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Abstract

Procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses are described and
illustrated. These procedures attempt to detect increasingly complex patterns in scatterplots and involve the
identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank
correlation coefficients, (iii) trends in ‘central tendency as defined by means, medians and the Kruskal-Wallis
statistic, (iv) trends in variability as defined by variances and interquartile ranges, and (v) deviations from
randomness as defined by the chi—sqﬁare statistic. A sequence of example analyses with a large model for two-phase
fluid flow illustrates how the individual procedures can differ in the variables that they identify as having effects on
particular model outcomes. The example analyses indicate that the use of a sequence of procedures is a good

analysis strategy and provides some assurance that an important effect is not overlooked.
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1. Introduction

" Sensitivity analysis is now widely recognized as an essential component of studies based on mathematical
modeling (e.g., Refs. 1-6). Here, sensitivity analysis refers to the determination of the effects of uncertain model
inputs on model predictions. A number of methods have been proposed for sensitivity analysis, including differential

analysis, response surface methodologies, Monte Carlo techniques, and the Fourier amplitude sensitivity test.7-8-9

Monte Carlo techniques probably constitute the most widely used approach to sensitivity analysis due to their
flexibility, ease of implementation, and conceptual simplicity. When viewed abstractly, a Monte Carlo sensitivity

study involves a vector

X=[X1,x2, '“vxn[] (1)
of uncertain model inputs, where each x; is an uncertain input and n/ is the number of such inputs, and a vector

y=1§(X) = [y, Y2+ -+» Y00} (2)

of model predictions, where f is a function used to represent the model under consideration, each y; is an outcome of

evaluating the model with the input X, and 70 is the number of such outcomes. Distributions
D,i=12,..,nl (3)

are used to characterize the uncertainty in each input x;, where D; is the distribution assignied to x;.. Correlations and

other relationships between the x; are also possible.

A sampling procedure such as simple random sampling or Latin hypercube sampling!0 is used to generate a

sample

xk=[xlk’ X9y ...,an’k],k= 1,2, ....nS, . 4)

from the population of X’s with the distributions in Eq. (3), where nS is the size of the sample. Evaluation of the

model under consideration with the sampie elements X;, in Eq. (4) then creates a sequence of results of the form

yk = f(xk) = [y”\" Vogos +oen )‘no'k], k=1.2, P IlS, (5)

where each yjy is a particular outcome of evaluating the model with X;. The pairs

(xk. yk). k=1, 2, ey nS, (6)




constitute a mapping from model input X; to model output Y, that can be explored with various sensitivity analysis
techniques to determine how the individual analysis inputs contained in X (i.e., the x;’s) affect the individual analysis
outcomes contained in ¥ (i.e., the y;'s). Analysis possibilities include regression analysis, correlation analysis. and

examination of scatterplots.8.9.11-17

Although techniques based on regression analysi§ and correlation analysis are often successful in identifying the
.relationships between model input and output embedded in the mapping in Eq. (6), these techniques may fail to
identify well-defined, but nonlinear, relz«.tionships.7'l""15’18 .If the underlying relationship is nonlinear but monotonic,
_ then a rank transformation will linearize the relationship and result in successful sensitivity analyses with regression-
based techniques.!? However, the underlying relationship can be too complex to be linearized in any simple manner.
In these caseé; sensitivity analysis techniques are needed that can identify patterns in the mapping in Eq. (6) without
recourse to specialized prespecified relationships (e.g., linear or monotonic). The ultimate test of whether or not
there is a relationship between an input variable x; and an output variable y; lies in determining whether or not-the

points

(xik’ y]k)’ k= 1, 2, ceey nS, . (7)

constitute a random pattern conditional on the marginal distributions for x; and y;. This paper will investigate the
implications from a sensitivity analysis perspective of a sequence of tests (i.e., hypotheses) for the relationship
between x; and y;. These hypotheses will run from very specific (i.e., a linear relationship) to quite general (i.e., a

nonrandom pattern).

The paper is organized as follows. Example simulation results that will be used to motivate and illustrate the
sensitivity analysis procedures are presented in Sect. 2. Then, the analysis procedures are summarized in Sects. 3-7.
Specifically, the following five relationships are proposed as the basis for a sequence of sensitivity tests: (i) Linear
relationship: E(ylx) = By + B; x, where the subscripts have been dropped from y; and x; for notational simplicity
(Sect. 3); (ii) Monotonic relation: E[ny)ir(x)] = Y + 73 r(x), where nx) and\r(y) denote the ranks of x and y,
respectively (Sect. 4); (iii) Location (central tendency) of y depends on x (Sect. 5); (iv) Variability (spread) of y
depends on x (Sect. 6); and (v) y and x are statistically independent: p(ylx) = p(y), where p denotes the density
function for y (Sect. 7). Next, the ranking of variable importance and the use of the Iman and Conover20 top-down
correlation procedure to compare variable rankings are discussed in Sects. 8 and 9. Then, examples of the indicated
procedures are presented in Sect. 10, and a concluding discussion is given in Sect. 11. A following article discusses

Type 1 and Type II errors and the robustness of analysis outcomes for independent samples.2!




2. Test Problems

The test problems {xse results obtained in the 1996 performance assessment (PA) for the Waste Isolation Pilot
Plant (WIPP),!8 which was carried out to support the U.S. Department of Energy’s (DOE’s) application to the U.S.
Environmental Protection Agency (EPA) for the certification of the WIPP for the disposal of transuranic waste.2? In
particular, the test problems involve results (Tabie' 1) calculated by the BRAGFLO model (Sect. 4.2, Ref. 18), which
was used to represent two phase (i.e., gas and brine) \ﬂow in the vicinity of the‘repository. The BRAGFLO model
uses finite difference procedures (Fig. 1) to numerically solve a system of nonlinear partial differential equations
(Eqgs. 4.2.1 - 4.2.6, Ref. 18) and requires a significant amount of computational resources (¢.g., 4 to 5 hours of CPU

time on 2 VAX Alpha with VMS for a single model evaluation).

The 1996 WIPP PA used Latin hybercube sampling to propagate the effects of subjective (i.e., epistemic)
uncertainty through the analysis.!® As a result of guidance given by the EPA,23 the PA used a Latin hypercube
_sample (LHS) of size 300 (Sect. 6.3, Ref. 18) from 75 uncertain variables, of which only 27 were used as inputs to
the BRAGFLO model in the calculation of the dependent v_ariables in Table 1 (Table 2). To provide a test of the
robustness of the uncertainty propagation procedures, the indicated LHS was actually generated as 3 independent
samples of size 100 each (Sect. 6.4, Ref. 18). Each of these samples was generated with use of the Iman and
Conover restricted pairing technique?*23 to enforce specified correlations between three pairs of variables (the
correlated pairs (ANHCOMP, ANHPRM) and (HALCOMP, HALPRM) are used in the calculation of the results in
Table 1 and are described in Table 2) and also to ensure that uncorrelated variables had correlations close to zero.

The outcome of this sampling was 3 LHSs of size 100 each:

RI: Xy, = [Xypp Xypo o> Xppgs), k=1,2, ..., 100 (®)
R2: sz = [XZk,, kaz, ceey X2k75], k= 1, 2, veny 100 ’ (9)
R3: X3 = [x3kl’ X352 -oes X3k75], k=1,2,...,100, (10)

where X = [x;. X5, ..., x75] corresponds to the 75 uncertain variables indicated in Table 2 and R1, R2 and R3

designate the three replicated (i.e., independently generated) LHSs.

Once the LHSs in Eqgs. (8) - (10) were generated, BRAGFLO calculations were performed for a variety of cases
(Table 6.9.1, Ref. 18). The two cases considered here are (i) undisturbed (i.e., EQ) conditions, and (ii) a drilling
intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in the underlying Castile
Formation (i.e., E2 conditions or, in the more detailed descriptions given in Ref. 18, E2 conditions with the intrusion
occurring at 1000 yr). Results calculated by BRAGFLO are time-dependent. The time-dependent behavior of the
results is shown in Fig. 2 for replicate R1. For simplicity, the technique comparisons will use the values of the

variables at the end points of the individual curves in Fig. 2 (i.e., at 10,000 yr). However, nothing prevents analyses




at other times and, in general, sensitivity analyses of time-dependent variables should also be time-dependent

(Chapts. 7, 8, Ref. 18).

For perspective and motivation, regression-based ;esults for the variables in Table 1 (obtained in Ref. 18 with
the STEP program?%) are presented in Table 3 for both raw and rank-transformed data. In Table 3, a vaniable was
required to be significant at an a-value of 0.02 to e;ﬁer a regression model and to remain significant at an a-value of
0.05 to be retained in a regression model, although there were no cases of a variable entering and then being dropped
from a regression model. As will be seen, the rank-transformation is often an effective procedure for improving the
resolution of regression-based sensitivity analyses. However, as will also be seen, nonmonotonic relationships can
result in patterns that cannot be effectively analyzed with rank-transformed data. It is the need to be able to identify

such patterns that forms the motivation for this study.

The analyses in Table 3 for repository pressure under undisturbed conditions (E0:WAS_PRES) with raw and
rank-transformed data are reasonably effective, with (1) R? values of 0.82 and 0.81 for raw and rank-transformed
data, (2) the same variables selected in both analyses, and (3) only one minor variation in the order of variable
selection (i.e., the order of selection of the last two variables in the regression models is reversed). Scatterplots for

the first four variables selected in the regression analyses for EQ:WAS_PRES are presented in Fig.3. The

scatterplots for the first two variables selected in the regression analysis, WMICDFLG and HALPOR, display well-
defined patterns. The pattern for the third variable, WGRCOR, is weaker but still detectable. The fourth variable,
ANHPRM, changes the R? values for raw and rank-transformed data by 0.02 and 0.01, respectively, and produces a

scatterplot that displays little discernible pattern.

The analyses for cumulative brine inflow from all anhydrite marker beds to the repository under undisturbed

conditions (E0:BRAALIC) are interesting in that the regression with raw data is not particularly effective (i.e., R =
0.50 at final step of analysis), whereas the regression with rank-transformed data is reasonably successful in
accounting for the observed uncertainty (i.e., R* = 0.87). Again, examination of scatterplots shows well-defined
patterns for the first two variables, WMICDFLG and ANHPRM, selected in both regression analyses (Fig. 4).
Scatterplots for the next two variables, HALPOR and WG’RCOR, selected in the regression analysis with rank-
transformed data are also given in Fig. 4. The negative effects of these variables, as indicated by the signs of their
standardized regression. coefficients, are barely discernible in their scatterplots, with these sr'nall effects being
consistent with observed changes in R* values of 0.05 and 0.02 with the entry of HALPOR and WGRCOR,
respectively, into the regression model. In this example, the regression analyses with both raw and rank-transformed
data have identified the two dominant variables, WMICDFLG and ANHPRM. However, the analysis with raw data

in isolation would not be very credible due to its low R? value.

The regression analysis with raw data for brine saturation in the lower waste panel after an E2 intrusion

(E2:WAS_SATB) is quite poor, with the final regression model! containing 6 variables but having an R? value of only




0.33. The regression analysis with rank-trénsformed data does somewhat better and results in a final regression
model with 6 variables and an R? value of 0.61. However, an R* value of 0.61 is not particularly reassuring with
respect to whether or not all the variables giving rise to the observed uncertainty in EZ:WAS_SATB have been
identified. Additional insights can be obtained by examining scatterplots (Fig. 5). The first two variables identified
in the rc;.gression analysis with rank-transformed data, BHPRM and WRGSSAT, show well-defined, and interacting.
patterns. In particular, BHPRM is the primary dexex:xﬁinanl of whether or not a high value for E2: WAS_SATB occurs:
however, given that a high value for E2:WAS_SATB occurs, this value is almost completely determined by
WRGSSAT.- Despite the well-defined patterns involving BHPRM and WRGSSAT, the regression analysis with raw
data results in incremental R? values of only 0.12 and 0.02 for these two variables, and the regression analysis with
ranl;-transformgd data results in incremental R? values of only 0.36 and 0.16. The next two variables selected in the
regression analysis with rank-transformed data are ANHPRM and HALPOR. The scatterplot plots for these variables
do not show particularly strong patterns, with a stronger pattern actually being shown for the fourth-selected variable,
HALPOR, than for the third-selected variable, ANHPRM. For E2:WAS_SATB, the two dominant variables, BHPRM
and WRGSSAT, appeaf in the regression analyses for both raw and rank-transformed data. However, the R2 values
associated with these regressions (i.e., 0.33 and 0.61) provide little assurance that the dominant variables‘ have been
identified. It is only after examination of the associated scatterplots and the development of a physical explanation
for the patterns appearing in these plots that some degree of comfort emerges that the dominant variables have

indeed been identified.

The final regressions in Table 3 are for pressure in the lower waste panel after an E2 intrusion (E2: WAS_PRES).
The regression analyses with both raw and rank-transformed data perform very poorly and result in final regression
models with R? values of only 0.22 and 0.20, respectively. Both regression models select HALPRM, ANHPRM and
HALPOR, with the scatterplots for these three variables appearing in Fig. 6. Examination of these scatterplots does
not reveal what is giving rise to the observed uncertainty in £2: WAS_PRES. In particular, this uncertainty does not
appear to arise from either HALPRM, ANHPRM or HALPOR individually or from some form of interaction between
these variables. At tﬁis point in the analysis reported in Ref. 18, a systematic search was made through the
scatterplots for E2: WAS_PRES and the remaining variables in Table 2, with this search revealing that the uncertainty
in E2:WAS_PRES is dominated by BHPRM (Fig. 6d). This is disconcerting because the clearly dominant variable
was not even identified in the regression with raw or rank-transformed data. In contrast, the analyses for
E2:WAS_SATB included the dominant variables in the regression models even though the R? values were low. As an
aside, the interesting pattern involving E2: WAS_PRES and BHPRM in Fig. 6d results from two phase flow in the
borehole connecting the waste panel with overlying formations, with gas typically flowing up the borehole and brine

typically flowing down the borehole.!8

As should be apparent from the regressions in Table 3 and the associated scatterplots in Figs. 3-6, the

examination of scatterplots is an important part of sampling-based sensitivity analysis and can reveal patterns that are




missed by regression-based procedures. The variables in Table 1 will be used to illustrate a number of procedures
for the identification of patterns in scatterplots. These variables were selected to illustrate pattern identification
procedures because they constitute a spectrum of analysis possibilities. In particular, regression analysis with both
raw and rank-transformed data performs well for E0: WAS_PRES; regression analysis with rank-transformed, but not
raw, data performs well for EO:BRAALIC; rcgresﬁion models with neither raw nor rank-transformed data perform
well for E2:WAS_SATB but both models still inclu;ie the two dominant variables; and regression analysis with raw

and rank-transformed data fails to identify the dominant variable for E2: WAS_PRES.

3. Linear Relation: y=f¢ + Bix

The coefficients By and By in a first-order polynomial can be estimated with the well-known ordinary least

squares procedure. Specifically, ﬁo and B, are given by
B=xTx)"'xTy, - (11

where

B:[@O},Xz[fl XI }y:[iyl }
BI 1 X ¥ns

and the superscript 7 denotes matrix transpose.2’ The estimated linear regression model is

f=[§o+B11, (12)

with the coefficients By and B, deriving from the sampled and calculated values contained in the pairs (x;, y;), k =

1,2, ..., nS, as indicated in Eq. (11).

The linear correlation coefficient p,,. which is also called the Pearson correlation coefficient, provides the most

commonly used measure 10 assess the strength of the linear relationship between x and y in Eq. (12) and is defined by
Pr =05 /(6,0,). ‘ (13)

where G, denotes the covariance between x and y, and G, and o, denote the standard deviation of x and y,

respectively: In turn, p,, is estimated by

nS nS V2r s 12
- — — —_2 —_2
Pr = E(Xk =00k =) E(Ik -x)° Z(yk -y
k=l T oLk=l k=1




where
nS nS
E:Exk 1 nS, }:2)},( InS.
k=1 k=1

The quantity p xy 1s often called the sample correlati_on coefficient.

The reason why p,,, and hence p xy» Provides a measure of the strength of the linear relationship between x and
y is not immediately apparent from Eqgs. (13) and (14). Rather, this reason is perhaps best understood in the context
of the regression model in Eq. (12) with both x and y standardized to variables with a mean of 0 and a standard

deviation of 1; that is,

T =(xp =X/ 6y, T =0 =)/ 6y, (13)
where
S 12 S 172
6, = X(xk—f)zl(ns—l) ,Gy = z(yk-i)zl(ns—l)
k=1 k=1

Then Eg. (11) yields the regression model
(=16, =0+p(x~X)/ &y =P (x=X)/ Gy (16)

Thus, p,, is the standardized regression coefficient relating x to y. As such, p,, characterizes the effect that
changing x by a fixed fraction of its standard deviation will have on y, with this effect being measured relative to the

standard deviation of y.

In addition, the correlation coefficient p,,, and hence p,,, provides a measure of the fraction of the variance of
¥ that can be accounted for by x. Again, this is best seen in the context of the regression model in Eq. (12), for which

the following identity can be established:27

nS nS nS
D k==Y Ge-P+ D G- (17)
k=1 k=1 k=1

The summation zk O - ?)2 represents the part of the variance of y that can be accounted for by y = éo +[§1x .

_with the result that




nS nS
R = E G -7 E e =) (18)
k=1 k=1

represents the fraction of the variance of y accounted for by x in a linear approximation to y. The preceding quantity
is called the R? value or the coefficient of determination for x and y. An R? value close to 1 indicates that x can
account for most of the uncertainty in y; in contrast, an R2 value close to 0 indicates that a linear relationship

involving x accounts for little of the uncertainty in y.

Like the standardized regression coefficient, the R? value can be expressed in terms of p xy- Lhe vector equality

in Eq. (11) leads to

nS nS :
Bi= =R -9 X (me=% (19)
k=1 k=1
and
Bo=F-Bix. ‘ (20)

Given the preceding representations for B, and B, , some simple algebraic manipulations lead to

nS . nS 2 nS
2(5'1-")_’)2 = z(xk =00 =¥ z(xk’f)z- b
k=1 k=1 k=1

Hence, from Egs. (18) and (21),

-
nS -

nS nS
R2=_2(xk—?c)(yk—i) Z(xk—f)z Z(n—i)z
k=t k=1

k=]

Il
nel]
& ~
—~
[
2
S

Thus, the square of the sample correlation coefficient is equal to the fraction of the variance of y that can be

accounted for by y as defined in Eq. (12), and hence by x under a linear transformation.

The preceding has given two interpretations of the correlation coefficient p,,. First, the sample correlation
coefficient p x can be viewed as the estimated regression coefficient ﬁ 1 in Eq. (12) when x and y are standardized
to mean O and standard deviation 1. Second, p xy €an be viewed as the square root of the R2 value for the regression
model in Eq. (12) (i.e., f)jf.‘ = R?). The correlation coefficient can also be viewed as a parameter in a joint normal

distribution involving x and y (see Sect. 2.13, Ref. 28); however, this interpretation is not as intuitively appealing as




the two involving the regression model in Eq. (12). Moreover, x and y typically do not have normal distributions in

sampling-based sensitivity analyses (e.g., see indicated distributions in Table 2).

When p xy is close to 1 or -1, an almost linear relationship exists between x and y (see definition of R2 = ﬁ:‘:\ in
Eq. (18)). However, large changes in x may still re§u1t in small changes in y if the regression coefficient ﬁl in Eq.
(12) is small. Indeed, the magnitude lﬁll of Bl is novt\a.very informative quantity because I[Sll depends on the units
in which x and y are expressed (e.g., changing the units on x from millimeters to kilometers will have a large effect
on lﬁll but no effect on the underlying physical relationships). For this reason, x and y are often standardized to
mean 0 and standard deviation 1. As previously discussed, this standardization results in the equality ﬁl =p xy and

also in By characterizing changes in y normalized to &y relative to changes in x normalized to G, .

Although ﬁiy =1 implies a strong linear dependence between x and y, p xy = 0 cannot be used to infer that no
relationship exists between x and y (i.e., that x and y are independent). In particular, zero cbrrelations can occur in
the presence of a nonmonotonic relationship between x and y. For example, Pxy = Ofory=1-x2with—-1<x<1
and also for y = cos x with 0 £ x £ 2x. A more interesting example is given by the scatterplot for BHPRM in Fig. 6d.
Thus, a linear relationship can be assumed to exist between x and y if I xy! isclose to 1. Further, linear relationships
of lesser strength (i.e., smaller R? values) exist for smaller values of 1 xyl- For Ip xy!=0, the implication is that no

linear relationship exists between x and y.

A significance test can be used to indicate if p xy appears to be different from 0. For example,
t=p o (ns-2)"2 1a-p3)" (23)

has a ¢-distribution with nS—-2 degrees of freedom when x, y are uncorrelated and have a bivariate normal distribution

(p. 631, Ref. 29). Further,
z=pynS ‘ (24)

is distributed approximately normally with mean 0 and standard deviation 1 when x and y are uncorrelated, x and y
have enough convergent moments (i.e., the tails of their distributions die off sufficiently rapidly), and nS is large

(typically > 500) (p. 631, Ref. 29). Then,

prob(Iri>1p 1) = erfe(1p o 1NnS 14/2), 25)

where prob(Iri>lp xy!) is the probability that random variation would produce a value r for p xy larger in absolute
value than the observed value p xy and erfc is the complementary error function (i.e., erfe(x)= (2 /1w )j exp(—t2)dt)
X

(p. 631, Ref. 29). Significance results obtained with ¢ in Eq. (23) converge to those obtained with z in Eq. (24) as nS




increases. However, as x and y are unlikely to have normal distributions in real analysis problems, results obtained
with r and small values of nS should simply be viewed as one form of guidance as to whether or not a linear

relationship actually exists between x and y.

If several x; have scatterplots that appear to have nonzero values for p x;y» then the relative importance of these
x; can be ordered by the absolute values of p xiy+ This lS equivalent to ordering the x; on the basis of the strength of
the linear relationship associated with the pairs (xjt, yi), k= 1, 2, ..., nS. This is also equivalent to ordering the x on
the basis of p-values obtained from the distributions associated with Eq. (23) or (24), where the p-vavlue designates
the probability that a value for p xy Will be obtaiﬂed that exceeds the observed value for p x in absolute value (i.e.,

probfl ri>lp xy1)in Eq. (25)). Actually, the ordering is done on the complements of the p-values because smaller p-

values are associated with larger values for 1p xyl

Standardized multiple regression coefficients are another popular way of ranking variable importance.!6.30-33
However, when the x; are independent, the standardized multiple regression coefficient for x; is equal to p x;y and so

the two rankings are identical. Specifically, the multiple regression model relating y to the x; has the form
-~ n’ -~
F=Bo+ Y Bixi (26)
i=1

where [3 has the same functional form as in Eq. (11) with??

. !go_ Loxy o Xy »
B=l: | X=|: : : LY =|: .

B L Xps =t Xpspr YnS
If the x;’s have been selected so that the rows of X are orthogonal (i.e., so that X7X is a diagonal matrix with
diagonal elements dy, d|, ..., d,;, which is equivalent to the individual x; being independent and thus having sample

correlations of 0), then

B=xTx)IxTy

dy 0 0 71 1 1 Ty
_{0 4 -0 it I T A Y B @n
0 0o - dnl X1t %21 " XuSnl § ¥nS
and so
10




nS nS nS

- 2

Bi= E Xgyx !l dy = E xik)’l/ E Xik- (28)
k=1 k=1 k=1

Thus, when x; and y are standardized to mean 0 and standard deviation 1 (see Eq. (13)),

< s eI 12
Bi = Zu,-k =Xk =) Z(x,-k %) Z(y," TV =hw *
k=1 k=1 ' k=t

and the standardized multiple regression coefficient ﬁ ; and the (sample) correlation coefficient p x;y are equal.

. . Partial correlation coefficients are another popular way of ranking variable importance.!$- 33. 3¢ However, the
partial correlation coefficient is just a special form of the sample correlation coefficient. In particular, if least

squares techniques are used to determine the coefficients in

- nl nl
i} =&0 +2&,~x,~ and 5’=BO +2Bixi’ (30)
i=1 i=1 : '
izf i

then the partial correlation coefficient p xjy between x; and y is the sample correlation ) 3 determined for the pairs
(X -x o Ye =Yk W k=1,2, ..., nS. Thus, p xjy is the sample correlation between x; and y after a correction has

been made for the linear effects of the other x;.

The following relationship exists between ﬁxj). and the standardized regression coefficient 6 jin Eq. (29):
Prjy =B;[1- R/ A= R, A 3D

where R]g is the R? value that results from regressing xjonyand thex; i=1,2, ..., nlwithi#j, and R;: is the R?
value that results from regressing y on the x;, i = 1, 2, ..., nl (Eq. (1), Ref. 35). If the x; are orthogonal, then
nf nf nf )
2 2 a2 -2
Ri=Y R=)BI=35% (32)
i=l

=] i=1

with the first equality following from Eq. (III-74) of Ref. 36, and the second and third equalities following from Egs.
(22) and (29). Thus,

11




) 2
172 nl 112

nl
. - N - “ A7 ~2
Payy =Bl A=BDI 1= B || =By 083,07 1- D 85 || - (33)

i=l i=1
Because of the inequality

b(l—bz)m >a(l _az)uz S (34)

for a + b2 < 1 and a < b (Fig. 7), an ordering of variable importance based on | ﬁxj}.l . Iﬁ jlor Ip xj).l produces the

~ same results when the x; are orthogonal; further, the values for B j and p xjy will be the same and generally different

fl'OlTi (ﬁjj" .

Due to the conceptual simplicity of the sample correlation coefficient p xn and its close relationship to
standardized regression coefficients and partial correlation coefficients in the presence of orthogonal values for the
x;'s, this study will use p xy t0 assess the strength of the linear relationship between x and y. In the presence of small
deviations from orthogonality (i.e., the existence of small correlations between the x;), the three measures will still
give similar results. However, in the presence of large deviations from orthogonality, the three measures can give

quite different, and possibly misleading, indications of the effects of individual variables.

As noted earlier, p,, = 0 should not be interpreted to mean that no relationship exists between x and y. For

example,

y = BoxP! 33

results in a low, but nonzero, value for p,,. even though there is no noise in the relationship between x and y. In this
case, a logarithmic transformation will linearize the relationship between x and y. However, such transformations
may not exist and, given that they do exist, identifying them is not always easy. For example, logarithmic
ransformations are not applicable when some of the y values are zero, which is a fairly common analysis situation.

One possible transformation of fairly broad applicability is the rank transformation, which is discussed in Sect. 4.

A possible complication in the use of p,, to identify the existence of a relationship between x and y can be the
existence of interactions with other variables. For example, the relationship between y, x, and x, might be of the

form

y=Bo+B1x; +Baxy +Baxyxa, 36)

which can also be expréssed as

12




y=Bg+B{1-Bra /B)x2lx; +Box2

=Bo +Byx; +B2[1-(B12 /B2)x  Jxs .

As long as the variation in x; is large relative to the variation in 1- (1312/{31).#2 or the variation in x- is large relative
to the variation in 1- (B;,/B})x;, the fact that x, or x does indeed have a significant effect on y should be identified
by the corresponding value for p xy- Thus, itis nof considered necessary to specifically consider interaction effects
to identify important variables, although it is certainly possible to calculate p xy With x = x;x; if desired. Further, use
of contingency tables to be discussed later (Sect. 7) allows the identification of nonlinear effects without the

~ assumption of a specific model form.

4, Monotqnic Relation: r(y) =y + v1r(y)

When the relationship between x and y is nonlinear but monotonic, the relationship can be linearized by a rank

transformation. Specifically, the pairs (x,, y,) are transformed into a new sequence of pairs
[r(x), riye)), k=1,2,...,nS, 37

where (i) the smallest value of Xy is assigned a rank of 1 (i.e., r(x;) = 1), the next largest value of x; is assighed arank
of 2 (i.e., {x;) = 2), and so up to the largest value of x, which is assigned a rank of nS (i.e., r(xp) = nS), (ii) averaged
ranks are assigned to eQual values of x; (e.g., if x; = xp, x; # x; for I # j, k, and p — 1 observations have values less
than Xj» then r(xj) = r(x;) = (p + p + 1)/2), and (iii) the assignment of the ranks for y (i.e., r(3y)) is accomplished in the

same manner as the assignment of ranks for x.

Rank-transformed data can be analyzed in exactly the same manner as discussed in Sect. 3 for untransformed
data. In particular, the strength of the linear rel;ationship between the rank-transformed variables in Eq. (37) can be
measured with Spearman’s rank correlation coefficient for x and y, T, which is simply Pearson’s correlation
coefficient in Eq. (14) calculated on ranks. The test for zero rank correlation uses a table of quantiles for In !

(e.g., Table A10, Ref. 37). For nS 2 30,
:=ﬁX)' nS-—1 | (38)

approximately follows the normal distribution for M, = 0 (p. 456, Ref. 37), which is very similar to the

approximation to the distribution indicated for p o in Eq. (24). Thus, similarly to Eq. (25) for P e

prob(Iri>If 1) = erfe(If 1, 1/nS=1/2), . (39)
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where prob(il > In,l) is the probability that random variation would produce a value r for 1, larger in absolute

value than the observed value i .

Regression coefficients and partial correlation coefficients can also be calculated with rank-transformed data as
discussed in Sect. 3.16.33.3841  Ag ap aside, the form of the regression model after y and the x;’s have been

~

standardized to mean 0 and standard deviation 1 is*._

N,

nl .
=718y =Y Biby 16,)0x ~F)1 6 (40)

i=]

where B,- is the regression coefficient obtained with the original (i.e., nonstandardized) values for y and the X;'s.
When rank-transformed data are being used and there are no ties in the y or x; values, then & X =G y and so the
standardized regression coefficient (i.e., B,—&xi / 6_v) is the same as-the original, nonstandardized coefficient (i.e.,
ﬁi ). Thus, standardization is automatically accomplished by the use of rank-transformed data as long as there are no

-ties in the y and x values.

Closely related to Spearman’s coefficient is Kendall’s T (pp. 255 - 260, Ref. 37). Because both coefficients give
nearly identical significance results, this alternative for identifying monotonic relationships is considered only
briefly. Kendall's T measures the degree of concordance in a set of observations of the form in Eq. (17). The pairs
{x, ¥p and (x,, y,) are said to be concordant if both members of one pair are less than the corresponding members of
the other pair (i.e., x, < x;, ¥, < ¥, OF X, > X, ¥, > ¥,). Further, the pairs are said to be discordant if the two members
in one pair differ in opposite directions from the corresponding members in the other pair (i.e., x, <x;, ¥, > y; 0r x, >

X ¥r < ¥g). Kendall’s 7 is estimated by
%X_\.=(NC—Nd)/[nS(nS—1)/2], (4D

where N, is the number of concordam pairs of observations, Ny is the number of discordant pairs of observations,
and nS(nS—1)/2 is the total number of pairs {(x,, y,), (x;, y;)} of observations. The statistic T,, has a distribution
that is adequately approximated by the normal distribution for sample sizes as small as nS = 8. In contrast, larger
samples (e.g., nS 2 30) are required for T xy 1o approach a normal distribution; fortunately, Monte Carlo sensitivity
studies typically use sample sizes larger than nS = 30. Because estimates for Spearman’s coefficient ﬁn and
Kendall's T xv produce similar rankings of monotonicity and il xy Is more intuitively appealing because of its close
relationship to Pearson’s coefficient ﬁxy, this presentation will use 1 x 1o identify nonlinear but monotonic

relationships in scatterplots.
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5. Location of y Dependent on x

Tests for two distinct types of patierns in scatterplots were considered in Sects. 3 and 4, with the Pearson
correlation coefficient used to identify linear patterns (Sect. 3) and the Spearman correlation coefficient used to
identify nonlinear but monotorﬁc patterns (Sect. 4). This section reviews tests for a broader class of patterns.
Specifically, patterns are sought where some meﬁsu\r\e of central tendency for y changes with changing values for x.
Linear and monotonic patterns have this characteristiéf"however, decidedly nonlinear and nonmonotonic patierns can

also have this characteristic (e.g., see the scatterplot for BHPRM in Fig. 6).

~ The approach taken is to divide the values for x (i.e., x, k = 1, 2, ..., nS) into nX classes and then to test to
detf:.fnﬁhe if y has a common measure of central tendency across these classes. Thus, x must be defined on at least a
nominal scale to permit the definition of the necessary classes. Classic measures of central tendency are the mean or
expected value, E(y), and the median, yy 5. The mean is a more widely used measure of central tendency but the

median is less sensitive to outliers (e.g., see the Princeton robustness study reported in Ref. 43).

Most of the x’s under consideration are actually defined on an interval scale (see Table 2), and the required
classes are obtained by subdividing the range of x into a sequence of mutually exclusive and exhaustive subintervals
containing equal numbers of sampled values (Fig. 8). A few x’s are discrete with unequal probabilities for the
individual x values (e.g., see WMICDFLG in Fig. 3a); for these variables, individual classes are defined for each of
the distinct values. However, the optimum definition of the classes is not at all apparent, and in practice, some

experimentation may be required to determine an appropriate division of the x values into classes.

For a given variable x and its nX associated classes, the following statistics will be used to identify apparent
deviations from a common central tendency: (i) the ANOVA F statistic for equal means, which requires an interval
scale for y (Sect. 5.1), (ii) the Kruskal-Wallis test for common locations, which requires an ordinal scale for y (Sect.

5.2), and (iii) the chi-square test for equal medians, which also requires an ordinal scale for y (Sect. 5.3).

5.1 Common Means: ANOVA F Statistic

For notational convenience, let q.9=1,2, ..., nX, designate the individual classes into which the values of x
have been divided; let qu designate the set such that & € »)(q only if x; belongs to class g; and let nX, equal the
number of elements contained in qu (i.e., the number of x;'s associated with class g). The ANOVA F test is

commonly used 1o test for equivalence of conditional means:44
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nX
-2 |
Zany‘; -nSy* | (nX-1)

=] .
F(nX ~=1,nS —nX) = =—— , (42)

nS nX .
D ya =Y nX, 52|/ (nS=nX)
g=l g=l

where nX — 1 and nS — nX are the number of degrees of freedom for the numerator and denominator, respectively.

¥, g = zkexq yi ! an, and y is defined in conjunction with Eqg. (14).

If the y values conditional on each class of x values are normally distributed with equal expected values, then the
statistic F (nX ~ 1, nS — nX) in Eq. (42) follows an F distribution with (nX ~ 1, nS — nX) degrees of freedom. This is -
the most powerful test for equality of means given that the indicated normality assumptions hold.#* The probability

prob(F > ﬁlm ,M2) of exceeding an F statistic of value F calculated with (M, M) degrees of freedom can then be

estimated by

prob(F> Py, Ma)=1,(12 /2,1, /2), v=15 /(N +M F), (43)
where [, (a, b) designates the incomplete beta function (p. 222, Ref. 29).

Unfortunately, the y values for each class may not follow a normal distribution. Various goodness of fit tests
(e.g., chi-square, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling) can be used to test for normality of
the y values (pp. 94 - 95, Ref. 45; Ref. 46). However, the number of observations per class (e.g., 30 or 60 for many
of the variables considered in this study) may be too small to provide a powerful test. If a goodness-of-fit test leads
to a rejection of the normality hypothesis, then it may be appropriate to apply a normalizing transformation such as
the Box-Cox transformation, which includes the logarithmic transformation as a special case (pp. 175°- 185,
Ref. 45). Fortunately, the ANOVA F test is robust with respect to deviations from normality (p. 237, Ref. 37). For

perspective, Monte Carlo estimates of prob(F > I:Wn 17> ) will be presented in Sect. 10.

5.2 Common Locations: Kruskal-Wallis Test

The Kruskal-Wallis test statistic, T , is based on rank-transformed data (pp- 229-230, Ref. 37):

nX
7= (R 1nX,)~nSnS+1)? 14|/ 52, (44)
g=1 ’
where
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nS
R, = Er(yk), §2= zr(yk)z—nS(nS+l)2/4 /(nS-1)
keJ(q k=1 .

and r(y;) is defined in conjunction with Eq. (37).

If the y values conditional on each class of x valhe_s have the same distribution, then the statistic T in Eq. (44)
approximately follows a chi-square distribution with nX — 1 degrees of freedom (pp. 230 - 231, Ref. 37). Given this
approximation, the probability prob(T > TInX —1) of obtaining a value T that exceeds T in the presence of

identical y distributions for the individual classes is given by
prob(T > TinX -1) = Q[(nX ~1)/2,T/2), 45)

where Q (a, b) designates the complement of the incomplete gamma function (p. 215, Ref. 29). A small value for
prob(T > TInC-1) indicates that the ¥'s conditional on individual classes have different distributions and thus,

most likely, different means and medians.

5.3 Common Medians: Chi-Square for Contingency Tables

The final possibility considered is that different classes of x values have different median values for y. The chi-
square test for contingency tables can be used to test for this situation (pp. 143 - 178, Ref. 37). First, the median yg 5
is estimated for all 7S observations. Specifically,

Y(Qns) if Q nS is an integer
Yo = . (46)
[)I([Q nS) + y([Q nS}+1) 142 otherwise

where @ = 0.5 (Q = 0.25 and 0.75 will be considered in Sect. 6.2) and yq), k = 1, 2, ..., nS, denotes the ordering of
the y values such that y < yr+1) (p. 14, Ref. 47). The individual classes of x values considered in Sects. 5.1 and
5.2 are then further subdivided on the basis of whether y values fall above and below yq 5 (Fig. 9). For class g, let
nXy, equal the number of y values that exceed yq 5, and let nX5, equal the number of y values that are less than or
equal to yp 5. The result of this partitioning is a 2 X nX contingency table with nX,, observations in each cell. The

following statistic can now be defined:

nX 2 .
T= Z Z (nX,y ~nEpy)? I nEy,, @n
’ g=1 r=1
where
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2 nX
REr =| D n¥py | Y Xy |1nX
r=1 q=l

and corresponds to the expected number of observations in cell (7, g). If the individual classes of x values, ¢ =1, 2.
..., nX, have equal medians, then T approximately follows a chi-square distribution with (nX —~ D2 = 1) = nX - 1
degrees of freedom (p. 156, Ref. 37). Thus, the proB’ability of obtaining a value of T that exceeds T in the presence
of equal medians is given by prob(T > TinX - 1) in Eq. (45). To maintain the validity of the chi-square

approximation in the analysis of contingency tables, Conover suggests using a partition in which nE,, > 1 (p. 156, .

Ref. 37).

The Kruskal-Wallis rank statistic {Sect. 5.2) also converges to the chi-square statistic with nX — 1 degrees of
freedom. In a case study (p. 232, Ref. 37), the power of the Kruskal-Wallis test exceeded the power of the median
test. We interpret this result as follows: the median test measures only whether observations exceed the common
median; it does not measure the extent to which individual observations exceed this median (i.e., nominal versus

ordinal scale). Thus, the Kruskal-Wallis test is incorporating more information than the median test.

6. Dispersion of y Dependent on x

In this section, techniques for identifying patterns that involve changes in the dispersion or spread of y with
changing values for x are considered. Two measures of dispersion will be considered: the variance cf. , and the
interquartile range ¥g 75 —~ Yo 25, Where yg.75 and yg o5 represent the 0.75 and 0.25 quantiles of y. The variance is the
best known measure of dispersion, and the interquantile rahge is widely used as a summary of dispersion in box
plots.*0- 48 The interquartile range is less sensitive to outliers than the variance, analogous to medians and means.
Two test statistics are considered: the ANOVA F statistic with jackknifing for common variances, and the chi-

square statistic with contingency tables for common interquartile ranges.

6.1 Common Variances: ANOVA F Statistic with Jackknifing

The ANOVA test will use the same classes, g = 1, 2, ..., nX, of x values introduced in Sect. 5 (Fig. 8). Many
procedures exist for testing for common variances: five procedures are summarized in Kleijnen (pp. 225 - 227, Ref.
45), and 56 procedures in Conover et al.*° Additional discussion is also given in Conover (pp. 239 - 250, Ref. 37),

' Hamby (pp. 149 - 150, Ref. 9), Piepho? and Wludyka and Nelson®!. Note that common variances can occur even

though the associated mean values are different (and vice versa).

For this analysis, a procedure based on jackknifing is used to indicate if different classes of x values have

different variances for y. Jackknifing is a general technique for reducing possible bias in estimators and constructing
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robust confidence intervals.52 33 Good results have been obtained with jackknifing in a number of different

applications.!? The procedure operates as follows.

The variance c‘;'.q of y conditional on class g is estimated by

84 = Y k-7 I (nX, ~1 R (48)
ke Xy : )

forg=1, 2, ..., nX, where J(q ?q and an are defined in conjunction with Eq. (42). Further, an additional an

estimators
&3gm1 = E(}’k ~Fg-1)* 1 (nXy =2) (49)
ke Xg
k=l

e e v . s ge . . . -2 -
of c%q are calculated with individual y’s (i.e., ;) omitted from consideration. The values for G}, and 63, _; from

Eqs.(48) and (49) can be used to define the so-called pseudo values
ty =nXyGhy —(nXy — D3, . (50)

For each class of x values, the resultant values for 7., constitute a sample from a population whose expected value is
Gyq in the case of common variances (at least if the x’s were generated by random sampling). The ANOVA F test
can now be used to test for the equality of the means of the variables 15 Specifically, the F statistic described in Eq.
(42) is calculated with the values for £, and the corresponding exceedance probability for the resultant F statistic is
determined as indicated in Eq. (43). In this application, the jackknife procedure is used to obtain robust confidence

interval estimates rather than to reduce bias.

Because variance estimators have long tails to the right, the use of a logarithmic transformation before
Jackknifing may enhance the capability of the procedure to identify different variances for y. Specifically, tqr 1n Eq.

(50) can be defined by
ty =nX, In(G3,) - (nX, = DIn(G3, ). ' | (51

and then the procedures defined in Eqgs. (42) and (43) used with this new definition. In this case, the test is for the

equality of ln(cf’;.q) , which implies equality of c:;’.q .

A related approach is proposed by Archer et al.,>* who also use the variability of ¥ to assess the importance of

factors in large-scale simulation models. Further, they use an ANOVA-like procedure to decompose the total
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variability of y into main effects, two factor effects, and higher-order interactions among factors. Finally, they apply

bootstrapping, which is closely related to jackknifing.>?

6.2 Common Interquartiles: Chi-Squére for Contingency Tables

Another test of variability is based on the prévio\usly used partitioning of x into g = 1, 2, ..., nX classes, with the
hypothesis being that the associated nX interquarﬁle .fimges (i-e., ¥9.75 ~ Yo.25) are the same (Fig. 10). The quantile
values yq 25 and yg 75 are defined by Eq. (46) with Q = 0.25 and 0.75. The individual classes of x values are now
divided into subsets of y values that fall within and outside the interquartile range. For class g, let nX; g equal the

' number of y valués that fall within the interquartile range, and nX,, equal the number of y values that fall outside that
range. As for the common median test, the result of this partitioning is a 2 X 2X contingency table with nX,,
observations in each cell. The statistic in Eq. (47) can now be calculated and used with the exceedance probability in
Eq. (45). The interquartile test was suggested by the quantile test mentioned in Conover (p. 174, Ref. 37) and, to the

best of our knowledge, has not been previously examined in the literature.

7. Distribution of y Dependent on x: Chi-Square for Contingency Tables

The two preceding sections considered procedures for determining if the central tendency of y was dependent on
x (Sect. 5) and if the dispersion of y was dependent on x (Sect. 6). In this section, the chi-square test for contingency
tables is introduced as a means of determining if the distribution of y is dependent on x (i.e., to determine if y is

statistically independent of x).

The test will use the same classes, g = 1, 2, ..., nX, of x values used in Sects. 5 and 6. Fur;her, y is also divided
into classes (Fig. 11). Thus, y must be defined on at least a nominal scale to permit the definition of the necessary
classes. For notational convenience, let p, p = 1, 2, ..., nY, designate the individual classes into which the values of y
have been divided; let )’/}, designate the set such that k € y,, only if y; belongs to class p; and let nY¥, equal the
number of elements contained in y",,. Typically, y is defined on at least an ordinal scale, and the classes are defined
by ordering the y and then requiring the individual classes to have similar numbers of elements (i.e., the nY, are

approximately equal forp =1, 2, ..., nY).

The partitioning of x and y into nX and nY classes in turn partitions (x, y) into nX nY classes (Fig. 11), where (x;,
¥)) belongs to class (g, p) only if x; belongs to class g of the x values (ie., k <-Xq) and y; belongs to class p of the y
values (ie.. k e ‘)3,). For notational convenience, let Opq denote the set such that k € Opq onlyifk € qu (ie., x; is
in class g of x values ) and also k y,, (i.e., y; is in class p of y values), and let nQOp, equal the number of elements

contained in O,,q. Further, if x and y are independent, then
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nEyq =(nY, / nS)YnX, | nS)nS =n¥, nX, I nS ‘ (52)

is an estimate of the expected number of observations (xj, y;) that should fall in class (g, p).

The following statistic can be defined:

-~ 2 b
=3 (10, ~nEpg)? InE,q, | (53)

- which is the same as the statistic in Eq. (47) except for the upper limit on the inner summation. Asymptotically, T
_ follows a chi-square distribution with (nX—1) (nY~1) degrees of freedom when x and ¥ are independent. Thus, the
probability of obtaining a value of 7 that exceeds T when x and y are independent is given by

prob(T > TI(nX —1)(n¥ - 1)) in Eq. (45).

Many other measures can also be used to quantify the degree of dependence between two variables x and y:
Cramer’s contingency coefficient, Pearson’s mean-square contingency coefficient, the phi coefficient, and so on (pp.
178-189, Ref. 37). However, these techniques do not offer any advantages over the chi-square contingency table

approach already discussed.

8. Identification of Important Variables

The purpose of the statistical procedures under consideration is to identify sampied input variables that have
significant effects on individual predicted variables. Conceptually, this is equivalent to identifying scatterplots that
exhibit some form of deviation from randomness. Once such scatterplots are identified, the analysts’ understanding

of the model must be called upon to explain the patterns that appear in these plots.

To provide guidance in examining scatterplots, it is useful 10 have a numerical way to distinguish between
variables that appear to have a substantial effect on a predicted outcome and variables that appear to have little or no
effect. For a given statistic, the probability that a larger valué would occur due to chance variation provides such a
measure (i.e., the probabilities in Egs. (25), (39), (43), (45)). These probabilities are often called critical values or p-
values and designated by & or p. A small critical value indicates that under the assumptions of the test, an outcome
equal to or greater than the observed value of the statistic is unlikely to occur due to chance. Thus, the implication is
that the pattern in the associated scatterplot arose from some underlying relationship between x and y. For a given
statistic, the indicated importance of a variable goes up as the value of the corresponding critical value goes down.
. Thus, an ordering of variables on the basis of the size of their associated critical values provides a way to rank

variable importance (i.e., the smaller the critical value, the more important the variable appears to be).
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In sensitivity analysés of the type considered in this presentation, the distributions for the sampled input
variables typically characterize subjective (i.e., epistemic) uncertainty.>5 Often, the intent of the sensitivity analysis
is to identify those variables on which additional research efforts should be expended to reduce the uncertainty in the
final outcomes of a large analysis and hence in the decisions based on these outcomes. In this case, the desire may
not be 1o obtain an absolute ranking of variable importance, but rather to prioritize groups of variables for additional
research. For example, variables might be divided into the following three groups: Group 1 - important variables
that require additional investigation, Group 2 - variables of intermediate importance that may merit additional
investigation if time and resources permit, and Group 3 - unimportant variables that do not require additional
investigation. One possibility is to define these groups on the basis of critical valués (e.g., Group 1 corresponds to
variables with & < 0.01; Group 2 corresponds io variables with 0.01 £ & < 0.05; and Group 3 corresponds to
variables with 0.05 > & ). However, in practice due to the cost of investigating individual variables, the decision on
whether or not to expend resources on the investigation of a particular variable will probably be made on the basis of

several considerations rather than solely on the basis of a preselected critical value.

9. Top-Down Correlation

A number of techniques have been described for the identification of relationships between sampled and
predicted variables (Sects. 3-7). These techniques will be applied to four predicted variables (Sect. 2). An important
question is the extent to which the different techniques agree in their identification of important variables. A tool for
assessing such agreement is the top-down correlation introduced by Iman and Conover,?® which emphasizes
agreement/disagreement for the most important va;riables and places reduced weight on agreement/disagreement for

variables of little importance.

The top-down correlation is based on Savage scores:

Sthy= Y 11, | (54)

where S(h) is the Savage score of a variable of rank 4 and nl is the number of ranked variables (Eq. (1)). Thus, the
Savage score for the most important variable is S(1) = 1/1 + 1/2 + ... + 1/nl; the Savage score for the next most

important variable is S(2) = 1/2 + 1/3 + ... + 1/nl; and so on.

Suppose two ranking procedures are under consideration. Further, let hy;, i = 1, 2, ..., nl, denote the rank for
variable x; obtained with the first procedure, and let hy;, i =1, 2, ..., nl, denote the rank for variable x; obtained with
the second procedure. The top-down correlation R, for these two tests is defined to be the Pearson correlation

coefficient (Eq. (14)) associated with the pairs [S(h;;), S(hyp), i=1,2, ..., nl. Thatis,




nl — . B S e
Riy =| Y Sth)Sthyy)=nl | flnl=S(1)], (55)

i=l]

with S(1) defined in Eq. (54) and approximately equal to 2.450 + In[nl + 0.5)/6.5] for nl 2 7 (Eq. (3), Ref. 20).
Large positive values for R|, indicate agreement.between the two sets of ranks for the most important factors. Exact

quantiles for this statistic are given in Iman and Co\rioy;xi (p. 355, Ref. 20; also see Ref. 56). Further,

2= Ry Al T - | 6)

is distributed approximately normally with mean 0 and standard deviation 1 when the two rankings are uncorrelated

and nf is sufficiently large. Under these conditions,
prob{|Ri> Rys1) = erfe(| Ry INRT =2 /42 G7)

where prob(l Ri>1 1}12 l) is the probability that random variation would produce a value R for IABIZ larger in absolute

value than the observed value f?,z (p- 631, Ref. 29).

10. Comparison of Procedures for Identification of Important Variables

The following statistics and/or associated tests have been introduced for possible use in the identification of
patterns in scatterplots, where the given capital letters will be used to identify the associated procedures in the
following discussion: correlation coefficients (CCs, Sect. 3), standardized regression coefficients (SRCs, Sect. 3),
partial correlation coefficients (PCCs, Sect. 3), rank correlation coefficients (RCCs, Sect. 4), standardized rank
regression coefficients (SRRCs, Sect. 4), partial rank correlation ncoefﬁciems (PRCCs, Sect. 4), common means
{CMNs, Sect. 5.1), common locations (CLs, Sect. 5.2), common medians (CMDs, Sect. 5.3), common variances

(CVs, Sect. 6.1), common interquartile ranges (CIQ, Sect. 6.2), and statistical independence (SI, Sect. 7). Further,

the following dependent variables with different behaviors have been introduced as examples: EQ:WAS_PRES,
E0:BRAALIC, E2:WAS_SATB, and E2:WAS_PRES (Sect. 2). The results of applying the indicated procedures to

these dependent variables are now discussed.

10.1 Repository Pressure under Undisturbed Conditions: y = EO:-WAS_PRES

The variable y = EQ:WAS_PRES was included as an example because a linear relationship 'appears to exist
between EO:WAS_PRES and several of the sampled variables (Sect. 2). Thus, procedures that cani identify linear
relationships should work well with EQ:WAS_PRES, as indeed turned out to be the case (Table 4). In particular,
tests based on CCs, RCCs, CMNs, CLs, CMDs and SI identified the same top four variables (i.e., WMICDFLG
HALPOR, WGRCOR, ANHPRM) and also assigned these variables the same importance rankings based on p-values,
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The scatterplots for these variables show a corresponding decrease in the strength of the relationships with
EO0:WAS_PRES (Fig. 3). For the remaining variables, there was little agreement between the individual procedures,
with the p-values for the variables with ranks 5 and above typically close to or above 0.1. The only exception to this
was for SI, where ANHBCVGP was assigned rank 5'with a p-value of 0.0194. Based on a visual inspection, there
appears to be little difference in the distributions of E0:WAS_PRES for the two values of ANHBCVGP, although the
larger value for ANHBCVGP (i.e., the value that izﬁpligs the van Genuchten-Parker model) may result in fewer small
values for E0:WAS_PRES (Fig. 12). The tests based on measures of dispersion (i.e., CV, CIQ) performed somewhat
differently, with CV indicating no effects for HALPOR and WGRCOR based on a p-value cutoff of 0.1 and CIQ

indicating no effect for WGRCOR based on the same cutoff.

As dischs'scd in Sect. 3, analyses of variable importance based on CCs, SRCs and PCCs or on RCCs, SRRCs
and PRCCs will produce similar results when the input variables (i.e., the x;’s) are uncorrelated. More specifically,
CCs and SRCs are equal; RCCs and SRRCs are equal; orderings of variable importance based on CCs, SRCs and
PCCs are the same; and orderings of variable importance based on RCCs, SRRCs and PRCCs are the same. The 24
variables used in the calculation of E0:WAS_PRES were assumed to be independent, with the Iman and Conover??
restricted pairing technique being used to assure that the correlations between variables were indeed close to zero
(see Footnote b to Table 4). The outcome, as predicted by theory, was that CCs and SRCs were approximately
equal, RCCs and SRRCs were approximately equal, rankings based on CCs, SRCs and PCCs were approximately the
same, and rankings based on RCCs, SRRCs and PRCCs were approximately the same (Table 5). Approximate
correspondence to theory is the best that can be hoped for as the Iman/Conover restricted pairing technique makes

the correlations between the sampled variables approximately zero (Table 6) rather than exactly zero,

The large number of procedures under consideration (i.e., CCs, RCCs, CMNs, CLs, CMDs, CVs, CIQs, SI,
SRCs. PCCs, SRRCs, PRCCs) can make it difficult to get an overall feeling for the extent to which the individual
procedures are agreeing orb disagreeing in the identification of irhportant variables. As discussed in Sect. 9, top-down
correlation provides a way to compére variable rankings. In particular, top-down correlation gives a compact
numeric summary of the comparisons in Tables 4 and 5 (Table 7), with all procedures except ‘for CVs and CIQs

showing strong agreement (i.e., top-down correlations close to or equal to one).

The calculation of CMNs, CLs, CMDs, CVs, CIQs and SI in Table 4 was based on the division of the range of

the variables under consideration into nX = 5 intervals of equal probability. Also, the calculation of SI involved the

~ division of the range of E0:WAS_PRES into nY = 5 intervals of equal probability. In concept, the outcome of the
analysis could be sensitive to the partitioning selected for use (i.e., the values for nX and nY). To check this, the
analysis was repeated with nX = 10 and nY = 10 (Table 8). As comparison of the results obtained with nX = 5 and
nX = 10 shows, some changes in variable rankings did take place. For CMNs, CLs and CMDs with nX = 5,
ANHPRM is the fourth ranked variable with p-values of 0.0195, 0.0187 and 0.0663, respectively (Table 4); for the
same procedures with nX = 10, ANHPRM is ranked 4, 4 and 7 with p-values of 0.1371. 0.1340 and 0.3398 (Table 8).
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For CVs and CIQs, there are some changes in variable ranking (e.g., CV and CIQ assign SALPRES ranks of 11 and 6
with p-values of 0.3723 and 0.0868 for nX = 5 (Table 4) and rank SALPRES third with p-values of 0.0500 and
0.0077 for nX = 10 (Table 8)); also, CVs still do not identify an effect for HALPOR (ranked 12 with a p-value of
0.3919 for nX = 5 and ranked 20 with a p-value of 0.5800 for nX = 10), and CIQs still do not identify an effect for
WGRCOR (ranked 16.5 with a p-value of 0.6626 for nX = 5 and ranked 23 with a p-value of 0.9429 for nX = 10).
For SI, HALPRM had a rank of 18 with a p-value‘;)f 0.6235 for nX =5 and a rank of 3 with a p-value of 0.0036 for
nX = 10 (Table 8). Thus, the partitioning in use can haw)e an effect on the variables identified as affecting the y value
under consideration. For perspective, the top-down correlaﬁons for results obtained with the two griddings are also
given in Table 8, with these correlations ranging from 0.854 for (CMN:1 x 5, CMN:1 x 10) to 0.917 for (C1Q:2 x5,
CIQ:2x 10). '

The p-values used to identify important variables in Tables 4, 5 and 8 are calculated with statistical assumptions
that are not fully satisfied. For example, in the calculation of p-values for CCs, the sample from the x’s consists of
three pooled LHSs rather than a random sample (see Eqgs. (8) - (10)), and neither the individual x’s nor y =
EQ:WAS_PRES has a normal distribution. A Monte Carlo simulation can be used to assess if the use of formal
statistical procedures to determine p-values is producing misleading results. Specifically, 10,000 samples of the

form
('xk7 )’k), k = 17 27 cany 3007 (58)

can be generated by pairing the 300 values for x (i.e., the 300 values for the particular x under consideration
contained in the samples in Egs. (8) - (10)) with the 300 predicted values for y (i.e., the 300 values for y that resulted
from the use of the sample elements in Egs. (8) - (10)). The specific pairing algorithm was to randomly and without
replacement assign an x value to each y value, which is similar to bootstrapping®’ except that the sampling is being
performed without replacement. This random assignment was repeated 10,000 times to produce 10,000 samples of

the form in Eq. (58).

For a given procedure (i.e., CCs, RCCs, CMNs, CLs, CMDs, CVs, CIQs or SI), each of the 10,000 samples can
be used to calculate the value of the statistic used to determine the corresponding p-value. The resulting empirical
distribution of the statistic can then be used to estimate the p-value for the statistic actually observed in the analysis.
Comparison of the p-value obtained for a given set of statistical assumptions with the p-value obtained from the
empirical distribution of the corresponding statistic provides an indication of the robustness of the variable rankings

with respect to possible deviations from the assumptions underlying the formal statistical procedures described in

Sects. 3-7.

For EQ:WAS_PRES, the rankings of variable importance with p-values obtained from formal statistical

procedures (i.e., CC and RCC in Table 5 and CMN, CL, CMD, CV, CIQ and SI in Table 4) and the rankjng of
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variable.importance with p-values obtained from empirical distributions (i.e., CCMC and RCCMC in Table 9 and
CMNMC, CLMC, CMDMC, CVMC, CIQMC and SIMC in Table 8) are very similar. - The largest difference is in
the assignment of tied ranks to the most important variables when the empirical distributions of p-values are used
(e.g., use of statistical procedures with CCs results in WMICDFLG, HALPOR and WGRCOR being ranked 1, 2 and
3, and use of the empirical distribution of p-values results in these variables being ranked 2, 2 and 2). The tied ranks
with the empirical distributions arise because a sar;lplg of size 10,000 was used to generate these distributions, with

the result that 0.0001 is the smallest nonzero p—valué that can be estimated. In contrast, much smaller nonzero
probabilities can be estimated with the formal statistical proéedures from Sects. 3-7. Overall, the similarity between

. the exact (i.e., statistically determined) and empirical p-values in Tables 8 and 9 is quite good, with the two
dééi’nﬁnaﬁqns of p-values producing almost identical rankings of variable importance except for the very small (i.e.,
<. 107%) p-vah-xes. The associated top-down correlations range from 0.970 for (CMN:1 x 5, CMNMC: 1 x 5) to
0.993 for (CV:1 x 5, CVMC: 1 x 5) (Table 8). For perspective, a top-down correlation of 0.971 results when 24
;/ariables are under consideration, one procedure has ties (i.e., ranks of 2, 2, 2) on the variables assigned ranks of 1,
2, 3 by the other procedure, and identical ranks are assigned to all other variables (e.g., see (CL:2 x 5, CLMC:2 x 5)
in Table 8 and (CC, CCMC), (RCC, RCCMC) in Table 9).

Approximate 100 (1 ~ )% confidence intervals for the empirically determined p—vélues are given by
pExi_on p(1 - p)/n]”z, where p is the estimated p-value, n = 10,000 is the sample size in use, and x, _q is the
1-0/2 quantile of the normal distribution (e.g., 1.96 for a 95% confidence interval (pp. 99-100, Method C, Ref. 37)).
For example, the approximate 95% confidence interval for p = 0.0815 (see SALPRES for CCMC in Table 9) is
0.0815 =+ 0.0054, with this interval including the statistically determined value of 0.0855. For most procedures, the
95% confidence intervals on the empirically determined p-values include the statistically determined p-values. The
results for CVs tend to show less agreement between the formally and empirically estimated p-values than is the

case for the other procedures.

A variant of the common means (CMNis) test is to use logarithmically transformed y-values rather than the
original untransformed y-values (Sect. 5.1). Possible rationales for such a transformation are to reduce the effects of
extreme values on the estimated mean and to transform y into a variable that more closely follows a normal
distribution. For y = E0:WAS_PRES, the logarithmic transformation has little effect on the outcome of the analysis,

with both raw and log-transformed y’s resulting in the same assignment of ranks to the top four variables (i.e.,

WMICDFLG, HALPOR, WGRCOR, ANHPRM) (Tables 8, 10).

A variant of the common variances (CVs) test is to use 1q1 as defined in Eq. (51). The rationale for the use of
logarithms in Eq. (51) is to reduce the effects of extreme values and thus produce more stable variance estimators.
For y = E0O:WAS_PRES, use of 141 as defined in Eq. (51) rather than in Eq. (50) had little effect on the outcome of the
analysis, with both definitions of 74 resulting in the selection of WMICDFLG, ANHPRM, HALPRM and WGRCOR
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as the top four variables (Tables 8, 10). Further, neither definition results in the identification of the important
effects associated with HALPOR (Fig. 3b).

10.2 Brine Inflow under Undisturbed Conditions: y = E0:BRAALIC

The variable y = E0:BRAALIC was included as an example because a nonlinear but monotonic relationship
éppears to exist between E0:BRAALIC and several of .the sampled variables (Sect. 2). Thus, procedures that can
identify monotonic relétionships should work well with EO:i?RAALIC as indicated by the regressions with raw data
(R? = 0.50) and rank-transformed data (R? = 0.87) in Table 3. All analysis procedures except CVs identified
ANHPRM -and WMICDFLG as the two most important variables, with the variables assigned ranks 1 and 2 changing
from test to test (Ta_b]e 11). The scatterplots for both ANHPRM and WMICDFLG show strong relationships with
E0:BRAALIC (Fig. 4a,b). The CVs test assigned rank 2 to SHPRMCON with a p-value of 0.0426, with this variable
also assigned a p-value of 0.0057 and a rank of 3 by the CMNs test. No other tests indicated an effect for this
var’i‘:ible, which is consistent with the corresponding scatterplot (Fig. 13a). Rank 3 was assigned to HALPRM for
tests based on RCCs (p-value = 0.0014), CLs (p-value = 0.0019), CMDs (p-value = 0.0050) and SI (p-value =
0.0517), with the corresponding scatterplot showing little discernible pattern (Fig. 13b). Rank 4 was assigned to
WGRCOR by CCs (p-value = 0.0048), RCCs (p-value = 0.0057), CMNs (p-value = 0.0636) and CLs (p-value =
0.0427), with the corresponding scatterplot indicating a slight tendency for EO:BRAALIC to decrease as WGRCOR

increases (Fig. 4d). Little discernible pattern appears in the ranks assigned to the remaining variables in Table 11.

Based on knowledge of the model in use, the ordering of variable importance associated with RCCs seems most
reasonable, with the signs of the RCCs for the variables ranked 1 through 6 (Table 12) comresponding to the effects
that these variables should have on EO:BRAALIC (i.e., whether EO:BRAALIC should increase or decrease as the
corresponding vériable increases; see Ref. 18 for a discussion of the underlying physics). The procedures that most
closely match the variable rankings obtained with RCCs are based on CLs (top-down correlation (TDC) = 0.897),
CMDs (TDC = 0.913) and SI (TDC = 0.838) (Table 13). These are procedures that can be expected to perform
reasonably well in the presence of nonlinear but monotonic relations. The top-down correlation for RCCs and CCs
is 0.729 (Table 13). Procedures based on measures of dispersion have the poorest agreement with variable rankings

based RCCs (i.e., CVs with TDC = 0.301, CIQs with TDC = 0.531) (Table 13).

Rankings of variable importance based on CCs, SRCs and PCCs are similar, with the rankings based on SRCs
and PCCs being identical (Table 12). In like manner, rankings based on RCCs, SRRCs and PRCCs are similar, with
the rankings based on SRRCs and PRCCs being identical (Table 12). The associated top down correlations are
correspondingly high (i.e., 0.980 for (CC, SRC), (CC, PCC) and 0.912 for (RCC, SRRC), (RCC, PRCC)) (Table
13).
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As for EQ:WAS_PRES, an investigation was carried out to determine if the analysis results obtained for
EO0:BRAALIC are sensitive to the partitioning selected f'or use (i.e., the values for nX and nY). In particular, the
analysis was repeated with nX = 10 for CMs, CLs, CMDs, CVs, CIQs and SI, and nY = 10 for SI (Table 14). As
indicated by examination of scatterplots, the two most important variables with respect to EO:BRAALIC are
ANHPRM and WMICDFLG (Fig. 4a,b). With the exception of CVs, all tests (i.e., CMNs, CL;, CMDs, CIQs, SI)
identified ANHPRM and WMICDFLG as the two r;io’st ir’nportant variables with grids based on either nX = 5 or nX =
10 (Table 14). After these two variables, there is some jumping around in the rankings assigned to the individual
variables, although there is sufficient similarity in the results obtained with nX = 5 and nX = 10 t0 produce top down
correlations that are close to or above 0.9 (Table 14). Scatterplots indicate that, after ANHPRM and WMICDFLG,
none of the remaining variables have a very strong effect on EO:BRAALIC (Figs. 4, 13), with the result that the tests

are failing to find discernible patterns after these two variables.

The p-values in Tables 11 and 12 are calculated with statistical assumptions that are not fully satisfied. As
described in conjunction with Eq. (58), a Monte Carlo procedure can be used to assess if the use of formal statistical
procedures to determine p-values is producing misleading results.” The p-values based on formal statistical
procedures and on Monte Carlo procedures are very similar, with the associated variable rahkings having top-down
correlations between 0.987 and 0.995 (i.e., CC and RCC in Table 15 and CMN, CL, CMD, CV, CIQ and Sl in Table
14). The primary difference is that the most important variables (i.e., ANHPRM and WMICDFLG) tend to be
assigned tied-ranks (i.e., 1.5) in the Monte Carlo simulations because the sample size of 10,000 in use does not allow

the estimation of p-values less than 0.0001.

A variant of the common means (CMNs) test is to use logarithmically transformed y-values rather than the
original untransformed y-values (Sect. 5.1). Use of both raw and logarithmically transformed variables results in
ANHPRM and WMICDFLG being selected as the two most important variables with respect to EO: BRAALIC (Tables
14, 16). Use of logarithmically transformed variables with the CMNs test also results in the identification of
HALPRM as the third most important variable, with HALPRM also assigned a rank of 3 with RCCs, but effectively
missed by the CMNs test with raw data (i.e., a p-value of 0.1105 and a rank of 7) (Tables 14, 16). The ;CMNs test
with both raw and logarithmically transformed data assigns rank 4 to WGRCOR (Tables 14, 16). Thus, the use of
logarithmically transformed data with the CMNs test results in the identification of one possibly important variable

(i.e., WGRCOR) missed with the use of raw data.

A variant of the common variances (CVs) test is to use 1, as defined in Eq. (51) rather than as defined in Eq.
(50). The logarithmic transformation associated with Eq. (51) results in a substantial improvement in that
WMICDFLG is now identified as an important variable (Table 16); in contrast, WMICDFLG was missed with raw
data as used in Eq. (50) (Table 14). The associated scatterplot indicates that WMICDFLG is a variable that should

be identified by any reasonable test (Fig. 4a).
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103 RepoSitory Saturation under Disturbed Conditions: y = E2:WAS_SATB

The variable y = E2:WAS_SATB was selected as an example because the regression analyses with raw and rank-
transformed data were rather poor (i.e., R2 = 0.33 and 6.61, respectively), although the two most important variables
as indicated by scatterplots (i.e., BHPRM and WRGSSAT) do appear in both regression analyses (Table 3, Fig. 5).
Given the strong patterns displayed in the scatterplots for BHPRM and WRGSSAT and the discernible but less strong
patterns associated with ANHPRM and HALPOR (Fig. .5), procedures that can identify patterns that result from the
interaction of two or more variables should work well for EZ:WAS_SATB. In particular, analyses based on RCCs,
CLs, CMDs and SI identified BHPRM and WRGSSAT as the two most important variables (Table 17). Analyses
based on CCs, CMNs and CVs identified BHPRM as the most important variable, but did not identify WRGSSAT as
the second ﬁloét important variable; in contrast, CIQs identified WRGSSAT as the most important variable and
identified BHPRM as the third rather than secénd most important variable (Table 17). Further, CIQs identified
WGRCOR as the second most important variable (Table 17), which seems to be inconsistent with the weakness of the
pattern appearing in the associated scatterplot (Fig. 14) and also the rankings assigned to WGRCOR by other
procedures (Table 17); this identification may be due to the increased spread in y values for large values of

WGRCOR. The test based on CVs did not identify WRGSSAT (i.e., a p-value of 0.1750 and a rank of 9) (Table 17).

Given the insights gained from the results of all of the analysis techniques, CCs and RCCs appear to have
identified the three dominant variables affecting E2:WAS_SATB (i.e., BHPRM, WRGSSAT, ANHPRM). However,
given the low R2 values associated with the corresponding regression models with raw and rank-transformed data
(Table 3), it would be difficult to place much faith in these identifications without results from tests that are less

dependent on linear regression models (i.e., CLs, CMDs, CIQs, SI).

As previously observed for E0O:WAS_PRES and E0:BRAALIC (Tables 5, 12), variable rankings for
E2:WAS_SATB with CCs, SRCs and PCCs are similar, with SRCs and PCCs producing identical variable rankings
(Table 10.15, Ref. 58). A similar pattern also occurs for RCCs, SRRCs and PRCCs (Table 10.15, Ref. 58).

Top-down correlation provides a formal comparison of the variable rankings obtained with the different
procedures (Table 18). A considerable amount of variability exists in the rankings obtained with the different
techniques. Rankings based on SI, CVs and CIQs appear to have the least agreement with the rankings obtained with

other procedures. Also, rankings based on CVs and CIQs show little agreement (i.e., TDC=0.267).

As for EQ:WAS_PRES and E0:BRAALIC, an investigation was carried out for E2: WAS_SATB on the effects of
using nX = 10 rather than nX = 5 for CMNs, CLs, CMDs, CVs, CIQs and SI and nY = 10 rather than nY = 5 for SI
(Table 19). The results for the highest ranked variables for the two partitionings were similar, with CMNs, CLs,
CMDs, CIQs and SI each identifying the same top 3 variables; however, the identified variables were not necessarily

the same from test to test. For CVs, both partitionings yielded the same top two variables but produced different
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variables with rank 3. After the top three variables, there was often considerable variability in the ranks assigned to
the remaining, and typically unimportant, variables. The least agreement between the variable rankings obtained

with the two partitionings occurred for SI (7DC = 0.746).

Again, p-values based on formal statistical procedures and on Monte Carlo procedures are very similar, with the
associated rankings having top-down correlations Bétw_een 0.972 and 0.999 (Tables 19, 20). The primary difference
is that the most important variables tend to be assigned tied-ranks in the Monte Carlo simulation '(e.g., 1.5 for
BHPRM and ANHPRM for CCs in Table 20).

“The use of raw and logarithmically transformed variables with the CMNs test (Sect. 5.1) results in similar
rankings of variable importance for E2:WAS_SATB (Table 10.19, Ref. 58). Thus, little is gained by the use of
logarithmically transformed variables. Similarly, little change in the outcome of the analysis for E2:WAS_SATB with
CVs took place when ¢, as defined in Eq. (51), rather than as in Eq. (50), was used (Table 10.19, Ref. 58).

10.4 Repository Pressure under Disturbed Conditions: y = E2:WAS_PRES

The variable y = E2:WAS_PRES was included as an example because regression analyses with raw and rank-
transformed data fail to identify the dominant variable BHPRM (Sect. 2). Thus, procedures that can identify
nonlinear, nonmonotonic relationships should work well with E2:WAS_PRES, which turned out to be the case (Table
21). In particular, tests based on CMNs, CLs, CMDs, CVs, CIQs and SI all identiﬁed BHPRM as the most important
variable affecting E2:WAS_PRES (Table 21), which is consistent with the strong pattern appearing in the
corresponding scatterplot (Fig. 6d). In contrast, tests based on CCs and RCCs failed to identify BHPRM as an
important variable (i.e., p-values of 0.3651 and 0.1704 for CCs and RCCs, respectively) (Table 21). Further, tests
based on CMNs, CLs, CMDs, CVs and SI select the variables ranked 2 and 3 from HALPRM, ANHPRM and
WGRCOR, while the test based on CIQs assigns ranks 2 and 3 to WGRCOR and SHRGSSAT, respectively. As
indicated by scatterplots, HALPRM, ANHPRM and WGRCOR produce barely discernible patterns (Figs. 6, 15).

Variable rankings for E2: WAS_PRES based on CCs, SRCs and PCCs and also on RCCs, SRRCs and PRCCs are

the same (Table 10.21, Ref. 58). However, these rankings are misleading because they do not include the dominant

variable BHPRM.

Due to the failure of CCs and RCCs to identify the dominant variable BHPRM, there is less agreement between
the variable rankings obtained with the various analysis prdcedures for E2:WAS_PRES than is the case for
EQ:WAS_PRES, EQ:BRAALIC and E2:WAS_SATB (i.e., compare the top-down correlations in Tables 7, 13, 18 and
22). In particular, variable rankings for E2: WAS_PRES with CMNs, CLs, CMDs CVs, CIQs and SI are generally
similar (Table 22). The exception is the ranking based on CIQs, which shows top-down correlations of 0.429, 0.462
and 0.462 with the rankings obtained with CMNs, CLs and CMDs. Otherwise, the top-down correlations for the
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variable rankings obtained with CMNs, CLs, CMDs, CVs, CIQs and SI.vary between 0.698 and 1.000. In contrast,
there is little relationship between the variable rankings obtained with CMNs, CLs, CMDs, CVs, CIQs and SI and
with CCs, SRCs, PCCs, RCCs, SRRCs and PRCCs.

An investigation of the effects of using nX = 10 rather than nX = 5 for CMNs, CLs, CMDs, CVs, CIQs and SI
and nY = 10 rather than nY = 5 for SI was also cﬁ¢d out (Table 23). Each of the indicated procedures with nX = 5
and nX = 10 identified BHPRM as the most importax;i variable. Generally, ranks 2, 3 and sometimes 4 were also
assigned to similar variables, although the exact order was not always the same for nX = 5 and nX = 10. After rank

4, there was considerable variability in the ordering of the variables with nX = 5 and nX = 10.

The p-values used to identify important variables in Tables 21 and 23 were recalculated with the Monte Carlo
procedure described in conjunction with Eq. (58) (Tables 23, 24). The rankings based on analytic determination of
p-values and on Monte Carlo determination of p-values are very similar, with the primary difference being the

tendency of the Monte Carlo simulation to assign tied ranks to the most important variables.

Use of both raw and logarithmically transformed variables with the CMNs test (Sect. 5.1) results in similar
rankings of variable importance for E2:WAS_PRES (Table 10.25, Ref. 58). Thus, little is gained in the analysis of
E2:WAS_PRES with CMNs by the use of logarithmically transformed variables. In contrast, the analysis for
E2:WAS_PRES with CVs and 4 as defined in Eq. (51) with a logarithmic transformation performed poorly, with the
analysis failing to identify the dominant variable BHPRM (Table 10.25, Ref. 58). Thus, the use of the logarithmic
transformation in Eq. (51) has the potential to improve the performance of the CVs test as it did for EQ;BRAALIC

(Tables 14, 16) and also the potential to degrade performance as is the case for E2: WAS_PRES.

11. Discussion

Sensitivity analysis is an essential component of model development, assessment and application. Monte Carlo
procedures are widely used in sensitivity studies to develop a mapping (i.e., scatterplot) between uncertain model
inputs and associated model results that can then be explored with regression-based techniques. Unfortunately, these
techniques sometimes fail to identify important patterns in this mapping because the relationships between model
inputs and model results can be too complex to be identified by the linear relationships that most regression analyses

are predicated on.

The likelihood of a successful sensitivity analysis can be increased by using a number of different procedures to
identify relationships between model inputs and model results. With this strategy, a relationship missed by one
procedure may be identified by another procedure. Fortunately, the post-processing of model results for the
identification of patterns in scatterplots is relatively inexpensive from a computational perspective; thus, the use of a

number of different procedures does not present a significant burden.
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This paper describes and illustrates a sequence of procedures for identifying patterns in scatterplots. These
procedures are based on attempts to detect increasingly complex patterns in scatterpiots and involve the
identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank
correlation coefficients, (iii) trends in central tendency as defined by means, medians and the Kruskal-Wallace
statistic, (iv) trends in variability as defined.by variances and interquantile ranges, and (v) deviations from
randomness as defined by the chi-square statisticl"‘As illustrated in a sequence of example analyses with a large
model for two-phase fluid flow, the individual procedures can differ in the variables that they identify as having
important {significant) effects on particular analysis omcﬁines. The example results indicate that the use of a
sequence of procedures is a good analysis strategy and provides some assurance that an important effect is not
ovéﬂb’oked. Based on the experience of this analysis, a possible sequence of tests s correlation coefficiénts (CCs,
Sect. 3), rank correlation coefficients (RCCs, Sect. 4), common locations (CLs, Sect. 5.2) or common medians

(CMDs, Sect. 5.3), and statistical independence (SI, Sect. 7).

The procedures under consideration identify patterns in scatterplots that in some sense appear to be nonrandom.
However, they provide no explanation for why these patterns exist. Once such patterns are identified, it is the
responsibility of the modelers and analysts to develop explanations for them. If such explanations cannot be
developed, then the possibility exists that an error is present in the analysis. For this reason, well-designed
sensitivity analyses provide both a way to develop insights with respect to the problem under consideration and also

a way to check the conceptual and computational implementation of the problem.
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Figure Captions

Fig. 1.

Computational (finite difference) grid used in BRAGFLO to represent two phase flow in 1996 WIPP
CCA PA subsequent to a drilling intrusion. Same formulation is used in the absence of a drilling
intrusion except that regions 1A, 1B and 1C have the same properties as the regions to either side.

Dependent variables predicted by BRAGFLO model: (2a) pressure in lower waste panel under
undisturbed conditions (E0: WAS_PRES), (2b) cumulative brine inflow from anhydrite marker beds under
undisturbed conditions (EO:BRAALIC), ("2c)b saturation in lower waste panel after an E2 intrusion at 1000
yr (E2:WAS_SATB), and (2d) pressure in lower waste panel after an E2 intrusion at 1000 yr
(E2:WAS_PRES). g .

Scatterplots for pressure in lower waste panel under undisturbed (i.e., EO) conditions at 10,000 yr
(EOQ:WAS_PRES) versus first four variables selected in stepwise regression analyses with raw and rank-

* - tansformed data (Table 3): (3a) WMICDFLG, (3b) HALPOR, (3c) WGRCOR, and (3d) ANHPRM.

Fig. 11.

Scatierplots for cumulative brine inflow over 10,000 yr from all anhydrite marker beds to repository
under undisturbed (i.e., EO) conditions (E0:BRAALIC) versus first four variables selected in stepwise
regression analysis with rank-iransformed data (Table3): (4a) WMICDFLG, (4b) ANHPRM, (4c)
HALPOR, and (4d) WGRCOR.

Scatterplots for brine saturation in lower (i.e., intruded) waste panel at 10.000 yr for an E2 intrusion at
1000 yr (E2:WAS_SATB) versus first four variables selected in stepwise regression analysis with rank-
transformed data (Table 3): (5a) BHPRM, (5b) WRGSSAT, (5¢) ANHPRM and (5d) HALPOR. -

Scatterplots for pressure in lower waste panel at 10,000 yr with an E2 intrusion into the lower waste panel
at 1000 yr (E2:WAS_PRES) versus the three variables (HALPRM, ANHPRM, HALPOR) selected in
stepwise regression analysis with raw and rank-transformed data (Table 3) and one additional variable
(BHPRM) identified by examination of scatterplots: (6a) HALPRM, (6b) ANHPRM, (6c) HALPOR, and
(6d) BHPRM.

Graph of d(b, a) = b(1 — b>)V2 — a(1 — a®)1/2 > 0 subject to constraints 0<a< b < 1,22 + b2 < 1.
Example of the partitioning of the range of x = HALPOR into nX = 5 classes for y = E0:WAS_PRES.

Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of y
E0:WAS_PRES into values above and below the median yg 5.

H

Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of ¥
E0:WAS_PRES into values inside and outside the interquartile range {yg 15, ¥g.75}-

I

Example of the partitioning of the range of x = HALPOR into nX = 5 classes and the range of y
E0:WAS_PRES into nY = 5 classes. :

Scatterplot for E0:WAS_PRES versus ANHBCVGP.
Scatterplots for £E0:BRAALIC versus SHPRMCON and HALPRM.
Scatterplot for E2:WAS_SATB versus WGRCOR.

Scatterplot for E2: WAS_PRES versus WGRCOR.
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Fig. 1. Computational (finite difference) grid used in BRAGFLO to represent two phase flow in 1996 WIPP
intrusion. Same formulation is used in the absence of a drilling
intrusion except that regions 1A, 1B and 1C have the same properties as the regions to either side.

CCA PA subsequent to a drilling
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(2a) pressure in lower waste panel under

undisturbed conditions (E0: WAS_PRES), (2b) cumulative brine inflow from anhydrite marker beds under
undisturbed conditions (E0:BRAALIC), (2c) saturation in lower waste panel after an E2 intrusion at 1000
yr (E2:WAS_SATB), and (2d) pressure in lower waste panel after an E2 intrusion at 1000 yr
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(E0:WAS_PRES) versus first four variables selected in stepwise regression analyses with raw and rank-
transformed data (Table 3): (3a) WMICDFLG, (3b) HALPOR, (3c) WGRCOR, and (3d) ANHPRM.
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Fig. 4 Scatterplots for cumulative brine inflow over 10,000 yr from all anhydrite marker beds to repository

under undisturbed (i.e., E0) conditions (E0:BRAALIC) versus first four variables selected in stepwise
regression analysis with rank-transformed data (Table3): (4a) WMICDFLG, (4b) ANHPRM, (4c)
HALPOR, and (4d) WGRCOR.
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Fig. 5.

transformed data (Table 3): (5a) BHPRM, (5b) WRGSSAT, (5¢) ANHPRM and (5d) HALPOR.

Scatterplots for brine saturation in lower (i.e., intruded) waste panel at 10,000 yr for an E2 intrusion at
1000 yr (E2:WAS_SATB) versus first four variables selected in stepwise regression analysis with rank-
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Scatterplots for pressure in lower waste panel at 10,000 yr with an E2 intrusion into the lower waste panel
at 1000 yr (E2:WAS_PRES) versus the three variables (HALPRM, ANHPRM, HALPOR) selected in
stepwise regression analysis with raw and rank-transformed data (Table 3) and one additional variable
(BHPRM) identified by examination of scatterplots: (6a) HALPRM, (6b) ANHPRM, (6c) HALPOR, and

(6d) BHPRM. '
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Fig. 12. Scauerplot for F0:WAS_PRES versus ANHBCVGP.
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Table 1.  Definition of Dependent Variables Predicted by BRAGFLO Mode!l Selected for Use in
Comparison of Statistical Procedures for ldentification of Patterns in Scatterplots

E0:WAS_PRES—Pressure (Pa) in lower repository waste panel (region 23, Fig. 1) at 10,000 yr under
undisturbed (i.e., EO) conditions. Number of sampled variables: 26 (Table 2).

E0:BRAALIC—Cumulative brine inflow (m?) to vicinity of repository over 10,000 yr from anhydrite marker

beds (regions 20, 21, 28, Fig. 1) under undisturbed (i.e., EQ) conditions. Same sampled variables as
EO0:WAS_PRES. N

E2:WAS_SATB—Brine saturation (dimensionless) in lower repository waste panel (region 23, Fig. 1) at 10.000
yr after a drilling intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in

the underlying Castile Formation (i.e., an E2 intrusion). Same sampled variables as EO:WAS_PRES plus
BHPRM (Table 2). ’ .

E2: WAS_PRES—Prcssure (Pa) in lower repository waste panel (region 23, Fig. 1) at 10,000 yr after a drilling
intrusion through the lower waste panel at 1000 yr that does not penetrate pressurized brine in the underlying
Castile Formation (i.e., an E2 intrusion). Same sampled variables as E2:WAS_SATB.
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Table 2.  Uncertain Variables Used as Input to BRAGFLO in the Calculation of the Dependent
Variables in Table 1 (see Table 5.2.1, Ref. 18, and App. PAR, Ref. 22, for additional
information and a discussion of all 75 variables included in the LHS)

ANHBCEXP—Brooks-Corey pore distribution. _parameter for anhydrite (dimensionless). Distribution:
Student’s with 5 degrees of freedom. Range: 0.491 to 0.842. Mean, Median: 0.644.

ANHBCVGP—Pointer variable for selection of relative permeability model for use in anhydrite. Distribution:
Discrete with 60% 0, 40% 1. Value of O implies Brooks-Corey model; value of I implies van Genuchten-
Parker model.

ANHCOMP—Bulk compressibility of anhydrite (Pa-1). Distribution: Student’s with 3 degrees of freedom.
Range: 1.09 x 10-11 10 2.75 x 10-10 Pa-1. Mean, Median: 8.26 x 10~11 Pa-t. Correlation: —0.99 rank
correlation®3 with ANHPRM. Variable 21 in LHS.

ANHPRM—Logarithm of anhydrite permeability (m2). Distribution: Student’s with 5 degrees of freedom.
Range: -21.0 to -17.1 (i.e., permeability range is 1 x 10-21 to 1 x 10-17.1 m2). Mean, Median: -18.9.
Correlation : —0.99 rank correlation with ANHCOMP.

ANRBRSAT—Residﬁal brine saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees
of freedom. Range: 7.85x 10-3t0 1.74 x 10-1. Mean, Median: 8.36 x 10-2,

ANRGSSAT—Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of
freedom. Range: 1.39 x 10-2 to 1.79 x 10~1. Mean, median: 7.71 x 10-2.

BHPRM—TL ogarithm of borehole permeability (m2). Distribution:  Uniform. Range: -14 to -11 (i.e,
permeability range is 1 X 10-14to 1 x 10-!! m2). Mean, median: -12.5.

HALCOMP—Bulk compressibility of halite (Pa-1). Distribution: Uniform. Range: 2.94 x 10-12 t0 1.92 x
10-10 PA-1, Mean, median: 9.75 x 10-1! Pa-1, 9.75 x 10-!! Pa-1. Correlation: —-0.99 rank correlation with
HALPRM.

HALPOR—Halite pofosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0 x 10-3to 3 x 10-2.
Mean. median: 1.28 x 10-2, 1.00 x 10-2.

HALPRM—L ogarithm of halite permeability (m2). Distribution: Uniform. Range: -24 to -21 (ie.,
permeability range is 1 X 10-24 to 1 x 10-21 m2). Mean, median: -22.5, -22.5. Correlation: -0.99 rank
correlation with HALCOMP.

SALPRES—Initial brine pressure, without the repository being present, at a reference point located in the
center of the combined shafts at the elevation of the midpoint of MB 139 (Pa). Distribution: Uniform. Range:
1.104 x 107 t0 1.389 x 107 Pa. Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa.

SHBCEXP—Brooks-Corey pore distribution paraméter for shaft (dimensionless). - Distribution: Piecewise
uniform. Range: 0.11 to 8.10. Mean, median: 2.52,0.94.

SHPRMASP—Logarithm of permeability (m2) of asphalt component of shaft seal (m2). _Distribution:
Triangular. Range: -21 to 18 (i.e., permeability range is 1 x 10-2! to 1 x 10-18 m2). Mean, mode: -19.7,
=20.0.
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Table2.  (Continued)

SHPRMCLY—Logarithm of permeability (m2) for clay components of shaft. Distribution: Triangular. Range:
—-2110-17.3 (i.e., permeability range is 1 x 10-2! to T x 10-173 m2). Mean, mode: -18.9, -18.3.

SHPRMCON-—Same as SHPRMASP but for concrete component of shaft seal for 0 to 400 yr. Distribution:
Triangular. Range: -17.0 to —14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 m?). Mean, mode:
-15.3, -15.0.

SHPRMDRZ~ ogarithm of permeability (m2) of DRZ surrounding shaft. Distribution: Triangular. Range:
~17.0t0 -14.0 (i.e., permeability range is 1 x 10-17 to 1 x 10-14 m2). Mean, mode: -15.3,-15.0.

SHPRMHAL—Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft
seal at different times. Distribution: Uniform. Range: 0 to 1. Mean, mode: 0.5, 0.5. A distribution of
permeability (m?2) in the crushed salt component of the shaft seal is defined for each of the following time
intervals: [0, 10 yr], [10, 25 yr], [25, 50 yr], [50, 100 yr], [100, 200 yr], [200, 10000 yr}. SHPRMHAL is used
to select a permeability value from the cumulative distribution function for permeability for each of the
preceding time intervals with result that a rank correlation of 1 exists between the permeabilities used for the
individual time intervals.

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4.
Mean, median: 0.2, 0.2.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 04,
.- Mean, median: 0.2, 0.2.

WASTWICK—Increase in brine saturation of waste due to capillary forces (dimensionless). Distribution:
Uniform. Range: Oto 1. Mean, median: 0.5, 0.5.

WFBETCEL—Scale factor used in definition of stoichiometric coefficient for microbial gas generation
(dimensionless). Distribution: Uniform. Range: Oto I. Mean, median: 0.5, 0.5.

WGRCOR—Corrosion rate for steel under inundated conditions in the absence of CO, (m/s). Distribution:
Uniform. Range: 0to 1.58 X 10-14 m/s. Mean, median: 7.94 x 10-15 m/s, 7.94 x 10-15 m/s.

WGRMICH—Microbial degradation rate for cellulose under humid conditions (mol/kges). Distribution:
Uniform. Range: 0to 1.27 x 10-9 mol/kges. Mean, median: 6.34 x 10-10 mol/kges, 6.34 x 10-10 mol/kges.

WGRMICI—Microbial degradation rate for cellulose under inundated conditions (mol/kges). Distribution:
Uniform. Range: 3.17 x 10-10 to 9.51 x 109 mol/kges. Mean, median: 4.92 x 10~% mol/kges, 4.92 x 10-9
mol/kges.

WMICDFLG—Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% 0,
25% 1,25% 2. WMICDFLG =0, 1, 2 implies no microbial degradation of cellulose, microbial degradation of
only cellulose, microbial degradation of cellulose, plastic and rubber.

WRBRNSAT—Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: 0 to 0.552.
Mean, median: 0.276, 0.276.

WRGSSAT—Residual gas saturation in waste (dimensionless). Distribution: Uniform. Range: 0 to 0.15.
Mean, median: 0.075, 0.075.
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Table 3. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled Results
from Replicates R1, R2 and R3 (i.e., for a total of 300 observations) for Output Variables
EO0:WAS_PRES, EO:BRAALIC, E2:WAS_SATB and E2:WAS_PRES at 10,000 yr

Raw Data, E0:WAS_PRES Rank-Transformed Data, EQ: WAS_PRES
Step? VariableP SRC® R VariableP SRRC® R2d
1 WMICDFLG 072 {051 } WMICDFLG 0.71 0.52
2 | HALPOR 047 | 073 | HALPOR 045 0.73
3 WGRCOR 0.25 0.79 | WGRCOR 0.23 0.79
4 ANHPRM 0.13 0.81 | ANHPRM 0.11 0.80
5 SHRGSSAT 0.07 0.81 | SALPRES 0.07 0.80
6 SALPRES 0.06 0.82 | SHRGSSAT 0.06 0.81
Raw Data, EQ:BRAALIC Rank-Transformed Data, EO:BRAALIC
Step Variable SRC R2 Variable SRRC R2
1 ANHPRM 0.56 0.32 | WMICDFLG -0.66 0.43
2 WMICDFLG -0.31 0.42 | ANHPRM 0.59 0.75
3 WGRCOR -0.16 0.45 | HALPOR -0.16 0.80
4 WASTWICK -0.15 0.47 | WGRCOR -0.15 0.82
5 ANHBCEXP -0.12 0.49 | HALPRM 0.14 0.83
6 HALPOR -0.10 0.50 | SALPRES 0.12 0.86
7 WASTWICK -0.10 0.87
Raw Data, E2:WAS_SATB Rank-Transformed Data. E2:WAS_SATB
Step Variable SRC R2 Variable SRRC R2
1 BHPRM 0.37 0.12 | BHPRM 0.59 0.36
2 ANHPRM 0.30 0.21 | WRGSSAT -0.40 0.52
3 HALPOR 0.21 0.25 | ANHPRM 0.23 0.57
4 WGRCOR -0.19 0.29 | HALPOR 0.13 0.59
5 WRGSSAT -0.15 0.31 | SHPRMHAL -0.12 0.60
6 WMICDFLG -0.14 0.33 | WGRCOR -0.10 0.61
Raw Data, E2:WAS_PRES Rank-Transformed Data, £2: WAS_PRES
Step Variable SRC R? Variable SRRC R
1 HALPRM 0.37 0.14 | HALPRM 0.36 0.13
2 ANHPRM 0.24 0.20 | ANHPRM - 0.24 0.19
3 HALPOR 0.14 0.22 | HALPOR 0.14 0.20

=

Steps in stepwise regression analysis.

o

Variables listed in order of selection in regression analysis with ANHCOMP and HALCOMP excluded from entry into regression model
because of —0.99 rank correlation within the paits (ANHPRM, ANHCOMP) and (HALPRM, HALCOMP).

Standardized regression coefficients (SRCs) in final regression model.

Q 60

Cumulative R* value with entry of each variable into regression model.

Standardized rank regression coefficients (SRRCs) in final regression model.

52




Table 4. Comparison of Variable Rankings with Different Analysis Procedures® for y = EO:WAS_PRES,
the Variables in Table 2P and a Maximum of Five Classes of Values for Each Variabie (i.e.,

nX =5)¢
Variabled cc RCC CMN: 1x5 CL: 1x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 1.0 . 0.0000 1.0 0.0000 1.0 0.0000
HALPOR 2.0 0.0000 20 0.0000 20 0.0000 2.0 0.0000
WGRCOR 3.0 0.0000 3.0 00000 . 3.0 0.0000 3.0 0.0000
ANHPRM 4.0 0.0241 4.0 0.0268 4.0 0.0195 4.0 0.0187
SALPRES 5.0 0.0855 5.0 0.0664 13.0 0.6283 13.0 0.5672
WGRMICI 17.0 0.7753 200 0.8940 23.0 0.9705 23.0 09649
SHPRMCON. _ 18.0 0.7878 18.0 0.8618 10.0 0.4099 11.0 0.4878
ANHBCVGP 20.0 0.8084 15.0 0.7686 18.0 0.8062 16.0 0.7686

Variable CMD: 2x5 CV: 1x5 CIQ: 2x5 SI: 5x5

Name Rank p-Val Rank p-val Rank p-Val Rank p-Val
WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 0.0000 = 1.0 0.0000
HALPOR 20 0.0000 12.0 03919 20 0.0000 20 0.0000
WGRCOR 3.0 0.0025 40 0.1244 16.5 0.6626 3.0 0.0003
ANHPRM 40 0.0663 20 0.0042 3.0 0.0007 40 0.0049
SALPRES 9.0 0.4932 11.0 0.3723 6.0 0.0868 21.0 0.7554
WGRMICI 24.0 0.9702 24.0 0.8900 50 0.0595 13.0 0.3239
SHPRMCON 6.0 0.2674 5.0 0.1287 4.0 0.0244 7.0 0.1487
ANHBCVGP 14.0 0.6442 13.0 0.4752 24.0 1.0000 5.0 0.0194

Table includes only variables that had a p-value less than 0.1 for at least one of the procedures under consideration although the variable
rankings for a specific procedure are based on the p-values obtained for that procedure for all 24 variables included in the analysis (See
Footnote b).

Table 2 contains 27 variables but BHPRM was not used in the calculation of EO results (i.e., £E0:WAS_PRES and FO:BRAALIC) and the
variables in the pairs (ANHPRM, ANHCOMP), (HALPRM, HALCOMP) have a —0.99 rank correlation. As a result, BHPRM, ANHCOMP and
HALCOMP were not included in the analysis. which resulted in 24 variables (i.c.. x’s) for analysis with each procedure.

€ Variables ANHBCVGP. WMICDFLG in Table 2 are discrete with 2, 3 levels, respectively: for these variables, nX = 2, 3. Also. n¥ =5 for SL

Variables are listed in the table based on their ordering with the p-values obtained for CCs: thus, the listed rankings for CCs will
monotonically increase, which will not in general be the case for the other procedures.
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Table5. Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y = EO:WAS_PRES

Variable? ' cC SRC PCC

Name p-Val Rank Value  Rank Value Rank Value
WMICDFLG 0.0000 1.0 0.7 1724._‘ 1.0 0.7234 1.0 0.8642
HALPOR 0.0000 2.0 0.4483 20 0.4651 2.0 0.7469
WGRCOR 0.0000 3.0 0.2762 : 30 0.2460 3.0 0.5113
ANHPRM 0.0241 4.0 0.1302 4.0 0.1277 4.0 0.2953
SALPRES 0.0855 5.0 0.0993 6.0 0.0639 6.0 0.1526

Variable? RCC , SRRC PRCC

Name . p-Val Rank Value Rank Value Rank Value
WMICDFLG 0.0000 1.0 - 07229 1.0 0.7207 1.0 0.8564
HALPOR 0.0000 2.0 0.4521 2.0 04511 20 0.7256
WGRCOR 0.0000 3.0 0.2608 30 0.2303 .30 0.4739
ANHPRM 0.0268 4.0 0.1280 4.0 0.1093 4.0 0.2476
SALPRES 0.0664 5.0 0.1062 o 5.0 0.0723 5.0 0.1667

3 Comparison based on variabies that had a p-value less than 0.1 for CCs. Ranks based on values for CCs. SRCs, PCCs in column “VALUE".

b Comparison based on variables that had a p-value less than 0.1 for RCCs. Ranks based on values for RCCs, SRRCs, PRCCs in column
“VALUE".

Table 6. Correlations with Raw and Rank Transformed Data between WMICDFLG, HALPOR,
WGRCOR, ANHPAM and SALPRES

Raw Data

HALPOR -0.035

WGRC OR 0.027 0.022

ANHPRM 0.001 ~0.004 0.013

SALPRES 0.056 -0.007 0.001 -0.012
WMICDFLG HALPOR WGRCOR ANHPRM

Rank-Transformed Data

HALPOR -0.008

WGRCOR 0.031 0.014

ANHPRM 0.018 0.005 0.021

SALPRES 0.053 -0.010 0.001 - 0.004
WMICDFLG HALPOR WGRCOR ANHPRM
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Table 7. Top-Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y = EO:WAS_PRES, Variables included in Table 42 and a Maximum of Five Classes of x
values (i.e., nX = 5)

Top-Down Correlation Matrix

RCC 0.982

CMN 0972 0.981 .

CL 0972  0.981 1.000

CMD 0572 0981 1000 1.000

Ccv 0731 0740 0769 0769 0769

CIQ 0860 0.831 0872 0.872 0.872 0.705

SI 0946 0967 0972 0972 0972 0720 0.839

SRC 0986 0.996 0967 0967 0967 0719 0.824 0963

PCC . 098 09% 0967 0967 0967 0719 02824 0963 1.000

SRRC 0996 098 0963 0963 0963 0715 0.840 0951 0995 0.995
PRCC 0996 098 0963 0963 0963 0715 0.840 0951 0995 0995 1.000

CcC RCC CMN CL CMD CV CIQ SI . SRC PCC SRRC

Top-Down Correlation Matrix p Values

RCC 0.005

CMN  0.005 0.005

CL 0.005 0.005 0.004

CMD 0.005 0005 0004 0.004

Ccv 0.026 0.025 0.021 0.021 0.021

CIQ 0.011 . 0.014 0.011 0.011 0.011  0.031

SI 0006 0005 0.005 0005 0005 0.028 0.013

SRC 0.005 0004 0.005 0005 0005 0029 0015 0.005

PCC 0005 0.004 0005 0005 0005 0.029 0015 0.005 0.004

SRRC" 0.004 0.005 0.005 0005 0.005 0.029 0.013 0006 0.004 0004
PRCC 0.004 0.005 0.005 0005 0.005 0029 0.013 0006 0.004 0004 0.004

cC RCC CMN CL CMD CV CIQ ST SRC PCC SRRC

1 Variable rankings used in calculation of top-down comrelation are based on only the 8 variables included in Table 4. Specifically. each
procedure was used to rank these 8 variables from | to 8 (i.¢.. p-values for CCs, RCCs, CMNs, CLs. CMDs, CVs, Cle SI: absolute values of
coefficients for SRCs, PCCs, SRRCs, PRCCs): then, top-down correlations were calculated on these rankings.
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Table 8.

Variable*
Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SHPRMASP
WRBRNSAT
SHRGSSAT
ANRBRSAT
HALPRM
SHPRMCON
SHRBRSAT
WFBETCEL
SALPRES
ANHBCEXP
WASTWICK
ANRGSSAT
SHPRMHAL
ANHBCVGP
SHBCEXP
WRGSSAT
SHPRMCLY
SHPRMDRZ
WGRMIC]
WGRMICH

TDC*

Variable
Name

WMICDFLG
HALPOR
WGRCOR
ANHPRM
SHPRMASP
SHPRMCON
ANRBRSAT
HALPRM
SALPRES
WRBRNSAT
WRGSSAT
SHRGSSAT
ANHBCEXP
ANHBCYGP
SHRBRSAT
SHPRMDRZ
WFBETCEL
SHPRMCLY
SHPRMHAL
SHBCEXP
ANRGSSAT
WASTWICK
WGRMICH
WGRMICI

™C

Comparison of Variable Rankings for y= EO:WAS_PRES Obtained with a Maximum of Five

Classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable

Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and Analytic
Determination of p-values and (ii) a Maximum of Five Classes of x values (i.e., nX = 5) and

Monte Carlo Determination of p-values ’

CMN: 1x 5" CMN:1x10°  CMNMC:1x5° _ . )
Rank  p-Val Rank  p-Val Rank  p-Val Variabie CL: 1x5 CL: 1x10 CLMC: 1x5
) ~ Name Rank p-Val Rank p-Val Rank p-val
1.0 0.0000 1.0 0.0000 20 0.0000 .
20 0.0000 20 0.0000 20 0.0000 - WMICDFLG 1.0 0.0000 1.0 0.0000 20 0.0000
3.0 0.0000 30 0.0000 20 0.0000 - HALPOR 20 ©.0000 20 0.0000 20 0.0000
40 00195 40 01371 40 00214 WGRCOR 30 00000 30 00002 20 0.0000
S0 01439 110 05087 50 0.1495 ANHPRM 40 00187 40 0130 40 oom
" 6.0 0.1506 6.0 0.1947 6.0 0.1526 SHPRMASP 5.0 0.1237 90 04376 5.0 a.1277
7.0 0.2488 15.0 0.7062 7.0 0.2497 WRBRNSAT 6.0 0.2042 70 0.2838 . 6.0 0.2053
8.0 0.3034 18.0 0.7693 8.0 0.3027 ANRBRSAT 70 02710 16.0 0.7391 70 0.2710
9.0 0.4097 8.0 0.4092 10.0 0.4060 SHRGSSAT 8.0 0.3153 17.0 0.7495 8.0 0.3167
100 0409 120 05115 90 04053 HALPRM 90 03923 60 02725 90 0.3%1
1.0 04325 10.0 0.4560 11.0 04239 SHRBRSAT 10.0 0.4625 120 0.5456 10.0 0.4575
120 0.5694 7.0 0.4034 120 0.5645 . SHPRMCON 11.0 0.4878 11.0 0.4655 11.0 04852
13.0 0.6283 20.0 0.8300 13.0 0.6378 WFBETCEL 120 Q.51 80 0.3728 120 0.5153
14.0 0.7116 16.0 0.7465 14.0 0.7035 SALPRES 13.0 0.5672 200 0.8266 13.0 0.5817
15.0 0.7450 20 0.8444 15.0 0.7446 SHPRMHAL 14.0 0.6935 13.0 0.5517 1.0 0.6996
16.0 07521 13.0 06511 16.0 0.7483 SHBCEXP 150 0.7390 210 0.8301 15.0 0.7399
17.0 0.7661 14.0 0.6734 17.0 0.7699 ANHBCVGP 16.0 0.7686 19.0 0.7686 16.0 0.7654
180 0.8062 19.0 0.8062 18.0 0.7997 ANHBCEXP 17.0 0.7703 18.0 0.75%4 7.0 0.7658
19.0 0.8100 210 0.8342 19.0 0.8099 ANRGSSAT 18.0 0.8272 15.0 0.7298 18.0 0.8209
200 0.8358 5.0 0.1542 200 0.8377 WASTWICK 190 08318 220 0.8343 19.0 0.8292
21.0 0.860) 9.0 0.4218 21.0 0.8625 WRGSSAT 20.0 0.8826 5.0 0.2088 20.0 0.8839
20 0.8726 17.0 0.7562 220 08755 SHPRMDRZ 21.0 0.8897 14.0 0.7065 21.0 0.8937
230 0.9705 130 0.9606 230 09717 . SHPRMCLY 220 0.9032 10.0 0.4426 220 0.9062
240 0.9975 24.0 0.9919 24.0 0.9973 WGRMICI 230 0.9649 230 0.9691 230 0.9663
. WGRMICH 240 0.9865 240 0.9894 24.0 0.9839
1.000 0.854 0.970
¢t 1.000 . 0.86! 0.971
CMD: 2x5 CMD: 2x 10 CMDMC: 2x5 ) Variable CV: Ix5 CV: 1x10 CVMC: 1 x5
Rank p-Val Rank p-Yal Rank p-Val Name Rank p-Val Rank p-Val Rank p-Val
1.0 0.0000 1.0 0.0000 [ 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 1.0 0.0000
20 0.0000 20 0.0000 1.3 0.0000 ANHPRM 20 0.0042 20 0.0172 2.0 0.0031
3.0 0.0023 3.0 0.0124 30 0.0018 HALPRM 3.0 0.1184 4.0 0.0843 40 0.1095
4.0 0.0663 7.0 0.3398 4.0 0.0690 WGRCOR 4.0 0124 6.0 0.1173 30 0.1054
50 02427 14.0 0.6302 5.0 0.2401 SHPRMCON 5.0 0.1287 50 0.0929 5.0 0.1201
6.0 0.2674 9.0 0.3725 6.0 0.2718 SHRGSSAT 6.0 0.1466 15.0 0.4691 7.0 0.1411
7.0 0.3386 1835 0.7532 7.0 0.3329 ANHBCEXP 7.0 0.1539 20 0.1928 6.0 0.1393
8.0 0.3883 8.0 0.3614 8.0 0.3967 SHPRMASP 8.0 0.1612 8.0 0.2953 8.0 0.1517
9.0 0.4932 183 - 0.7532 9.0 0.5058 SHPRMCLY 9.0 03102 9.0 03614 9.0 0.2957
100 0.5037 13.0 0.6163 100 0.5180 SHBCEXP 10.0 03221 1o 0.4091 10.0 0.3049
11.0 0.5249 50 0.1596 11.0 0.5223 SALPRES 11.0 03723 30 0.0500 11.0 0.3564
120 0.6151 230 0.9281 13.0 0.6050 HALPOR 120 0.3919 20.0 0.5800 12.0 0.3817
13.0 0.6387 11.0 0.5075 140 0.6224 ANHBCVGP 13.0 04752 16.0 04752 13.0 0.4800
14.0 0.6442 16.0 0.6442 12.0 0.5685 WGRMICH 140 0.5612 13.0 0.4415 14.0 0.5502
15.0 0.6868  15.0 0.6341 15.0 0.6950 SHPRMDRZ 150 0.6067 210 0.8635 15.0 0.5942
16.5 0.7358 10.0 04311 - 170 0.7283 - WASTWICK 16.0 0.6185 10.0 0.3697 16.0 0.6053
16.5 0.7358 17.0 0.7265 16.0 0.7169 WRGSSAT 17.0 0.6398 140 0.4670 17.0 0.6237
18.0 0.7847 6.0 0.3293 18.0 0.7659 . WRBRNSAT i8.0 0.6632 17.0 0.5542 180 0.6588
19.0 0.8325 40 0.1177 19.0 0.8357 ANRGSSAT 19.0 0.6761 120 04391 19.0 0.6666
210 0.9197 2.0 09114 220 0.9093 WFBETCEL 20.0 0.7531 230 0.9435 200 0.7443
C 20 0.9197 12.0 0.5887 20.0 0.9082 SHRBRSAT 210 0.8197 18.0 0.5606 21.0 0.8109
21.0 0.9197 200 0.8729 21.0 0.9085 SHPRMHAL 220 0.8330 24.0 0.9844 220 0.8224
230 0.9554 210 0.8930 23.0 0.9439 ANRBRSAT 230 0.8378 19.0 0.5700 23.0 0.8330
240 0.9702 210 0.9833 240 0.9664 WGRMIC! 2.0 0.8900 220 . 09219 24.0 0.8854

1.000 0.768 0.986 ¢ 1.000 0.892 0.993
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Table 8. (Continued)

Variable CIQ: 2x5 CIQ: 2x 10 CIQMC: 2x5 - Variable Sk 5x5 Sk 10x 10 SIMC: 5x3

Name Rank  p-Val Rank p-Vai  Rank  p-Val Name Rank  p-Val Rank  p-Val  Rank  p-Val
WMICDFLG 1.0 0.0000 10 0.0000 1.5 0.0000 WMICDFLG 1.0 0.0000 1.0 0.0000 L.s 0.0000
HALPOR 20 0.0000 20 0.0000 15 0.0000 HALPOR 20 0.0000 2.0 0.0000 15 0.0000
ANHPRM 3.0 0.0007 4.0 00112 3.0 0.0005 WGRCOR 30 0.0003 4.0 0.0073 3.0 0.0003
SHPRMCON 4.0 0.0244 5.0 0.1005 4.0 0.0279-. ANHPRM 40 0.0049 5.0 0.0128 4.0 0.0038
WGRMICI 50 0.0595 70 0.1719 5.0 0.0565 ANHBCVGP 50 0.01%4 3.0 0.1271 50 0.0178
SALPRES 6.0 0.0868 30 0.0077 6.0 0.0893 WRGSSAT 6.0 0.1229 120 0.2786 6.0 0.1196
SHPRMHAL 1.0 0.1801 10.0 0.2993 7.0 0.1729 ~ SHPRMCON 70 0.1487 6.0 0.0326 70 0.1529
SHPRMDRZ 8.0 0.1801 140 0.4944 8.0 0.1789 WASTWICK 8.0 0.1850 215 0.8743 8.0 0.1829
WGRMICH 9.0 02548 9.0 0.2133 9.0 0.2547 SHBCEXP 9.0 0.2436 17.0 0.6767 920 0.2441
SHPRMASP 10.0 0.3232 8.0 0.1849 10.0 03172 SHPRMHAL 10.0 0.2518 100 02028 100 0.2540
SHRGSSAT 11.0 0.3232 13.0 0.4559 110 = 03317 SHPRMASP 11.0 0.2601 11.0 0.2623 11.0 0.2673
SHBCEXP 120 0.5249 17.0 0.6441 120 0.5281 SHPRMDRZ 120 0.3142 7.0 0.1129 12.0 0.3205
WASTWICK 130 0.5467 120 0.4559 130 0.5356 WGRMICI 130 03239 160 0.6363 13.0 0.3252
WFBETCEL 14.0 0.5918 20.5 0.8729 140 0.5948 ANHBCEXP 14.0 0.3438 9.0 0.1768 14.0 03472
SHPRMCLY 15.0 0.6387 6.0 0.1426 15.0 0.6264 WFBETCEL 15.0 0.3856 215 0.8743 15.0 0.3905
WGRCOR 16.5 0.6626 23.0 0.9429 16.0 0.6746 SHRBRSAT 16.0 04299 150 0.5527 16.0 0.4308
WRBRNSAT 16.5 0.6626 205 0.8729 17.0 0.6814 ANRBRSAT 170 04765 200 0.7701 17.0 04725
HALPRM 185 0.6868 11.0 03725 19.0 0.7063 HALPRM 18.0 0.6235 3.0 0.0036 18.0 0.6307
ANHBCEXP 185 0.6868 16.0 0.6163 180 0.7021 SHRGSSAT 19.0 0.6482 190 0.7525 19.0 0.6587
ANRGSSAT 200 0.7113 18.0 0.6718 200 0.7120 WRBRNSAT 200 0.6849 18.0 0.7343 200 0.6981
WRGSSAT 21.0 0.8557 150 0.5887 21.0 0.8508 SALPRES 210 0.7554 13.0 0.3310 210 0.7662
ANRBRSAT 220 0.9197 22,0 0.8930 230 0.9122 SHPRMCLY 220 0.9265 230 0.9348 22.0 0.9305
SHRBRSAT 23.0 0.9554 19.0 0.7265 240 0.9426 WGRMICH 23.0 0.9437 240 0.9709 23.0 0.9429
ANHBCVGP 240 1.0000 24.0 1.0000 220 0.9010 ANRGSSAT 240 0.9763 14.0 05316 240 0.9791
DC 1.000 0.917 0.987 D¢ 1.000 0.812 0.988

2 Twenty-four (24) variables included in analysis; see Footote b to Table 4.

b Variable rankings obtained with a maximum of five classes of x values (i.e., nX = 5) and analytic determination of p-values,

€ Variable rankings obtained with a maximum of ten classes of x values (i.e., nX = 10) and analytic determination of p-values.

d Variable rankings obtained with a maximum of five classes of x values (i.e., nX = 5) and Monte Carlo détermination of p-values.

¢ Top-down correlation with variable rankings obtained with a maximum of five classes of x values (i.e., X = 5) and analytic determination of
p-values. :
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Table9. Comparison of Variable Rankings for y= EO:WAS_PRES Obtained with Correlation
Coefticients (CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values

Variable? ccb coMcs Variable RCC RCCMC

Name Rank p-Val Rank p-Val ’ Name Rank p-val Rank p-Val
WMICDFLG 1.0 0.0000 20 0.0000 . WMICDFLG 1.0 0.0000 20 0.0000
HALPOR 2.0 0.0000 20 0.0000 HALPOR 2.0 0.0000 2.0 0.0000
WGRCOR 3.0 0.0000 20 0.0000 WGRCOR 30 0.0000 20 0.0000
ANHPRM 40 0.0241 4.0 0.0236 ANHPRM 4.0 0.0268 4.0 0.0250
SALPRES 50 0.0855 50 0.0815 SALPRES 5.0 0.0664 50 0.0634
SHRGSSAT 6.0 0.1553 6.0 0.1551 SHRGSSAT 6.0 0.2322 6.0 0.2335
WASTWICK 7.0 0.2163 7.0 0.2200 WFBETCEL 7.0 0.2408 10 0.2469
SHRBRSAT 8.0 0.2226 8.0 02222 WASTWICK 8.0 0.2726 8.0 0.2758
ANHBCEXP 90 0.2369 90 0.2379 SHRBRSAT 9.0 0.3068 9.0 0.3056
WFBETCEL 10.0 0.2770 10.0 0.2832 SHPRMASP 100 0.4201 100 0.4291
SHPRMCLY 11.0 0.5213 11.0 0.5264 ANHBCEXP 11.0 0.4383 1.0 0.4352
HALPRM 12.0 0.5767 12.0 0.5761 WRBRNSAT 120 0.5519 12.0 0.5581
SHPRMASP 13.0 0.6041 130 06192 HALPRM 13.0 0.6412 13.0 0.6419
WRBRNSAT 14.0 0.6444 14.0 0.6465 SHPRMCLY 14.0 0.6812 14.0 0.6848
SHBCEXP 15.0 0.6831 15.0 0.6375 ANHBCVGP 15.0 0.7686 15.0 0.7654
ANRBRSAT 16.0 0.7237 16.0 0.7236 SHBCEXP 16.0 0.8486 16.0 0.8501
WGRMICI 17.0 0.7753 17.0 0.7772 SHPRMDRZ 17.0 0.8599 170 0.8596
SHPRMCON 18.0 0.7878 180 0.7878 SHPRMCON 18.0 0.8618 120 0.8644
SHPRMDRZ 19.0 0.7925 19.0 0.7990 SHPRMHAL 19.0 0.8710 15.0 0.8785
ANHBCVGP 200 0.8084 200 0.8016 WGRMICT 200 0.8940 200 0.8934
WRGSSAT 21.0 0.8251 21.0 0.8279 WGRMICH 21.0 0.9576 21.0 0.9559
ANRGSSAT 22.0 0.8834 220 0.8879 WRGSSAT 220 0.9848 220 0.9863
WGRMICH 23.0 0.9291 23.0 0.9247 ANRBRSAT 23.0 0.9964 230 0.9973
SHPRMHAL 24.0 0.9474 240 0.9459 ANRGSSAT 24.0 0.9991 24.0 0.99%0
D¢ 0.971 e 0.971

2 Twenty-four (24) variables included in analysis; ses Foomote b to Table 4.

b variable rankings obtained with analytic determination of p-values.

¢ Variable rankings obtained with Monte Carlo determination of p-values. .

d Top-down correlation between variable rankings obtained with analytic and Monte Carlo determination of p-values.
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Table 10. Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithms2 for y = EO:WAS_PRES, the Variables in Table 2P and a
Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)¢

Variable CMN: Log,1 x5 CMNMC: Log,1x5
Name Rank p-Val Rank p-Val
WMICDFLG 10 > 0.0000 20 0.0000
HALPOR 2.0 0.0000 20 0.0000
WGRCOR 3.0 0.0000 2.0 0.0000
ANHPRM 4.0 0.0085 4.0 - 0.0112
Variable CV: Log,1 x5 CVMC: Log,1x5
Name Rank p-Val - Rank p-Val
WMICDFLG 1.0 0.0000 10 0.0000
ANHPRM 20 0.0151 20 0.0100
WGRCOR 3.0 0.1051 30 0.0672
HALPRM 4.0 0.1116 4.0 0.0786
2 Log yi instead of yj, in Eg. (42) for common means (CMNs) and 1g1 as defined in Eq. (51) rather than as defined in Eq. (50) for common

variarices (CVs); for each test; table contains variables with p-values less than 0.1.
b See Foomote b, Table 4. ‘
€ See Foomote ¢, Table 4.
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Table 11. Comparison of Variable Rankings with Different Analysis Procedures? for y = EO:BF?AALIC,
the Variables in Table 2P and a Maximum of Five Classes of x Values (i.e., nX = 5)°

Variable
Named

ANHPRM
WMICDFLG
WASTWICK
WGRCOR
ANHBCEXP
WFBETCEL
WRBRNSAT
HALPOR
HALPRM
SHPRMDRZ
SHPRMCON
SHRGSSAT
WGRMICI
SHRBRSAT

Variable
Name

ANHPRM
WMICDFLG
WASTWICK
WGRCOR
ANHBCEXP
WFBETCEL
WRBRNSAT
HALPOR
HALPRM
SHPRMDRZ
SHPRMCON
SHRGSSAT
WGRMICI
SHRBRSAT

cC

Rank p-Val
1.0 0.0000
2.0 0.0000
3.0 0.0045
4.0 0.0048
50 0.0095
6.0 0.0555
7.0 0.0615
- 8.0 0.0934
11.0 0.2593
120 0.2910
14.0 0.3369
18.0 0.4767
21.0 0.5809
230  0.7329

CMD: 2x5

Rank p-Val
2.0 0.0000
1.0 0.0000
15.5 0.5467
5.0 0.0231
21.0 0.8088
15.5 0.5467
13.0 0.3883
4.0 0.0155
3.0 0.0050
6.0 0.0306
10.0 0.2674
8.0 0.0504
18.0 0.6868
7.0 0.0362

a.b.c.d  gee Foototes a, b, ¢, d to Table 4.

RCC
Rank p-Val
20 - 0.0000
1.0 “ 0.0000
6.0 0.0405
4.0 0.0057
15.0 0.6490
8.0 0.2131
11.0 0.4046
5.0 0.0087
3.0 0.0014
22.0 0.8392
12.0 0.4170
14.0 0.5371
17.0 0.6663
10.0 0.2767
CV: 1x5
Rank p-Val
1.0 0.0078
13.0 0.4046
8.0 0.2961
5.0 0.2125
7.0 0.2321
6.0 0.2194
12.0 0.3851
20.0 0.5416
11.0 0.3596
24.0 0.7101
2.0 0.0426
17.0 0.5177
22.0 0.6096
18.0 0.5347
60

CMN: 1x5
Rank p-Val
1.0 0.0000
2.0 0.0000
6.0 0.1062
4.0 0.0636
13.0 0.4467
5.0 0.0732
11.0 0.3483
19.0 0.5960
7.0 0.1105
21.0 0.6935
30 0.0057
14.0 0.5044
20.0 0.6466
22.0 0.6946
CIQ: 2x5
Rank p-Val
1.0 0.0000
2.0 0.0000
10.0 0.3883
13.5 0.6868
22.5 0.9554
8.0 0.3084
7.0 0.2942
6.0 0.2805
24.0 0.9702
22.5 0.9554
17.0 0.8325
3.0 0.0628
4.0 0.0780
5.0 0.1395

CL: 1x5
Rank p-Val

2.0 0.0000
1.0 0.0000
16.0 0.4411
4.0 0.0427
19.0 0.7146
10.0 0.2299
12.0 0.2889
7.0 0.1431
3.0 0.0019
5.0 0.1060
11.0 0.2394
9.0 0.2139
210 0.8966
6.0 0.1174
SI: 5x5
Rank p-Val
2.0 0.0000
1.0 0.0000
15.0 0.5246
11.0 0.3644
21.0 0.7776
13.0 0.4186
14.0 0.4186
4.0 0.0698
3.0 0.0517
7.0 0.2202
8.0 0.2436
6.0 0.2056
9.0 0.2863

5.0 0.1917




Table 12. Comparison of Variable Rankings with Correlation Coefficients, Standardized Regression
Coefficients and Partial Correlation Coefficients with Raw and Rank Transformed Data for
y = EO:BRAALIC

Variable? cC ’ SRC PCC
Name p-Vval Rank-  Value Rank Value Rank Value
ANHPRM 0.0000 1.0 0.5655 1.0 0.5568 1.0 0.6317
WMICDFLG 0.0000 2.0 -3210 20 -.2931 2.0 -.3878
WASTWICK 0.0045 3.0 -.1639 4.0 -.1451 40 -.2075
WGRCOR 0.0048 40  -1628 3.0 -.1669 3.0 -.2370
ANHBCEXP 0.0095 5.0 -.1497 5.0 -.1155 50 —.1663
WFBETCEL 0.0555 6.0 —-.1105 8.0 ~-.0757 8.0 -.1098
WRBRNSAT 0.0615 7.0 -.1080 9.0 -.0733 9.0 -.1065
HALPOR 0.0934 8.0  —.0969 6.0 -.0993 6.0 ~.1435
Variable® RCC SRRC PRCC
Name p-Val Rank Value Rank Value Rank Value
WMICDFLG 0.0000 1.0 —-.6521 1.0 ~.6533 1.0 —-.8787
ANHPRM 0.0000 20 0.5804 2.0 0.5937 2.0 0.8619
HALPRM 0.0014 3.0 0.1850 5.0 0.1443 5.0 0.3817
WGRCOR 0.0057 4.0 —-.1598 4.0 -.1509 4.0 -.3963
HALPOR 0.0087 = 5.0 -.1518: 3.0 —1539 3.0 -.4031
WASTWICK 0.0405 6.0 ~.1185 7.0 -.0948 7.0 -.2617

2,b See Footnotes a, b to Table 5.
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Table 13. Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedurés for
y = EO:BRAALIC, Variables included in Table 112 and a Maximum of Five Classes of x values
(i.e., nX = 5)b

RCC 0.729

CMN 0841 0721

CL 0589 0.897 0.626

CMD 0573 0913 0606 0971

cv 0.623 0301 0820 0.199 0.157

CIQ 0581 0531 0584 0526 0556 0285

SI 0455 0838 0531 0908 0952 0.072 0.651

SRC . 0980 0728 0.839% 0618 0612 0630 0588 0476

PCC 0980 0728 0.839 0.618 0.6i2 0630 0588 0476 1.000

SRRC. 0711 0912 0679 0808 ~ 0.877 0242 0618 0817 0751 0.751
PRCC 0.711 0912 0679 0.808 0877 0242 0618 0.817 0751 0.751 1.000

CcC RCC CMN CL CMD CV CIQ SI SRC  PCC SRRC

2 Same as Foomote a to Table 7 except for use of 14 variables from Table 11.-
5 See Table 10.10, Ref. 58, for top-down correlation matrix p-values.
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Table 14.

Variable®
Name

ANHPRM
WMICDFLG
SHPRMCON
WGRCOR
WFBETCEL
WASTWICK
HALPRM
SHBCEXP

ANRGSSAT
SHPRMHAL

D¢

Variable
Name

WMICDFLG
ANHPRM
HALPRM
HALPOR
WGRCOR
SHPRMDRZ
SHRBRSAT
SHRGSSAT

SHPRMHAL
WRGSSAT

mc

Variable
Name

ANHPRM
WMICDFLG
SHRGSSAT
WGRMICI
SHRBRSAT
HALPOR
WRBRNSAT
WFBETCEL

ANHBCEXP
HALPRM

D¢

Comparison of Variable Rankings for y = £E0:BRAALIC Obtained with a Maximum of Five
Classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of p-values and (i) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of p-values (see Table 10.11, Ref. 58, for omitted resuits)

CMN: 1x5°
Rank p-val
1.0 0.0000
20 0.0000
3.0 0.0057
4.0 0.0636
50 00732
6.0 0.1062
7.0 0.1105
8.0 0.1140
23.0 0.7033
240 0.7056
1.000
CMD: 2x35
Rank p-val
1.0 0.0000
20 0.0000
3.0 0.0050
4.0 0.0155
50 0.0231
6.0 0.0306
70 0.0362
8.0 0.0504
23.5 0.9702
235 0.9702
1.000
CIQ: 2x35
Rank p-Val
1.0 0.0000
20 0.0000
3.0 0.0628
4.0 0.0780
50 0.1395
6.0 0.2805
7.0 0.2942
8.0 0.3084
225 0.9554
240 0.9702
1.000

2.b.¢.d. € gee Foomotes a, b, ¢, d. e to Table 8.

CMN: 1x10°
Rank  p-Val
1.0 0.0000
20 0.0000
40 00655
50 00723
100 02163
60 0.1085
120 04030
30 00120
230 09300
210 07932
0.891
CMD: 2x 10
Rank p-Vai
1.0 0.0000
20 0.0000
30 00089
80  0.159
70 01271
40 00215
50 00282
90 - 0.1849
205 08514
100 04311
0.919
CIQ: 2x 10
Rank  p-Val
1.0 0.0000
20 0.0000
4.0 0.0856
6.0 0.1719
13.0 0.5341
30 0.0235
8.0 0.2803
155 0.6441
23.5 0.9892
100 0.4071
0.869

CMNMC: 1x5¢ .

Rank p-Val
1.5 0.0000
15 0.0000
3.0 0.0036
4.0 0.0506
5.0 0.0572
6.0 0.0856
7.0 0.0961
8.0 0.0995

240 0.7447

23.0 0.7421

0.987

CMDMC: 2x5

Rank p-Val
15 0.0000
1.5 0.0000
3.0 0.0040
4.0 0.0169
5.0 0.0221
6.0 0.0275
7.0 0.0347
8.0 0.0486

4.0 0.9672

23.0 0.9658
0.987

CIQMC: 2x5

Rank p-Val

15 0.0000

1.5 0.0000

3.0 0.0628

4.0 0.0757

5.0 0.1382

6.0 0.2710

70 0.2917

5.0 0.3089

220 0.9472

24.0 0.9751

0.987
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Variable
Name

WMICDFLG
ANHPRM
HALPRM
WGRCOR
SHPRMDRZ
SHRBRSAT
HALPOR
SHBCEXP

SHPRMHAL
SHPRMCLY

e

Variable
Name

ANHPRM
SHPRMCON
SHBCEXP
ANRBRSAT
WGRCOR
WFBETCEL

ANHBCEXP -

WASTWICK

ANRGSSAT
SHPRMDRZ

e

Variable
Name

WMICDFLG
ANHPRM
HALPRM
HALPOR
SHRBRSAT
SHRGSSAT
SHPRMDRZ
SHPRMCON

SALPRES
ANRGSSAT

e

CL: 1 x5
Rank p-Val
1.0 0.0000
20 0.0000
3.0 0.0019
4.0 0.0427
5.0 0.1060
6.0 0.1174
7.0 0.1431
8.0 0.1524
23.0 0.9367
24.0 0.9385
1.000
CV: 1 x5
Rank p-Val
1.0 0.0078
2.0 0.0426
3.0 0.1463
4.0 0.1994
5.0 0.2125
6.0 0.21%4
7.0 0.2321
8.0 0.2961
23.0 0.6631
24.0 0.7101
1.000
Sk 5x5
Rank p-vat
1.0 0.0000
2.0 0.0000
3.0 0.0517
4.0 0.0698
5.0 0.1917
6.0 0.2056
10 0.2202
8.0 0.2436
230 0.9326
24.0 0.9537
1.000

CL:1x10
Rank  p-Val
10 0.0000
20 0.0000
3.0 0.0052
80 02368
4.0 0.0206
6.0 0.1781
13.0 05392
50 0.0441
210 0.8705
19.0 0.7203
0.941
CV: i1x10
Rank p-Val
1.0 0.0010
7.0 0.2704
20 00329
50 0.1188
30 0.0995
13.0 0.4615
4.0 0.1165
6.0 0.2503
2310 0.6481
19.0 0.5875
0.870
SI: 10x 10
Rank p-val
1.0 0.0000
20 0.0000
70 0.2313
6.0 0.2028
8.0 0.2786
14.0 0.5738
90  0.2955
30 00814
18.0 0.7870
240 09846
0.748

CLMC:1 x5
Rank p-Val
15 0.0000
15 0.0000
3.0 0.0013
4.0 0.0438
5.0 0.1095
6.0 0.1166
70 0.1427
8.0 0.1532
240 0.9392
230 0.9387
0.987
CVMC: 1 x5
Rank p-Val
10 0.0000
20 0.0058 °
30 0.0774
4.0 0.1278
5.0 0.1424
6.0 Q.1455
7.0 0.1697
80 02450
23.0 09119
240 . 09791
0.995
SIMC: 5x5
Rank p-va
1.5 0.0000
1.5 0.0000
30 0.0514
4.0 0.0706
5.0 0.1898
6.0 0.2058
7.0 0.2221
8.0 0.2566
230 0.9354
24.0 0.9561
0.988




Table 15. Comparison of Variable Rankings for y= E0:BRAALIC Obtained with Correlation
Coefficients (CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values (see Table 10.12, Ref. 58, for omitted resuits)

Variable? cch CcCMCt Variable RCC RCCMC

Name Rank p-Val Rank p-Val Name Rank p-Val Rank p-val
ANHPRM 10 0.0000 L5 00000 WMICDFLG 10 0.0000 L5 0.0000
WMICDFLG 2.0 0.0000 LS 0.0000 " ANHPRM 20 0.0000 L5 0.0000
WASTWICK 3.0 0.0045 3.0 0.0022 HALPRM 3.0 0.0014 3.0 0.0009
WGRCOR 40 0.0048 40 0.0029 WGRCOR 4.0 0.0057 4.0 0.0044
ANHBCEXP 5.0 0.0095 5.0 0.0115 HALPOR 5.0 0.0087 5.0 0.0084
WFBETCEL 6.0 0.0555 6.0 0.0528 WASTWICK 6.0 0.0405 6.0 0.0401
WRBRNSAT 7.0 0.0615 70 0.0585 SALPRES 7.0 0.1107 7.0 0.1105
HALPOR 8.0 0.0934 8.0 0.0947 WFBETCEL 8.0 0.2131 80 0.2107
SHRBRSAT 230 0.7329 23.0 0.7371 WGRMICH 23.0 0.8513 23.0 0.8479
SHPRMHAL 24.0 0.7958 24.0 0.8000 SHPRMHAL 24.0 0.8619 24.0 0.8632
Dcé : 0.987 DC 0.988

a.b,¢,d  ges Footnotes a, b, ¢, d in Table 9.

Table 16. Exceedance Probabilities (i.e., p-values) for Common Mean and Common Variance Tests
Calculated with Use of Logarithms? for y= E0:BRAALIC, the variables in Table 2,° and a
Maximum of Five Classes of Values for Each Variable (i.e., nX = 5)°

Variable CMN: Log,1x5 CMNMC: Log,Ix5
Name Rank p-Val Rank p-Vval
WMICDFLG 1.0 0.0000 15 0.0000
ANHPRM 2.0 0.0000 1.5 0.0000
HALPRM 3.0 0.0022 3.0 0.0022
WGRCOR 4.0 0.0284 4.0 0.0286
SHPRMDRZ 50 0.0967 50 0.1029
Variable CV: Log,1x5 CVMC: Log,1x5
Name Rank p-Val Rank p-Val
ANHPRM 1.0 0.0000 1.0 0.0000

WMICDFLG 2.0 0.0002 20 0.0064
SHPRMCON 3.0 0.0019 3.0 0.0403

SHBCEXP 4.0 0.0130 40 0.1104
WASTWICK 5.0 0.0144 50 0.1140
ANRBRSAT 6.0 0.0189 6.0 0.1341

ANHBCEXP 7.0 0.0290 7.0 0.1699
WRBRNSAT 8.0 0.0304 8.0 0.1711
WFBETCEL 9.0 0.0754 9.0 0.2968
WGRMICH 10.0 0.0930 10.0 0.3384

a,b,c See Footnotes a, b, ¢ to Table 10.
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Table 17. Comparison of Variable Rankings with Different Analysis Procedures® for
y = E2:WAS_SATB, the Variables in Table 2P and a Maximum of Five Classes of x Values

(i.e., nX =5)¢
Variabled CC RCC CMN: 1x5 CL: 1x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000 10 0.0000 1.0 0.0000
ANHPRM 2.0 0.0000 3.0 0.0001 2.0 0.0000 3.0 0.0001
HALPOR 3.0 0.0006 5.0 0.0269 4.0 0.0124 12.0 0.3437
WGRCOR 4.0 0.0017 6.0 0.1446 6.0 0.0296 11.0 0.3179
WRGSSAT - 50 0.0081 2.0 0.0000 5.0 0.0143 2.0 0.0000
"WMICDFLG 6.0 0.0214 7.0 0.1745 7.0 0.0317 10.0 0.2824
WGRMICH 7.0 0.0838 8.0 0.1842 3.0 0.0021 4.0 0.0059

- SHPRMHAL 3.0 0.0996 40 0.0225 10.0 0.1586 3.0 0.1528
WRBRNSAT 11.0 0.2350 13.0 0.4950 8.0 0.0801 6.0 0.0270
ANRBRSAT 15.0 0.6402 20.0 0.6645 1.0 0.7070 13.0 0.3977
SHPRMCLY 21.0 0.9020 16.0 0.6137 11.0 0.1743 7.0 0.0972
SHPRMCON 23.0 0.9478 19.0 0.6549 9.0 0.1149 5.0 0.0202

Variable CMD: 2x5 CV: 1x5 CIQ: 2x5 SI: 5x5

Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
BHPRM 1.0 0.0000 1.0 0.0000 3.0 0.0054 2.0 0.0000
ANHPRM 3.0 0.0003 2.0 0.0000 4.0 0.0628 3.0 0.0002
HALPOR 235 0.8557 3.0 0.0011 6.0 0.1324 1.0 0.1328
WGRCOR 13.0 0.5037 5.0 0.0067 2.0 0.0019 6.0 0.1010
WRGSSAT 2.0 0.0000 9.0 0.1750 1.0 0.0000 1.0 0.0000
WMICDFLG 8.0 0.2187 6.0 0.0114 15.0 0.5134 8.0 0.1542
WGRMICH 4.0 0.0130 4.0 0.0050 7.0 0.2311 5.0 0.0564

SHPRMHAL 6.0 0.0218 7.0 0.1122 11.0 0.4628 100 02278
WRBRNSAT 12.0 0.3883 8.0 0.1749 25.0 0.9825 9.0 0.2128
ANRBRSAT 17.0 0.6868 25.0 0.9798 8.0 0.2674 4.0 0.0495
SHPRMCLY 7.0 0.1627 21.0 0.7874 16.0 0.5467 16.0 0.5739
SHPRMCON 5.0 0.0206 220 0.8224 10.0 0.3546 12.0 0.4075

%.¢,d  See Footnotes a, b, ¢ to Table 4

b Same as Footnote b to Table 4 except that BHPRM is used in the calculation of E2 results (ie., E2:WAS_SATB and
E2:WAS_PRES) and so was included as an independent variable, which resulted in 25 variables (i.e., xs) for analysis with each
procedure.
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Table 18. Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y= E2:WAS_SATB, Variables included in Table 172 and a Maximum of Five Classes of x -

values (i.e., nX = 5)P

RCC 0.851

CMN 0919 0.790

CL 0.643 0815 0.781

CMD 0.640 0.840 0763 0.982 ’

cv 0947. 0.742 0950 0.609 0.602 ,
CIQ 0490 0.631 0422 0494 0503 0.267
+ S8I 0.551 . 0.727 0561 0702 0706 0.363
SRC 0988 0.844 0902 0.646 0.647 0926
PCC . 00988 0.844 0902 0646 0.647 0.926
SRRC 0.876 0989 0812 0806 0.830 0.762
PRCC - 0.876 0989 0812 0806 0.830 0.762

CcC RCC CMN CL CMD CV

2 Same as Foonote a to Table 7 except for use of 12 variables from Table 17.
Y See Table 10.16, Ref. 58, for top-down correlation matrix p-values.
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0.840
0.530
0.530
0.655
0.655

CIQ

0.557
0.557
0.732
0.732

SI

1.000

0.859  0.859
0.859 0.859
SRC PCC

1.000

SRRC
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Comparison of Variable Rankings for y = E2:WAS_SATB Obtained with a Maximum of Five
Classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of p-values and (i) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of p-values (see Table 10.17, Ref. 58, for omitted results)

Table 19.
Variable® CMN: 1 x5°

Name Rank p-Val
BHPRM 1.0 0.0000
ANHPRM 20 0.0000
WGRMICH 30 00021
HALPOR 40 00124
WRGSSAT 50 00143
WGRCOR 60  0.029
WMICDFLG. 70 00317
WRBRNSAT 80 00801
ANHBCVGP 240 03920
ANRGSSAT 250 08929
TDCC 1.000

Variable CMD: 2x5

Name Rank p-Val
BHPRM 10 0.0000
WRGSSAT 20 0.0000
ANHPRM 30 0.0003
WGRMICH 40 00130
SHPRMCON 50 00206
SHPRMHAL 60 00218
SHPRMCLY 70 0.1627
WMICDFLG 80 02187
ANHBCEXP 235 08557
SHBCEXP 250  0.9825
TDC 1.000

Variable CIQ: 2x5

Name Rank p-val
WRGSSAT 1.0 0.0000 .
WGRCOR 20 0.0019
BHPRM 30 00054
ANHPRM 40 00628
SHRBRSAT 50 01257
HALPOR 60  0.1324
WGRMICH 70 02311
ANRBRSAT 80 02674
SHPRMDRZ 240 09197
WRBRNSAT 250 09825
TDC 1.000
a

CMN: 1 x10°
Rank  p-Val
1.0 0.0000
20 0.0000
30 0.0053
6.0 . 0.0546
80 01113
50 00343
40 00317
90  0.1416
230  0.8920
200 07163
0.962
CMD: 2x 10
Rank  p-Val
20 0.0000
1.0 0.0000
3.0 0.0035
60  0.0856
70 0.1538
50  0.0669
150  0.5075
90 02187
250 09558
160 06163
0.835
CI1Q: 2x10
Rank p-Val
1.0 0.0000
20 00021
30 0.0063
60 02622
7.5 02803
40  0.1481
140 04814
150  0.5075
110 03838
250 09761
0.872

b.c.d. e gee Footnotes b, ¢, d, e to Table 8.

CMNMC: 1x 58
Rank  p-Val
15 0.0000
15 0.0000
30 00022
40 0016
50  00H46
60 00294
70 00320
80 0.0791
250 08930
240 08913
0.988
CMDMC: 2x5
Rank  p-Val
15 00000
15 0.0000
30 0.0001
40 00135
50 00207
6.0 0.0227
70 0.1639
80 02133
230 0853
250 09827
0.988
CIQMC: 2x5
Rank p-Val
L0 0.0000
20 00012
30 0.0055
40 00670
50 01209
60 01317
70 02359
80 02613
240 09152
250 09777
0.999
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Variable
Name

BHPRM
WRGSSAT
ANHPRM
WGRMICH
SHPRMCON
WRBRNSAT
SHPRMCLY
SHPRMHAL

ANHBCVGP
SHRGSSAT

e

Variable
Name

BHPRM
ANHPRM
HALPOR
WGRMICH
WGRCOR
WMICDFLG
SHPRMHAL
WRBRNSAT

SHPRMDRZ
ANRBRSAT

e

Variable
Name

WRGSSAT
BHPRM
ANHPRM
ANRBRSAT
WGRMICH
WGRCOR
HALPOR
WMICDFLG

SHPRMDRZ
SHBCEXP

D¢

Twenty-five (25) variables included in analysis; see Footnote b to Table 17.

CL: 1x5
Rank  p-Val
1.0 0.0000
20 0.0000
30 0.0001
40 0.0059
5.0 0.0202
6.0 0.0270
70 0.0972
8.0 0.1528
240 0.9133
250 0.9424
1.000
CV: 1x5
Rank p-Val
1.0 0.0000
2.0 0.0000
3.0 0.0011
4.0 0.0050
5.0 0.0067
6.0 00114
7.0 0.1122
8.0 0.1749
240 0.8702
250 0.9798
1.000
SI: 5x5
Rank p-val
1.0 0.0000
20 0.0000
30 0.0002
40 0.0495
5.0 0.0564
6.0 0.1010
7.0 0.1328
8.0 0.1542
24.0 0.9489
250 0.9537
1.000

CL: 1x10
Rank p-Val
1.0 0.0000
20 0.0000
3.0 0.0008
50 0.0289
6.0 0.0963
4.0 0.0132
11.0 0.3016
8.0 0.1902
240 0.9133
7.0 0.1763
0.930
.CV: 1x10
Rank p-Val
1.0 0.0000
20 0.0000
5.0 0.0059
10 0.0043
4.0 0.0058
6.0 0.0114
70 0.0765
17.0 0.6414
20.0 0.7694
250 0.9997
0.909
SI: 10x10
Rank  p-Val
1.0 0.0000
20 0.0000
3.0 0.0058
19.0 0.8034 -
12.0 0.4276
95 0.3310
9.5 0.3310
7.0 0.2502
25.0 0.9612
17.0 0.7701
0.746

CLMC: 1x5
Rank  p-Val
15 0.0000
15 0.0000
30 0.0001
40 00056
50 00165
60 00240
70 00932
80 01521
220 09125
250 08418
0.983
CVMC: 1x5
Rank  p-Val
15 00000
15 0.0000
30 0.0022
40 00082
50  0.0100
60 00140
70 01208
80  0.1806
240 08727
250 09794
0.988
SIMC: 5x5
Rank  p-Val
20 0.0000
20 0.0000
20 00000
40 00451
50 00568
60 ' 00963
70 01
30 . 0.1508
240 09458
250 09574
0972




Table 20.

Variable?
Name

BHPRM
ANHPRM
HALPOR
WGRCOR
WRGSSAT
WMICDFLG
WGRMICH
SHPRMHAL

SHPRMDRZ
SHBCEXP

byslond

Comparison of Variable Rankings for y=E2:WAS_SATB Obtained with Correlation
Coefficients (CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values (see Table 10.18, Ref. 58, for omitted results)

ccd coMce Variable RCC RCCMC
Rank p-Val Rank pVal Name Rank p-val Rank p-val
1.0 0.0000 L5 0.0000 o BHPRM 1.0 0.0000 2 0.0000
2.0 0.0000 15 0.0000 WRGSSAT 2.0 0.0000 20 0.0000
30 0.0006 3.0 0.0004 ANHPRM 3.0 0.0001 2.0 0.0000
4.0 0.0017 4.0 0.0020 © SHPRMHAL 4.0 0.0225 4.0 0.0207
5.0 0.0081 5.0 0.0088 HALPOR 5.0 0.0269 50 0.0287
6.0 0.0214 6.0 0.0227 WGRCOR 6.0 0.1446 6.0 0.1480
7.0 0.0838 1.0 0.0844 WMICDFLG 7.0 0.1745 7.0 0.1750
8.0 0.0996 8.0 0.0998 WGRMICH 8.0 0.1842 8.0 0.1885
24.0 0.9823 240 0.9824 HALPRM 24.0 0.9544 24.0 0.9569
25.0 0.9943 25.0 0.9943 WASTWICK 25.0 0.9832 25.0 0.9834
0.988 ¢ 0972

a

Twenty-five (25) variables included in analysis; see Footnote b to Table 17.

b,¢,d  See Footnotes b, ¢, d to Table 9.
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Table 21. Comparison of Variable Rankings with Different Analysis Procedures2 for
y = E2:WAS_PRES, the Variables in Table 2P and a Maximum of Five Classes of Values for
each Variable (i.e., nX =5)°¢

Variabled CcC RCC CMN: 1 x5 CL: 1x5
Name Rank p-Val Rank p-Val Rank p-Val Rank p-Val
HALPRM 1.0 0.0000 10 0.0000 2.0 0.0000 2.0 0.0000
ANHPRM 2.0 0.0000 2.0 0.0000 3.0 0.0002 30 0.0000
HALPOR 3.0 0.0090 3.0 0.0184 5.0 0.0415 50 0.0940

SHPRMDRZ 6.0 0.1684 9.0 0.2417 13.0 0.4281 12.0 0.3131
ANHBCEXP 7.0 0.1786 8.0 0.2373 4.0 0.0405 4.0 0.0602
 BHPRM 100 0.3651 6.0 0.1704 10 0.0000 1.0 0.0000
SHRGSSAT 14.0 0.5958 12.0 0.3948 250 0.9511 23.0 0.7738
ANRBRSAT 19.0 0.7133 14.0 0.4378 7.0 0.1513 7.0 0.1304

WGRCOR 200 07676 17.0 0.6560 17.0 0.5428 9.0 0.2242
Variable CMD: 2x5 CV: 1x5 CIQ: 2x5 S 5x5
Name Rank p-Val Rank p-Val Rank p-Val Rank Value
HALPRM 2.0 0.0000 20 0.0014 11.0 0.4530 2.0 0.0002
ANHPRM 3.0 0.0007 24.0 0.9251 12.0 0.4628 40 0.0049
HALPOR 50 0.0700 7.0 0.1410 18.0 0.6151 11.0 0.3142

SHPRMDRZ 17.0 -  0.6868 4.0 0.0298 13.0 0.5037 17.0 0.6111
ANHBCEXP 4.0 0.0595 16.0 0.5178 195 0.6868 14.0 0.4414

BHPRM 1.0 0.0060 1.0 0.0000 1.0 0.0000 1.0 0.0000
SHRGSSAT 22.0 0.8325 14.0 0.3905 3.0 0.0289 5.0 0.0698
ANRBRSAT 6.0 0.0823 220 0.7194 4.0 0.0739 10.0 0.2518
WGRCOR 145 0.5249 3.0 0.0296 2.0 0.0130 3.0 0.0002

a.b.¢,d  gee Foomotes a, b, ¢, d to Table 17.
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Table 22. Top Down Correlation Matrix for Variable Rankings with Different Analysis Procedures for
y = E22WAS_PRES, Variables included in Table 232 and a Maximum of Five Classes of x
values (i.e., nX = 5)P

RCC 0.967
CMN 0398 0.577

CL 0378  0.567 0.997
CMD 0378 0567 0997  1.000
cv 0.097 0230 0.698 0706 0.706
CiQ -427 =248 0429 0462 0462 0.715
SI 0.144 0342 0.798 0.826 0826 0.850 0.816

SRC 0990 0975 0423 0408 0408 0.072 -.438 0.149
PCC 0990 0975 0423 0408 0408 0.072 -438 0.149 1.000
SRRC 0967 1.000 0577 0567 0567 0230 -248 0342 0975 0.975

~PRCC 0967 1.000 0577 0567 0567  0.230 -248 0342 0975 0975 1.000

CcC RCC CMN CL CMD CV CIQ SI SRC PCC SRRC

2 Same as Footnote a to Table 7 except for use of 9 variables from Table 21.

Y See Table 10.22, Ref. 58, for top-down correlation matrix p-values.
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Table 23.

Comparison of Variable Rankings for y = E2:WAS_PRES Obtained with a Maximum of Five
classes of x Values (i.e., nX = 5) and Analytic Determination of p-values with Variable
Rankings Obtained with (i) a Maximum of Ten Classes of x values (i.e., nX = 10) and
Analytic Determination of p-values and (i) a Maximum of Five Classes of x values (i.e., nX =
5) and Monte Carlo Determination of p-values (see Table 10.23, Ref. 58, for omitted results)

Variable* CMN: 1x5°
Name Rank p-Val
BHPRM 1.0 0.0000
HALPRM 20 0.0000
ANHPRM 3.0 0.0002
ANHBCEXP 4.0 0.0405
HALPOR 50 0.0415
ANHBCVGP 6.0 0.1130
ANRBRSAT . 7.0 0.1513
SHBCEXP 8.0 0.1773
WFBETCEL 24.0 0.9015
SHRGSSAT 25.0 0.9511
™ 1.000
Variable CMD: 2x5
Name Rank p-Val
BHPRM 10 0.0000
HALPRM 2.0 0.0000
ANHPRM 3.0 0.0007
ANHBCEXP 40 0.0595
HALPOR 50 0.0700
ANRBRSAT 6.0 0.0823
WMICDFLG 7.0 02187
SHPRMASP 8.0 0.2942
WFBETCEL 245 0.9197
WRGSSAT 245 0.9197
DC 1.000
Variable CIQ: 2x5
Name Rank p-Val
BHPRM 1.0 0.0000
WGRCOR 2.0 0.0130
SHRGSSAT 3.0 0.0289
ANRBRSAT 4.0 0.0739
SHRBRSAT 50 0.2093
WASTWICK 6.0 0.2427
SHPRMASP 7.0 0.2805
WRBRNSAT 8.0 0.2042
SALPRES 24.0 0.8889
SHPRMCON 25.0 0.9702
e 1.000
a

CMN: 1x 10°
Rank p-Val
1.0 0.0000
20 0.0000
30 0.0000
90 0.2063
7.0 0.1914 .
4.0 0.1130
15.0 0.3538
10.0 0.2147
6.0 0.1751
240 0.7887
0.805
CMD: 2x 10
Rank p-Val
10 0.0000
2.0 0.0001
3.0 0.0012
8.0 0.2288
5.0 0.1596
14.5 0.4311
7.0 0.2187
9.0  0.2451
17.0 04814
220 0.6993
0.800
CIQ: 2% 10
Rank  p-Val
1.0 0.0000
5.0 0.0565
20 0.0163
4.0 0.0308
17.0 0.5075
9.0 0.2451
6.0 0.1719
13.0 0.3838
205 06993
25.0 0.9865
0.754

b.c.d.¢  see Footnotes b, c, d, ¢ to Table 8.

CMNMC: 1x5% .

Rank p-Val
15 0.0000
15 0.0000
30 0.0002
40 00419
50 0.0438
6.0 0.1072
70 01513
8.0 0.1733°

240 08972
250 09555
0.988
CMDMC: 2x35
Rank p-Val
15 0.0000
15 0.0000
3.0 0.0005
40 0.0583
5.0 0.0718
60  0.0827
7.0 0.2133
80 02932
24.0 0.9080
25.0 0.9091
0.987
CIQMC: 2x35
Rank p-Val
1.0 0.0000
20 00132
30 o002m
4.0 0.0704
50 0.2055
6.0 0.2431
7.0 02721
80 02973
240  0.8946
250 09764
0.999
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Variable
Name

BHPRM
HALPRM
ANHPRM
ANHBCEXP
HALPOR
ANHBCVGP
ANRBRSAT
SHBCEXP

WFBETCEL
SHRBRSAT

DC

Variable
Name

BHPRM
HALPRM
WGRCOR
SHPRMDRZ
ANHBCVGP
WMICDFLG
HALPOR
SHRBRSAT

ANHPRM
SALPRES

D¢

Variable
Name

BHPRM
HALPRM
WGRCOR
ANHPRM
SHRGSSAT
SHBCEXP
WGRMICT
ANHBCVGP

SHPRMHAL
SHPRMCON

™C

Twenty-five (25) variables included in analysis; see Footnote b to Table 17.

CL: 1x5§
Rank p-Val
1.0 0.0000
20 0.0000
3.0 0.0000
4.0 0.0602
50 0.0940
6.0 0.109
7.0 0.1304
8.0 0.1919
24.0 0.8482
25.0 0.9199
1.000
CV: 1x5
Rank  p-Val
1.0 0.0000
20 0.0014
30 0.0296
40 00298
5.0 0.1173
6.0 0.1393
7.0 0.1410
80 0.1453
240 0.9251
250 0.9938
1.000
SI: 5x5
Rank p-Val
1.0 0.0000
20 0.0002
3.0 0.0002
40 0.0049
5.0 0.0698
6.0 0.1010
7.0 0.1985
8.0 0.2427
24.0 0.9064
250 0.9898
1.000

CL: 1x10
Rank  p-val
10 0.0000
30 0.0000
20 0.0000
100 0.2585
130 03454
60 01099 .
11.0 0.2851
120 0.2878
140 0.3540
20.0 0.6008
0828
CV: 1x10
Rank p-Val
1.0 0.0012
2.0 0.0201
3.0 0.0491
50 0.0799
6.0 0.1173
8.0 0.1393
10.0 0.1817
15.0 0.3933
220 0.7599
250 0.9958
0.824
Sk: 10x 10
Rank p-Val
1.0 0.0000
4.0 0.0082
2.0 0.0028
3.0 0.0032
2.0 0.8482
150 0.3495
11.0 0.1646
14.0 0.3398
240 0.8863
200 0.5316
0.735

CLMC: 1 x5
Rank  p-Val
20 0.0000
20 0.0000
20 0.0000
4.0 0.0625
5.0 0.0972
6.0 0.1031
10 0.1312
8.0 0.1887
240 0.8468
25.0 0.9230
0.972
CVMC: 1x35
Rank  p-Val
1.0 0.0000
2.0 0.0021
3.0 0.0278
40 (4.0280
5.0 0.1184
8.0 0.1383
7.0 0.1347
6.0 Q.1311
24.0 0.9175
250 | 0.9%40
0.995
SIMC: 5x5§
Rank  p-Val
15 0.0000
1.5 0.0000
30 0.0002
4.0 0.0033
5.0 0.0699
6.0 0.0989
70 0.2013
80 0.2380
4.0 0.9102
25.0 0.9933
0.988




v

Table 24. Comparison of Variable Rankings for y=E2:WAS_PRES Obtained with Correlation
Coefficients (CCs, RCCs) and Analytic Determination of p-values with Rankings Obtained
with Monte Carlo Determination of p-values (see Table 10.24, Ref. 58, for omitted results)

Variabled ccd coMc " Variable RCC RCCMC

Name Rak  p-Val  Rak  pVal Name Rak — p-Val  Rak  p-val
HALPRM 10 0.0000 15 00000 RALPRM 1o 0000 LS 00000
ANHPRM 20 0.0000 15 00000 . ANHP . 0.0000 L5 0.0000
HALPOR 30 0009 30 - 00098 HALPOR 30 00184 30 00194
ANHBCVGP 10 o1 10 o107 ANHBCVGP 40  0.10%9 40 01031
SHPRMASP 50 01606 50 01610 WGRMICT 30 01477 50 0l44d
SHPRMDRZ 60 01684 60 0.1670 BHPRM 60 01704 60 01746
ANHBCEXP - 70 01756 20 01795 SHPRMASP 70 0194 70 0.189%
WGRMICI 80 01905 80 01827 ANHBCEXP 80 02373 80 02404
SHPRMCON 240 0979 240 09798 SHBCEXP 260 0B 280 09367
ANRGSSAT - 250 09891 250 09897 SHPRMCON 250 09918 250 09918
o 0.988 TDC 0.988

a Twenty-five (25) variables included in analysis; see Footnote b to Table 17.

b" ¢, 8 . See Footnotes b, ¢, d to Table 9.
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