmonotonic relationships can

result in patterns that cannot be effectively analyzed with rank-transformed data. It is the need to be able to identify

such patterns that forms the motivation for this study.

The analyses in Table 3 for repository pressure under undisturbed conditions (EO:WAS_PRE.S) with raw and

rank-transformed data are reasonably effective, with (1) R2 values of 0.82 and 0.81 for raw and rank-transformed

data, (2) the same variables selected in both anafyses, and (3) only one minor variation in the order of variable

selection (i.e., the order of selection of the last two variables in the regression models is reversed). Scatterplots for

the first four variables selected in the regression analyses for EO:WAS_PRES are presented in Fig. 3. The

scatterplots for the first two variables selected in the regression analysis, WMICDFLG and HALPOR, display well-

defined patterns. The pattern for the third variable, WGRCOR, is weaker but still detectable. The founth variable,

ANHPRM, changes the R2 values for raw and rank-transformed data by 0.02 and 0.01, respectively, and produces a

scatterplot that displays little discernible pattern.

The analyses for cumulative brine inflow from all anhydrite marker beds to the repository under undisturbed

conditions (EO:BR4ALJC) are interesting in that the regression with raw data is not particularly effective (i.e., R2 =

0.50 at final step of analysis), whereas the regression with rank-transformed data is reasonably successful in

accounting for the observed uncertainty (i.e., R2 = 0.87). Again, examination of scatterplots shows well-defined

patterns for the first two variables, WMICDFLG and ANHPRM, selected in both regression analyses (Fig. 4).

Scatterplots for the next two variables, HALPOR and WGRCOR, selected in the regression analysis with rank-

transformed data are also given in Fig. 4. The negative effects of these variables, as indicated by the signs of their

standardized regression coefficients, are barely discernible in their scatterplots, with these small effects being

consistent with observed changes in Rz values of 0.05 and 0.02 with the’ entry of HALPOR and WGRCOR,

respectively, into the regression model. In this example, the regression anaIyses with both raw and rank-transformed

data have identified the two dominant variables, WMIC’DFLG and ANHPRM. However, the analysis with raw data

in isolation would not be very credible due to its low R2 value.

The regression analysis with raw data for brine saturation in the lower waste panel after an E2 intrusion

(E2: WAS_SATB) is quite poor, with the final regression model containing 6 variables but having an R2 value of ordy
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0.33. The regression analysis with rank-transformed data does somewhat better and results in a final regression

model with 6 variables and an I?2 value of 0.61. However, an R2 value of 0.61 is not particularly reassuring with

respect to whether or not all the variables giving ri$e to the observed uncertainty in E2: WAS_SA TB have been

identified. Additional insights can be obtained by examining scatterplots (Fig. 5). The first two variables identified

in the re=~ession analysis with rank-transformed data, BHPRM and WRGSSAT, show well-defined, and interacting,

patterns. In particular, BHPRM is the primary detetinant of whether or not a high vahte for E2:WAS_SATB occurs:

however, given that a high value for E2: WAS_SATB occurs, this value is almost completely determined by

WRGSSAT. Despite the well-defined patterns involving BHPRM and WRGSSAT, the regression analysis with raw

data results in incremental R2 values of only 0.12 and 0.02 for these two variables, and the regression analysis with

rank-uansforrned data results in incremental R2 values of only 0.36 and 0.16. The next two variables selected in the

regression analysis with rank-transformed data are ANHPRM and HALPOR. The scatterplot plots for these variables

do not show particularly strong patterns, with a stronger pattern actually being shown for the fourth-selected variable,

HALPOR, than for the third-selected variable, ANHPRM. For E2: WAS_SATB, the two dominant variables, BHPRA4

and WRGSSAT, appear in the regression analyses for both raw and rank-transformed data. However, the R2 values

associated with these regressions (i.e., 0.33 and 0.61 ) provide little assurance that the dominant variables have been

identified. It is only after examination of the associated scatterplots and the development of a physical explanation

for the patterns appearing in these plots that some degee of comfort emerges that the dominant variables have

indeed been identified.

The final regressions in Table 3 are for pressure in the lower waste panel after an E2 intrusion (E2: WAS_PRES).

The regression analyses with both raw and rank-transformed data perform very poorly and result in final regression

models with R2 values of only 0.22 and 0.20, respectively. Both regression models select HALPRM, ANHPRM and

HALPOR, with the scatterplots for these three variables appearing in Fig. 6. Examination of these scatterplots does

not reveal what is giving rise to the observed uncertainty in E2: WAS_PRES. In particular, this uncertainty does not

appear to arise from either HALPRM, ANHPRM or HALPOR individually or from some form of interaction between

these variabIes. At this point in the analysis reported in Ref. 18, a systematic search was made through the

scatterplots for E2; WAS_PRES and the remaining variables in Table 2, with W search revealing that the uncertainty

in E2: WAS_PRES is dominated by BHPRM (Fig. 6d). This is disconcerting because the ciearly dominant variable

was n“o[even identified in the regression with raw or rank-transformed data. In contrast, the analyses for

E2: WAS SATB included the dominant variables in the re~ession models even though the R2 values were low. AS an

aside, the interesting pattern involving E2: WAS_PRES and BHPRM in Fig. 6d results from two phase flow in the

boreho!e connecting the waste panel with overlying formations, with gas typically flowing up the borehole and brine

typically flowing down the borehole. Is

As should be apparent from the regressions in Table 3 and the associated scatterplots in Figs. 3-6, the

examination of scatterplots is an important part of sampling-based sensitivity analysis and can reveal patterns that are
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missed by regression-based procedures. The variables in Table I will be used to illustrate a number of procedures

for the identification of patterns in scatterpiots. These variables were selected to illustrate pattern identification

procedures because they constitute a spectrum of analysis possibilities. In particular, regression analysis with both

raw and rank-transformed data performs well for EO:WAS_PRE.X regression analysis with rank-transformed, but not

raw, data performs well for EO:ERAALIC, regression models with neither raw nor rank-transformed data perform
..

well for E2: WAS_SATB but both models still includ~ the two dominant variables; and regression analysis with raw

and rank-transformed data fails to identify the dominant variabie for E2: WAS_PRES.

3. Linear Relation: y = PO+ @

The coet%cients POand ~1 in a first-order polynomial can be estimated with the well-known ordinary least
. .

squares procedure. Specifically, ~. and & are given by

p= (xTx)-’xTy,

where

and the superscript T denotes matrix transpose.27 The estimated linear regression model is

j+o+p,x,

(11)

. ,.
with the coefficients PO and f$ deriving from the sampled and calculated values contained in the pairs (x~, y~), k =

1?, _, . . .. nS, as indicated in Eq. (1 1).

The linear correlation coefficient pn, which is also called the Pearson correlation coefficient, provides the most

commonly used measure to assess the strength of the linear relationship between -r and y in Eq. (12) and is defined by

where on denotes the covariance between x and y, and CTXand OYdenote the standard deviation of x and y,

respectively: In turn, pn is estima[ed by

Pm=Z(xk-’)(’k-’)kk’d-w’k’)-’(14)
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, *

where

nS nS

?= zxk/ns, ~= zYk i)&

k=l k=]

The quantity FV is often called the sample correlation coefficient.

.,

The reason why pw, and hence ~q, provides a measure of the strength of the linear relationship between x and

y is not immediately appzwent from Eqs. (13) and (14). Rather, this reason is perhaps best understood in the context

of the regression model in Eq. (12) with both x and y standardized to variables with a mean of O and a standard

where

[

/s

1
1/2

&x =
z

(xk -Z)2/(nS-1) ,tiy =

k=l

nS

x(Yk- y)2/ (n~- 1)
k=l

Then Eq. (11) yields the regression model

(15)

(16)

Thus, ~n is the standardized regression coefficient relating x to y. AS such, ~fi characterizes the effect that

changing x by a fixed fraction of its standard deviation will have on y, with this effect being measured relative to the

standard deviation of y.

In addition, the correlation coefficient pm, and hence ~m, provides a measure of the fraction of the variance of

y that can be accounted for by x. Again, this is best seen in the context of the regression model in Eq. (12), for which

the following identity can be estab1ished:27

(17)

The summation
x

~(jk - 7)2 represents the part of the variance of y that can be accounted for by j = do + ~lx.

with the result that
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R m

‘2=%’’/s’- (18)

k=l k=l

represents the fraction of the variance of y accounted for by x in a linear approximation to y. The preceding quantity

is called the R2 value or the coefilcient of determination for x and y. An R2 value close to 1 indicates that -r can

account for most of the uncertainty in y; in conwast; an R2 value close to O indicates that a linear relationship

involving x accounts for little of the uncertainty in y.

Iike the standardized regression coefficient, the R2 value cm be expressed in terns of bv. The vector equality

in Eq. (11) leads to

/
& = jj% ‘S)()’k ‘~) :(xk ‘Y)* (19)

k=i k=l

and

.-
Po = 7- b

Given the preceding representations for $0 and 81, some simple algebraic manipulations lead to

%-y)’=[z(xk-z)(’’k-y)l%xk-x)’

Hence, from Eqs. (18) and (21),

(21)

R2=[~(x-~)(y-J)[/[~(xk-~)‘ ’22)

Thus, the square of the sample correlation coefficient is equal to the fraction of the variance of y that can be

accounted for by j as defined in Eq. (12), and hence by x under a linear transformation.

The preceding has given two interpretations of the correlation coefficient pm First, the sample correlation

coefficient ~m can be viewed as the estimated regression coefficient ~1 in Eq. (12) when x and y are standardized

to mean Oand standard deviation 1. Second, ~m can be viewed as the square root of the RI value for the regession

model in Eq. (12) (i.e., ~~. = R2 ). The correlation coefficient can also be viewed as a parameter in a joint normal

distribution involving x and y (see Sect. 2.13, Ref. 28); however, this interpretation is not as intuitively appealing as
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the two involving the regression model in Eq. (12). Moreover, x and y typically do not have normal distributions in

sampling-based sensitivity analyses (e.g., see indicated distributions in Table 2).

When ~V is close to 1 or -1, an almost linear relationship exists between x and y (see definition of R2 = ~~, in

Eq. (18)). However, large changes in x may still result in small changes in y if the regression coefficient & in Eq.

(12) is small. Indeed, the magnitude I~11of PI is nota very informative quantity because 1~11depends on the units

in which x and y are expressed (e.g., changing the units on x from millimeters to kilometers will have a large effect
.

on If$ I but no effect on the underlying physicai relationships). For thk reason, x and y are often standardized to
.

mean O and standard deviation 1. As previously discussed, this standardization results in the equalhy ~1 = ~V and

also in & characterizing changes in y normfllzed to &y relative to changes in x normalized to 5X.

Although ~~ = 1 implies a strong linear dependence between x and y, ~v = Ocannot be used to infer that no

relationship exists between x and y (i.e., that x and y are independent). In particular, zero correlations can occur in

the presence of a nonmonotonic relationship between x and y. For example, p~ = O for y = 1- X2with -1 s x < I

and also for y = cos x with O< x S 2x. A more interesting example is given by the scatterplot for BHPRM in Fig. 6d.

Thus, a linear relationship can be assumed to exist between x and y if IPWI is close to 1. Further, linear relationships

of lesser strength (i.e., smaller R2 values) exist for smaller values of 10W1. For I~W1+O, the implication is that no

linear relationship exists between x and y.

A significance test can be used to indicate if 6V appears to be different from O. For example,

t =jg(nS-2) 1/2/ ~1_p2J/2

has a t-distribution with nS–2 degrees of freedom when x, y are uncorrelated and have a bivariate normal distribution

(p. 631, Ref. 29). Further,

Z=;vm (24)

is distributed approximately normally with mean O and standard deviation 1 when x and y are uncorrelated, x and y

have enough convergent moments (i.e., the tails of their distributions die off sut%ciendy rapidly), and nS is large

(typically > 500) (p.631, Ref. 29). Then,

prob(lrl>ldvl) =etic(lbvlfiffi), (25)

where prd(l d A ~~ I) is the probability that random variation would produce a value r for ~g larger in absolute

value than the observed value PW and eglc is the complementary error function (i.e., erc(x)= (2 / K)J exp(–tzxt)

x

(p. 631, Ref. 29). Significance results obtained with r in Eq. (23) converge to those obtained with z in Eq. (24) as nS
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increases. However, as -xand y are unlikely to have normal distributions in real analysis problems, results obtained

with r and small values of m.$should simply be viewed as one form of guidance as to whether or not a linear

relationship actually exists between x and y.

If several xi have scatterplots’ that appear to have nonzero values for 6XiY,then the relative importance of these

Xican be ordered by the absolute values of ~XiY. ~Is $ equivalent to ordering the xi on the basis of the strength of

the linear relationship associated with the pairs (Xi~,yk), k = 1,2, . . .. nS. Tlis is also equivalent to ordering the x on

the basis of p-values obtained from the distributions associated with Eq. (23) or (24), where the p-value designates

the probability that a value for ~W will be obtained that exceeds the observed value for ~m in absolute vahte (i.e.,

pro;(l ;I>l~m.I) in Eq. (25)). Actually, the ordering is done on the complements of the p-values because smaller p-. .

values are associated with larger values for I~Xi},l.

Standardized multipIe regression coefficients are another popular way of ranking variable importance. 16.30-33

However, when the xi are independent, the standardized multiple re~ession coefficient for xi is equal to ~XiYand so

the two rankings are identical. Specifically, the multiple regression model relating y to the xi has the form

(26)

where ~ has the same functional form as in Eq. (11) withz’

If the xik’s have been selected so that the rows of X are orthogonal (i.e., so that X% is a diagonal matrix with

diagonal elements do, dl, .. .. dnl, which is equivalent to the individual xi being independent and thus having sample

correlations of O), then

$: ()(~)()-l)(~y

=

and so

:11::
‘doo---lllll.-. l
o d* --- 0 xl 1 X21 ..- xn~,l

.

0 0 ..- ‘nl ] ‘lxlnl ‘W . . . ‘nSnl

‘Y1
~2

,YnS‘1
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nS nS

@,=$ xik Yk / dk =
z /z

‘ik ~k x:.

k=l k=l k=l

(28)

Thus, when Xiand y are standardized to mean Oand standard deviation 1 (see Eq. (15)),

:1 -Zi)(yk-mxik-zi)’r

ji = ~(Xj~

s
;/~

.n

~1(Yk- 7)2 =pxiy
k=l

(29)

.
and the standardized multiple regression coefficient pi and the (sample) correlation coefficient ~XiYare equal.

Partial correlation coei%cients are another popular way of ranking variable importance.lb, 33’34 However, the

partial correlation coefficient is just a special form of the sample correlation coefficient. In particular, if least

squares techniques are used to determine the coefficients in

●

(30)
i= I i= 1
i#j i# j

then the partial correlation coefficient ~XjY between xj and y is the sample cot-reIation ~;j~ determined for the pairs

(Xjk ‘ij~,~k–~k ), k= 1,2, . . . . ns. ThUS, ~xjJ is the sample correlation between xj and Y after a correction has

been made for the linear effects of the other xi.

“

The following relationship exists between jxjy and the standardized regression coefficient ~j in Eq. (29):

(31)

where R; is the R2 value that results from regressing xj on y and the ~i, i = 1, 2, .. .. n] with i #j, and R; is the R2

value that results from regressing y on the xi, r’= 1, 2, . . .. nl (Eq. (1), Ref. 35). If the xi are orthogonal, then

with the first equality following from Eq. (111-74)of Ref. 36, and the second and third equalities following from Eqs.

(22) and (~9) ~u5,
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~x’y=’’[(’-’[)’[’-$o’xry[(’
Because of the inequality

b(l- b2)1’2>a(l -a2)1’2 .. (34)

for a~ + b~ <1 and a < b (F@ 7), an ordering of variable importance based on I~XjYl, 1~’1 or 1~XjYl produces the

,.
same results when the xi are orthogonal; fin-ther, the values for ~j and ~XjY will be the same and generally different

from jxjy . - -

Due to the conceptual simplicity of the sample correlation coefficient ~~, and its close relationship to

standardized regression coefficients and partial correlation coefficients in the presence of orthogonal values for the

Xi’s,this study will use ~n to assess the strength of the linear relationship between x and y. In the presence of small.

deviations from orthogonality (i.e., the existence of small correlations between the Xi), the three measures will still

give similar results. However, in the presence of large deviations from orthogonality, the three measures can give

quite different, and possibly misleading, indications of the effects of individual variables.

As noted earlier, ~~ * O should not be interpreted to mean that no relationship exists between x and y. For

example,

(33)

(35)

results in a low, but nonzero, value for pm even though there is no noise in the relationship between x and y. In this

case, a logarithmic transformation will linearize the relationship between x and y. However, such transformations

may not exist and, given that they do exist, identifying them is not always easy. For example, logarithmic

transformations are not applicable when some of the y values are zero, which is a fairly common analysis situation.

One possible transformation of fairly broad applicability is the rank transformation, which is discussed in Sect. 4.

A possible complication in the use of 6= to identify the existence of a relationship between x and y can be the

existence of interactions with other variables. For example, the relationship between y, xl, and X2might be of the

form

Y=liJ +(.$x,+Pzx, +p,,x,~,, (36)

which can also be expressed as
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As long as the variation in xl is large reIative to the variation in 1- (912/131)x2or the variation in -rZis Iarge relative

to the variation in I- (~12/&)xl, the fact that xl Or.xz does indeed have a significant effect on y should be idemified

by the corresponding valuefor 6V. Thus, it is not ‘considered necessary to specifically consider interaction effects

to identi~ important variables, although it is certainly possible to calcuIate ~g with x = x~j if desired. Further. use

of contingency tables to be discussed later (Sect. 7) allows the identification of nonlinear effects without the

assumption of a specific model form.

4. Monotonic Relation: r~) = y. + ylr(y)

When the relationship between x and y is notdinear but monotonic, the relationship can be linearized by a rank

transformation. Specifically, the pairs (Xk,y~) are transfomned into a new sequence of pairs

[r(xL ), r(yk )], k = 1,2, . . ..n.S. (37)

where (i) [he smallest value of xk is assigned a rank of 1 (i.e., r(xk) = 1), the next largest value of x~ is assigned a rank

of 2 (i.e., ~xk) = 2), and so up to the iargest value of xk, which is assigned a rank of ns (i.e., r(xk) = n$, (ii) averaged

ranks are assigned to equal values of xk (e.g., if Xj = Xk, xl * Xj for 1*j, k, and P -1 observations have values less

than x} then fixj) = r(xk) = (p + p + 1)/2), and (iii) the assignment of the ranks for Y(i.e., <~k)) is accomplished in the

same manner as the assignment of ranks for x.

Rank-transformed data can be analyzed in exactly the same manner as discussed in Sect. 3 for untransformed

data. In particular, the strength of the linear relationship between the rank-transformed variables in Eq. (37) can be

measured with Spearman’s rank correlation coefficient for x and y, ~m, which is simply Pearson’s correlation

coefficient in Eq. (14) calculated on ranks. The test for zero rank correlation uses a table of quantiles for l&. I

(e.g., Table A]fj, Ref. 37). For ns ~ 30,

(38)

approximately follows the normal distribution for qXY= O (p. 456, Ref. 37), which is very similar to’ the

approximation to the distribution indicated for ~V in Eq. (24). Thus, similarly to Eq. (25) for ~n,,

prob(l rlX finl) = e&c( (39)



where prob(bi > tqm,l) is the probability that random variation would produce a value r for qn larger in absolute

value than the observed value fin.

Regression coefficients and partial correlation coefficients can also be calculated with rank-transformed data as

discussed in Sect. 3.]6,33,3SA] As an aside, the fomn of the regression model after y and the xi’s have been
. .

standardized to mean Oand standard deviation 1 is’ ...

nI

(Y-7)/6y = ZP (“i6~i /6y)(Xi ‘X’i)/6~i ,

i=l

.

(40)

where ~i ii the regression coefficient obtained with the original (i.e., nonstandardized) values for y and the xi’s.

When rank-transformed data are being used and there are no ties in the y or xi values, then &xi = 5Y and so the

standardized regression coet%cient (i.e., ~i~xi /~”) is the same as the original, nonstandardized coefficient (i.e.,

pi). Thus, standardization is automatically accomplished by the use of rank-transfoxmed data as long as there are no

ties in they and x values.

Closely related to Spearrnan’s coefficient is Kendall’s ~ (pp. 255-260, Ref. 37). Because both coefficients give

nearly identical significance results, this alternative for identifying monotonic relationships is considered only

briefly. Kendall’s ~ measures the degree of concordance in a set of observations of the form in Eq, (17). The pairs

(-rPYr)and (X5,y.,) are said to be concordant if both members of one pair are less than the corresponding members of

the other pair (i.e., Xr< x~,yr < y$ or Xr> x~,yr > y~). Further, the pairs are said to be discordant if the two members

in one pair differ in opposite directions from the corresponding members in the other pair (i.e., Xr< x~,Yr> y~or Xr>

XJ,yr < YJ). Kendall’s ‘ris estimated by

?n=( Nc-N~)/[ns(ns- 1)/2], (41)

where NCis the number of concordant pairs of observations, Nd is the number of discordant pairs of observations,

and nS(nS- 1)/2 is the total number of pairs {(XPyr), (x~,y$)} of observations. The statistic ~n, has a distribution

that is adequately approximated by the normal distribution for sample sizes as small as nS = 8. In contrast, larger

samples (e.g., n.S2 30) are required for fi~, to approach a normal distribution; fortunately, Monte Carlo sensitivity

studies typically use sample sizes larger than n.S = 30. Because estimates for Spearman’s coefficient fin, and

Kendall’s ?V produce similar rankings of monotonicity and ~ ~, is more intuitively appealing because of its close

relationship to Pearson’s coefficient pm, this presentation will use fin to identify nonlinear but monotonic

relationships in scatterplots.
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5. Location of y Dependent on x

Tests for two distinct types of patterns in scatterplots were considered in Sects. 3 and 4, with the Pearson

correlation coefilcient used to identify linear patterns (Sect. 3) and the Spearrnan correlation coefficient used to

identi~ nonlinear but monotonic patterns (Sect. 4). This section reviews tests for a broader class of patterns.

Specifically, patterns are sought where some measure of central tendency for y changes with changing values for x..,
Lhear and monotonic patterns have this characteristic jhowever, decidedly nonlinear and nonmonotonic patterns can

also have this characteristic (e.g., see the scatterplot for BHPRM in Fig. 6).

The approach taken is to divide the values for x (i.e., Xk,k = 1, 2, . . .. nS) into nX classes and then to test to

detern&e if y has a common measure of central tendency across these classes. Thus, x must be defined on at least a

nominal scrde to permit the definition of the necessary classes. Classic measures of centraltendency are the mean or

expected value, E(j), and the median, yo.5. The me~ is a more wideIy used measure of central tendency but the

median is less sensitive to outiiers (e.g., see the Princeton robustness study reported in Ref. 43). .

Most of the x’s under consideration are actually defined on an interval scale (see Table 2), and the required

classes are obtained by subdividing the range of x into a seq’uence of mutualIy exclusive and exhaustive subintervals

containing equal numbers of sampled values (Fig. 8). A few x’s are discrete with unequal probabilities for the

individual x values (e.g., see WMICDFLG in Fig. 3a); for these variables, individual classes are defined for each of

the distinct values. However, the optimum definition of the classes is not at all apparent, and in practice, some

experimentation may be required to determine an appropriate division of the x values into classes.

For a given variable x and its nX associated classes, the following statistics will be used to identify apparent

deviations from a common central tendency: (i) the ANOVA F statistic for equal means, which requires an interval

scale for y (Sect. 5.1), (ii) the Kruskal-Wallis test for common locations, which requires an ordinal scale for y (Sect.

5.2), and (iii) the chi-square test for equal medians, which also requires an ordinal scale for y (Sect. 5.3),

5.1 Common Means: ANOVA F Statistic

For notational convenience, let g, q = 1, 2, . . .. nX, designate the individual classes into which the values of x

have been divided; let ~ designate the set such that ‘k = .+ only if xk belongs to class q; and let nXq equal the

number of elements contained in ~ (i.e., the number of xk’s associated with class q). The ANOVA F test is

commonly used to test for equivalence of conditional means:a



F(nx-1,ns-?tx) = [Snxqy’-ns+nx-’)
[%-:fiq’;l:ns-nx;

where nX - 1 and fi - nX are the number of degrees of freedom for the numerator and denominator, respectively.

Fq = z kExq
yk i nxq, and J is defined in conjunction with Eq. (14).

If they vah.tesconditional on each class of x values are normally distributed with equal expected values, then the

statistic F (nX -1, nS - nx) in Eq. (42) follows an F distribution with (nX - 1, nS - nx’) degrees of freedom. This is

the most powerful test for equality of means given that the indicated normality assumptions hold.a The probability

prob(F > f? ~1, ~2 ) of exceeding an F statistic of value ~ calculated with (~1, q2) degrees of freedom can then be

estimated by

(43)

where I, (a, b) designates the incomplete beta function (p. 222, Ref. 29).

Unfortunately, the y values for each class may not foilow a normal distribution. Various goodness of fit tests

(e.g., chi-square, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling) can be used to test for normality of

the y values (pp. 94-95, Ref. 45; Ref. 46). However, the number of observations per class (e.g., 30 or 60 for many

of the variables considered in this study) may be too small to provide a powerful test. If a goodness-of-fit test leads

to a rejection of the normality hypothesis, then it may be appropriate to apply a normalizing transformation such as

the BOX-COXtransfotmation, which includes the logarithmic transformation as a special case (pp. 175’- 185,

Ref. 45). Fortunately, the ANOVA F test is robust with respect to deviations from normality (p. 237, Ref. 37). For

perspective, Monte Carlo estimates of prob(F > h ~1, T12) will be presented in Sect. 10.

5.2 Common Locations: Kruskal-Wallis Test

The Kruskal-Wallis test statistic, ~, is based on rank-transformed data (pp. 229-230, Ref. 37):

[

nX

1

f= ~(R~ lnXq)-nS(nS-tl)214 1S2,
q=l

where
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Rq = ~r(yk), S2 =
[z

r(y~)2 –nS(nS-l-1)2 /4

.&Xq k=l

and r(y~ is defined in conjunction with Eq. (37),

(nS - 1)

If they values conditional on each class of x values have the same distribution, then the statistic ~ in Eq. (44)

approximately follows a chi-square distribution with nx -1 degrees of freedom (pp. 230-231, Ref. 37). Given this
.

approximation, the probability prob(T > TIrzX- 1) of obtaining a value i“ that exceeds T in the presence of
.

identical y distributions for the individual classes is given by

prob(T >“flnX - 1)= Q[(nX - 1)/2, ~ / 2], (45)

where Q (a, b) designates the complement of the incomplete gamma function (p. 215, Ref. 29). A small value for

prob(T > fi nC - 1) indicates that the y’s conditional on individual classes have different distributions and thus,

most likeIy, different means and medians.

5.3 Common Medians: Chi-Square for Contingency Tables

The final possibility considered is that different classes of x values have different median values for y. The chi-

square test for contingency tables can be used to test for this situation (pp. 143- 178, Ref. 37). First, the median yoj

is estimated for all nS observations. Specifically,

{

)’(Q ~) if Q nS is an integer

‘Q = [y([Qnsl)+y([Qnsl+l)112 otherwise
(46)

where Q = 0.5 (Q= 0.25 and 0,75 will be considered in Sect. 6.2) and y(k),k = 1, 2, . ... nS, denotes the ordering of

the y values such that y(k)S y&+l) (p. 14, Ref. 47). The individual classes of x values considered in Sects. 5.1 and

5.2 are then further subdivided on the basis of whether y values fall above and below yo.5 (Fig. 9). For class q, let

nxlq equal the number of y values that exceed yo5, and let nX2q equal the number of y values that are less than or

equal toy. j. The result of this partitioning is a 2 x nX contingency table with nXrq observations iri each cell. The

following statistic can now be defined:

where
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.Erq=[gnxr,][$nxrq]lnx
and corresponds to the expected number of observations in cell (r, q). If the individual classes of x values, q = 1.2.

. . .. nX, have equal medians, then ~ approximately follows a chi-square distribution with (nX - 1)(2 - 1) = nX – 1..

degrees of freedom (p. 156, Ref. 37). Thus, the probability of obtaining a value of T that exceeds ? in the presence
.

of equaI medians is given by pmb(T > TlnX -1) in Eq. (45). To maintain the validity of the chi-square

approximation in the analysis of contingency tables, Conover suggests using a partition in which nErq 2 1 (p. 156,

Ref. 37).

The Kruskal-Wallis rank statistic (Sect. 5.2) also converges to the chi-square statistic with nX -1 degrees of

freedom. In a case study (p. 232, Ref. 37), the power of the Kruskal-Wallis test exceeded the power of the median

test. We interpret this result as follows: the median test measures only whether observations exceed the common

median; it does not measure the extent to which individual observations exceed this median (i.e., nominal versus

ordinal scaie). Thus, the KruskaI-Wallis test is incorporating more information than the median test.

6. Dispersion of y Dependent on x

In this section, techniques for identifying patterns that involve changes in the dispersion or spread of y with

changing values for x are considered. Two measures of dispersion will be considered: the variance o:, and the

interquartiie range Y0.75- Y0.25,where Y0.75and Y0.Z5represent the 0.75 and 0.25 quantiles of y. The variance is the

best known measure of dispersion, and the interquantile range is widely used as a summary of dispersion in box

plots.40.48 The interquartile range is less sensitive to outliers than the variance, analogous to medians and means.

Two test statistics are considered: the ANOVA F statistic with jackknifing for common variances, and the chi-

square statistic with contingency tables for common interquartile ranges.

6.1 Common Variances: ANOVA F Statistic with Jackknifing

The ANOVA test will use the same classes, q = 1, 2, . . .. nX, of x values introduced in Sect. 5 (Fig. 8). Many

procedures exist for testing for common variances: five procedures are summarized in Kleijnen (pp. 225-227, Ref.

45), and 56 procedures in Conover et al$9 Additional discussion is also given in Conover (pp. 239-250, Ref. 37),

I%mby (pp. 149-150, Ref. 9), Piepho50 and Wludyka and Nelson5]. Note that common variances can occur even

though the associated mean values are different (and vice versa).

For this analysis, a procedure based on jackknifing is used to indicate if different classes of x values have

different variances for y. Jackknifing is a general technique for reducing possible bias in estimators and constructing

18



* 1

robust confidence intervals.52” 53 Good results have been obtained with jackknifing in a number of different

applications. 17 The procedure operates as follows.

The variance c~q of y conditional on class q is estimated by

(48)

forq = 1, 2, . . .. rtX, where ~, ~q and rzXqare defined in conjunction with Eq. (42). Further, an additional nxq

estimators

(49)

of Cr;q are calculated with individual y’s (i.e., y[) omitted from consideration. The values for ~~q and ~~q,_( from

Eqs.(48) and (49) can be used to define the so-called pseudo values

(50)tq[=~xqd~q–(nxq– l)6~q,_I.

For each class of x values, the resultant values for rql constitute a sample from a population whose expected value is

Cyqin the case of common variances (at least if the x’s were generated by random sampling). The ANOVA F test

can now be used to test for the equality of the means of the variables rql. Specifically, the F statistic described in Eq.

(42) is calculated with the values for fql, and the corresponding exceedance probability for the resultant F statistic is

determined as indicated in Eq. (43). In this application, the jackknife procedure is used to obtain robust confidence

interval estimates rather than to reduce bias.

Because variance estimators have long tails to the right, the use of a logarithmic

jackknifing may enhance the capability of the procedure to identify different variances for y.

(50) can be defined by

fql = rzXqin(~~q )– (nXq - 1)ln(b~q,_l ).

transformation before

Specifically, rql in Eq.

(51)

and then the procedures defined in Eqs. (42) and (43) used with this new definition. In this case, the test is for the

equality of ln(a~q ), which implies equality of cr~q.

A related approach is proposed by Archer et al.,54 who also use the variability of y to assess the importance of

factors in large-scale simulation models. Further, they use an ANOVA-like procedure to decompose the total
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variability of y into main effects, two factor effects, and higher-order interactions among factors. Finally, they apply

bootstrapping, which is closely related to jackknifing.52

6.2 Common Interquartiles: Chi-Square for Contingency Tables

Another test of variability is based on the previously used partitioning of x into q = 1,2, . . .. nX classes, with thex.
hypothesis being that the associated nX interquartile ~anges (i.e., YO-75- Yo.25)are the same (F@. 10). The quantile

vaIues ye-25 and yo.75are defined by Eq. (46) with Q = 0.25 and 0.75. The individual classes of x values are now

divided into subsets of y values that fall within and outside the interquartile range. For class q, let nXlq equal the

number of y values that fall within the interquartile range, and nX2q equal the number of y values that fall outside that

range. As for the common median test, the result of this partitioning is a 2 x nx contingency table with nX,q

observations in each cell. The statistic in Eq. (47) cart now be calculated and used with the exceedance probability in

Eq. (45). The interquartile test was suggested by the quantile test mentioned in Conover (p. 174, Ref. 37) and, to the

best of our knowledge, has not been previously examined in the literature.

7. Distribution of y Dependent on X: Chi-Square for Contingency Tables

The two preceding sections considered procedures for determining if the central tendency of y was dependent on

x (Sect. 5) and if the dispersion of y was dependent on x (Sect. 6). In this section, the chi-square test for contingency

tables is introduced as a means of determining if the distribution of y is dependent on x (i.e., to determine if y is

statistically independent ofx).

The test will use the same classes, q = 1, 2, .... nX, of x values used in Sects. 5 and 6. Further, y is also divided

into classes (Fig. 11). Thus, y must be defined on at least a nominal scale to permit the definition of the necessary

classes. For notational convenience, let p, p = 1, 2, .... nY,designate the individual classes into which the values of y

have been divided; let ~p designate the set such that k e ‘$ only if yk belongs to clas p; and let n YPequal the

number of elements contained in ~P. Typically, y is defined on at least an ordinal scale, and the classes are defined

by ordering the y and then requiring the individual classes to have similar numbers of elements (i.e., the nYP are

approximately equal for p = 1, 2, ,.., nY).

The partitioning of x and y into nX and nY classes in turn partitions (x, y) into nx nY classes (Fig. 11), where (.Tk,

y~) belongs to class (q, P) only if Xk belongs to class q of the x values (i.e., k e ~) and yk beIongs to class p of the y

values (i.e., k ~ JjP). For notational convenience, let OPq denote the set such that k = OP~only if k = ~ (i.e., xk is

in class q of x values ) and also k e Yp (i.e., yk is in class p of y values), and let nUPqequal the number of elements

contained in OP~.Further, ifx and y are independent, then
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nEpq = (nYP f nS)(nXq J nS)nS = nYP nXq I nS

is an estimate of the expected number of observations (xk,yk) that should fall in class (q, p).

I The following statistic can be defined:

lx nY

f= ~ ~ (nopq –nEpq )2fnEpq,
q=l p=l

(5’J

(53)

which is the same as the statistic in Eq. (47) except for the upper limit on the inner summation. Asymptotically, T
.

-
follows a chi-square distribution with (nX–l ) (n Y-l ) degrees of freedom when x and y are independent. Thus, the

probability of obtaining a value of T that exceeds ~ when x. and y are independent is given by

prob(T > fl(nX - l)(nY - 1)) in Eq. (45).

Many other measures can also be used to quantify the degree of dependence between two variables x and y:

Cramer’s contingency coefficient, Pearson’s mean-square contingency coefficient, the phi coefficient, and soon (pp.

178-189, Ref. 37). However, these techniques do not offer any advantages over the chi-square contingency table

approach already discussed.

I 8. Identification of Important Variables

The purpose of the statistical procedures under consideration is to identify sampied input variables that have

significant effects on individual predicted variables. Conceptually, this is equivalent to identifying scatterplots that

exhiiit some form of deviation from randomness. Once such scatterplots are identified, the analysts’ understanding

of the model must be called upon to explain the patterns that appear in these plots.

To provide guidance in examining scatterplots, it is useful to have a numerical way to distinguish between

variables that appear to have a substantial effect on a predicted outcome and variables that appear to have little or no

effect. For a given statistic, the probability that a larger value would occur due to chance variation provides such a

measure (i.e., the probabilities in Eqs. (25), (39), (43), (45)). These probabilities are often called critical values or p-

values and designated by & or p. A small critical value indicates that under the assumptions of the test, an outcome

equal to or greater than the observed value of the statistic is unlikely to occur due to chance. Thus, the implication is

that the pattern in the associated scatterplot arose from some underlying relationship between x and y. For a given

statistic, the indicated importance of a variable goes up as the value of the corresponding critical value goes down.

Thus, an ordering of variables on the basis of the size of their associated critical values provides a way to rank

variable importance (i.e., the smaller the critical value, the more important the variable appears to be).
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In sensitivity analyses of the type considered in this presentation, the distriiiutions for the sampled input

variables typically characterize subjective (i.e., episternic) uncertainty. 55 Often, tie intent of the sensitivity analysis

is to identify those variables on which additional reseych efforts should be expended to reduce the uncertainty in the

final outcomes of a large analysis and hence in’the decisions based on these outcomes. In this case, the desire may

not be to obtain an absolute ranking of variable importance, but rather to prioritize =woupsof variables for additional

research. For example, variables might be divided into the following three groups: Group 1 - important variables

that require additional investigation, Group 2- variables of intermediate importance that may merit additional

investigation if time and resources permit, and Group 3 - unimportant variables that do not require additional

investigation. One possibility is to define these groups on the basis of critical values (e.g., Group 1 corresponds to

variables wi~ & c 0.01; Group 2 corresponds to variables with 0.01 < & < 0.05: and Group 3 corresponds to

variables with 0.052 &). However, in practice due to the cost of investigating individual variabIes, the decision on

whether or not to expend resources on the investigation of a particular variable will probably be made on the basis of

several considerations rather than solely on the basis of a preselected critical value-

9. Top-Down Correlation

A number of techniques have been described for the identification of relationships between sampled and

predicted variables (Sects. 3-7). These techniques will be applied to four predicted variables (Sect. 2). An important

question is the extent to which the different techniques agree in their identification of important variables. A tool for

assessing such apeement is the top-down correlation introduced by Iman and Conover,20 which emphasizes

a-meement/disa=weementfor the most important variables and places reduced weight on agreement/disaLgeement for

variables of little importance.

The fop-down correlation is based on Savage scores:

nl

S(h)= ~l/j, (54)

j=h

where S(h) is the Savage score of a variable of rank h and n] is the number of ranked variables (Eq. (1)). Thus, the

Savage score for the most important variable is S(1) = 1/1 + 1/2 + . .. + l/nfi the Savage score for the next most

important variable is S(2) = 1/2 + 1/3 + . . . + l/nfi and so on.

Suppose two ranking procedures are under consideration. Further, let ht ;, i = 1, 2, . . .. nI, denote the rank for

variable Xi obtained with the first procedure, and let hzi, i = 1, 2, . . .. nI, denote the rank for variable xi obtained with

the second procedure. The top-down correlation it ~ for these two ~ests is defined to be the Pearson correlation

coefficient (Eq. (14)) associated with the pairs [S(h Ii), S(h2i)], i = 1.2 . .. .. n]. That is.



[

Id

1/

. . . . . . . . . .

)& = zS(h~j).S(lZ~j)- ~J [n]-‘(1)] 7

i=)

(55)

with S(1) defined in Eq. (54) and approximately equal to 2.450 + ln[nl + 0.5)/6.5] for nl 27 (Eq. (3), Ref. 20).

Large positive values for R12 indicate agreement. between the two sew of ranks for the most important factors. Exact

quantiles for this statistic are given in Iman and Conover (p. 355, Ref. 2Q also see Ref. 56). Further,

is distributed approximately normally with mean O and standard deviation 1 when the two rankings are uncorrelated

and n] is sufficiently karge. Under these conditions,

(57)

.
where pmb(lRI>1~121) is the probability that random variation wouId produce a value R for RI~ larger in absolute

value than the observed value ~12 (p. 631, Ref. 29).

10. Comparison of Procedures for Identification of Important Variables

The following statistics andlor associated tests have been introduced for possible use in the identification of

patterns in scatterplots, where the given capital letters will be used to identify the associated procedures in the

following discussion: correlation coefficients (CCS, Sect. 3), standardized regression coefficients (SRCS, Sect. 3),

partial correlation coefficients (PCCS, Sect. 3), rank correlation coefficients (RCCS, Sect. 4), standardized rank

regression coefficients (SRRCS, Sect. 4), partial rank correlation coefficients (PRCCS, Sect. 4), common means

(CMNS, Sect. 5.1), common locations (CLS, Sect. 5.2), common medians (CMDS, Sect. 5.3), common variances

(CVS, Sect. 6.1), common interquartile ranges (CIQ, Sect. 6.2), and statistical independence (S1, Sect. 7). Further,

the following dependent variables with different behaviors have been introduced as examples: EO:WA.S_PRES,

EO:BRAALIC, E2: WAS_SA TB, and E2: WAS_PRES (Sect. 2). The results of applying the indicated procedures to

these dependent variables are now discussed.

10.1 Repository Pressure under Undisturbed Conditions: y = E(I: WAS_l-WES

The variable y = EO:WAS_PRES was included as an example because a linear relationship appears to exist

between EO:WAS_PRES and several of the sampled variables (Sect. 2). Thus, procedures that can identify linear

relationships should work well with EO:WAS_PRES, as indeed turned out to be the case (Table 4). In particular,

tests based on CCS. RCCS, CMNS, CLS, CMDS and S1 identified the same top four variables (i.e., WMfCDFLG

HALPOR. WGRCOR, ANHPRM) and also assigned these variables the same importance rankings based on p-values.

23

i



The scatterplots for these variables show a corresponding decreme in the strength of the relationships with

EO:WAS_PRES (Fig. 3). For the remaining variables, there was little agreement between the individual procedures,

with the p-values for the variables with ranks 5 and above typically close to or above 0.1. The only exception to ~his

was for S1, where AIW7BCVGP was assigned rank 5 with a p-value of 0.0194. Based on a visual inspection. there

. appears to be little difference in the distributions of EO:WAS_PRES for the two values of ANHBCVGP, although the

larger value for ANHBCVGP (i.e., the value that impIies the van Genuchten-Parker model) may result in fewer small

values for EO:WAS_PRES (Fig. 12). The tests based on measures of dispersion (i.e., CV, CIQ) performed somewhat

differently, with CV indicating no effects for HALPOR and WGRCOR based on a p-value cutoff of O.I and CIQ

indicating no effect for WGRCOR based on the same cutoff.

As discussed in Sect. 3, analyses of variable importance based on CCS, SRCS and PCCS or on RCCS, SRRCS

and PRCCS will produce similar results when the input variables (i.e., the xi’s) are ttncorrelated. More specifically,

CCS and SRCS are equal; RCCS and SRRCS are equal; orderings of variable importance based on CCS, SRCS and

PCCS are the same; and orderings of variable importance based on RCCS, SRRCS and PRCCS are the same. The 24

variables used in the calculation of EO:WAS_PRES were assumed to be independent, with the Iman and conover~~

restricted pairing technique being used to assure that the correlations between variables were indeed close to zero

(see Footnote b to Table 4), The outcome, as predicted by theory, was that CCS and SRCS were approximately

equal, RCCS and SRRCS were approximately equal, rankings based on CCS, SRCS and PCCS were approximately the

same, and rankings based on RCCS, SRRCS and PRCCS were approximately the same (Table 5). Approximate

correspondence to theory is the best that can be hoped for as the Iman/Conover restricted pairing technique makes

the correlations between the sampled variables approximately zero (Table 6) rather than exactly zero.

The large number of procedures under consideration (i.e., CCS, RCCS, CMNS, CLS, CMDS, CVS, CIQS. S1,

SRCS, PCCS, SRRCS, PRCCS) can make it difficult to get an overall feeling for the extent to which the individual

procedures are a~eeing or disagreeing in the identification of important variables. As discussed in Sect. 9, top-down

correlation provides a way to compare variable rankings. In particular, top-down correlation gives a compact

numeric summary of the comparisons in Tables 4 and 5 (Table 7), with all procedures except for CVS and CIQS

showing strong agreement (i.e., top-down correlations close to or equal to one).

The calculation of CMNS, CLS, CMDS, CVS, CIQS and S1 in Table 4 was based on the division of the range of

the variables under consideration into nX = 5 intervals of equal probability. Also, the calculation of S1 involved the

division of the range of EO:WAS_PRES into n Y= 5 intervals of equal probability. In concept, the outcome of the

analysis could be sensitive to the partitioning selected for use (i.e., the values for nX and nY). To check this, the

analysis was repeated with nX = 10 and n 1’= 10 (Table 8). As comparison of the restdts obtained with nX = 5 and

nX = 10 shows, some changes in variable rankings did take place. For CMNS, CLs and CMDS with nX = 5,

ANHPRM is the fourth ranked variable with p-values of 0.0195, 0.0187 and 0.0663, respectively (Table 4); for the

same procedures with nX = 10, ANHPRM is ranked 4, 4 and 7 with p-values of 0.1371, 0.1340 and 0.3398 (Table 8).
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For CVs and CIQS, there are some changes in variable ranking (e.g., CV and CIQ assign SALPRES ranks of 11 and 6

with p-values of 0.3723 and 0.0868 for nX = 5 (Table 4) and rank SALPRES third with p-values of 0.0500 and

0.0077 for nX = 10 (Table 8)); also, CVS still do not identify an effect for HALPOR (ranked 12 with a p-value of

0.3919 for nX = 5 and ranked 20 with a p-value of 0.5800 for nX = 10), and CIQS still do not identify an effect for

WGRCOR (ranked 16.5 with a p-value of 0.6626 for nX = 5 and ranked 23 with a p-value of 0.9429 for nX = 10).
..

For S1, HALPRM had a rank of 18 with a p-value of 0:6235 for nx = 5 and a rank of 3 with a p-value of 0.0036 for

rtX= 10 (Table 8). Thus, the partitioning in use can have an effect on the variables identified as affecting they value

under consideration. For perspective, the top-down correlations for results obtained with the two griddings are also

given in Table 8, with these correlations ranging from 0.854 for (CMN: 1 x 5, CMN: 1 x 10) to 0.917 for (CIQ:2 x 5,

CIQ:2 X 10).

The p-values used to identify important variables in Tables 4,5 and 8 are calculated with statistical assumptions

that are not fully satisfied. For example, in the calculation of p-values for CCS, the sample from the x’s consists of

three pooled LHSS rather than a random sample (see Eqs. (8) - (10)), and neither the individual X’S nor y =

EO:WAS_PRES has a normal distribution. A Monte Carlo simulation can be used to assess if the use of formal

statistical procedures to determine p-values is producing misleading results. Specifically, 10,000 samples of the

form

(-q, yk), k= 1,2>...,300, (58)

can be generated by pairing the 300 values for x (i.e., the 300 values for the particular x under consideration

contained in the samples in Eqs. (8) - (10)) with the 300 predicted values for y (i.e., the 300 values for y that resulted

from the use of the sample elements in Eqs. (8) - (10)). The specific pairing algorithm was to randomly and without

replacement assign an x value to each y value, which is similar to bootstrapping57 except that the sampling is being

performed without replacement. This random assignment was repeated 10,000 times to produce 10,000 samples of

the form in Eq. (58).

For a given procedure (i.e., CCS, RCCS, CMNS, CLS, CMDS, CVS, CIQS or S1), each of the 10,000 samples can

be used to calculate the value of the statistic used to determine the corresponding p-value. The resulting empirical

distribution of the statistic can then be used to estimate the p-value for the statistic actually observed in the analysis.

Comparison of the p-value obtained for a given set of statistical assumptions with the p-value obtained from the

empirical distribution of the corresponding statistic provides an indication of the robustness of the variable rankings

with respect to possible deviations from the assumptions underlying the formal statistical procedures described in

Sects. 3-7.

For EO:WAS_PRES, the rankings of variable importance

procedures (i.e., CC and RCC in Table 5 and CMN, CL, CMD,
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with p-values obtained from formal statistical

CV, CIQ and S1 in Table 4) and the ranking of
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variable importance with p-values obtained from empirical distributions (i.e., CCMC and RCCMC in Table 9 and

CMNMC, CLMC, CMDMC, CVMC, CIQMC and SIMC in Table 8) are very similar. The largest difference is in

the assignment of tied ranks to the most important variables when the empirical distributions of p-values are used

(e.g., use of statistical procedures with CCS results in WMICDFLG, HALPOR and WGRCOR being ranked 1,2 and

3, and use of the empirical disrnbution of p-values resulK in these variables being ranked 2.2 and 2). The tied ranks

with the empirical distributions arise because a sample of size 10,000 was used to generate these distributions. with

the result that 0.0001 is the smallest nonzero p-value that can be estimated. In contrast, much smaller nonzero

probabilities cart be estimated with the formal statistical procedures from Sects. 3-7. Overall, the similarity between

the exact (i.e., statistically determined) and empirical p-values in Tables 8 and 9 is quite good, with the two
,..,

determinations of p-values producing almost identical rankings of variable importance except for the very small (i.e.,

<.1 OA) p-values. The associated top-down correlations range from 0.970 for (CMN: 1 x 5, CMNMC: 1 x 5) to

0.993 for (CV:l x 5, CVMC: 1 x 5) (Table 8). For perspective, a top-down correlation of 0.971 results when 24

variables are under consideration, one procedure has ties (i.e., ranks of 2, 2, 2) on the variables assigned ranks of 1,

2,3 by the other procedure, and identical ranks are assigned to all other variables (e.g., see (CL:2 x 5, CLMC:2 x 5)

in Table 8 and (CC, CCMC),”(RCC, RCCMC) in Table 9).

Approximate 100 (1 - u)% confidence intervals for the empirically determined p-values are given by

P * ~1~. @(1 – P)/nl“2, where p is the estimated p-value, n = 10,000 is the sample size in use, and Xld- is the

l-a/2 quantile of the normal distribution (e.g., 1.96 for a 95% confidence interval (pp. 99-100, Method C, Ref. 37)).

For example, the approximate 95% confidence interval for p = 0.0815 (see SALPRES for CCMC in Table 9) is

0.0815 A 0.0054, with this interval including the statistically determined value of 0.0855. For most procedures, the

95% confidence intervals on the empirically determined p-values include the statistically determined p-values. The

results for CVS tend to show less a.~eement between the formal] y and empirically estimated p-values than is the

case for the other procedures.

A variant of the common means (CMNS) test is to use logarithmically transformed y-values rather than the

original untransformed y-values (Sect. 5.1). Possible rationales for such a transformation are to reduce the effects of

extreme values on the estimated mean and to transform y into a variable that more closely follows a normal

distribution. For y = RI: WAS_PRES, the logarithmic transformation has little effect on the outcome of the analysis,

with both raw and log-transformed y’s, resulting in the same assignment of ranks to the top four variables (i.e.,

WMICDFLG, HALPOR, WGRCOR, ANHPRM) (Tables 8, 10).

A variant of the common variances (CVS) test is to use tql as defined in Eq. (51). The rationale for the use of

logarithms in Eq. (51) is to reduce the effects of extreme values and thus produce more stable variance estimators.

For y = EO:WAS_PRES, use of rqfas defined in Eq. (5 1) rather than in Eq. (50) had little effect on the outcome of the

analysis. with both definitions of tql resulting in the selection of WMICDFLG, ANHPRM, HALPRM and WGRCOR
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as the top four variables (Tables 8, 10). Further, neither definition

effects associated with HALPOR (Fig. 3b).

10.2 Brine Inflow under Undisturbed Conditions:

results in the identification of the important

y = I%O:BRAALIC

The variable y = EO:BWC was included as an example because a nonlinear but monotonic relationship

appears to exist between EO:BRAALiC and several of the sampled variables (Sect. 2). Thus, procedures that can

identify monotonic relationships should work well with EO:BRAALJC as indicated by the regressions with raw data

(R2 = 0.50) and rank-transformed data (R2 = 0.87) in Table 3. All analysis procedures except CVs identified

ANHPRM.and WMICDFLG as the two most important variables, with the variables assigned ranks 1 and 2 changing

horn test to test (Table 11). The scatterplots for both ANHPRM and WMICDFLG show strong relationships with

EO:BRA.AUC @lg. 4a,b). The CVs test assigned rank 2 to SHPRMCON with a p-value of 0.0426, with this variable

also assigned a p-value of 0.0057 and a rank of 3 by the CMNS test. No other tests indicated an effect for this

variable, which is consistent with the corresponding scatterplot (Fig. 13a). Rank 3 was assigned to HALPRM for

tests based on RCCS (p-value = 0.0014), CLs (p-value = 0.0019), CMDS (p-value = 0.0050) and S1 (p-value =

0.05 17), with the corresponding scatterplot showing little discernible pattern (Fig. 13b). Rank 4 was assigned to

WGRCOR by CCS (p-value = 0.0048), RCCS (p-value = 0.0057), CMNS (p-value = 0.0636) and CLS (p-value =

0.0427), with the corresponding scatterplot indicating a slight tendency for EO:BI?AALIC to decrease as WGRCOR

increases (Fig. 4d). Little discernible pattern appears in the ranks assigned to the remaining variables in Table 11.

Based on knowIedge of the model in use, the ordering of variable importance associated with RCCS seems most

reasonable, with the signs of the RCCS for the variables ranked 1 through 6 (Table 12) corresponding to the effects

that these variables should have on EO:BRAALIC (i.e., whether EO:BRAALIC should increase or decrease as the

corresponding variable increases; see Ref. 18 for a discussion of the underlying physics). The procedures that most

closely match the variable rankings obtained with RCCS are based on CLS (top-down correlation (77X) = 0.897),

CMDS (TDC = 0.913) and S1 (TDC = 0.838) (Table 13). These are procedures that can be expected to perform

reasonably well in the presence of nonlinear but monotonic relations. The top-down correlation for RCCS and CCS

is 0.729 (Table 13). Procedures based on measures of dispersion have the poorest agreement with variable rankings

based RCCS (i.e., CVS with TDC = 0.301, CIQS withTDC=0.531) (Table 13).

Rankings of variable importance based on CCS, SRCS and PCCS are similar, with the rankings based on SRCS

and PCCS being identical (Table 12). In like manner, rankings based on RCCS, SRRCS and PRCCS are similar, with

the rankings based on SRRCS and PRCCS being identical (Table 12). The associated top down correlations are

correspondingly high (i.e., 0.980 for (CC, SRC), (CC, PCC) and 0.912 for (RCC, SRRC), (RCC, PRCC)) (Table

13).
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As for EO:WAS_PRES, an investigation was carried out to determine if the analysis results obtained

EO:BRAALZC are sensitive to the partitioning selected for use (i.e., the values for nx and nY). In particular,

analysis was repeated with nx = 10 for CMS, CLS, CMDS, CVs, CIQS and S1, and nY = 10 for S1 (Table 14).

indicated by examination of scatterplots, the two most important variables with respect to EO:BRAALfC

ANi4PRh4 and WMICDFLG (Fig. 4a,b). ” With the exception of CVs, all tests (i.e., CMNS, CLS, CMDS, CIQS,

for

the

As

are

S1)
..\ ,

identified ANHPRM and WMICDFLG as the two most important variabIes with grids based on either nX = 5 or nX =

10 (Table 14). After these two variables, there is some jumping around in the rankings assigned to the individual

variables, although there is sufficient similarity in the results obtained with nx = 5 and nX = 10 to produce top down

correlations that are close to or above 0.9 (Table 14). ScatterPlots indicate that, after ANHPRM and WMICDFLG,

none of the remaining variables have a very strong effect on EO:BRAALIC (F@. .4, 13), with the result that the tests

are failing to find discernible patterns after these two variables.

The p-values in Tables 11 and 12 are calculated with statistical assumptions that are not fully satisfied. As

described in conjunction with Eq. (58), a Monte Cario procedure can be used to assess if the use of formal statistical

procedures to determine p-values is producing misleading results. ” The p-vahtes based on formal statistical

procedures and on Monte Carlo procedures are very similar, with the associated variable rankings having top-down

correlations between 0.987 and 0.995 (i.e., CC and RCC in Table 15 and CMN, CL, CMD, CV, CIQ and S1 in Table

14). The primary difference is that the most important variables (i.e., ANHPRM and WMICDFLG) tend to be

assigned tied-ranks (i.e., 1.5) in the Monte Carlo simulations because the sample size of 10,000 in use does not allow

the es~imationof p-values less than 0.0001.

A variant of the common means (CMNS) test is to use logarithmically transformed y-values rather than the

original untransformed y-vaIues (Sect. 5.1). Use of both raw and logarithmically transformed variables results in

ANHPRM and WMICDFLG being selected as the two most important variables with respect to EO:BRAALIC (Tables

14, 16). Use of logarithmically transformed variables with the CMNS test also results in the identification of

HALPRM as the third most important variable, with HALPRM also assigned a rank of 3 with RCCS, but effectively

missed by the CMNS test with raw data (i.e., a p-value ofO.1105 and a rank of 7) (TabIes 14, 16). The CMNS test

with both raw and logarithmical] y transformed data assigns rank 4 to WGRC’OR (Tables 14, 16). Thus, the use of

logarithmically transformed data with the CMNS test results in the identification of one possibly important variable

(i.e., WGRCOR) missed with the use of raw data.

A variant of the common variances (CVS) test is to use rql as defined in Eq. (51) rather than as defined in Eq.

(50). The logarithmic transformation associated with Eq. (51) results in a substantial improvement in that

WMICDFLG is now identified as an impo~ant variab]e (Table 16); h contrast, WMiCDFLG was missed witi raw

data as used in Eq. (50) (Table 14). The associated scatterplot indicates that WMICDFLG is a variable that should

be identified by any reasonable test (Fig. 4a).
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10.3 Repository Saturation under Disturbed Conditions: y = E2:WAS_SATB

The variable y = E2: WAS_SATB was selected as an example because the regression analyses with raw and rank-

transformed data were rather poor (i.e., R2 = 0.33 and 0.61, respectively), although the two most important variables

as indicated by scatterplots (i.e., BHPRM and WRGSSA7) do appear in both regression analyses (Table 3, F@ 5).

Given the strong patterns displayed in the scatterplo’~ for BHPRM and WRGSSAT and the discernible but less strong..

patterns associated with ANHPRM and HALPOR (Fig. 5), procedures that can identi~ patterns that result from the

interaction of two or more variables should work well for E2: WAS_SATB. In particular, analyses based on RCCS,

CLs, CMDS and S1 identified BHPRM and WRGSSAT as the two most important variables (Table 17). Analyses

based on .CCS,CMNS and CVs identified BHPRM as the most important variable, but did not identi~ WRGSSAT as

the second most important variable; in contrast, CIQS identified 7VRGSSAT as the most important variable and

identified BHPRM as the third rather than second most important variable (Table 17). Further, CIQS identified

WGRCOR as the second most important variable (Table 17), which seems to be inconsistent with the weakness of the

pattern appearing in the associated scatterplot (Fig. 14) and also the rankings assigned to WGRCOR by other

procedures (Table 17); this identification may be due to the increased spread in y values for large vrdues of

WGRCOR. The test based on CVS did not identify WRGSSAT (i.e., a p-value of 0.1750 and a rank of 9) (Table 17).

Given the insights gained from the results of all of the analysis techniques, CCS and RCCS appear to have

identified the three dominant variables affecting E2: WAS_SATB (i.e., BHPRM, WRGSSAT, ANHPRA4). However,

given the low R2 values associated with the corresponding regression models with raw and rank-transformed data

(Table 3), it would be difficult to place much faith in these identifications without results tlom tes~ that are less

dependent on linear regression models (i.e., CLS, CMDS, CIQS, S1).

As previously observed for EO:WAS_PRES and EO:BRAALIC (Tables 5, 12), variable rankings for

E2: WM_SATB with CCS, SRCS and PCCS are similar, with SRCS and PCCS producing identical variable rankings

(Table 10.15, Ref. 58). A similar pattern also occurs for RCCS, SRRCS and PRCCS (Table 10.15, Ref. 58).

Topdown correlation provides a formal comparison of the variable rankings obtained with the different

procedures (Table 18). A considerable amount of variability exists in the rankings obtained with the different

techniques. Rankings based on S1, CVS and CIQS appear to have the least agreement with the rankings obtained with

other procedures. Also, rankings based on CVS and CIQS show little agreement (i.e., TDC=O.267).

As for EO:WAS_PRES and EO:BRAALIC, an investigation was carried out for E2: WAS_SATB on the effects of

using nX = 10 rather than fl = 5 for CMNS, CLS, CMDS, CVS, CIQS and S1 and nY = 10 rather than nY = 5 for S1

(Table 19). The results for the highest ranked variables for the two partitionings were similar, with CMNS, CLS,

CMDS, CIQS and S1 each identifying the same top 3 variables; however, the identified variables were not necessarily

the same from test to test. For CVS, both partitionings yielded the same top two variables but produced different
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variables with rank 3. After the top three variables, there was often considerable variabili~ in the ranks assigned to

the remaining, and typically unimportant, variables. The least agreement between the variable rankings obtained

with the two partitionings occurred for S1 (TDC = 0.746).

Again, p-values based on formal statistical procedures and on Monte Carlo procedures are very similar, with the

associated rankings having top-down correlations between 0.972 and 0.999 (Tables 19, 20). The primary difference

is that the most important variables tend to be assigned tied-ranks in the Monte Carlo simulation “(e.g., 1.5 for

BHPRM and ANHPRM for CCS in Table 20).

“ The use of raw and logarithmically transformed variables with the CMNS test (Sect. 5.1) results in simiIN

rankings of v&iable importance for E2: WAS_SATB(Table 10.19, Ref. .58). Thus, litie is gained by the use of

logarithmically transformed variables. Similarly, little change in tie outcome of the analysis for E2: WAS_SATB with

CVs took place when tqzasdefined in Eq. (51), rather than as in Eq. (50), was used (Table 10.19, Ref. 58).

10.4 Repository Pressure under Disturbed Conditions: y = E2:WAS_H?.ES

The variable y = E2: WAS_PRES was included as an example because regression analyses with raw and rank-

transforrned data fail to identify the dominant vmiable BHPRM (Sect. 2). Thus, procedures that can identify

nonlinear, nonrnonotonic relationships should work well with E2: WAS_PRES, which turned out to be the case (Table

21)- In particular, tests based on CMNS, CLS, CMDS, CVs, CIQS and S1 all identified BHPRM as the most important

variable affecting E2: WAS_PRES (Table 21), which is consistent with the strong pattern appearing in the

corresponding scatterplot (Fig. 6d). In contrast, tests based on CCS and RCCS failed to identify 13HPRM as an

important variable (i.e., p-values of 0.3651 and 0.1704 for CCS and RCCS, respectively) (Table 21). Further, tests

based on CMNS, CLS, CMDS, CVS and S1 select the variables ranked 2 and 3 from HALPRM, ANHPRM and

WGRCOR, while the test based on CIQS assigns ranks 2 and 3 to WGRCOR and SHRGSSAT, respectively. As

indicated by scatterploti, HALPRM, ANHPRM and WGRCOR produce barely discernible patterns (Figs. 6, 15).

Variable rankings for E2: WAS_PRES based on CCS, SRCS and PCCS and also on RCCS, SRRCS and PRCCS are

the same (Table 10.21, Ref. 58). However, these rankings are misleading because they do not include the dominant

variable ”BHPRM.

Due to the failure of CCS and RCCS to identify the dominant variable BHPRM, there is less agreement between

the variable rankings obtained with the various analysis procedures for E2: WAS_PRES than is the case for

EO:WAS_PRES, EO:BRAALJC and E2: WAS_SATB (i.e., compare the top-down correlations in Tables 7, 13, 18 and

22). In particular, variable rankings for E2: WAS_PRES with CMNS, CLS, CMDS CVS, CIQS and S1 are generally

similar (Table 22). The exception is the ranking based on CIQS, which shows top-down correlations of 0.429, 0.462

and 0.462 with the rankings obtained with CMNS, CLS and CMDS. Otherwise, the top-down correlations for the
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variable rankings obtained with CMNS, CLS, CMDS, CVS, CIQS and S1 vary between 0.698 and 1.000. In contrast,

there is little relationship between the variable rankings obtained with CMNS, CLS, CMDS, CVS, CIQS and S1 and

with CCS, SRCS, PCCS, RCCS, SRRCS and PRCCS.

An investigation of the effects of using nx = 10 rather than nX = 5 for CMNS, CLS, CMDS, CVS, CIQS and S1

and nY = 10 rather than nY = 5 for S1 was also carried out (Table 23). Each of the indicated procedures with nX = 5

and nX = 10 identified BHPRM as the most important variable. Generally, ranks 2, 3 and sometimes 4 were also

assigned to similar variables, although the exact order was not always the same for nX = 5 and nX = 10. After rank

4, there was considerable variability in the ordering of the variables with nX = 5 and nX = 10.

The “p-values used to identify important variables in TabIes 21 and 23 were recalculated with the Monte Carlo

procedure described in conjunction with@. (58) (Tables 23, 24). The rankings based on analytic detetination of

p-values and on Monte Carlo determination of p-values are very similar, with the primary difference being the

tendency of the Monte Carlo simulation to assign tied ranks to the most impomnt variables.

Use of both raw and logarithmically transformed variables with the CMNS test (Sect. 5.1 ) results in similar

rankings of variable importance for E2: WAS_PRES (Table 10.25, Ref. 58). Thus, little is gained in the analysis of

E2: WAS_PRES with CMNS by the use of logarithmically transformed variables. In contrast, the analysis for

E2: WAS_PRES with CVS and rqjas defined in Eq. (51) with a logarithmic transformation performed poorly, with the

analysis failing to identify the dominant variable BHPRM (Table 10.25, Ref. 58). Thus, the use of the logarithmic

transformation in Eq. (51) has the potential to improve the performance of the CVS test as it did for ,EO:BRMLIC

(Tables 14, 16) and also the potential to degrade performance as is the case for E2:WAS_PRES.

11. Discussion

Sensitivity analysis is an essential component of model development, assessment and application. Monte Carlo

procedures are widely used in sensitivity studies to develop a mapping (i.e., scatterplot) between uncertain model

inputs and associated model results that can then be explored with regression-based techniques. Unfortunately, these

techniques sometimes fail to identify important patterns in this mapping because the relationships between model

inputs and model results can be too complex to be identified by the linear relationships that most re-mession analyses

are predicated on.

The likelihood of a successful sensitivity analysis can be increased by using a number of different procedures to

identify relationships between model inputs and model results. With this strategy, a relationship missed by one

procedure may be identified by another procedure. Fortunately, the post-processing of model results for the

identification of patterns in scatterplots is relatively inexpensive from a computational perspective; thus, the use of a

number of different procedures does not present a significant burden.
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This paper describes and illustrates a sequence of procedures for identifying patterns in scatterplots. These

procedures are based on attempts to detect increasingly complex patterns in scatterplots and involve the

identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank

correlation coefficients, (iii) trends in central tendency as defined by means, medians and the Kruskal-Wallace

statistic, (iv) trends in variability as defined. by variances and interquantile ranges, and (v) deviations from

randomness as defined by the chi-square statistic. “AS illustrated in a sequence of example analyses with a large

model for two-phase fluid flow, the individual procedures cart differ in the variables that they identify as having

important (significant) effect5 on particular analysis outcomes. The example results indicate that the use of a

sequence of procedures is a good analysis strategy and provides some assurance that an important effect is not

overlooked. Based on the experience of this analysis, a possible sequence of tests is correlation coefficients (CCS,

Sect. 3), rank correlation coefficients (RCCS, Sect. 4), common locations (CLS, Sect. 5.2) or common medians

(CMDS, Sect. 5.3), and statistical independence (S1, Sect. 7).

The procedures under consideration identify patterns in smterplotsthat in some sense appear to be nonrandom.

However, they provide no explanation for why these patterns exist. Once such patterns are identified, it is the

responsibility of the modelers and analysts to develop explanations for them. If such explanations cannot be

developed, then the possibility exists that an error is present in the analysis. For this reason, well-designed

sensitivity analyses provide both a way to develop insights with respect to the problem under consideration and also

a way to check the conceptual and computational implementation of the problem.
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Computational (finite difference) grid used in 13R4GFL0 to represent two phase flow in 1996 WIPP
CCA PA subsequent to a drilIing intrusion. Same formulation is used in the absence of a driliing
intrusion except that regions 1A, lB and lC have the same properties as the regions to either side.

Dependent variables predicted by BRAGFLO model: (2a) pressure in lower waste panel under
undisturbed conditions (EO:WAS_PRES), (2b) cumulative brine inflow from anhydrite marker beds under
undisturbed conditions (EO:ML4ALlC), (2c) saturation in lower waste panel after an E2 intrusion at 1000
yr (E2: WAS_SATB), and (2d) pressure in lower waste panel after an E2 intrusion at 1000 yr
(E2: wAs_PRES).

Scatterplots for pressure in lower waste panel under undisturbed (i.e., EO) conditions at 10,000 yr
(EO:WAS_PRES) versus first four variables selected in stepwise regression analyses with raw and rank-
transforrned data (Table 3): (3a) WMICDFLG, (3b) HALPOR, (3c) WGRCOR, and (3d) ANHPRM.

Scatterplots for cumulative brine inflow over 10,000 yr from all anhydnte marker beds to repository
under undisturbed (i.e., EO) conditions (EO:BRAALIC) versus first four variables selected in stepwise
regession analysis with rank-transformed data (Table3): (4a) WMICDFLG, (4b) ANHPRM, (4c)
HALPOR, and (4d) WGRCOR.
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1000 yr (E2: WAS_SATB) versus first four variables selected in stepwise regression analysis with rank-
transformed data (Table 3): (5a) BHPRM, (5b) WRGSSAT, (5c) ANHPRM and (5d) HALPOR.
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stepwise regression analysis with raw and rank-transformed data (Table 3) and one additional variable
(BHPRM) identified by examination of scatterplots: (6a) HALPRM, (6b) ANHPRM, (6c) HALPOR, and
(6d) BHPRM.

Graph of d(b, a)= b(l – bz)}~z– a( 1 – a2)*~2>0 subject to constraints 0< a < b <1, U2+ bz c 1.

Example of the partitioning of the range of x = HALPOR into nX = 5 classes for y = EO:WAS_PRES.

Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of y =
EO:WAS_PRES into values above and below the median yo5.

Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of y =
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Fig. 1. Computational (finite difference) grid used in BRAGFLO to represent two phase flow in 1996 WIPP
CCA PA subsequent to a drilling intrusion. Same formulation is used in the absence of a drilling
intrusion except that regions 1A, lB and 1C have the same properties as the regions to either side.
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Table 1. Definition of Dependent Variables Predicted by BRAGFLO Model Selected for Use in
Comparison of Statistical Procedures for Identification of Patterns in Scatterplots

EO:WAS_PRES-Pressure (Pa) in lower repository waste panel (region 23, Fig. 1) at 10,000 yr under
undisturbed (i.e., EO) conditions. Number of sampled variables: 26 (Table 2).

EO.-MAALlC<umuIative brine inflow (m3) to vicinity of repository over 10,000 yr from anhydrite marker

I
beds (regions 20, 21, 28, Fig. 1) under undisturbed (i.e., EO) conditions. Same sampled variables as
EO:WAS_PRES. \

E2: WAS_SATB-Brine saturation (dimensionless) in lower repository waste panel (region 23, Fig. 1) at 10,000
yr after a drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in
the underlying Castile Formation (i.e., an E2 intrusion). Same sampled variables as EO:WAS.PRES plus

BHPR~ (Table 2).

E2: WAS_PRESPressure (Pa) in lower repository waste panel (region 23, Fig. 1) at 10,000 yr after a drilling
intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in the underlying
Castile Formation (i.e., an E2 intrusion). Same sampled variables as E2:WAS_SATB.
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Table 2. Uncertain Variables Used as Input to BRAGFLO in the Calculation of the Dependent
Variables in Table 1 (see Table 5.2.1, Ref. 18, and App. PAR, Ref. 22, for additional
information and a discussion of all 75 variables included in the LHS)

AAWBCEXP—Brooks-Corey pore distribution. parameter for anhydrite (dimensionless). Distribution:
Student’s with 5 degrees of freedom. Range: 0.49’1to 0.842. Mean, Median: 0.644.

ANHBCVGP—Pointer variable for selection of relative permeability model for use in anhydnte. Distribution:
Discrete with 60% O, 40% 1. Value of O implies Brooks-Corey model; value of 1 implies van Genuchten-
Parker model.

ANHCOMP—Bulk compressibility of anhydrite (Pa-1 ). Distribution: Student’s with 3 degrees of freedom.

Range: 1.09 x 10-11 to 2.75 x IO-10 Pa-1. Mean, Median: 8.26 x I0-11 Pa-1. Correlation: –0.99 rank

corre1ation23with ANHPRM. Variable 2 I in LHS.

ANHPRM<ogarithm of anhydnte permeability (m~). Distribution: Student’s with 5 degrees of freedom.

Range: –21.0 to –17.1 (i.e., permeability range is 1 x lo-~1 to 1 x IO-17.1 m~). Mean, Median: –1 8.9.
Correlation : –0.99 rank correlation with ANHCOMP.

ANRBRSAT—Residual brine saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees
of freedom. Range: 7.85 x 10-3 to 1.74 x 10-1. Mean, Median: 8.36 x 1o-~.

ANRGSSAT—Residual g% saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of
freedom. Range: 1.39 x 10-~ to 1.79 x 10-1. Mean, median: 7.71 x lo-~.

BHPRM—Logarithm of borehole permeability (m~). Distribution: Uniform. Range: –14 to –11 (i.e.,
permeability range is 1 x 10-1’$to 1 x 10-11 m~). Mean, median: -12.5.

HALCOMP-Bulk compressibility of halite (Pa-1 ). Distribution: Uniform. Range: 2.94 x 10-1 ~ to 1.92 x
]0-10 PA-I Mean, median: 9.75 x 10-11 pa-l, 9,75 x ]0-1 1 pa-l.

HALPRA4.

HALPOR—Halite porosity (dimensionless). Distribution: Piecewise

Mean. median: 1.28 x lo-~. 1.00x lo-~.

HALF’RMAogarithm of halite permeability (m?). Distribution:

permeability range is 1 x 1o-~~ to 1 x 1o-~1 m~). Mean, median:
correlation with HALCOMP.

Correlation: –0.99 rank correlation with

uniform. Range: 1.0 x 10-3 to 3 x lo-~.

Uniform. Range: –24 to –21 (i.e.,

-22.5, -22.5. co~elation: –0.99 rank

SALPRES--Initial brine pressure, without the repository being present, at a reference point located in the
center of the combined shafts at the elevation of the midpoint of MB 139 (Pa). Distribution: Uniform. Range:
1.104 x 107to 1.389 x 107Pa. Mean, median: 1.247 x 107 Pa, 1.247x 107 Pa.

SHBCEXP—Brooks-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise
uniform. Range: 0.11 to 8.10. Mean, median: 2.52,0.94.

SHPRMASP—Logarithm of permeability (m?) of asphalt component of shaft seal (m~). - Distribution:

Triangular. Range: –21 to –18 (i.e., permeability range is 1 x lo-~1 [o 1 x 10-18 m~). Mean, mode: –19.7,
-20.0.
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Table 2. (Continued)

SHPRMCL1’~ogarithm of permeability (mz) for clay components of shaft. Distribution: Triangular. Range:

-21 to –17.3 (i.e., permeability range is 1 x 10_zl to I x l&lT.3 m~). Mean, mode: -18.9, –18.3.

SHPRMCOMame as SHPRMASP but for concrete component of shaft seal for O to 400 yr. Distribution:

Triangular. Range: -17.0 to -14.0 (i.e., permeability range is 1 X 10_17 to 1 x 10_t~ m?). Mean. mode:

-15.3,-15.0. \

SHPRMDRZ-ogarithm of permeability (m~) of DRZ surrounding shaft. Distribution: Triangular. Range:
-17.0 to –14.0 (i.e., permeability range is 1 x 10_lT to 1 x 10-14 m~). Meart, mode: -15.3,-15.0.

SHPRMHAL—Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft
seal at different times. Distribution: Uniform. Range: O to 1. Mean, mode: 0.5, 0.5. A distribution of
permeability (m~) in the crushed salt component of the shaft seal is defined for each of the following time
intervals: [0, 10 yr], [10, 25 yr], [25, 50 yr], [50, 100 yr], [100, 200 yr], [200, 10000 yr]. SHPRMHAL is used
to select a permeability value from the cumulative distribution function for permeability for each of the
preceding time intervals with result that a rank correlation of 1 exists between the permeabilities used for the
individual time intervals.

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: O to 0.4.
Mean, median: 0.2,0.2.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: O to 0.4.
Mean, median: 0.2, 0.2.

WASTWICK-Increase in brine saturation of waste due to capillary forces (dimensionless). Distribution:
Uniform. Range: Oto 1. Mean, median: 0.5,0.5.

WFBETCEL—Scale factor used in definition of stoichiometric coefficient for microbial gas generation
(dimensionless). Distribution: Uniform. Range: Oto 1. Mean, median: 0.5,0.5.

WGRCORAorrosion rate for steel under inundated conditions in the absence of C02 (rrds). Distribution:

Uniform. Range: Oto 1.58 x 10-14 rids. Mean, median: 7.94x 1O-15rds, 7.94 x 10-15 ink,.

WGRM}CH-Microbial degradation rate for cellulose under humid conditions (mol/kgOs). Distribution:

Uniform. Range: Oto 1.27 x 10-9 mol/kg.s. Mean, median: 6.34x 10-10 mol/kg@s,6.34 x 1o-1o mol/kgOs.

WGRM/C&Microbial degradation rate for cellulose under inundated conditions (mol/kg@s). Distribution:
Uniform. Range: 3.17 x lo-to to 9.51 x 10-9 mol/kg*s. Mean, median: 4.92 x 1(F9 mol/kg.s, O.$rz x 10-9

mol/kg.s.

WMICDFLGPointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% O,
z57’ 1, Z5$ZC~. WMICD~G = Q 1, 2 implies m microbial degradation of cellulose, microbial de~adation of

only cellulose, microbial degradation of cellulose, plastic and rubber.

WRBRNSAT—Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.552.
Mean, median: 0.276,0.276.

WRGSSA T—Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: O to 0.15.

Mean. median: 0.075,0.075.
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Table 3. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled Results
from Replicates RI, R2 and R3 (i.e., for a total of 300 observations) for Output Variables
EO:kVAS_PHES, EO;f31%%4LlC,E2.lJVAS_SATB and E2.WAS_PRES at 10,000 yr

WIl
1
2
3
4
5
6

Raw Data.

Variableb
WMICDFLG
HALPOR
WGRCOR
ANHPRM
SHRGSSAT
SALPRES

I Raw Data
Step Variable

1 ANHPRM

2 WMICDFLG

3 WGRCOR

4 WASITWCK

5 ANHBCEXP

6 HALPOR
7

[

7:WAS_PRl

SRCC
0.72 ‘
0.47
0.25

0.13
0.07
0.06

DO:BRAALI

SRC

0.56

-0.31

-0.16
-0.15

-0.12
-0.10

I

R2~
0.51
0.73
0.79
0.81
0.81
0.82

R2

E

0.42

0.45

0.47
0.49

0.50

Rank-Transforn d Data. E():

VariabIeb
WMICDFLG
HALPOR
WGRCOR
ANHPRM
SALPRES
SHRGSSAT

SRRC’
0.71
0.45
o.~3

0.11
0.07
0.06

Rank-Transfon ed Data. EG

SRRCVariable

WMICDFLG

ANHPRM

HALPOR
WGRCOR

HALPRM

SALPRES
WASTWICK

-0.66
0.59

-O.I6
-0.15

0.14
OJ~

-0.10

XS.PRES
R~~

().j~

0.73
0.79
0.80
0.80
0.81

3RAALIC

R2
0.43

0.75

0.80
0.82

0.85
0.86
0.87

Raw Data. E2: WAS_SATB Rank-Transforrned Dat~ E2:WAS_SATB
Step Variable SRC R2 Variable SRRC R2

1
~

3
4

5
6 J--

BHPRM 0.37
ANHPRM 0.30
HALPOR 0.21
WGRCOR -0.19
WRGSSAT -0.15
WMICDFLG -0.14

0.12
0.21
0.25
0.29
0.31
0.33

BHPRM 0.59 0.36
WRGSSAT –0.40 0.52

ANHPRM ().23 0.57
HALPOR 0.13 0.59

SHPRMHAL –0. ~~ 0.60
WGRCOR –0.10 1 0.61 I

Raw Data, E2: WAS_PRES Rank-Transfonned Data. E2: WAS_PRES
Step Variable SRC R2 Variable SRRC R2

1 HALPRM 0.37 0.14 HALPRM 0.36 0.13
~ ANHPRM 0.24 0.20 ANHPRM o.~4 0.19
3 HALPOR 0.14 ().~~ HALPOR 0.14 o.~o

a Sleps in smpwise regression analysis.

b Vmrhbks listed in order of selection in regression analysis with ANHCOMP and HALCOMP excluded from entry into regression model
because of -0.99 rank correlation within the ptirs (ANHPRM, ANHCOMP) and (HALPRM. HALCOMP).

c Smmfardizedregression coefficients (SRCS) in find regression model.

d Cumukuive R2 vatue with entry of each variable into regression model.

e Standardized rank regression coefficients (SRRCS) in final regression model.
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Table 4.

Variabled
Name

WMiCDFLG
HALPflR
WGRCOR
ANHPRM
SALPRES
WGRMICI
SHPRMCON
ANHBCVGP

Variable

Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SALPRES
WGRMICI
SHPRMCON
ANHBCVGP

Comparison of Variable Rankings with Different Analysis Proceduresa for y = EO:WAS_PRES,

the Variables in Table 2b and a Maximum of Five Classes of Values for Each Variable (i.e.,
nX =5)C

a

b

c

d

cc
Rank p-val

1.0 0.0000
2.0 0.0000
3.0 0.0000
4.0 0.0241
5.0 0.0855

17.0 0.7753
18.0 0.7878
20.0 0.8084

CMD: 2 X 5
Rank p-val

I .0 0.0000
2.0 0.000o
3.0 0.0025
4.0 0.0663
9.0 0.4932

24.0 0.9702
6.0 0.2674

14.0 0.6442

RCC
Rank p-Val

..
1.0 “. Oaooo
2.0 0.0000
3.0 0.0000
4.0 0.0268
5.0 0.0664

20.0 0.8940
18.0 0.8618
15.0 0.7686

Cv: 1X5
Rank p-val

1.0 0.0000
12.0 0-3919
4.0 0.1244
2.0 0.0042

11.0 0.3723
24.0 0.8900

5.0 0.1287
13.0 0.4752

CMN: 1 X 5
Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0000
4:0 0.0195

13.0 0.6283
23.0 0.9705
10.0 0.4099
18.0 0.8062

CIQ: 2 X 5
Rank p-Val

1.0 O.omo
2.0 0.0000

16.5 0.6626
3.0 0.0007
6.0 0.0868
5.0 0.0595
4.0 ().()~4.4

24.0 1.0000

CL: 1x5
Rank p-Val

1.0 0.000o
2.0 0.0000
3.0 0.0000
4.0 0.0187

13.0 0.5672
23.0 0.9649
11.0 0.4878
16.0 0.7686

S1: 5x5

Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0003
4.0 0.0049

21.0 0.7554
13.0 0.3239

7.0 0.1487
5.0 0.0194

Table includes only variables that had a p-w-due less charsO.I for at least one of the procedures under consideration although the variable
rankings for a specific procedure are based on the p-values obtained for that procedure for all 24 variables included in the analysis (See
Footnote b).

Table 2 contains 27 variables but, BHPRM was not used in the calculation of EO results (Le., EO:WAS_PRES and EO:BRAALIC) and the
vzriables in the pairs (ANHPRM, ANHCOMP), (HALPRM. IYALCOMP) have a -0.99 rank correlation. As a resuh. BHPRM. ANIYCOMP and
H,4LC0,ifP were noi included in the analysis. which resulted in 24 variables (i.e.. x’s) for analysis with each procedure.

Variables AIVHBCVGP. WMICDFLG in Table 2 are discrete with 2.3 levels, respectively: for these variables, nX = 2.3. Also. nY = 5 for S[.

Variables am Iisted in the table based on their ordering with the p-values obtained for CCS: thus. the listed rankings for CCS will
monotonically increase. which will not in general be the case for the other procedures.

53



Table 5. Comparison of Variable Rankings

Coefficients and Partial Correlation
y= EO:WAS_PRES

with Correlation Coefficients, Standardized Regression

Coefficients with Raw and Rank Transformed Data for

cc SRC PccVariablea
Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SALPRES

Variableb
Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SALPRES

p-Val - Rank Value-.~ Rank Value Rank Value

0.7124
0.4483
0.2762
0.1302
0.0993

0.0000
0.0000
0.0000
0.0241
0.0855

1.0
2.0
3.0
4.0
5.0

1.0 0.7234
2.0 0.4651
3.0 0.2460
4.0 0.1277
6.0 0.0639

1.0 0.8642
2.0 0.7469
3.0 0.5113
4.0 f).~953

6.0 0.1526

RCC

Rank

SRRC

Rank Value
PRCC

Rank Valuep-val Value

O.0000
0.0000
0.0000
0.0268
0.0664

1.0
2.0
3.0
4.0
5.0

0.7229
0.4521
0.2608
0.1280
0.1062

1.0 0.7207
2.0 0.45 I 1
3.0 0.2303
4.0 0.1093
5.0 0.0723

1.0 0.8564
?.0 o.7~56

>3.0 0.4739
4.0 o,~476

5.0 0.1667

a Comptison based on variables that had a p-value less than 0.1 for CCS. Ranks based on values for CCS. SRCS, PCCS in column ‘. VALUE’..

b Compmison based on variables that had a p-value less than 0.1 for RCCS. Ranks based on values for RCCS. SRRCS, PRCCS in column
‘VALUE.

Table 6. Correlations with Raw and Rank Transformed Data between WMK27FLG, EIALPOR,
WGRCOR, ANHPRM and SALPRES

Raw Data

HALPOR

‘WGRCOR
ANHPRk

SALPRES

-0.035
0.027
0.001

0.056

0.022

-0.004 0.013

-0.007 0.001 –0.012

HALPOR WGRCOR ANHPRMWMICDFLG

Rank-Transformed Data

HALPOR

WGRCOR
ANHPRM
SALP.RES

-0.008
0.031
0.018
0.053

0.014
0.005 ().()2]

-0.010 0.001 0.004

WMICDFLG HALPOR WGRCOR ANHPRM

54



Table 7. Top-Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for

RCC
CMN
CL
CMD
Cv
CIQ
S1
SRC
Pcc
SRRC
PRCC

RCC
CMN
CL
CMD
Cv
CIQ
S1
SRC
Pcc
SRRC
PRCC

y = EO:WAS_PRES, Variables included in Table 4a and
values (i.e., nX = 5)

0.982
0.972
0.972
0.972
0.731
0.860
0.946
0.986
0.986
0.996
0.996

0.981
0.981
0.981
0.740
0.831
0.967
0.996
0.996
0.986
0.986

1.000
1.000
0.769
0.872
0.972
0.967
0.967
0.963
0.963

Top-DowtI Correlation Matrix

1.000
0.769
0.872
0.972
0.967
0.967
0.963
0.963

...
...

0.769
0.872 ‘0.705
0.972 0.720 0.839
0.967 0.719 o,8~4

0.967 0.719 o.8~4

0.963 0.715 0.840
0.963 0.715 0.840

cc RCC CMN CL CMD CV CIQ

0.005
0.005
0.005
0.005
0.026
0.011
0.006
0.005
0.005
0.004
0.004

0.005
0.005
0.005
0.025
0.014
0.005
0.004
0.004
0.005
0.005

0.004
0.004
0.021
0.011
0.005
0.005
0.005
0.005
0.005

a Maximum of Five Classes of x

0.963
0.963 1.000
0.951 0.995 0.995
0.951 0.995 0.995 1.000

SI SRC Pcc SRRC

Top-Down Correlation Matrix p Values

0.004
0.021 0.021
0.011 0.011 0.031
0.005 0.005 0.028 0.013
0.005 0.005 0.029 0.015 0.005
0.005 0.005 0.029 0.015 0.005 0.004
0.005 0.005 0.029 0.013 0.006 0.004 0.004
0.005 0.005 0.029 0.013 0.006 0.004 0.004 0.004

cc RCC CMN CL CMD CV CIQ S1 SRC Pcc SRRC

a Variable rankings used in calculation of top-down correlation are based on only the 8 variables included in Table4. Specifically.esch
procedure was used to rank these 8 variables from 1 to 8 (i.e.. p-values for CCS, RCCS. CMNS. CLS. CMDS, CVS, CIQS,S1:absolute values of

coefficients for SRCS, PCCS, SRRCS.PRCCS):then.top-downcorrelationswerecalculatedon these rankings.
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Table 8.

Variablea
Name

WMICDFLG

HALPOR

WGRCOR

ANHPRM

Comparison of Variable Rankings for y= EO:WAS_PRES Obtained with a Maximum of Five
Classes of x Values (i.e., nX = 5) and Analytic Determination of pvalues’ with Variable

Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., rzX = J O) and Analytic
Determination of pvalues and (ii) a “Maximum of Five Classes of x values (i.e., nX = 5) and
Monte Carlo Determination of pvalues

CMNMC 1 x 5d

D-val

CMN 1 X 5h C4MN 1 x IF
Variable c1 1X5 CL IXIO CLMC: I X 5Rank

1.0
2.0

3.0
4,0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21.0
?J,()

23.0
?4.0

p-vat

O.ooca

O.cmo

Rank

1.0

2.0
3.0

4.0

11.0

6.0

15.0

1S.o

So

12.0

10.0

7.0

20.0

16.0

22.0

13.0

14.0

19.0

21.0

5.0

9.0

17.0

23.0
2.4.0

pval

O.tmo

O.(XXO

0.CO02

0.1371

0.5087

0.1947

0.7062

0.7693

0.4092

0.5115

0,4560

0.4034

0.s300

0.7465

0.8444

0.6511

0.6734

0.s062

0.8342

0.1542

0.4218

0.7562

0.9606

0.99 I9

Rank

2.0

2.0
2.0

4.0

5.0

6.0

7.0

8.0
10.0

9.0
11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

19.0

20.0

21.0

22.0

23.0
24.0

Rank

1.0
2.0
3.0
4.0

5.0

6.0

7.0

8.0

9.0

p-vat

0.13XX3

O.mco

O.axo

0.0187

0.1237
o.~~~

0.2710

0.3}53

0.3923

0.4625

0.4878

0.5194

0.5672

0.6945

0.7390

0.7686

0.7703

0.8272

0.8318

Rank

1.0

2.0

3.0

4.0

9.0

7.0

16.0

I7.0

6.0

12.0

11.0

8.0

20.0

13.0

21.0

19.0

18.0

15.0
~~,o

5.0

14.0

10.0

23.0
24.0

p-vti

o.mx3

O.m

O.mo?

o. I -MO

0.J376

0.2838

0.7391

0.7495
0.2725

0.5+6

0..$655

0.37?8

0.8266

0.5517

0.8301

0.7686

0.7594

0.7298

08443

0.2088

0.7055

0.4426

0.%91

0.989-!

Rank

?.0

2.0

2.0

4.0

5.0

6.0

7.0

8.0

9.0

p.v3t

O.rxm

O.occo

O.om

0.021?

o.t277
o.~clf~

0.?7[0

0.3167

0.3$01

0.4573

0.4852

0.51s3

0.5817

0.6996

0.7399

0.76.54

0.7658

0.8209

0.8292

0.8839

0.8937

0.905?

0.9663

0.9839

O.m

O.mco

0J3NJ

0.0214

0,1495

0.1526
lJ,~497

0.3027

0.4060

0.4053

0.4239

0.5645

0.6378

0.7035

0.7446

0.7483

0.7699

0.7997

0.8099

0.8377

0.8625

0.8755

0.9717

0.9973

WMICDFLG

HALPOR
WGRCOR

ANHPRM

SHPRMASP
WRBRNSAT

ANRRRSAT

3HRGSSAT

HALPRM

SHRBRSAT

SHPRMCON

WFBETCEL

SALPRES

SHPRMHAL

SHBCEXP

ANHBCVGP

ANHBCEXP

AIVRGSSAT
WAS3TWCK

WRGSSAT

SHPRMDRZ

SHPRMCLY

O.coco

0.0195

0.1439

0.15%

0.2488

0.3034

04097

0.40s9

0.4325

0.56%

0.6283

0.71 t6

0.7490

0.7521

0.7661

0.8K?

0.81C0

0.8358

0.8601

0.8726

0.9705

0.9975

WRBRNSAT

SHRGSSAT

ANRBR&4T

HALPRM

SHPRMCON

SHRBRSAT
WFBZTCEL

SALPRES

ANHBCEXP

WASTWICK

ANRGSSAT

SHPIUfHAL

10.0 10.0
11.0

12.o
11.0
12.0
13.0

1-1o

15.0

16.0

17.0

18.0

19.0

20.0

21.0
~~.o

23.0
24.0

13.0

14.0

15.0
16.0
17.0
18.0
19.0
20.0
21.0

SHBCEXP
WRGSSAT

SHPRMCLY

SHPRMDRZ
WGR6fJCl
WGRMICH

TD@

0.8816

0.8897

0.W32

0.9649

0.9865

23.0

24.0wGRMICH

1.Oxl 0.854 0.970

TD@ 1.Co3 0.861 0.971

Variable

SJlne

WMICDFLG

HAL.POR

IVGRCOR

Ah’HPRM

SHPRMASP

SHPRJfCON
ANRBRSAT
HALPRM
SALPRES
WRBRNSAT
WRGSSAT
SHRGSSAT
ANHBC.5YP
ANHBCVGP
SHRBRSAT
SHPRMDRZ
WFBETCEL
SHPRMCLY
SHPRMH.4L
SHBCEXP
ANRGSSA T
WASTWICK

WGffiiilCH

WGRMICI

TDC

CMD: 2 X 10 CMDMC. 2 X 5 Vtiabie Cv 1X5 Cv: 1 x 10 CVMC 1 x s

Rank

1.0

2.0

3.0
4.0

5,0

6.0

7.0

8.0

9.0

10.0

11.0

1?.0

[3.0

14.0

15.0

16.5

16.5

18.0

19.0

21.0

21.0

2t.o

23.0
.?4.0

p-vzt

O.m

O.mo

0.0025

0.0663
r3,~4~7

o,~674

0.3386

0.3883

0,4932

0.5037

0.5249

0.6151

0.6387

0.6442

0.6868

0.7358

0.7358
0.7s$7

0.8325

0.9197

0.9197

0,9197

0.9554

0.9702

Rmk

1.0

2.0

3.0

?.0

1$0

9.0
18.5

8.0

1s.5

13.0
5.0

23.0

11.0

16.0

15.0

10.0

17.0
6.0

.$.0
~~,o

I2.0

20.0

21.0
?.1.o

p-vial

0.CX!03

o.om3

0.012-!

0.3398

0.6302

0.372s

0.7532

0.3614

0.753?

0.6163

0.1596

0.9?8 1

0.5075

0.6!42

0.6$41

0.43 I I

0.7265

0.3293

0.1177

0.911-!

0.5887

0.87?9

0.8930
0.983S

Rank

! .5

1.5

3.0
4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

13.0

14.0

12.0
15.0

17.0

16.0

18,0

I9.0
~~.o

20.0

21.0

23.0
24.0

p-w Nmc Rank

1.0

2.0

3.0
4.0
5.0

6.0
7,0

8.0

9.0

10.0

11.0

12.0

13.0

14.0
1.5,0

16.0

i7.o

18.0

19.0

20.0

21.0
~~,o

23.0

2.$.0

pval

0.0202

Rank

1.0

2.0

4.0

6.0

5.0

15.0

7.0

8.0

9.0

11.0

3.0

20.0

16.0

13.0

21.0

10.0

14.0

17.0

11.0

?3.0

18.0

24.0

19.0

22.0

/1.val

O.oxo

0.0172

0.08.U

0.1173

0.09?9

0.4691

0.1928

0.2953

0.3614

0.4091

0.0500

0.5800

0.4752

0.44 Is

0.8635

0.3697

0.4670

0.5542

0.439 I

0.943s

0.5606

0.98.U

0.5700

0.9219

Rank

1.0

2.0
4.0

3.0

5.0
7.0
6.0
8.0
9.0

10.0
11.0
I2.0
13.0
14.0
15.0
16.0
\7.o
18.0
19.0
20.0
21.0
~~.o

23.0
24.0

p-w

O.cam

0.C03 I

0.1 09s

o. low

0.1201

0.1411
0.1393

0.1517

0.2957

0.3049

0.3564

0.3817

0.481Jl

0.5502

0.594:

0.6053

0.6237

0.6588

0.6666

0.7443

0.8109

0.8223

0.8330

0.885-I

O.m

O.m

0.C1318

0.0690
(3,~4(31
o,~7,8

0.3329

0.3967

0.5058

0.5180

0.5223

0.6050

0.6224

0.5685

0.695O

0.7283

0.7169

0.7659

0.8357

0.9093

0.9082

0.S085

0.W39

0.96M

WMICDFLG

ANHPRM

HALPRhf

WGRCOR

SHPRMCON

SHRG3SAT

ANHBCEXP

SHPRMASP

SHPRMCLY
SHBCEXP

SALPRES

HALPOR

ANHBCVGP
WGRMICH

SHPRMDRZ
WASTWICK

WRGSSAT

WRBRNSAT

ANRGSSAT
WFBETCEL

SHRBRSAT

SHPRMHAL

ANRBRSAT

WGRMICI

O.cou

0.1 1&

0.1244

0.1287

0.1-$66

0.1539

0.1612

0.3102

0.3:21

0.3723

0.3919

0.47s2

0.5612
0.60s7

0.6185

0.6398

0.6+532

0.6761

0.753 I

0.8197

0.s340

0.8378

0.8$00

1.Oco 0.768 0.986 TDC 1KM 0.892 0,993
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Table 8.

Variable

Name

WhfICDFLG

H.4MOR

ANHPRM

SHPRMCON

WGRMIU

SALPRES

SHPRMHAL

SHPRMDRZ

SHPRMASP

SHRGSSAT

SHBCEKP
WASIWICK

WFBETCEL

SHPRMCLY

WRBRNSAT

HALPRM

ANHBCEXP
ANRGSSAT
WRGSSAT
ANRBRSAT
SHRERSAT

TDC

(Continued)

CIQ 2x5
Rank

1.0
2.0

3.0
4.0

5.0

6.0

7.0
8.0

9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.5
16-5
18.5
18.5
20.0
21.0
22.0
23.0
24.0

P-VIII

O.omo
O.OCGO
0.0037
0.0244

0.0595

0.0868

0.1801
0.1801
0.254s
0.3232
0.323.?
0.5249
0.5467
0.591s
0.6387
0.6626
0.6626
0.6868
0.6868
0.7113
0.8557
0.9197
0.9554
I.m

1.CQO

ii

b

c

d

e

CIQ 2X1O

Rank

1.0
2.0
4.0

5.0

7.0

3.0

10.0
14.0

9.0

8.0

13.0

17.0

12.0

20.5

6.0

23.0

205

11.0
16.0
18.0
15.0
22.0
19.0
24.0

p-vat

O.m

0.C4XYI

0.0112

0.IC05

0.1719

0.0077

0.2993

0.4944

0.2133

0.1849
0.4559

0.6s41

0.4559

0.8729

0.1426

0.9429

0.8729

0.3725

0.6163

0.6718

0.5887

0.8930
0.7265

I.m

0.917

CIQMC 2 X 5 . Variable
Rank

1.5
1.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0

15.0
16.0
17.0
19.0
18.0
20.0
21.0
23.0
24.0
22.0

p-val

0.0020

O.oom

0.0005
0.0279.
0.0565 ‘
0.0893
0.1729
0.1789
0.2547
0.3172
0.3317
0.5281
0.5356
0.5948
0.6264
0.6746
0.6814
0.7063
0.7021
0.7120
0.8508
0.9122
0.9426
O.sillo

WMICDFLG

HALPOR
WGRCOR

ANHPRM

ANHBCVGP
WRGSSAT

SHPRMCON
WASTW[CK

SHBCEXP

SHPRMHAL

SHPRMASP

SHPRMDRZ
WGRMICI

ANHBCEXP
WFBETCEL

SHRBRSAT

ANRBRSAT

HAL.I%M

SHRGSSAT
WRBRNSAT
SALPRES
sHPRMaY
WGRM[CH

ANRGSSAT

0.987 TDc

51:5X5

Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

pvst

O.wco
O.m
o.cfl)3
0.0349
0.0194
0.1229
0.1487
0.1850
o,~436
o.2518
IJJ601

0.3142
03239

03438
0.3856
0.4299
0.4765
0.6235
0.6482
0.6849
0.7554
0.9265
0.9437
0.9763

I.000

St! Iox 10
Rank

1.0
2.0
4.0
5.0
8.0

12.0
6.0

21.5
17.0
10.0
11.0
7.0

16.0
9.0

213
15.0
20.0
3.0

19.0
18.0
13.0
23.0
24.0
14.0

P-WI

O.m
O.fxoo
0.0073
0.0128
0.1271
0.2786
0.0326
0.8743
0.6167
0.2028
o.~623

0.1129
0.6363
0.1768
0.8743
0.5527
0.7701
0.0336
0.7525
0.7343
0.3310
0.9348
0.97W
0.5316

0.812

SIMC 5 X 5

Rank

1.5

1.5

3.0
4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

P-W

O.m
O.mm
0.0003
0.CS338

0.0178

0.1196
0.1529
0.1829
0.2441
0.254(3
o~673

03205

0.3252
0347?.
0.3905
0.4308
o.a725
0.6307
0.6587
0.6981
0.7662
0.9305
0.9429
0.9791

0.988

Twenty-four(24)variablesincludedinanalysis;seeFoomoteb toTable4.
Variablerankings obtainedwitha maximumoffiveclassesofx values(i.e.,nX= 5)andanalyticdeterminationofp-wdues.
VariabIe makings obtained with a maximum often chsses of x values (i.e., nX = 10) and amdytic determination of p-values.

VariabIe rankings obtained with a maximum of five classes of x values (i.e., nX = 5) and Monte Carlo determination ofp-vahes.

Top-down correlation with variable rankings obtained with a maximum of five classes of x values (i.e., nX = 5) and ana3yticdetermination of
p-vaks.
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Table 9.

Variablea
Name

WMICDFLG

H4LPOR

WGRCOR

ANHPRM
SA.URES
SHRGSSAT
wAmvIcK

SHRBRSAT

ANHBCEXP
WFBETCEL

SHPRMUY

H4LPRM
SHPRU4SP
WRBRNSAT

SHBCEXP
ANRBRSAT
WGRMC1

SHPRMCON

SHPRMDRZ
ANHBCVGP
WRGSSAT

ANRGSS.4T
WGRMICH
SHPRMHAL

T-m

Comparison of Variable Rankings for y = EO:UVAS_PfiES Obtained with Correlation
Coefficients (CCS, 13CCS) and Analytic Determination of pvaiues with Flankinas Obtained
with Monte Carlo Determination of pialues

~cb

Rank

1.0
2.0

3.0
4.0

5.0
6.0

7.0

6.0
9.0

10.0

11.0
12.0
13.0
14.0

15.0
16.0
17.0
18.0

19.0
20.0

21.0
220

23.0
24.0

pval

O.0000
O.ooixl
o.ooCO
0.0241
0.0855
0.1553
0.2163
o,~~26

0.2369
0.2770
0.5213
0.5767
0.6041
0.6444
0.6831
0.7237
0.7753
0.7878
0.7925
0.8084
0.8251
0.8834
0.9291
0.9474

0.971

a

b

c

d

CCM@ Variable
pval NameKanK

2.0

2.0

2.0

4.0

5.0

6.0

7.0

8.0

9:0

10.0

11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

O.(?x(l ,.

O.m
O.CCMS
0.0236
0.0815
0.1551
0.2200
(3,?Z2
0.2379

0.2832
0.5264
0.5761
0.6192
0.6465
0.6875
0.7236
0.7772
0.7878
0.7990
0.8016
0.8279
0.8879
0.9247
0.9459

WIUICDFLG

MJLVOR
WGRCOR

ANHPRM

SALPRES
SHRGSSAT
WFBETCEL
WASTWICK

SHRBRSAT

SHPRMASP
ANHBCEXP

WRBRNSAT
HALPRM
SHPRMCLY

ANHBCVGP

SHBCEXP
SHPRMDRZ

SHPRMCON
SHPRM%U
WGRMIU

WGRMICH
WRGSSAT

ANRBRSAT

RCC
Rank

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
120
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

p-val

O.oow
O.om
O.oofxl
0.0268

O.WA
r3.~322

0.2408
0.2726

0.3068

0.4201
0.4383

0.5519
0.6412

0.6812

0.7686
0.8486

0.8599
0.8618
0.8710
0.8940
0.9576
0.9848
0.9964

0.9991

0.971

Rank

2.0
20
2.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

RCCMC

Twenty-four (24) variables included in analysis see Foomote b to Table 4.

Variable rankings obtained with analytic determination ofp-vidues.

VariabIe rankings obtained with Monte (Ado determimsion of p-wdues.

Top-down correlation between variable rankings obtained with analytic and Monte Carlo determination ofp-vafues.
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p-val

O.CGQO
O.cooo
o.000i3
0.0250
0.0634
0.2335
0.2469
0.2758
0.3056
0.4291
0.4352
0.5581
0.6419
0.6848
0.7654
0.8501
0.8596
0.8644
0.8785
0.8934
0.9559
0.9863
0.9973
0.9990



Table 10. Exceedance Probabilities (i.e., pvalues) for Common Mean and Common Variance Tests
Calculated with Use of Loganthmsa for y = EO:WAS_PRES, the Variables in Table 2b and a

Maximum of Five Classes of Values for Each Variable (i.e., rsX= 5)’

a

b

c

Variable
Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM

Variable
Name

WA41CDFLG
ANHPRM
WGRCOR
HALPRM

Cm Log, 1 X5
Rank p-Val

1.0 “ 0.0000
2.0 0.0000
3.0 0.0000
4.0 0.0085

CV: Log,l X 5
Rank p-Val

1.0 0.0000
2.0 0.0151
3.0 0.1051
4.0 0.1116

CMNMC: Log,l X 5
Rank p-Val

2.0 0.0000
2.0 0.0000
2.0 0.0000
4.0 0.0112

~C: Log,l X5
Rank p-Vai

1.0 0.0000
2.0 0.0100
3.0 0.0672
4.0 0.0786

Log yk instead of yk in Eq. (42) for common means (CMNS) aod 19/ as defined in % (5$) mtier rhm N defined in @ (50) for common

variances (CVS); for each test ratde contains variables with p-values less than 0.1.

See Foomote b, Table 4.

See Foomote c, Table 4.
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Table 11. Comparison of Variable Rankings with Different Analysis Proceduresa for y= I!3:BRAAL/C,

the Variables in Table 2b and a Maximum of Five Classes of x Values (i.e., nX= 5)C

Variable

- Named

ANHPRh4
WMICDFLG
WASTWICK
WGRCOR
ANHBCEXP
WFBETCEL
WRBRNSAT
HALPOR
HALPRM
SHPRMDRZ
SHPRMCON
SHRGSSAT
WGRMICI
SHRBRSAT

Variable

Name

ANHPRM
WMICDFLG
WASTWICK
WGRCOR
ANHBCEXP
WFBETCEL
WRBRNSAT
HALPOR
HALPRM
SHPRMDRZ
SHPRMCON
SHRGSSAT
WGRMICI
SHRBRSAT

cc
Rank p-val

1.0 0.0000
2.0 0.0000
3.0 0.0045
4.0 0.0048
5.0 0.0095
6.0 0.0555
7.0 0.0615
8.0 0.0934

11.0 0.2593
12.0 0.2910
14.0 0.3369
18.0 0.4767
21.0 0.5809
23.0 0.7329

CMD: 2x5
Rank p-Val

2.0 0.0000
1.0 0.0000

15.5 0.5467
5.0 0.0231

21.0 0.8088
15.5 0.5467
13.0 0.3883
4.0 0.0155
3.0 0.0050
6.0 0.0306

10.0 0.2674
8.0 0.0504

18.0 0.6868
7.0 0.0362

RCC
Rank p-Val

2.0 ‘ 0.0000

6.0
4.0

15.0
8.0

11.0
5.0
3.0

22.0
12.0
14.0
17.0
10.0

Cv:
Rank

1.0
13.0

8.0
5.0
7.0
6.0

12.0
20.0
11.0
24.0

2.0
17.0
22.0
18.0

1.0 ‘ 0.0000
0.0405
0.0057
0.6490
0.2131
0.4046
0.0087
0.0014
0.8392
0.4170
0.5371
0.6663
0.2767

x5

p-Val

0.0078
0.4046
0.2961
0.2125
0.2321
0.2194
0.3851
0.5416
0.3596
0.7101
0.0426
0.5177
0.6096
0.5347

CMN: 1X5
Rank p-Val

1.0 0.0000
2.0 0.0000
6.0 0.1062
4.0 0.0636

13.0 0.4467
5.0 0.0732

11.0 0.3483
19.0 0.5960
7.0 0.1105

21.0 0.6935
3.0 0.0057

14.0 0.5044
20.0 0.6466
22.0 0.6946

CIQ 2x5
Rank p-Val

1.0 0.0000
2.0 0.0000

10.0 0.3883
13.5 0.6868
22.5 0.9554

8.0 0.3084
7.0 0.2942
6.0 0.2805

24.0 0.9702
22.5 0.9554
17.0 0.8325
3.0 0.0628
4.0 0.0780
5.0 0.1395

CL: 1x5
Rank p-vd

2.0 0.0000
1.0 0.0000

16.0 0.4411
4.0 o,04~7

19.0 0.7146
10.0 0.2299
12.0 0.2889
7.0 0.1431
3.0 0.0019
5.0 0.1060

11.0 0.2394
9.0 0.2139

21.0 0.8966
6.0 0.1174

S1: 5x5
Rank p-Val

2.0 0.00W
1.0 0.000Q

15.0 0.5246
11.0 0.3644
21.0 0.7776
13.0 0.4186
14.0 0.4186
4.0 0.0698
3.0 0.0517
7.0 0.2202
8.0 0.2436
6.0 0.2056
9.0 0.2863
5.0 0.1917

~ b. C.d see Footnotes a, b, c, d to Table4.
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Table 12. Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y = EO:BRAALIC

Variablea

Name

ANHPRM
WMICDFLG

WASTWICK
WGRCOR

ANHBCEXP
WFBETCEL

WRBRNSAT

HALPOR

Variableb

Name

Wh41CL)FLG

ANHPRM
HALPRM
WGRCOR

HALPOR
WASTWICK

p-Val

0.0000
0.0000

0.0045

0.0048

0.0095

0.0555

0.0615

0.0934

p-vai

0.000o

0.0000
0.0014
0.0057

0.0087
0.0405

a, b See Footnotes a. b to Table 5.

cc
Rank

1.0
2.0

3.0
4.0

5.0

6.0

7.0

8.0

Value

0.5655
-.3210

–.1639

–.1628

-.1497

–.1105

-.1080

–.0969

RCC

Rank Value

1.0 -.6521
2.0 0.5804
3.0 0.1850
4.0 -.1598
5,0 –.1518
6.0 –.1185

SRC
Rank Value

1.0 0.5568
2.0 -.2931
4.0 -.1451
3.0 -.1669
5.0 -.1155
8.0 -.0757
9.0 -.0733
6.0 -.0993

SRRC

Rank Value

1.0 -.6533
2.0 0.5937
5.0 0.1443
4.0 -.1509
3.0 –. 1539
7.0 -.0948

Pcc
Rank Value

1.0 0.6317
2.0 -.3878
4.0 -.2075
3.0 -.2370
5.0 –. 1663
8.0 -.1098
9.0 –. 1065
6.0 -.1435

PRCC
Rank Value

1.0 -.8787
2.0 0.8619
5.0 0.3817
4.0 -.3963
3.0 -.4031
7.0 -.2617
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Table 13. Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y = HZBRAWC, Variables included in Table 11a and a Maximum of Five Classes of x values

(i.e., rzX= 5)b

RCC

CL
CMD
Cv
CIQ
S1
SRC
Pcc
SRRC
PRCC

0.729
0.841
0.589
0.573
0.623
0.581
0.455
0.980
0.980
0.711
0.711

cc

0.721
0.897
0.913
0.301
0.531
0.838
0.728
0.728
0.912
0.912

RCC

0.626
0.606
0.820
0.584
0.531
0.839
0.839
0.679
0.679

CMN

0.971
0.199
0.526
0.908
0.618
0.618
0.808
0.808

CL

0.157
0.556 0.285
0.952 0.072 0.651
0.612 0.630 0.588 0.476
0.612 0.630 0.588 0.476 1.000
0.877 0.242 0.618 0.817 0.751 0.751
0.877 0.242 0.618 0.817 0.751 0.751 1.000

CMD CV CIQ S1 SRC Pcc SRRC

a Same as Foomote a to Table 7 except for use of 14 variables from Table 11.

b See Table 10.10, Ref. 58, for topdown correlation matrix p-values.
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Table 14.

variable’
Nme

ANHPRM
WMICDFLG

SHPRMCON
WGRCOR

WFBETCEL

WASTWICK

h%LPRM
SHBCEKP

ANRGSSAT

Comparison of Variable Rankings for y = EO:BRAAUC Obtained with a Maximum of Five
Classes of x Values (i.e., fi = 5) and Analytic Determination of pvalues with Variable

Rankings Obtained with (i) a M~imum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of pvalues and (ii) a Maximum of Five Classes of x values (i.e., nX =

5) and Monte Carlo Determination of pvalues (see Table 10.11, Ref. 58, for omitted results)

CMN: I X 5b CMN: 1X IOC CMNMC:1 x # variable
Name

WMICDFLG
ANHPRM

HAUhWf
WGRCOR

SHPRMDRZ

SHRBRSAT

HALPOR

SHBCSXP

SHPRUHAL

SHPRMCLY

TDC

variable

Narnc

ANHPRM

SHPRMCON

SHBCEKP

ANRBRSAT
WGRCOR

WFBETCEL

ANHBCEKP
WASTWICK

ANRGSSAT
SHPRMDRZ

TDC

CL 1X5 CL1X1O CLMC: 1 X 5
Rank

1.0
2.0

3.0

4.0

5.0

6.0

7.0

8.0

23.0

24.0

Rank

1.0
2.0

3.0
4.0

5.0

6.0

7.0

8.0

23.0

2d.o

P-WI

O.m
0.W33
0.0357

0.0636

0.0732

0.1062

0.1105

0.1140

0.7033

0.7056

Rank

1.0

2.0
4.0

5.0

10.0
6.0

12.0

3.0

23.0

21.0

p-vai

O.oxo
O.m
0.0655

0.0723

0.2163

0.1085
0.4030

0.0120

0.93(20

0.7932

Rank

1.5
1.5
3.0
4.0
5.0
6.0
7.0
8.0

24.0
23.0

p-val

O.m

O.0000

0.IX136

0.0506

0.0572

0.0856

0.0961
0.0995

0.7447
0.7421

p-val

o.ccKx3

O.coco

0.0019

0.0427

0.1060

0.1174

0.1431

0.1524

0.9367

0.938S

Rank

1.0
2.0

3.0

8.0
4.0

6.0
13.0

5.0

21.0

19.0

p-val

o.McrJ
O.fxoo
0.0052

0.2368

0.0206

0.1781

0..5392

0.0441

0.8705

0.7203

Rank

I .5

1.5

3.0
4.0

5.0

6.0
7.0

8.0

24.0

23.0

p-w

O.m
0JX03
0.W13

0.(M38

0.1095

0.1166

0.1427

0.1532

0.9392

0.9387

Toe

variable
Name

WMICDFLG

ANHPRU

HAUWM

HAIJOR
WGRCOR
SHPRMDRZ
SHRBRSAT
SHRGSSAT

SHPRMHAL
WRGSSAT

TDc

1.(XX3 0.891 0.987 I.(m 0.941 0.987

chin
Rmk

2x5
p-v.d

CMD:
Rank

2X1O

p-vd

CMDMC:2 X 5
Rmk p-w

Cv:
Rank

1X5
pvd

WIX1O

Rank P-W
CVMC: 1X 5

Rank pvd

1.0
2.0
3.0

4.0

5,0
6.0

7.0

8.0

O.coco
O.cmo
0.0350

0.015s

0.0231

0.0306

0.0362

0.0504

1.0
2.0

3.0

8.0

7.0

4.0

5.0
9.0

O.m
O.ooco
0.0089

0.1596

0.1271

0.021s

0.0282

0.1849

1.5 O.oxml
1.5 O.m
3,0 0.0040
4.0 0.0169
5.0 0.0221
6.0 0.0275
7.0 0.0347
8.0 0.0586

1.0
2.0

3.0

4.0

5.0

6.0

7.0
8.0

0.C078
0.0426

0.1463

0.1994
13,2125

0.2194

0.2321
o,~%l

1.0 O.colo
7.0 o,~704

2.0 0.0329

5.0 0.1188
3.0 0.0995

13.0 0.4615
4.0 0.1165
6.0 13.25(33

1.0 O.m
2.0 0.C058

3.0 0.0774

4.0 0.1278
5.0 0.1-$24
6.0 0.14s5
7.0 0.1697
8.0 0.2450

23.5 0.9702
23.5 0.9702

20.5 0.8514
10.0 0.431I

24.0 0.9672

23.0 0.9658

23.0 0.6631
24.0 0.7101

23.0 o.bi81
19.0 0.5875

0.870

23.0 0.9119
24.0 0.9791

0.995I.(D3 0.919 0,987 I.lxm

St: 5x5 St lox 10Variable

Nune

CIQ
Rank

1.0
2.0

3.0
4.0

5.0
6.0

7.0
8.0

2x5
p-vd

CIQ 2 x 10

Rank p-vti

CIQMC: 2X 5
Rank p-val

Variable

Name

SIMC

Rank
5x5

pvdRmk pval Rank p-val

ANHPRU
WMICDFLG
SHRGSSAT
WGRMIC[
SHRBRSAT
HALPOR
WRBRNSAT
WFB.ETCEL

O.owo
O.m
0.0628
0.0780
0.1395
o.~805
(3,1942

0.3084

1.0 O.m
2.0 O,ofxw
4.0 0.0856
6.0 0.1719
13.0 0.5341
3.0 0.0235
8.0 0.2803
15.5 0.6441

1.5 O.wo
1.5 O.a’co
3.0 0.0628
4.0 0.0757
5.0 0.1382
6.0 0.2710
7.0 0.2917
9.0 0.3089

WMICDFLG

ANHPRM

HALPRM
HALPOR

SHRBRSAT
SHRGSSAT

SHPILMDRZ

SHPRMCON

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

O.m
O.mxl
0.0517
0.&598
0.1917
o,~056
o~~o~
o,~436

1.0
2.0
7.0
6.0
8.0

14,0
9.0
3.0

O.inxl
O.wxl
0,2313

0.2028

0.2786

0.573s
0.?955

0.0814

1.5

1.5

3.0
4.0

5.0
6.0
7.0

8.0

O.cam
O.m
0.0514

0.070s

0.1898
0.2058

o.~n?l

0.2566

ANHBCEXP
HALPRU

~~.5 0.9554

24.0 0.9702

1.m

23.5 0.9892

10.0 0.4071
22.0 0.9472

24.0 0.9751

0.987

SALPRES
ANRGSSAT

TDC

23.0 0.9326 18.0 0.7870
24.0 0.9537 24.0 0.9846

23.0 0.9354
24,0 0.9561

TDC 0.869 1.fxo 0.748 0.988

~ b. c. d. e .’jeeFoomotes a, b, c, d, e to Table 8.
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Table 5.

Variabte’
NZV-IE

ANHPRM
WMiCDFLG
wAslwlcK

WGRCOR
AHHBCHP
WFBETCEL
WRBRNSAT

HALPOR

SHRBRSAT

SHPRMHAL

I-D@

Comparison of Variable Rankings for y = EO:BRAALIC Obtained with Correlation
Coefficients (CCS, RCCS) and Analytic Determination of pvalues with Rankings Obtained
with Monte Carlo Determination of p-values (see Table 10.12, Ref. 58, for omitted results)

~-b CCM~
Rank P-v& Rank pval

1.0 O.ocxx

2.0 O.oowt

3.0 o.c045

4.0 o.t1348

5.0 0.0095

6.0 0.0555

7.0 0.0615

&o 0.0934

1.5 0.0000
I .5 O.ocoo
3.0 0.0022
4.0 0JX129
5.0 0.0115
6.0 0.0528
7.0 0.0585
8.0 0.0947

23.0 0.7329 23.0 0.7371
24.0 0.7958 24.0 0.8000

0.987

—.
&b. c, d See Foomotes ~ b, c, d in Table 9.

Table 16.

Variable
Name

WMICDFLG
ANHPRM
HALPRM
WGRCOR
SHPRMDRZ

Variable

Name

ANHPRM
WA41CDFLG
SHPRMCON
SHBCEXP
WASTWICK
ANRBRSAT
ANHBCEXP
WRBRNSAT
WFBETCEL
WGRMICH

Variable

Name

WMICDFLG

ANHPRM

HALPRM
WGRCOR

.%4LPOR
WASTWICK

SALPRES
WFBETCEL

WGRMICH

SHPRMHAL

mc

RCC RCCMC
Rank p-val Rank p-vai

1.0 O.cdoo 1.5 O.OCCQ
20 0.0000 L5 O.0000
3.0 0.0014 3.0 0.0009
4.0 0.0057 4.0 0.0044
5.0 0.CQ87 5.0 0.0084
6.0 0.0405 6.0 0.0401
7.0 0.1107 7.0 0.1105
8.0 0.2131 8.0 0.2107

..

23.0 0.8513 23.0 0.8479
24.0 0.8619 24.0 0.8632

0.988

Exceedance Probabilities (i.e., pvalues) for Common Mean and Common Variance Tests

Calculated with Use of Logarithmsa for y = .HIBFMMC, the variables in Table 2,b and a
Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)C

CMN: Log,l X 5
Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0022
4.0 0.0284
5.0 0.0967

CV: Log,l X 5
Rank p-Val

1.0 0.0000
2.0 0.0002
3.0 0.0019
4.0 0.0130
5.0 0.0144
6.0 0.0189
7.0 0.0290
8.0 0.0304
9.0 0.0754

10.0 0.0930

CMNMC: Log,l X 5
Rank p-Val

1.5 0.0000
1.5 0.0000
3.0 0.0022
4.0 0.0286
5.0 0.1029

c~c: Log,l X 5
Rank p-Vai

1.0 0.0000
2.0 0.0064
3.0 0.0403
4.0 0.1104
5.0 0.1140
6.0 0.1341
7.0 0.1699
8.0 0.1711
9.0 0.2968

10.0 0.3384

L b, C See Footnotes a, b, c to Table 10.
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Table 17. Comparison of Variable Rankings

y = E2.+VAS_SATB, the Variables in Table

(i.e., nX = 5)C

Variabled
Name

BHPRM
ANHPRM
HALPOR
WGRCOR
WRGSSAT
WMICDFLG
WGRMICH
SHPRMHAL
WRBRNSAT
ANRBRSAT
SHPRMCLY
SHPRMCON

Variable
Name

BHPRM
AiVHPRA4
HALPOR
WGRCOR
WRGSSAT
WMICDFLG
WGRMICH
SHPRMHAL
WRBRNSAT
ANRBRSAT
SHPRMCLY
SHPRMCON

cc

Rank p-val

1.0 0.0000
2.0 0.000o
3.0 0.0006
4.0 0.0017
5.0 0.0081
6.0 0.0214
7.0 0.0838
8.0 0.0996

11.0 0.2350
15.0 0.6402
21.0 0.9020
23.0 0.9478

CMD: 2 X 5
Rank p-Val

1.0 0.0000
3.0 0.0003

23.5 0.8557
13.0 0.5037
2.0 0.0000
8.0 0,2187
4.0 0.0130
6.0 0.0218

12.0 0.3883
17.0 0.6868
7.0 0.1627
5.0 0.0206

z c, d See Footnotes a, b, c to Table 4

Rank

1.0
3.0
5.0
6.0
2.0
7.0
8.0
4.0

13.0
20.0
16.0
19.0

RCC
p-Val

with Different Analysis Procedures for
2b and a Maximum of Five Classes of x Values

0.0000
0.0001
0.0269
0.1446
0.0000
0.1745
0.1842
0.0225
0.4950
0.6645
0.6137
0.6549

Cv: 1X5
Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0011
5.0 0.0067
9.0 0.1750
6.0 0.0114
4.0 0.0050
7.0 0.1122
8.0 0.1749

25.0 0.9798
21.0 0.7874
22.0 0.8224

cm 1X5
Rank p-val

1.0 0.0000
2.0 0.0000
4.0 0.0124
6.0 0.0296
5.0 0.0143
7,0 0.0317
3.0 0.0021

10.0 0.1586
8.0 0.0801

19,0 0.7070
11.0 0.1743
9,0 0.1149

CIQ: 2 X 5
Rank p-Val

3.0 0.0054
4.0 0.0628
6.0 0.1324
2.0 0.0019
1.0 0.0000

15.0 0.5134
7.0 0.2311

11.0 0.4628
25.0 0.9825

8.0 0.2674
16.0 0.5467
10.0 0.3546

CL: 1x5
Rank p-val

1.0 0.0000
3.0 0.0001

12.0 0.3437
11.0 0.3179
2.0 0.0000

10.0 0.2824
4.0 0.0059
8.0 0.1528
6.0 0.0270

13.0 0.3977
7.0 0.0972
5.0 0.0202

S1: 5x5
Rank p-Val

2.0 0.0000
3.0 0.0002
7.0 0.1328
6.0 0.1010
1.0 0.0000
8.0 0.1542
5.0 0.0564

10.0 .0.2278
9.0 0.2128
4.0 0.0495

16.0 0.5739
12.0 0.4075

b .%nre as Footnote b to Table 4 except that BHPRM is used in the calculation of E2 results (i.e., E2:WAS_SATB and
E2.-WAS_PRES) and so was included as an independent variable, which resulted in 25 variables (i.e., x’s) for analysis with each

procedure.
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Table 18. Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y = E2:WAS_SATB, Variables included in Table 17a and a Maximum of Five Classes of x

values (i.e., rzX = 5)b

RCC

CL
CMD
CV
CIQ

~ S1
SRC
Pcc
SRRC
PRCC

0.851
0.919
0.643
0.640
0.947.
0.490
0.551
0.988
0.988
0.876
0.876

0.790
0.815
0.840
0.742
0.631
0.727
0.844
0.844
0.989
0.989

0.781
0.763
0.950
0.422
0.561
0.902
0.902
0.812
0.812

0.982 ‘“
0.609 0.602
0.494 0.503 0.267
0.702 0.706 0.363 0.840
0.646 0.647 0.926 0.530 0.557
0.646 0.647 0.926 0.530 0.557 1.000
0.806 0.830 0.762 0.655 0.732 0.859 0.859
0.806 0.830 0.762 0.655 0.732 0.859 0.859 1.000

cc RCC CMN CL CMD CV CIQ S1 SRC Pcc SRRC

a Same as Fmmote a to TabIe 7 except for use of 12 variables from Table 17.

b See Table 10.16, Ref. 58, for top-down correl&ion marrix p-values.



Table 19. Comparison of Variable Rankings for y = E2: WAS_SATB Obtained with a Maximum of Five
Classes of x Values (i.e., nX = 5) and Analytic Determination of pvalues with Variable
Rankings Obtained with (i) a M~imum of Ten Classes of x values (i.e., nX = 10) and

Analytic Determination of pvalues and (ii) a Maximum of Five Classes of x values (i.e., TZX=
5) and Monte Carlo Determination of pvalues (see Table 10.17, Ref. 58, for omitted results)

CMN: \ X5b CMNMC I Xid>
Rank p-vat

variable’
Name

CMN. 1X10C
Rank P-W

m. 1X5

Rank pvas
CL1X1O

Rank p-vat
CLMC 1X5

Rank p-vatRank pvd Name

L7HPRM
WRGSSAT
ANHPRM
WGRMICH
SHPRWCON

WRBRNSAT

SHFV?MCLY

SHPRMHAL

BHPRM
ANHPRM
WGRMICH

HALPOR
WRGSSAT

WGRCOR

WMICDFLG

WRBRNSAT

Lo
2.0

3.0

4.0

5.0

6.0

7.0

.8.0

O.(XY3O
0.0W3
0.0021

0.0124

0.0143

0.02%

0.0317

0.0801

1.0 O.olm
2.0 0.CKKK3

3.0 0.0053

6.0 0.0546

8.0 0.1113

5.0 0.0343

4.0 0.0317

9.0 0.1416

1.5 O.cooo
1.5 0.0303
3.0 0.CQ22
4.0 0.0116
5.0 0.0146
6.0 0.0294
7.0 0.0320
8.0 0.0791

1.0 O.m

2.0 O.ccoo

3.0 o.lXnl

4.0 0.0059

5.0 0.0202

6.0 0.0270
7.0 O.W-/z

8.0 0.152s

1.0 O.om

2.0 0.0CQ2

3.0 0.0C08

5.0 0.0289
6.0 0.0963
4.0 0.0132

11.0 0.3016

8.0 0.1902

1.5 o.c030
1.5 O.m
3.0 O.ml
4.0 0.0056
5.0 0.0165
6.0 0.0240
7.0 0.0932
8.0 0.1521

..

24.0 0.9133

25.0 0.942.s

24.0 0.9133

7.0 0.1763

0.930

ANHBCVGP
SHRGSSAT

bHBcvGP

ANRGSSAT

me

24.0 0.8920

25.0 0.8929

1.000

23.0 0.8920

20.0 0.7163

0.%2

25.0 0.8930

24.0 0.8913

0.988

22.0 0.9125

25.0 0.9418

0.9883-DC I .030

VariabicVariable

Name

CMD
Rank

2x5
p-vat

CMD
Rank

2XI0

p-vat

CMDMC: 2X 5

Rank p-vat

CW 1X5
Rank pvat

CV:l XIO
Rank p-val

CVMC ] X 5

Rank p-vat

BHPRM
WRGSSAT

ANHPRM
WGRMICH

SHPRWCON

SHPRMHAL

SHPRMCLY
WMICDFLG

1.0
2.0

3.0
4.0

5.0

6.0

7.0

8.0

O.m
Omxl
0.0C03
0.0130
0.0206
0.0218
0.1627
0.2187

2.0

1.0

3.0

6,0

7.0

5.0

15.0

9.0

Oaoco
O.axo
0.0035

0.0856

0.1538

0.0669

0.5075
o.~187

1.5 O.Owl
1.5 O.ccoo
3.0 O.rxol
4.0 0.0135
5.0 0.0207
6.0 0.0227
7.0 0.1639
8.0 0.2133

BHPRM

ANHPRM

HALPOR

WGRMICH

WGRCOR

WMICDFLG

SHPRMHAL

WRBRNSAT

1.0 O.cao
2.0 O.m

3.0 O.ml 1
4.0 0.0250

5.0 0.o157
6,0 0.0114

7.0 0.1122

8.0 0.1749

1.0 O.cml
2,0 O.m

5.0 0JM59

3.0 o.o@$3

4.0 0.0058
6.0 0.0114

7.0 0.0765

17.0 0.6414

1.5 O.coco
1.5 o.miX3
3.0 0.C022

4.0 0.CX38?

5.0 0.0103
6.0 0.0140
7.0 0.1208
8.0 0.18115

ANHBCEYP

SHBCEYP

TDC

23.5 0.8557

25.0 0.9825

1.m

25.0 0.9558

16.0 0.6163

0.835

23.0 0.8523

25.0 0.9827

0.988

SHPRMDRZ

ANRBRSAT

TDC

24.0 0.8702

25.0 0.9798

20.0 0.7694

25.0 0.9997

24.0 0.8727

25.0 0.9794

I.OCO 0.909 0.988

variable
Name

Vtiable

Name
CIQ 2x5

Rank p-vd

CIQ 2x 10
Rank p-vat

CIQMC 2 X 5

Rank p-vat

51: 5x5
Rank pval

Sfi lox 10

Rank p-vat

SIMC 5 X 5

Rank p-vat

WRGSSAT

WGRCOR

BHPRM
ANHPRM
SHRBRSAT
HALPOR
WGRMICH

ANRBR.MT

1.0 o.tntm3
2.0 0.0219

3.0 0.0054

4.0 0.0628

5.0 0.1257

6.0 0.1324

7.0 0.2311

8.0 0.2674

1.0 o.cm3
2.0 0.0321

3.0 o.m63

6.0 0.2622

7.5 0.2803

4.0 0.1481

14.0 0.4814

15.0 0.5075

1.0 0.CC03
2.0 o.cxt12

3.0 0.CQ55

4.0 0.0670

5.0 0.1209

6.0 0.1317

7.0 o.~359

8.0 0.2613

WRGSSAT

BHPRM

ANHPRM

ANRBRSAT
WGRMICH

WGRCOR

HALPOR

WMICDFLG

1.0 O.oxil
2.0 O.m

3.0 0.CQ32
4.0 0.0$95

5.0 0.056-!

6.0 0.1010

7.0 0.1328

8.0 0.1542

I .0 O.ccm
2.0 O.m

3.0 0.C058

19.0 0.8034
12.0 0.4276

9.5 03310
9.5 0.3310

7.0 0.2502

2.0 O.m

2.0 O.mco

2.0 O.m
4.0 0.0451

5.0 0.0568
6.0 ‘ 0.0963
7.0 0.1271

8.0 0.1508

SHPRUDRZ
WR&RVSAT

24.0 0.9197

25.0 0.9825

11.0 0.3838

25.0 0.9761
24.0 0.9152

25.0 0.9777

0.999

SHPRMDRZ
SHBCEXP

24.0 0.9489

25.0 0.9537

1.CcQ

25.0 0.%12

17.0 0.7701

0.746

24.0 0.9458
25.0 0.9574

TDC 1.000 0.872 TDC 0.972

a

b, c. d, e
Twenty-five (25) variables included in analysis; see Footnote b to Table 17.

See Footnotes b, c, d, e to Table 8.
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Table 20.

Vtiabk’
Name

BHPJRM
ANHPRM

H4LPOR
WGRCOR
WRGSSAT
WMICDFLG

WGRMICH

SHBCEXP

Td

Comparison of Variable Rankings for y = .E2.+VAS_SATB Obtained with Correlation
Coefficients (CCS, RCCS) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of pvalues (see Table 10.18, Ref. 58, for omitted results)

~-b CCM&
Rank p-Val Rank p-val ‘

1.0
2.0

3.0
4.0

5.0
6.0
7.0

8.0

o.o#3
0.0003
0.0006
0.0017
0.0081
0.0214
0.0838
0.0996

1.5 0.ooOo
1.5 0.0000
3.0 0.0Q04
4.0 0.0020
5.0 0.0088
6.0 0.0227
7.0 0.0844
8.0 0.0998

24.0 0.9823 24.0 0.9824
25.0 0.9943 25.0 0.9943

a

b, C, d

0.988

Variable
Name

BHPRM
WRGSSAT

ANHPRM
SHPRMHAL
HALPOR
WGRCOR

WMICDFLG
WGRMICH

mLPRM

WASTWICK

TDC

Twenty-five (25) variables included in analysis; see Footnote b to Table 17.

See Foomotes b, c, d to Table 9.

RCC RCCMC
Rank p-val Rank p-Val

1.0 O.occo 20 OCCQO
2.0 o.o@O 2.0 O.woo
3.0 0.0001 2.0 0.0000
4.0 0.0225 4.0 0.0207
5.0 0.0269 5.0 0.0287
6.0 0.1446 6.0 0.1480
7.0 0.1745 7.0 0.1750
8.0 0.1842 8.0 0.1885

...

24.0 0.9544 24.0 0.9569
25.0 0.9832 2s.0 0.9834

0.972
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Table 21. Comparison of Variable Rankings with Different Analysis Procedures for

Y = E2.4JVAS_FWES, the Variables in Table 2b and a Maximum of Five Classes of Values for

each Variable (i.e., nX =5)C .

Variabled

Name

HALPRM
ANHPRA4
HA.LPOR
SHPRMDRZ
ANHBCEXP
BHPRM
SHRGSSAT
ANRBRSAT
WGRCOR

Variable
Name

HAL.PRM
ANHPRA4
HALPOR
SHPRMDRZ
ANHB(%XP
BHPRM
SHRGSSAT
ANRBRSAT
WGRCOR

cc

Rank p-Val

1.0 0.0000
2.0 0.0000
3.0 0.0090
6.0 0.1684
7.0 0.1786

10.0 0.3651
14.0 0.5958
19.0 0.7133
20.0 0.7676

CMD: 2 X 5
Rank p-Val

2.0 0.0000
3.0 0.0007
5.0 0.0700

17.0 - 0.6868
4.0 0.0595
1.0 0.0000

22.0 0.8325
6.0 0.0823

14.5 0.5249

RCC
Rank p-Val

1.0 ‘ 0.0000
2.0 0.0000
3.0 0.0184
9.0 0.2417
8.0 0.2373
6.0 0.1704

12.0 0.3948
14.0 0.4378
17.0 0.6560

Cv: 1X5
Rank

2.0
24.0

7.0
4.0

16.0
1.0

14.0
22.0

3.0

p-Val

0.0014
0.9251
0.1410
0.0298
0.5178
0.0000
0.3905
0.7194
0.0296

CMN: lx5
Rank p-vial

2.0 0.0000
3.0 0.0002
5.0 0.0415

13.0 0.4281
4.0 0.0405
1.0 0.0000

25.0 0.9511
7.0 0.1513

17.0 0.5428

CIQ: 2 X 5
Rank

11.0
12.0
18.0
13.0
19.5

1.0
3.0
4.0
2.0

p-val

0.4530
0.4628
0.6151
0.5037
0.6868
0.000o
0.0289
0.0739
0.0130

CL. 1X5
Rank p-Val

2.0 0.0000
3.0 0.000o
5.0 0.0940

12.0 0.3131
4.0 0.0602
1.0 0.0000

23.0 0.7738
7.0 0.1304
9.0 0.2242

S1: 5x5
Rank

2.0
4.0

11.0
17.0
14.0

1.0
5.0

10.0
3.0

Value

0.0002
0.0049
0.3142
0.6111
0.4414
0.0000
0.0698
0.2518
0.0002

~ b. c, d See Footnotes a, b, C, d to Table 17.
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Table 22. Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for

y = E2:WAS_PRES, Variables included in Table 23a and a Maximum of Five Classes of x
_ S)bvalues (i.e., fl -

RCC
CMN
CL
CMD
Cv
CIQ
SI
SRC

Pcc
SRRC

PRCC

0.967
0.398
0.378
0.378
0.097
–.427

0.144
0.990

0.990

0.967

0.967

cc

0.577
0.567
0.567
0.230
–.248
0.342
0.975

0.975

1.000

1.000

RCC

0.997
0.997
0.698
0.429

0.798
0.423

0.423

0.577

0.577

CMN

1.000
0.706
0.462

0.826
0.408

0.408

0.567

0.567

CL

0.706
0.462 0.715

0,826 0.850 0.816
0.408 0.072 –.438 0.149

0.408 0.072 –.438 0.149 1.000

0.567 0.230 -.248 0.342 0.975 0.975

0.567 0.230 -.248 0.342 0.975 0.975 1.000

CMD CV CIQ S1 SRC Pcc SRRC

a Same as Footnote a to Table 7 except for use of 9 variables from Table 21.

b See Table IO.-,W Ref. 58, for top-down correlation matrix p-VdUeS



Table 23. Comparison of Variable Rankings for y = E2: WAS_PRES Obtained with a Maximum of Five
classes of x Values (i.e., rzX = 5) and Analytic Determination of gwalues with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., fi = 10) and
Analytic Determination of pvalues and (ii) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of pvalues (see Table 10.23, Ref. 58, for omitted results)

CMN 1 x 5b
Rank p-vd

CMNMC 1X# . Vmiable Ci:1X1O

Rank p-w
Vsrisblea
Name

CMN: 1XI&
Rank p-vd

ctilx5
Rank p-val

CLMClx5
Rank p-vatRank p-val

BHPRM
HALPRM
ANHPRM
ANHBCEXP
HALJ’OR

ANHBCVGP

ANRBRSAT

SHBCEXP

WFBETC5L

SHRBRSAT

3-DC

Variable
Name

BHPRM

HALPRM

WGRCOR

SHPKMDR2

ANHBCVGP
WMICDFLG

HALPOR

SHRBRSAT

ANHPRM

S~RES

TDC

1.0 Osmo
2.0 O.OYXI

3.0 0.00C0
4.0 0.0602

5.0 0.0940

6.0 0.1099

7.0 0.1304

8.0 0.1919

1.0 0.5X0
3.0 O.m
2.0 O.oom

10.0 0.2585
13.0 03454
6.0 0.1099,

11.0 0.2851
12.0 0.2878

2.0 O.axo
2.0 O.ctco
2.0 O.m
4.0 0GS25
5.0 0.0972
6.0 0.1031
7.0 0.1312
8.0 0.1S87

BHPRM
HALPRM
ANHPRM
ANHBCEXP
HALPOR
ANHBCVGP
ANRBRSAT
SHBCEXP

1.0 O.mxl
2.0 O.cccil

3.0 O.awz

4.0 0.0405

5.0 0.0415

6.0 0.1130

7.0 0.1513

8.0 0.1773

1.0 O.ccca
2.0 O.m
3.0 O.m
9.0 0.2063
7.0 0.1914
4.0 0.1130

15.0 0.3538
10.0 0.2147

1.5

1.5
3.0
4.0
5.0
6.0
7.0
8.0

oa300

O.cmo
0JXC12
0.0419
0.0438
0.1072
0.1513
0.1733

24.0 0.8482
25.0 0.9199

14.0 0.3540
20.0 0.6038

0.828

24.0 0.8468

25.0 0.9230
WFBETCEL

SHRGSSAT

24.0 0.9015

25.0 0.951 I

6.0 0.1751

24.0 0.7887

24.0 0.8972

25.0 0.9555

I.cco1.Coo 0.805 0.988 0.972me

variable

Name

cm
Rank

2x5
pval

cm:
Rank

2X1O

p-vd
CMDMC 2 X 5

Rank p-vd

Cv 1X5
Rank pval

Cv
Rank

lXIO

p-w
CVMC 1 X 5

Rank p-val

BHPRM
HALPRM

ANHPRM

ANHBCEKP
HALPOR
ANRBRSAT
WMICDFLG
SHPRMASP

1.0

2.0

3.0
4.0

5.0

6.0

7.0

8.0

O.m 1.0
2.0

3.0

8.0

5.0

14.5

7.0

9.0

O.axo
O.CSYJ1

0.CS312
o,?288

0.1596

0.4311

0.2187
o,~45]

1.5 O.m
1.5 O.m
3.0 0.KS35
4.0 0.0583
5.0 0,0718
6.0 0.0827
7.0 o,~133

8.0 0.2932

1.0 O.coco
2.0 0.0314

3.0 0.02%

4.0 0.3298

5.0 0.1173

6.0 0.1393

7.0 0.1410
8.0 0.1453

1.0
2.0

3.0

5.0
6.0

8.0

10.0

15.0

O.colz

0.0201

0.0491

0.0799
0.1173

0.1393

0.1817

0.3933

1.0 0.0XS3
2.0 0.C021
3.0 0.0278
4.0 0.0280
5.0 0.1184

8.0 0.1383

7.0 0.1347
6.0 0.1311

O.m
0.CC07

0.0595

0.07C0

0.0823
o.~187

o.~~~

WFBETCEL

WRGSSAT

TDC

24.5 0.9197

24.5 0.9197

1Sum

17.0 0.481.I
22.0 0.6993

0.8C0

24.0 0.9080

25.0 0.9091

24.0 0.9251

25.0 0.9938

I.m

2?.0 0.7599
25.0 0.9958

0.824

24.0 0.9175
25.0 0.9940

0.987 0.995

Vadablc

Name

CIQ: 2X 5

Rank p-val

CIQ 2x 10
Rank p-vd

1.0 OJXOO

5.0 0.0565

2.0 0.0163

4.0 0.0308

17.0 0.5075

9.0 o,~451

6.0 0.1719

13.0 0.3S38

CIQMC 2 X 5

Rank p-vd

Variable

Name

S1:5x5
Fbnk p-val

Sk 10x 10
Rmk pval

1.0 O.ouoo
4.0 0.0082
2.0 0.tX)28
3.0 0.0032

22.0 0.8482

15.0 0.3495
11.0 0.1646
14.0 0.3398

SIMC 5 X 5
Rzlnk p-vat

I .5 Occco
1.5 o.rx3fx3
3.0 O.mz
4.0 0.0333
5.0 o.c@9
6,0 00989
7.0 03313

8,0 0,2380

BHPRM

WGRCOR

SHRGSSAT
ANRBRSAT
SHRBRSAT
WALWWICK

SHPRMASP
WRBRNSAT

1.0 O.tx)co
2.0 0.0130

3.0 0.0289

4.0 0.0739

5.0 0.2093

6.0 0.2427

7.0 0.2805

8.0 (3.~94~

1.0 OJ3CIXI
2.0 0,0132

3.0 0.0277
4.0 0.0704

5.0 (J,y)55

6.0 0.2431 -

7.0 0.2721
8.0 o,~973

BHPRM

HALPRM
WGRCOR

ANHPRM
SHRGSSAT

SHBCEXP
WGRMICI

ANHBCVGP

1.0 O.otm
2.0 o.txM2

3.0 0.52?32

4.0 0.(049

5,0 0.C698

6.0 0.1010

7.0 0.1985

8,0 (),2.j~7

SAURES 24.0 0.8889

SHPR.MCON 25.0 0.9702

TDC 1.C60

20.5 0.6993

25.0 0.9865

0.754

24.0 0.8946

25.0 0.9764

SHPRMHAL

SHPRMCON

24.0 0s0s4

25.0 0.9898

24.0 0.8863

20.0 0.5316

0.735

2/$.0 0.9102

25.0 0.9933

0.9880.999 TDC I.003

is Twenty-five (25) variables included in arxdysis; see Footnote b to Table 17.

b, c. d. e See Footnotes b. c, d, e to Table 8.
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Table 24,

Variablea
Name

HALPRM
ANHPRM
HXPOR

ANHBCVGP
SHPRMASP
SHPR.MDRZ
ANHBCEXP
WGRMICI

SHPRMCON
ANRGSSAT

l-ix+

Comparison of Variable Rankings for y = E2:VVAS_PRES Obtained with Correlation

Coefficients (CCS, RCCS) and Analytic Determination of gwalues with Rankings Obtained
with Monte Carlo Determination of pvalues (see Table 10.24, Ref. 58, for omitted results)

~Cb CCMC$

Rank p-val Rank pvd

1.0 0.0000 1.5 0.0000
2.0 0.0020 1.5 O.Cow

3.0 0.0090 3.0 0.0098

4.0 0.1123 4.0 0.1072
5.0 0.1606 5.0 0.1610

6.0 0.1684 6.0 0.1670

.7.0 0.1786 7.0 0.1795

8.0 0.1905 8.0 0.1827

...

24.0 0.9794 24.0 0.9798

25.0 0.9891 2s.0 0.9897

0.988

Variable
Name

HALPRM
ANHPRM
HALPOR

ANHBCVGP
WGRMICI

BHPRM

SHPRMASP
ANHBCEXP

SHBCEXP

SHPRMCON

7-DC

RCC
Rank ~VaI

1.0 O.ocoo
10 O.olxo
3.0 0.0184
4.0 0.1099
5.0 0.1477
6.0 0.1704
7.0 0.1946
8.0 (3,2373

..

24.0 0.9389

25.0 0.9918

RCCMC
Rank p-Val

1.5 0.0000
1.5 0.0000
3.0 0.0194
4.0 0.1031
5.0 0.1444
6.0 0.1746
7.0 0.1896
8.0 0.2404

24.0 0.9367
25.0 0.9918

0.988

a Twenty-five (25) variables included in asxdysis:see Footnote b to Table 17.

b, c, d See Footnotes b, c, d to Table 9.
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