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ABSTRACT

Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomoge-
neous axial magnetic field in a cylindrical plasma-vacuum system has historically
been inadequately modelled. Previous works either sacrifice the cylindrical geom-
etry in favor of a simpler slab geometry [1], concentrate on the resonance region
(mode conversion){2], use a single mode to represent the entire field structure(3],
or examine only radial propagation[4]. This thesis performs both analytical and
computational studies to model the ICRF wave-plasma coupling and propagation
problem. Experimental analysis is also conducted to compare experimental results
with theoretical predictions.

Both theoretical as well as experimental analysis are undertaken as part of
the thesis. The theoretical studies simulate the propagation of ICRF waves in an
axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical
analysis are undertaken - an analytical study and a computational study. The
analytical study treats the inhomogeneous magnetic field by transforming the
(r,2z) coordinate into another coordinate system (p,£) that allows the solution
of the fields with much simpler boundaries (Plasma-vacuum boundary at p = 1,
conducting wall at p = k). The plasma fields are then Fourier transformed into
two coupled convolution-integral equations which are then differenced and solved
for both the perpendicular mode number a as well as the complete EM fields.

The computational study involves a multiple eigenmode computational analy-
sis of the fields that exist within the plasma-vacuum system. The inhomogeneous
axial field is treated by dividing the geometry into a series of transverse axial slices
and using a constant dielectric tensor in each individual slice. The slices are then
connected by longitudinal boundary conditions.

The experimental accomplishment of this thesis include the design, construc-
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tion, and operation of a linear magnetic mirror device, the PPEX machine. A full
set of heating systems has been installed on the PPEX device — 400kW of ICRF
power, 2kW of ECH startup power. Diagnostics to monitor different plasma
properties have been either designed and constructed from scratch or modified
from existing designs. Experiments to examine ICRF wave propagation were con-
ducted.

Thesis Supervisor: Jeffrey Freidberg
Title: Professor of Nuclear Engineering

Thesis Supervisor: Ted F. Yang
Title: Research Scientist, MIT Plasma Fusion Center
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Chapter 1

INTRODUCTION

1.1 History of Fusion

Unlimited energy has been the quest of man ever since the discovery of fire. As
he learned to make use of his energy resources over the centuries, his demand
for energy has increased exponentially. Over the course of the last century alone,
the world population has roughly quadrupled, while the world’s energy usage
has increased more than 100 times. While the world’s current energy reserves
are calculated to be able to provide man with about 500 years of use, it is not
inconceivable that at some rapidly approaching time in the future, man will be
unable to drive a car, heat his home, or cook his dinner with electricity based
upon fossil fuel. Many sources of future energies have been explored, but thus
far, fusion remains as one of the most promising, but most technically challenging
sources of energy.

Fusion energy was harnessed in the explosion of the first hydrogen bomb in
1949. However, by 1955, a more peaceful way of harnessing this energy was
already being attempted by scientists at laboratories world wide. Initially, the
plasma would be heated by increasing the confining magnetic field rapidly, thus
increasing the density of the plasma and subsequently the temperature. This was

called adiabatic compression, which was widely adopted in the pinch experiments
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at Los Alamos National Lab. However, as the experiments became more successful
and confinement of the plasma attained better temperatures and densities, the

need to heat the plasmas to higher temperatures arose.

1.2 Mirror Machine Principles

A magnetic mirror is a device used in magnetic confinement of plasmas. The
basic principle of the device is as follows: an ion traverses the length of the device
along a axial magnetic field that is changing along 2. As the ion approaches the
magnetic field maximum, the conservation of the magnetic moment u dictates
that the particle lose parallel energy and gain perpendicular energy. At a certain
turning point, the particle has lost all of its parallel energy and is then forced
to turn back into the device. A measure of the confinement ability of the mirror
machine is the mirror ration R,,, which is defined as the ratio of the maximum to
minimum magnetic fields. Particles lying inside this mirror loss cone will be lost
out of the machine, while those that lie outside the loss cone will be confined.

Figure 1-1 shows the basic layout of the magnetic coils that are required for
the generation of this type of magnetic field.

1.3 Thesis Motivation

The motivation for this thesis is the study of ICRF wave propagation along an
inhomogeneous axial magnetic field. Although many studies on ICRF have been
performed over the past 30 years, an adequate treatment of both the field inhomo-
geneity and the cylindrical geometry of the plasma-vacuum system has not been
done. This goal of this thesis is to study this problem. Two theoretical studies
and one experimental study is undertaken. The theoretical studies consists of
an analytical study and a subsequent multimode eigenmode computational study.

The experiment involves the design, construction, and operation of a small mirror
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Figure 1-1: Magnetic Coil layout of a mirror machine.
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machine.

1.4 Organization of Thesis

The thesis consists of six chapters. Chapter 2 will introduce the experiment, the
PPEX machine, which was designed and constructed as part of the thesis. Chapter
3 describes the analytical study and the new techniques that were employed to
obtain the solution of the wave propagation problem. Chapter 4 describes the
multimodal computational study to simulate ICRF wave propagation. Chapter
5 presents the experimental results that were obtained from the PPEX machine.

Chapter 6 contains the conclusions and recommendations drawn from this thesis.
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Chapter 2

The PPEX Tandem Mirror
Machine

The basic physics issues and engineering design criteria of a tandem mirror ma-
chine have been studied since 1981 [5, 6, 7]. This thesis studies ICRF wave
propagation in a linear mirror geometry both theoretically and experimentally.

The experiments conducted in the course of this thesis were performed on the
Plasma Propulsion Experiment (PPEX) at MIT. The PPEX machine is a tandem
mirror device that is currently under operations at MIT. Its purpose is to study
plasma heating and plasma-gas interactions. The machine was designed, con-
structed and made operational as part of this thesis. Figure 2-1 shows schemat-
ically some of the major systems that are employed on the PPEX machine for
purposes of data acquisition or heating. These systems will be discussed in detail
in the next few sections.

The PPEX machine was designed, constructed, and made operational due to
the combined effort of 2 full time staff and 2 grad students. The timetable for the
PPEX’s design, construction, and experimentation phases can be seen on Fig. 2-2

The PPEX design incorporates features such as a tandem magnetic field and
ICRF heating at the B-field minimu. These are also found on other larger tan-
dem mirror experiments such as MIT’s TARA [8, 9, 10), LLNL’s TMX-U (11, 12],
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Figure 2-1: PPEX Tandem Mirror Experiment Layout. The center cell solenoid
coils are not shown for clarity.
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Japan’s Gamma 10 [13] and RFC-XX[14], and University of Wisconsin’s Phae-
drus [15]. PPEX utilizes electron and ion cyclotron heating and makes use of
the plasma end losses particular to mirror devices for propulsion studies. The
machine was designed to operate at a center cell field of about 1-2kG and a maxi-
mum mirror field of approximately 12kG utilizing 8 convection cooled Center Cell
solenoid coils, 2 convection cooled Transition Boost solenoid coils and 4 liquid ni-
trogen cooled (\;acuum dewered) mirror solenoid coils. Two kilowatts of electron
cyclotron resonant heating (ECRH) power is used to initiate gas break down and
pre-ionization. (Helium, hydrogen, and argon gases have been used) Up to two
hundred kilowatts of Ion Cyclotron Resonant Frequency (ICRF) power can be
injected via two ICRF antennas during the plasma discharge cycle to provide the

main heating of the plasma.

The working gas for the PPEX machine is usually hydrogen. Other gases have
been used (Argon and Helium), but for the main heating experiments, hydrogen

was the preferential working gas.

This chapter discusses the PPEX machine. First, the four major sub-systems
making up the PPEX are described in Section 2.1. These four major sub-systems
are Vacur n, Magnets, Gas Feed, and Plasma Heating. Because this thesis studies
ICRF heating, the Heating system is especially important and is discussed in
greater detail in Section 2.2. The diagnostics package is examined in Section 2.3.
The data acquisition equipment assembled on the PPEX is discussed in Section
2.4. Next, the overall operations of the PPEX will be presented. Section 2.6 will
describe briefly the design and fabrication work that was directly performed as
part of this thesis. Finally, a brief summary of the work performed in the design,

construction and operation of the machine is provided.
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: \ » TIMETABLE \ } :
1984 | 1985 : 1986 . 1987 . 1988 : 1989 . 1990
\ Systems Design 2 \ 1
I * | Magnet Design ; : \
\ \ Magnet Fabrication 3 \
\ : Base Machine Fabrication \ :
: Vacuum Systém \ ;

X ) Ijstallation : \
: : North Anchor Antenna \ \

. . Design & Fabrication : .
. * Center Cell Antenna v
. : « Design & Fabrication .

I \ Diagnostic Design,

. : Fabrication/Acquisition
: : - : X Experimentation &
: . . X ) Data Acquisition

Figure 2-2: PPEX Design and Construction Timetable. The time from initial
design to computerized data acquisition is approximately 5 years.
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2.1 Major Machine Systems

2.1.1 Vacuum System

As seen in Fig. 2-3, the PPEX Vacuum System consists of two mechanical fore-
pumps and two turbo-molecular pumps. The mechanical pumps are sufficient to
pump the chamber assembly down to about 10~2 Torr, at wh .  ~int the turbo
pumps are used to bring the vacuum down to the 1078 range. There is also a
natural cryopump that is created when the mirror coils are nitrogen cooled. 10~8

vacuum is readily obtainable when this cryopump is activated.

2.1.2 Magnets

The PPEX m. gnet layout was designed as part of this thesis using the code EFFI
[16]. EFFI allowed the computation of field profiles and distributions for a given
coil configuration. A set of typical coil current settings is provided on Table 2.1.
Using th=se typical design settings, the EFFI code computes the axial B,q(z) field
for a typical PPEX configuration and the result is plotted on Figure 2-4. The
PPEX machine axiai vinss sectional view is given on Figure 2-5.

The magnets currently installed on the PPEX machine are simple solenoiods.
Original design plans call for the addition of ioffe and saddle coils, but currently
the PPEX uses only 3 sets of solenoids - center cell solenoids, transitional boost
solenoids and mirror sclencids. The center cell and transition solenoids are cooler
by natural convection, while the mirror solencids are cooled by either forced air
convection or liquid nitrogen. Since the resistance of copper decreases as its tem-
perature decreases, using liquid nitrogen provides an added advantage of reducing
the magnet power required in addition to its main function of cooling.

Although the ioffe and saddle coils were included in the original design, the
advantages of having such coils have not been conclusively proven. Results from

other mirror experiments (Phaedrus (17, 18, 19], TARA [20]) indicate that the
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presence of ICRF can provide a ponderomotive force that stabilizes the plasma
against interchange modes caused by bad curvature, thus making the necessity of

the minimum-B coils less critical than initially believed.

2.1.3 Gas Feed

While other machines generally use a gas-box for flow regulation and distribution
[21], the PPEX machine is unable to utilize a gas box because of its compact
size. Rather a gas needle valve is employed as the means of gas distribution.
The gas feeding system location on the PPEX is shown schematically in Figure
2-3. The gas flow needle valve is located on one of the northern CC access ports.
The gas can either be puffed into the closed chamber or kept flowing during the
discharge by opening the two bypass valves to the turbomolecular pump. For
gas puff fueling, the pressure is usually in the 10~* to 10~3Torr range. For a flow
discharge, the pressure for optimum heating is found to be in the 1075 to 10~4Torr

range.

PUFF FUELING

Puff fueling refers to the act of filling & chamber with low pressure gas and then
closing all the ports to ensure a constant pressure discharge medium. However,
other gases and vapors are also entering the system either due to leakage or out-
gassing. Thus a puff fueled plasma is generally kept at a higher pressure in order
to ensure that the majority of the gases in the chamber is the desired fuel gas
and not water vapor and other gases that outgas or leak into the chamber. This
method of fueling is not often used. The great majority of the shots employ flow

fueling as the preferred fueling scheme.
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FLOW FUELING

Flow fueling refers to the constant pumping out of the gases in the system. In this
fueling scheme, a needle valve is kept open to provide the gas source, and some
bypass valves are opened to continuously pump out some of the gas. This creates
a flow of gas in the vacuum chamber, hence the term "flow fueling”. Two schemes
are used in PPEX flow fueling : North Pumping, or South Pumping. The North
Pumping scheme simply refers to the case where the refueling gas is pumped out
the same axial end of the machine as the needle feed valve. South pumping refers
to the fact that the refueling gas is drawn across the centerline of the central cell
towards the vacuum pump on the other end of the machine.

The North Pumping Scheme is less desirable because the flowing gas is pumped
out away from the point of maximum ion heating (at Z=0), while the South
Pumping Scheme pulls the fueling gas across the resonance point, thereby fueling
the plasma.

The flow fueling process is as follows: first, the gate valve (See Figure 2-3) to
the turbomolecular pumps are shut. Then Bypass Valve V1 is opened to allow
slow pumping via turbomolecular pump. Finally, the needle valve is engaged to let
in the working gas at a constant flow rate. Eventually the chamber equilibriates

to a working pressure that is kept at approximately 5 to 10 x10~5 Torr.

2.1.4 Plasma Heating

Three heating systems are currently deployed on the PPEX - one ECRH unit
(Center Cell) and two ICRF units (One in North Anchor, one in Center Cell).
Altogether these systems provide up to 200kW of heating power to the plasma.

The heating systems are discussed in further details in Section 2.2.
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2.2 Plasma Heating Systems

2.2.1 ECRH

The Electron Cyclotron Resonant Heating (ECRH) system consists of a Raytheon
2 KW system running at a fixed frequency of 2.1 GHz and is used for breakdown
and plasma preionization. The 2.1GHz frequency corresponds to a resonant field

of 750G for a pure hydrogen plasma.

The ECH microwave power that is emitted by the Raytheon ECRH unit is
modulated by a half rectified sinusoidal waveform of approximately 5ms in dura-
tion and repeating once every 8 ms. Although it would be better for our purpose
to have a fully rectified power output, it was practically impossible to modify the

unit because it would have required extensive redesign.

OPERATIONS

During normal operations, the ECRH transmitter is triggered ON at a pre-
programmed time after the magnets begin to be energized (Usually about 100ms).
This is to ensure that the magnet coil currents have flattopped, providing the ECH
with a resonance surface upon which to absorb the microwave power. This is de-
sirable because if there is no electron resonance surface, much of the ECH power

would be reflected back towards the transmitter, possibly causing damage.

2.2.2 ICRF

Since the main experimental purpose of this thesis is to study the ion cyclotron
heating of the mirror plé.sma, the ICRF system is one of the most important

systems of the PPEX machine.

31



ICRF SYSTEM COMPONENTS

A complete set of the equipment that the PPEX ICRF System consists of is listed
in Table 2.2.

The primary Ion Cyclotron Resonant Frequency (ICRF) amplifiers consists of
two 200 kW Continental Electric Transmitters, one used i1: heating the center cell
plasma at 3MHz, the other used in heating the anchor at 7.5MHz. The Continental

Electric Transmitter Basic Schematic is shown in Fig. 2-6.

ICRF TRANSMITTER

The ICRF Transmitter/Amplifier is a Continental Electric amplifier that is ca-
pable of outputting 500kW of ICRF power. The amplification is performed by a
Class C Tetrode RF Tube. A tube operating in Class C has a conduction angle
of less than 180 degrees [22]. This means that out of a full cycle, the tube puts
out power less than 1/2 of the time. Because high power RF operation necessi-
tates a Class C operation, the frequency of the output will not be pure. However,
since all class C RF amplifier tubes are coupled to an output tuning circuit, the
output waveform can be tuned to minimize the distortion of the base harmonic.
Nevertheless, it must be noted that because of the imperfections of the tuning
circuit, multiple harmonics and other frequencies will be present in the output of
the ICRF transmitter, albeit excited at a much lower amplitude than the base
ICRF frequency component.

ICRF TRANSMITTER TUNING

The ICRF transmitters have to be tuned for optimum performance at each fre-
quency. Each transmitter has two sets of tuning capacitors, one set used to tune
the intermediate stage, and the other to match the transmitter to the 502 trans-

mission line. A sample tuning sequence would consist of the following steps:
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Figure 2-6: ICRF Heating System Schematic. A pulse from an HP function

generator is sent to the signal level generator which gates a pulse of a given length
to the Continental amplifier.
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1. Set frequency output on the signal level RF generator (Kenwood TS-440)
and lock in the frequency.

2. Warm up transmitter and RF tube.
3. Turn on the RF cathode power supply.

4. Gate in short RF pulses (Generated by an HP pulse generator) for tuning.

Typical pulses occur twice a second for approximately 0.5ms.

5. Vary the intermediate stage capacitors to maximize the Driver Grid Current

to tune the intermediate stage and achieve resonance at this frequency.

6. After intermediate stage has been tuned, switch on HV (high voltage) to
about 1kV. Monitor the Forward-Reflected Power levels from the —70dB
directional couplers on the dummy load. Gate in tuning pulses of about
0.5ms long twice a second. Tune by maximizing the forward power and
minimizing the reflected power. Obtaining the best sinusoidal waveform is

also a criterion for resonance tuning.

7. If the forward-reflected voltage ratio seen on the scope is > 10, then the

transmitter is considered tuned.

ICRF OPERATIONS

During a shot, when ICRF heating is not needed, the ICRF transmitters are kept
in STANDBY mode. In this STANDBY Mode, the transmitter and the RF tube
are both warmed up and ready to be fired. The RF tube cathode is biased at a
high voltage of 1-10kV, but the tube screen is biased negatively enough to prevent
electron cascade and amplification.

When a request for ICRF power is issued through the MDS data acquisition
system and software [23], a gated pulse lowers the negative screen bias, thus per-

mitting electron amplification. The on-time of the system is pre-programmed into
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the MDS software and controlled through a Jorway J221 Controller. A maximum
on-time of 100ms is selected to ensure a 0.1% duty cycle for the ICRF system.
(100ms ON, 100s OFF)

2.2.3 ICRF MATCHBOX

The ICRF system requires an impedence matching network to match the plasma
load to the 502 load of the RG-219 transmission line that brings the ICRF power
from the Continental Transmitters to the antenna. The set of capacitors that con-
trol the impedence and resonant matching makes up the matchbox. The matchbox
schematic is shown in Figure 2-7.

The matchbox consists of essentially two capacitors - a tuning capacitor Cr,
and a load matching capacitor C;. The tuning capacitor is used to tune a resonant

LC circuit to the frequency
1
w? = ic,
where L includes the antenna as well as the plasma inductance. The load capacitor
C is used to match the entire load to the 50 RF Coax line.

Because of the low frequencies that are required for ion resonance in the central
cell, the tank capacitance Cr required for resonance is high (since Cr = 1/(w?L)).
This requirement makes the addition of fixed capacitance a necessity. Three sets
of fixed capacitors are therefore installed in parallel with the variable capacitor
Cr. These fixed capacitors are banked into and out of the matching circuit by
a vacuum interruptor. These vacuum interruptors are switched ON by applying
pressurized air. For the type of vacuum interruptor that was used in the central cell
matchbox (Jennings RP233B), approximately 25 PSI of air pressure was required
to close the contact.

The matchbox operates as follows: the tuning capacitor Cr is first tuned so
that resonance at the desired ICRF frequency is reached. After the resonance

has been achieved, the tuning capacitor is then detuned slightly off resonance.
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The net impedence of Z; that results is then seen to be largely resistive and
slightly inductive. The load capacitor Cy, is then used to cancel out the inductive

impedence and bring the total impedence of the entire load Z;, to be approximately
50Q2.

NORTH ANCHOR MATCHBOX

The north anchor matchbox consists of two vacuum variable capacitors, one re-
sponsible for tank resonance, Cr, the other for matching the plasma to the 500
transmission line, Cr. The tank capacitor consists of a Jennings vacuum vari-
able capacitor, CV2C-2000, with a capacitance range of 100-2000pF at a working
voltage of 35kV. The load capacitor is another Jennings CVDD vacuum variable.

CENTRAL CELL MATCHBOX

The variable tank capacitor Cr consists of a Comet CV2C-2000 Vacuum Variable
Capacitor. The variable load capacitor Cr, consists of a smaller Jenning CVDD
capacitor with a capacitance range of 50-750pF at 15kV. The fixed capacitors
used to increase the overall tank resonating capacity consist of three types of
capacitors: two Murata 1500pF capacitors and one Murata water-cooled 4500pF

capacitor. The vacuum interruptors are the Jennings RP233B type.

2.2.4 ICRF Antenna

The ICRF Antenna used in the PPEX machine is the dual half-turn loop (DHTL)
antenna. The design and construction of the antenna are made with the following

considerations in mind.

1. Vacuum compatibility — The antenna must be soldered with vacuum com-
patible solder and solder must be allowed to flow smoothly so that no air
pockets remain after solidification. Vacuum solder is used to minimize out-

gassing.
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2. Arc prevention — All edges and corners must be rounded and deburred. This
is to ensure that no arcing takes place that may damage the antenna or other

items within the chamber to which the antenna may arc.

3. Ease of assembly inside chamber — Becuse of its size, the antenna must be as-
sembled inside the vacuum chamber. Thus ease of assembly and installation

is of primary concern.

A schematic of the Center Cell ICRF antenna in the vacuum chamber is shown
on Figure 2-8. The view shows how the ICRF antenna must be designed to couple
with the other components of the ICRF system. Only two bolts are necessary to
fasten the antenna into place. A schematic of design of the center cell ICRF

antenna is given on Figure 2-9.
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Figure 2-8: Schematic of the Center Cell ICRF Antenna in the Vacuum Chamber
of PPEX. This view shows how the ICRF antenna must couple together with
other components of the ICRF system. Only two bolts, one through each of the
matchbox adapter are required to hold the antenna in place.
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40



Table 2.1;: PPEX Coil Set

COIL COIL TYPE | Design Current Density | Typical Operating
(A/em?) Current (A)
CENTER CELL | SOLENOID | 800 600
BOOST SOLFNOID | 800 600
MIRROR SOLENOID | 2700 1600
Table 2.2: ICRF System Components
ICRF System Component | Typical Equipment Notes

Signal Generator

Amplifier

Transmission Line

Matchbox

Antenna

Ham Radio-
Kenwood TS440

Continental Electric
Transmitter

RG219 Coaxial Line

2 Vacuum Variable
Capacitors, C, and Cr.

Full Turn or
Dual Half Turn Loops.
Copper

Generates the RF Signal to
be amplified. Frequency
range is from 2MHz to 32MHz.

Provides the RFamplification
from signal level (100W)

to 200KW. Duty cycle

is 0.1%

Transmits power from
Continental transmitter to the
RF load.

Matches impedence of the load to
transmission line impedence (50(2).
Matchbox also contains directional
couplers for observing forward and
reflected power.

Transmits power to plasma

41




2.3 Diagnostics

In order to determine the plasma characteristics of the discharge, an adequate
set of diagnostics must be assembled to measure some basic plasma parameters.
These parameters include the ion temperature T}, electron temperature T,, and
electron and ion densities n;, n.. A system of diagnostics was designed, fabricated
or reconstructed, calibrated and used to determine plasma properties as part of
this thesis. This section discusses the diagnostic systems that were fabricated
and/or reconstructed for use on the PPEX.

The diagnostics currently operating on PPEX are listed in Table 2.3 along

with the plasma properties that they measure.

Table 2.3: PPEX Diagnostic Set

DIAGNOSTIC LOCATION | PLASMA PROPERTY MEASURED

LANGMUIR PROBE CC, z=0cm T.(a),n.(a)
INTERFEROMETER | CC, z=0cm e

H, Detector CC, z=-50cm | n(r)
SPECTROMETER CC, z=+50cm | T;, n;, Plasma Rotation
DIAMAGNETIC LOOP | CC, z=3cm B, e, T; + Te

B-DOT PROBE CC, z=0cm ICRF B, radial profile

Because the theory for these diagnostics has been investigated throughly over
the past 30 years, a brief theory of each of the diagnostics used on the PPEX

machine is given in Appendix F for completeness.

2.3.1 Langmuir Probe

LANGMUIR PROBE SETUP
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The Langmuir Probes used in the experiment is the standard single probe
seen in the top part of Figure 2-10. The driving circuitry is the standard high
voltage driver circuitry [24] seen in the lower half of the same figure. The variable
capacitor C' shown is used to eliminate the capacitive pickup of the transmission
line, which can be considerable.

The probe is powered by a KEPCO amplifier power supply that is capable
of supplying up to +£500 volts. The ramp signal is a triangular wave generated
by a function generator. The scanning frequency was found to be optimum at
approximately 1kHz.

The power supply itself must be electrically isolated from the probe to minimize
the plasma feedback to the supply. Two 1:1 isolation transformers are used for

this purpose, and the drive circuitry is shown in the bottom half of Figure 2-10

2.3.2 Interferometer
INTERFEROMETER SETUP

The interferometer used on the PPEX is a heterodyne transceiver system. The
interferometer system is comprised of a Gunn Oscillator, a double-balanced mixer,
a ramp generator providing a fixed sweeping frequency (80KHz) to the Gunn
Oscillator, a constant voltage supply that provides both £5V and +15V, and a
Jorway 1808 Phase Detector. The interferometer used has a 35GHZ base frequency
oscillator, although a 60GHz unit is also available. The waveguides used in the
system are either the WR-28 type (35GHZ oscillator) or the WR-15 (60GHZ).
The reference leg of the interferometer is simulated by taking a -10dB signal from
the plasma leg through a phase shifter inside the interferometer box.

The microwave transmitter-receiver geometry for the PPEX machine is shown
in Figure 2-11. As is seen, the receiver horn (+20dB) is place inside the vacuum
and samples the microwaves that pass through the plasma. A phase-shifter is in-

serted into the return leg of the plasma-leg receiver to compensate for the different
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lengths of travel between the plasma leg and the vacuum leg.

2.3.3 Spectrometer

SPECTROMETER SETUP

The spectrometer system consists of a 0.5m focal length Ebert scanning spec-
trometer (Jarrel Ashe Model 82000 Spectrometer), a photomultiplier assembly, a
high voltage power supply, a rotating mirror assembly, and an Arora A12 digiti-
zation module. The system schematic is shown in Fig. 2-12.

The spectrometer has an inlet slit width of 254 and an adjustable outlet slit
coupled to a photomultiplier detector. Optimum results were obtained for an
outlet slit width of 25u.

The base unit spectrometer is coupled to an RCA 1P28 photomultiplier tube
assembly powered by a high voltage (negative) power supply operating between
700-1000V. Calibration was performed using both a hydrogen lamp (Hpg line at
4863A) and a mercury lamp (Hg line at 4358.34).

The scanning rotating mirror assembly consists of a glass slide mounted atop a
variable speed motor that is driven at 9V. One rotation of the mirror corresponds
to two scans of 14A each. The minimum scan period is about 3ms/scan. This
corresponds to a motor rotation rate of about 160Hz. This 3ms scan period would
then allow a maximum of about 5-10 scans during the ICRF heating period of
30ms.

The light from the discharge is led to the spectrometer via either fiber-optic line
or a focusing lens. Care must be taken to remove the spectrometer sufficiently far
away from the machine lest the fringing magnetic field distort the data obtained.

The light to be examined with this scanning spectrometer system was selected
to be one that reflects most accurately the state of the plasma temperature. The
first line that is observed using the spectrometer system was the H-g3 line, but
since it was not most reflective of the bulk plasma temperature, other lines were

also examined. A good line is the C III line at 4647.4 A.
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Figure 2-11: PPEX 35 GHz Interferometer Geometry
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2.3.4 H, Detector
H-a Setup

The basic H, detector used on the PPEX is a single photodetector system that
was used on the TARA mirror machine. The H-a geometry is seen in Figure 2-13.

The H-a detector is basically a light detector that is connected to the vacuum
chamber via a KF-40 connection attached externally to a quartz window flange
on one of the central cell ports. The fitting between the quartz flange and the

H-a detector is optically blackened to minimize reflection and multiple imaging.

2.3.5 Diamagnetic Loop
Experimental Setup

A typical diagmagnetic loop is installed in the central cell of the PPEX machine.
20 turns of vacuum compatible teflon coated wire is wound inside a hollow stainless
steel cylinder that is rolled so that it surrounds the plasma. The entire loop is
mounted on a set of two rails that sit at the bottom of the vacuum chamber. The
signal is transmitted via a twisted pair cable to an RC integrator, with the result

digitized by an Aurora-12 digitizer at 100kHz.

2.3.6 B-Dot Probe
B-Dot Probe SETUP

The B-Dot Probes used in this thesis were constructed for the TARA Tandem
Mirror Experiment and are described in detail by Chen {25]. Briefly, each probe
consists of 3 orthogonal loops of double-turn insulated copper wire held together
by epoxy. The 3 loops, located in the tip of the B-Dot probe, are enclosed by
a glass envelope that shields the probe from contact with the plasma. The 3
loops are also electrostatically shielded by a set of copper covering that is gapped

to allow penetration of the desired electromagnetic fields but which exclude the
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electrostatic fields. The basic schematic of the B-Dot Probe (BDP) can be seen
on Figure 2-14.

cn
(=}



ndrews Cable
Interface

Vacuum Interface
To Pum Glass

Envelope

Stainless Pickup Loop
Steel Tube \B

15"

59" >

Note: Figure not to scale

Figure 2-14: B-Dot Probe Schematic. The probe can be moved radially in or out

of the plasma without breaking vacuum. The pickup loop at the tip of the probe
has a diameter of 1/4 inch.
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2.4 Data Acquisition

To coordinate the flow of information from the various diagnostics, a CAMAC

Data Acquisition System was set up. The CAMAC modules currently used on

the PPEX are shown in Table 2.4.

Table 2.4: CAMAC Modules Use

on the PPEX

CRATE Characteristic

Purpose

Jorway 221 | 12 Channel Trigger/Gate output

Aurora 12 8 Channel 0-100KHz A-D

Convertor

Jorway 1808 | Single Channel 0-100KHz
Phase detector

LeCroy 8501 | Multifrequency Clock

LeCroy 2264 | 8 Channels, 40KHz (8 Ch)-
2MHz(1 Channel)

LeCroy 8100 | Programmable Amplifier

LeCroy 8818 | 100MHz, 32KB Memory
Single Channel A-D Converter

Sequencing Module controls
Magnet On-Time, ICH on-time,
DAQ Module triggering.

Digitize Diamagnetic Loop
voltage, Langmuir Probe Voltage,
other lower frequency diagnostics.

Measures phase difference
between a given clock and a signal.

Measures interferometer phase shift.

Generates clock for
Aurora 12 for slower speed DAQ.

Interferometer/LP
Amplifies low level signals.
Used with B-dot probe.

Measures signal from
B-Dot probe. Max 512mV p-p.

The entire instrumentation package for PPEX is shown in Fig 2-15
The software used to tie the CAMAC instruments to the VAX is the MDS

system developed at the MIT Plasma Fusion Center. The data processing is

performed using the IDL [26] software by Research Systems, Inc.
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Figure 2-15: Instrumentation Schematic. The digitizers used are the A-12 (100kHz
Max), J-1808 (phase digitizer) and the L8818 (100MHz Max).
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2.5 PPEX OPERATIONS

The PPEX operates in a pulsed mode. An entire run is about 5 seconds from
beginning to end. The mean time between shots (MTBS) is approximately 3-15
minutes, depending upon the on-time of the systems. The primary issue of concern
of the runs is the duty cycle of the equipment. Specifically, if the magnets were
being forced-air cooled, the MTBS is limited to greater than 10 minutes due to the
resistive heating of the magnets. If the magnets were being cooled by vapor/liquid
nitrogen, the MTBS could be much less (5 minutes).

2.5.1 PRE-SHOT MODE

When no shots are being run on the PPEX machine, the vacuum chamber is
pumped down to a pressure of 10~7 Torr to minimize the stray gas and water
vapor in the chamber. The pre-shot sequence of events and checklist typically

proceeds as follows:
1. Energize 13.8kV magnetic power supply.

2. Warm up ECRH source (warmup time 1 minute) and ICRF supply (warmup

time 20 minutes).
3. Energize diagnostic power supplies

4. Close turbomolecular pump gate valves and use needle valve to puff in con-

trolled amounts of gas - either hydrogen, helium or argon.

5. Open up bypass valve to the turbopumps to do flow pumping, maintaining

the pressure at about 7 — 10 x 10~®Torr.

2.5.2 SHOT MODE

The magnet coils are first pulsed on at time t=0ms. These magnets have a typical

magnet rise time of about 200ms. The ECH unit is turned on at 100ms to generate
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a source of pre-ionized plasma. Because of the frequency mismatch of the ECH
mentioned before, one ionization gauge is always kept energized to provide a source
of free electrons for ionization. At 600ms, the ICRF unit is gated on to provide up
to 100kW of ICRF heafing power for about 10-30ms. Data Acquisition normally

occurs between 500-800ms. The system is then powered down at 1000ms.

55



2.6 Systems Designed and Fabricated

This section describes the systems that were designed and fabricated as part
of this thesis. The experiment itself was designed and constructed through the
collaboration of 2 staff and 2 graduate students (including the author).

2.6.1 Magnet

The work performed in this thesis includes designing the magnets of PPEX using
the EFFI code. Field and stress calculations were performed to ensure that the
magnets could withstand the hoop stress. The magnets were also tested using
a current source as well as applying a high voltage source (Hi-poting) to make
sure that there is no unintentional grounds and that the insulation is adequate.

Finally the magnets were assembled onto the machine.

2.6.2 ICRF System

Various parts of the ICRF system were designed. These are given in Table 2.5.

2.6.3 Diagnostics

Many diagnostics were acquired from the TARA program. However, much cus-

tomization, testing, and adaptation of the various diagnostics were required.

2.6.4 Instrumentation

When the PPEX machine first started acquiring data, only two oscilloscopes and
a film camera were available to take data. Part of the work performed in this
thesis was to acquire, assemble, and integrate CAMAC modules into a coherent
data acquisition system. Using the MDS software written at MIT, a software
package was written to automatically trigger modules, acquire data from modules,

and store the data in accessible form. Programs to process these data were also
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Table 2.5: ICRF Subsystems Designed and Constructed

COMPONENT of ICRF SYSTEM

WORK PERFORMED

Antenna

Vacuum Feedthru

Matchbox

Design and fabricated both ICRF antennas

used in the center cell and end cell.

Design emphasized ease of assembly within small
space of vacuum chamber. Design also must be
compatible with existing vacuum feedthru.

Fabrication using copper sheet metal was
performed at the MIT Machine Shop

The existing vacuum feedthru from the TARA
machine were tested and altered to match
the vacuum ports and antenna geometry

Existing matchbox were fitted with special
extensions and connectors to connect antenna

to matchbox. Designed and constructed suppor
structures to hold the matchbox (~ 100lbs)

in place against the side of the PPEX machine.
Matchboxes were also customized with different
vacuum capacitors to the desired ICRF frequency
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Table 2.6: Work Performed on Diagnostics Set

Diagnostic

Work Performed

Interferometer

H-a Detector

Langmuir Probe

Spectrometer

B-Dot Probe

Assembled set of waveguide path and phase

shifter. Constructed feedthrus and made design
modifications to the KF-40 feedthru to enable insertion
of microwave horns into vacuum

Designed and assembled system to detect

H-« light emissions from plasma. A focusing system

using a lens and a blackened feedthru tube was constructed.
Designed circuit to drive langmuir probe.

Constructed scanning system to scan £7A

using an existing interferometer. Calibrated and alligned

spectrometer using mercury lamp and laser.

Reconditioned and calibrated existing B-Dot probes
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written. These programs include FFT routines to process the Fourier spectrum of
B-dot probe data, routines to process the interferometer phase data, and routines

to analyze the Langmuir probe data.
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2.7 Summary

In summary, this thesis contributed to the design, construction and operation of a
small tandem mirror machine at MIT. The purpose of this machine (as pertaining
to this thesis) is to study ICRF wave propagation phenomena. The major systems
used in the study of ICRF propagation (antenna, b-dot probe, digitizers, software)
were all either designed and constructed from scratch or customized as part of this
thesis.

In constructing the PPEX machine, many existing systems and parts were uti-
lized to save time and reduce the cost of construction. The result is an experiment
that is constructed inexpensively, versatile enough to perform many physics stud-

ies yet small enough that a 2 man crew could effectively run the entire machine.

(=]
(=)



Chapter 3

ICRF THEORY

This chapter discusses the theoretical analysis performed in the thesis. The first
section provides a brief survey of some historical ICRF literature and points out
the motivation for performing the theoretical analysis. The next section introduces
the basic equations to be solved describes in general terms the steps required to
obtain the solution. Next, the basic assumptions underlying the cylindrically
bounded ICRF wave propagation problem are addressed in Section 3.3. The
geometry of the axially varying cylindrical system is also introduced. Section
3.4 solves for the source fields that are generated by the dipole loop launching
antenna. Section 3.5 then solves for the total self consistent vacuum fields. The
boundary conditions that link the vacuum, source, and plasma fields are discussed
in Section 3.6. Next, the functional dependence of the plasma fields are derived
in Section 3.7. The code that is developed as part of this work is benchmarked
and compared to literature in Section 3.8. Finally, the ICRF field profiles and
other results obtained from the axially varying cylindrical analysis performed are
discussed in Section 3.9.

The analysis described in this chapter contains significant features and approx-
imations which were made in order to simplify the algebra. A slow z approxi-
mation reduces the coupled differential equations to two integral equations which

are relatively straight forward to solve. Several coordinate transformations are
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also required to reduce the complex boundary of a varying radius plasma cylinder
to a simple boundary. The almost-TM mode is neglected in order to treat the
almost-TE mode in a coherent manner. The combination of both the slow-z ap-
proximation and the coordinate transformation also allows a large portion of the
theory to be treated analytically. Finally, because of the complications generated
by the axial inhomogeneity of the system, this theory assumes a cold plasma with
collisions and a sharp boundary radial profile model in order to simplify the rest
of the calculations.

The power of the analysis is evident even in spite of these limitations and sim-
plifications. The theory treats the resonance poles in a coherent fashion, allowing
the propagation of waves past the resonance locations. The code also allows the
computation of the ICRF EM fields for arbitrary mirror ratios, arbitrary 8 (sub-
ject to the cold plasma approximation). Finally, it treats the axial inhomogeneity
and the cylindrical geometry of the system in a self consistent manner that has
not been accomplished before.

Note that the problem of the full slab model with k, = 0 is examined in
Appendix D.1. This simple analysis is shown for the purpose of providing a flavor
of the method of solution that will be followed in the general cylindrical case. A
k. # 0 analysis for a full slab model is also developed and presented in Appendix
D.2 for the sake of completeness. It is seen that k, # 0 introduces coupling

between otherwise decoupled TE and TM modes.
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3.1 Motivation for Study

The ICRF wave-plasma coupling problem is one that has been often examined
during the past 30 years. Among these the pioneering theoretical work of Stix(2,
27, 28, 29], Swanson[30], and Bernstein [31] along with the experiments performed
on B-66 (3, 32] and the C-Stellerator [33, 34] in the early and late 60’s paved
the way for ICRF as it is generally studied today. However, there are yet some
problems in ICRF that remain largely unsolved. One major issue that has not
been adequately addressed is the propagation characteristics of ICRF waves in
an axially inhomogeneous magnetic field in a cylindrical geometry. More recent
tokamak [35, 36] or mirror [1] ICRF studies, though sophisticated, often sacrifice
either field inhomogeneity or cylindrical geometry in order to render the problem
analytically solveable. Seldom are both subjects treated together coherently. Since
both the presence of a magnetic beach and the cylindrical geometry of the system
affect ICRF propagation characteristics in a linear magnetic mirror, overlooking
either the nonuniform B, or the cylindrical nature of the system can result in a
distorted view of ICRF wave propagation and heating. The thrust of this chapter,
is thus to examine ICRF wave propagation and plasma heating in an axially
varying cylindrical geometry including a resonance beach. By studying ICRF
wave propagation characteristics in realistic physical and magnetic geometries,

one can better understand the process of ICRF beach heating.

Much work on mode conversion and resonance tunneling [37, 38, 39] has also
been performed over the last thirty years and is summarized in a review article
‘by Swanson [40]. The theoretical work performed in the thesis does not consider
those effects because of the regime to which the analysis is applied. Specifically, the
work performed in this chapter assumes a cold plasma with collisions — conditions
which are valid for the plasmas encountered in the MIT PPEX linear mirror
machine. The implication is that the plasma regime of interest is too cold for

finite temperature effects or tunneling to be important. However, the theoretical
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work performed here could conceivably be modified and extended to include these
additional effects. This is further discussed in Chapter 6.

It should be stressed that the unique aspect of the work undertaken in this
chapter is the inclusion of the axially varying magnetic field geometry in
an analytical treatment of the ICRF wave propagation problem. It is a
difficult problem that has historically been unsatisfatorily treated, and the work
performed here offers a good starting point to achieve the inclusion of both the
magnetic field inhomogeneity and the cylindrical geometry in ICRF wave-plasma

coupling calculations.



3.2 ICRF Background Formulation

Recent conventional tokamak ICRF studies such as ones by McVey [41] and Bers
[42] use ray-tracing techniques because of the assumption of relatively small wave-
length of the ICRF wave as compared to the plasma radius. However, for the
magnetic mirror geometry under study, the magnetic field is such that A > a.
This rules out the use of ray-tracing techniques in the analysis, particularly for
the cylindrical geometry case. For the cylindrical geometry studied here, the gen-
eral approach of Lam [43] is adented in which a combination of radial standing

wave and axial propagating wave is selected as the form of the field solutions.

3.2.1 Standard Formulation

The basic formulation of the ICRF plasma coupling problem begins with the
standard approach using Maxwell’s Equations The technique that is commonly

used in analyses of homogeneous systems is the Fourier transform in time:

0 .
— — —w

ot

Maxwell’s equations can then be written as

—tw =

3 & E (3.1)

where ¢ is known as the dielectric tensor and is given in vacuum by [44]

VxB=

100
E=|010 (3.2)
001

In a cold plasma, ¢ is given by [45]
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For a warm or hot plasma, Stix [2] showed that the zero terms in the ten-
sor given above become non-zero. The theoretical analysis taken in this chapter
assumes a cold plasma with collisions.

The elements of the dielectric tensor ¢ for finite temperature plasmas are (2]

1
= E(R + L)
1
=3(R-1L)
R=1+% —“3&—2(51) (3.4)
_1+Z e ze_,) (3.5)
Wha Z'(fo)
"L rvayi 1 2= 206 (36)
where .
£ = W+ Wy + NWea (3.7)

kv,
Where v, is the collision frequency. Z(§,) is the plasma dispersion function
as documented by Fried and Conte [46]. Its definition and expansion in the limit
of a cold plasma is shown in Appendix I.
The power density absorbed by the plasma is determined by the induced
plasma current flowing in phase with the electric field {44, 47]

o (W/m®) = - Re(E - J)

1 - ~
Pus(W) = 5 Re( / E.Jj*av)

The goal of the theoretical analysis is to study the propagation characteristics
of ICRF waves in a bounded plasma-vacuum system and to determine optimal
coupling of the wave to the plasma. To determine optimal coupling, a figure of
merit is required for comparison. One that is mostly commonly used as a figure
of merit in coupling calculations is the plasma impedence R, where

Rpl = 2P, aba

66



Thus one of the goals of this study is to determine how to optimize R,. The steps
to be taken in the solution of the fields and subsequently the determination of R,
are outlined in the next section.

Infinite Plasma Dispérsion Relation

The infinite plasma dispersion relation is given by [2, 45]

Sk} 4 k3 [K2(S + P) — k3(SP + RL)) + P(k? — K3R)(k2 — k3L) =0  (3.8)

For each value of k., there exists two k, roots, referred to as the “Almost TM”
Mode (large k, ), and the “Almost TE” Mode (smaller k). These are shown in
Fig. 3-1. The analysis performed here considers only the "almost TE” mode and
neglects the "almost TM” mode in order to minimize the algebra involved. The
?almost TM” mode couples almost all of its energy to the electrons since its E, is
mostly given up to the electrons in the plasma. Therefore, the result of neglecting
this "almost TM” mode is to neglect the fact that a significant portion of the

ICRF energy is given up to the electrons, thus overestimating the ion coupling.

3.2.2 Method of Solution

The basic steps taken in this chapter to solve for the EM fields in the plasma-

vacuum system are as follows:

e Solve for EM fields in vacuum - source and induced oscillations

¢ Obtain and solve differential equation for the functional dependence of the

plasma fields using slow-z approximation and coordinate transformation
e Obtain transverse plasma and vacuum fields from Maxwell’s equations.
o Take Fourier transform to permit use of plasma-vacuum boundary condition

e Use boundary conditions to solve field coefficients.
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Figure 3-1: Dispersion of ICRF Waves
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e Compute power absorbed by plasma and plasma loading impedence for dif-

ferent plasma and geometric parameters.
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3.3 Assumptions and Geometry used in Axially
Varying Cylindrical Analysis

As mentioned before, the unique aspect of the work performed in this thesis is the
inclusion of both the nonuniform axial magnetic field and the cylindrical geometry.
In order to make the problem tenable and to place emphasis on the new approach

taken to solve the problem, some assumptions are made:

1. Axial magnetic field has a finite axial variation. This means not only that
B.o = B,o(r, 2), but also that there exists a radial field B, because of the

zero divergence Maxwell’s equation (V - B =0).

2. m = 0. No azimuthal variation in the EM fields. Corresponds to a simple
loop antenna. This assumption simplifies the problem and still allows the
examination of the axisymmetric EM waves. The method can be generalized

tom # 0.

3. Ks = P — oo, K3E, is finite, but E, ~ 0. This assumption implies that
the E, field is much smaller than either the E, or Ey fields.

4. Surface current MHD model. This model assumes a macroscopic (i.e. non-
RF) surface current on the plasma-vacuum boundary. The presence of a
surface current results in an MHD pressure balance that is able to support a
radially constant plasma pressure profile (48, 49]. This produces a constant
radial density profile which is useful in simplifying the radial structure of

the solutions.

5. Plasma medium is a cold plasma with collisions. This assumes that for the
plasmas of interest, k) v < w. This limits the upper bound of applicable

temperatures to approximately 10-100eV.

The geometry of the cylindrical system is shown in Figure 3-2. The launching

antenna structure is a simple dipole loop.
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Figure 3-2: Geometry of Cylindrical Plasma-Vacuum System. The actual experi-
mental geometry is shown at top, the modelled geometry used in the analysis of
this chapter is shown at bottom. The source antenna is the dual half-turn loop
for the actual experiment and a dipole loop for the model.
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3.4 External Source Fields

The fields present in the vacuum part of the system as shown in Figure 3-2 con-

sist of both the natural harmonics that exist within the geometry and the fields

generated by the antenna source current. Consider first the source fields.
Assumption: Dipole Source

For a magnetic dipole of current I, the fields can be found by

B=VxA4
where o

-5 435
Forr>»a

In the limit of 7 >> a, it has been shown by Jackson [44], Kraus [50], and Lorrain
[47] that the fields in spherical geometry are:

_ Ho2m
B, = ar 73 cos (3.9)
= b
By = 41”'3sm9 (3.10)
By = 0 (3.11)

where ¢ is the direction of the current flow, 6 is the angle from the perpendicular
axis of the face of the current loop to the radial vector #. However, since the
geometry of the problem is cylindrical, the source fields in cylindrical geometry
must be calculated.

The vector potential is given by

j_ el rdl
A= ar J 7

It can be shown that this is equivalent to

~

m X 7

(,,./)2

i o
A_41r
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where 7 is the unit vector from the origin to the observer, r’ is the distance from
the origin to the observer, and 7 is the dipole moment of the loop. 7 and M are

given by

r z n

P = et~
,/.,.2+z2 1/.,.2_*_7'2
m = wa’lz
The vector potential A is then calculated to be:

- _ uoazI ~
A= 4(r? + 22)3/2 (vf)

(rl)2 — (rz + zz)
Recall that the magnetic field generated by this source loop is defined as

- -

B=VxA

After some algebra, it can be shown that the source fields of the simple dipole

loop for r > a are given by

B _ 3uga’lIrz

Bﬂ,aouroe = 0

Brwee = 2% o 37"
4(r? + 22)3/2 (r2 + 22)

Er,cource = 0

B _ twpea®l r

8,s0urce — 4 (7‘2 + zz)a/z
Ez.lource = 0
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r~a

For distances at which » ~ a, where a is the radius of the dipole loop, the above
derivation is invalid. The treatment of Jackson[44] is used. Jackson showed that
the vector potential for a current dipole loop is given (in spherical coordinates)

by elliptic integrals K and E as follows:
4uola (2—K2)K(ka) - 2E(k4)]

A=
*” Ja?+ P2 + 2aPsinb k2

_ 4aPsin b
" a2+ P? 4+ 2Psinb

ks

where E and K are the Complete Elliptic Integrals tabulated by Abramowitz and
Stegun [51], and P is the radial distance from the origin to the observer point in
spherical geometry.

Expressing this in cylindrical geometry:

r = Psinf ; P2 =rt42?
6=¢
A 4pola (2 - K2)K (ka) — ZE(kA)]
0—\/?+r2+z2+2ar k2
where
K2 = dar (3.12)

a? + 12 + 22 + 2ar
Given the vector potential A, the induced magnetic field can be found by

B=VxA
A
Bo- 5,
Be = 0
18
B, "'5;(7‘40)



From the source magnetic fields, the source electric fields can also be found by

Maxwell’s equation

6 -
VxE= —'é't'B
The r-component becomes
X 0
WB,. = —-5;E9
. 0 o
“wppe = Tp T

= By = iwAg+c(r)

What is ¢.(r)? Using the z-component yields

. 18

wB, = ;E(rEg)
.18 18
zw;-g;(rAg) = ;E(TEO)

= FEp = A

Therefore c.(r) = 0.
Define:
¥V = 'I"Ao

Change of Variable

A change of variable is next performed here in order to simplify the boundary
condition. The rationale for selecting this particular set of variables will be given
in the next section.

The selected fransform is:

r dz
p= ") ; d§ = ()
where R(z) is the plasma-vacuum boundary. k4 from Equation 3.16 then becomes
K= 4ar
A T @412 4224 2ar
4apR(£)

a? + p?R*(£) + 2(£) + 2apR(¢)
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Therefore

4polapR(§) (2 — K3)K(ka) — 2E(k4)
Ve + 2 RA(E) + 22(¢) + 2apR(¢) K

Yuire(p,€) =

It must be noted that the z here refers to the distance from the antenna
location. Therefore z — (2 — 2an:), Where zap: i6 the z-location of the dipole loop
antenna. z = 0 is the center of the machine where the slope of the axial magnetic

field is zero. The equation for ¥,;.. then becomes

Toire(py£) = 4polapR(§) [(2 — k3)K (k4) — 2E(k,,)]

Va? + P R2(€) + [2(€) — 2ams]” + 2apR(£) K
(3.13)

and

kz —_ 4GPR(£)
47 a2+ pPR(E) + [2(€) — zame]” + 20pR(E)
Figure 3-3 shows a 3-d plot of the ¥ computed for a dipole loop in vacuum.

There is no plasma present in this calculation. The fall-off in the EM field far

away from the antenna (r >> a) scales as 1/r3, where r, is the distance from the
observer to the center of the wire loop.

The Fourier transform of ¥ is then given by

Buielp ) = [ el )
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Figure 3-3: yire(p,£) in vacuum for the dipole current source described in this
chapter and given by Equation 3.17. There is no plasma present in this geometry.
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3.5 Vacuum Fields

In this section, the natural mode oscillations of the EM fields in the bounded
plasma-vacuum system will be solved. The method of solution is straight forward
except that the changing radius of the plasma-vacuum interface and the presence
of a conducting wall dictate a coordinate transformation in order to simplify the
boundary conditions.

In the vacuum region, assume the following fields exist

E = Ey4é
B = B.é, + Bié,
B = VxA
8A
E=-%
A = A
Define
v = T‘Aa
where
U = Je ™! [Wyire(r, 2) + Ty
Then
B = V‘I'r" % (3.14)
8A  iw¥
E = —E = —;—-eo (3.15)
In vacuum,
VxB=Vx (W'r”‘) = pod = 0

It can be shown that this results in

~( 8108 52
6 (TE;;E‘I‘V + 5;\11‘,) =0
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where ¥y is regular everywhere since the source term has ben explicitly separated

out.

3.5.1 Change of Variable

A change of variable is necessary to simplify the boundary. Because the plasma
radius is changing axially by a finite amount, the cylindrical geometry poses dif-
ficulties when matching fields across the boundary. Therefore a new set of co-
ordinates is introduced here with the strict purpose of simplifying the boundary
conditions.

Let

T ’

=R

N
i
N

where R(z) is the plasma-vacuum boundary. The desired boundary conditions are
1. p=1 at the plasma-vacuum interface r = R(z)

2. p = = = k=constant at the vacuum chamber wal.

e

A major assumption is made here that the radius of the conducting wall
scales with the radius of the plasma column. This is not an unrealistic
assumption since the vacuum chamber necks down in the mirror region of our
experimental device as seen in Figure 3-2. This assumption greatly simplifies
the location of the boundaries: p = 1 at the plasma-vacuum interface and p =
k=constant at the vacuum chamber wall.

Carrying out the transformation leads to

8 8 8o

8z~ 82 E@p

016 1 616
Brrdr  Ri(z) Bppbp
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o in & o ,8

& "2 y
5;’-_-87'5-*-@) B’+ 0p6z’+8z’p0p

=
T 6z

We then have the following differential equation for ¥y
& ,8 1 818 } Ty =0

5
Nna
{82" +(¢) ap +# Opbz' Bz’p Op + R’(z)PBpp Op

Now assume that p’ is small compared to the field variation, i.e.
Pkl

This is a good approximation for the experiment where p' ~ a/L ~ 10cm/400cm «
1 and is known as the slow-z approximation. In this limit, the differential equa-

tion becomes

86° 1 6108
a2 TR Bpp e

Now make a second substitution of variable (essentially a stretching trans-

formation in z)

dz’
P - P ) d£ R(Z )
This results in
82 8108
2 — -—
F@)gm = Foraet
1% — ng_}zﬂ\p
TS R 8¢
-~ 8%y
> o &
The differential equation is
618 62 )
P%;a—p‘l’v + —O?WV =0(p')~0

Because the vacuum and plasma fields satisfy different differential equations,

it is obvious that the natural z-dependence of the plasma and vacuum fields are
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Wl Miﬁ‘fiix

also different. Since the plasma-vacuum interfacs varies with z, the boundary
conditions are treated by performing a Fourier transform on both the plasma and
vacuum fields. The boundary conditions are then matched in Fourier space and
the resulting fields are then inverse Fourier transformed to produce the EM fields
in real space. This operation essentially yields field coefficients that are functions
of z which are tailored to the boundary condition of the particular plasma-vacuum
system.

Take the Fourier Transform

By (p he) = [ v (o, )t

The differential equation then becomes

8180 . s

———Uy — kWy = 3.16
Define:

10 .
U= ;-B—P\I’V |

and taking the derivative of Equation 3.20 with respect to p yields

18 0

= p—U — kKU =

pappapU U =0

The solution to this is the I, and the K, Bessel Funtions. Solving for ¥y: Equation

3.20 becomes

Is ) A
p-é—;U=kg\Ilv
5, - PO
by = kgapU
p 0

X2 Bp (a1lo(kep) + azKo(kep))

k .
= Bk—:' [a1 11 (kep) + a2 K1(kep))
;

Therefore
(ke'f_)) +Cz(k:)pK1(ch) (317)



Equation 3.21 will be used in the boundary conditions at p = 1 and p = x. The
two unknowns ¢, (k¢) and ca(k¢) in this equation will be completely solved by the

boundary conditions to fully determine the vacuum field.
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3.6 Boundary Condition

The boundary conditions for this geometry are relatively simple because of the
changes of variables that were made. Two boundaries exist in this geometry: at
the wall (p = &), and at the vacuum-plasma interface (p = 1). These boundary

conditions are discussed in detail in Appendix E.1 and are summarized below

3.6.1 Boundary I: Vacuum chamber wall p =&

At p = k, the tangential electric field E;an is zero.

The Fourier-transformed vacuum ¥y is then shown to be

\i’V(p’ kf) = —I%;((%'%Anp - (g) %E{—:Tl:%‘i’un‘re(n’ kf)

The total ¥ is given by ¥ = (¥, + Pyire)
A% (p) Ki(kep) & 3
= k " [T ——— wire k wire 1k
v cl( E)Kl(keﬁ) K, Kl(kgﬂ)‘ll (K’ E)+‘I‘ (P €)
where A, is defined as

D p = Ki(ker)h(kep) — I(ker) Ko (kep) (3.18)
Dy = K (ker) I (kep) — I (ker) K (kep) (3.19)
and
L(z) = dI;i") and  Kj(z) = i’%z—)

3.6.2 Boundary II: Plasma Vacuum Interface p=1

Two conditions exist at the plasma-vacuum interface boundary : E,,, is continu-
ous; B},,. is continous.
Eian continuous, Bian continuous.

Using the continuity of the fields across the plasma-vacuum boundary, the

Fourier-transformed plasma $,, is found to be

3 . 2F,
¢p(a= ke) = - > "—@_G - 2 ] (3.20)



where o is the perpendicular wave number of the plasma field whose derivation

will be detailed in the next section, and

ﬁ'(p,ke) = Kl(kfn) (3'21)
Slok) = ~ () piDtuwnlrib) + Vulok) (322

The complete solution of the plasma field quantity $p as a function of the
parallel Fourier wave number k; and perpendicular wave number a is then known.
Once cf), is determined, the self-consistent Maxwell’s equations in plasma are then
solved to yield a complete set of x, and <2>, and the ICRF EM fields can then be

completely determined.

3.6.3 Curve fitting to Tyi(p = 1,£) and 8¥,;../8p for

semi-analytical Fourier Transform

The values of ¥ ;..(p = 1,£) and 8¥,;../0p can be found from the previous
section. It is possible to simply do a numerical FFT transform of those functions
to obtain W(p = 1,k) and 8¥/8p, but the resolution of such a transform can
be limiting. Therefore it is desirable to fit a curve to the two functions that can
facilitate a simple analytical Fourier transform.

Choose a fitting function ¥y, to model the actual ¥oqua of the wire dipole

source as :

1+ ()]

The following steps can then be taken to minimize the error in this fit and find

V(€)= i [ltal—6)+alE-6)]  (329)

the resulting c;, ¢z, A and £, as a result of this error minimization.

1. Find £, from the maximum point of ¥ouua(p = 1,€)

2. Select A by examining the half-width of ¥ ...
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3. Define the error €

= /_ : (Yactuat(€) — ¥ 1ir)* dé

4. Minimize the error ¢ and determine ¢; and ¢, completely

The details of these derivations are given in Appendix E.2. Using the methoad
outlined above, a sample curve fit to a given dipole current source is computed
and presented on Figure 3-4. It is seen that some discrepancies between ¥4 and
Wyire do exist but in general there is good agreement between the fit and the
actual dipole loop generated ¥;,..
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PS1, PSIFIT (RHO-1]

39.0

25.0
]

PS1, PSIFIT
2?.0

1? '0

X1

Figure 3-4: ¥ and ¥y, for a dipole current source evaluated at different {’s along
the plasma radius (p = 1). The solid line is the computed curve for the source
term ¥ ire, the line with the open circles is the best-fit curve ¥y, obtained using
error minimization.
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Fourier Transform of the fitting function Wy, (¢)
Given that c,, 2, A and §,, are known, the Fourier transform of ¥4, can then

be found analytically by

rielhe) = [~ wpu()emeta

- oo 1] ,
Urie(ke) = 2 14 e1(€ — €uw) + ca(€ — £,)?] et

1’!{3

= ‘I’As tkgfw/ m[l+c;z+c:z]dx
where
T= (f - fw)

since

" = cos(a) + isin(a)

Upi = Yol Petkebn / > cos(kez) + isin(kez)

2
—00 [A2 + mz]s/z [1 +az + cx ] dz

Examining the cosine integral first

— [= cos(kex)
Icm = / w[1+clm+cgm]

®  cos(kex
[ i i+ e

cos(kex 2
2 By i ::z]z/z [1+ exa’] do

where the z term has been dropped because its oddness results in its integral

being zero.

From Gradshteyn & Ryzhik [62], it is seen that

% 22™ cos(ax)dz —1)"/m d2 —{a"K,.(aB)}

— =
0 (B?4z2)n+: ongep (’n + ;}
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The I, integral can then be shown to be

£
Lo = 3 Afltg ) {kng(kEA) - gg ,kfl(,(kgA)]}

The sin component of the integral is given by

_ [~ isin(kez)

Lin = / A2+ ;2]5/2
% g sin(kex

= / [Z;T(-%]s)? [cla:] dz

9 / zsm(kf:n)

(A + 222 [arz]dz

[1 + ez + ngz] dz

where the 1 + c,z? term in the integral has been dropped because of its odd
property when multiplied by the sine component.
From Gradshteyn,

o g?mH gin(az)dz  (-1)"*'ym &L
./o (ﬂz +mz)ﬂ+% - ﬁnl“( %) d 2m+1 ["' K,,(aﬂ)]

It can therefore be shown that

2zc1\/_ d .,
Lin = 4A2P(5/2) dk [kaZ(kEA)]

The Fourier transform of the fitting function can then be given by

d

W A® . : &
0l v {k:Kz(kEA) —ies g [k Ka(ked)] - i [k?"z(ka)]}

B pie(ke) =

where the identity I'(5/2) = 2I'(1/2) = 2,/r was used. Also using the identity
(Abramowitz & Stegun)

™K (z) = e VK, (2) — Z—e"""K,,(z)

It is then easily shown that

d

o (K K(a)) = —keaK, (a)
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/., 2
:ik_? (k5K2(a)) = —aKl(a) +a KO(a)

where here a 1s defined as

a.EkeA

So ¥4, can be seen to be

2¥,A3

U pie(ke) = 3

etebe (12K, (a) + ic kZAK: () + 3 [AkeKy (a) — (Oke)*Ko(a)] }
(3.24)
From the above equation, both an oscillatory component e™*¢~ and decaying
components K,(ke/\) are apparent. The resulting W ;;(k¢) is computed and given
on Figure 3-5. It is seen that the source term decays off from a peak at k; = 0
to almost negligible values beyond k¢ ~ 5. This sets the approximate upper
and lower bounds on the range of k¢ which are important to the solution of this

problem.
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PSIWIRE (KX1)

-3.0

-4.0

FFT OF PSI(RHO-1)

Figure 3-5: Fourier Transform of ¥y, for a Dipole Current Source. ¥y;; is com-
puted using Equation 3.28. Note that ¥ (k) falls off to negligible levels for k¢ > 5.
This sets the upper bound on the range of interest of k.
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3.7 Plasma Fields

This section will present and solve the ICRF EM fields in the plasma medium. The
same techniques presented in the previous section for coordinate transformation
from (7, 2) to (p,€) is used to treat the plasma fields. Special residue calculus
techniques are employed to treat the resonance poles that occur as w — wy.
The resulting two coupled integral equations are solved simultaneously by linear
algebra techniques and a figure of merit is introduced and computed. Using this
method, several parametric scans are also performed.

The fundamental equetions used are Maxwell’s equation:

VxE:—%?—zwﬁ

Vx§=§%+ml=—i§g E
where
K, K, 0
K=|-K, K, 0
0 0 K,

Using Assumption 1 (m = 0), it is seen that

VxVE = err

T8z |0z " or 5z\" 06z ) brr 6r Bz

= K [#(K:\E, + K2Eo) + §(— K1 E, + K1 Eo) + 3E,|

Matching the different components yield

o o 8
—ﬁE 9z arEz = kg(KlEr+K2EO) (3.25)
OPE, 01808
- Bz: Brr 5’,.'( rEs) = ky(—K2E, + K1 Ey) (3.26)
é%"%E l,f, :;E = kK:E, (3.27)
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Using Assumption 3 (E, < E, ), the following is obtained

62

- -B_z—’E' = k3 (KiE, + K, E,) (3.28)
8%E 8186
- 3z28 - E;E(TEH) = k3(—KE, + K\ Ey) (3.29)
Define:
Ea = iwﬁ
r
Ty

where ¢, and x, are now the dependent variables. This substitution is made
in order to allow matching to the corresponding vacuum solutions across the
boundary.

The differential equations then become

82
—FaXe = k3(Kixp + Kadyp)

H? 818
__0?4)” — 7'5;;5;(¢P) = kg(“'KL’Xp + K1¢P)

3.7.1 Change of Variable

In order to produce a set of simple boundary conditions for a plasma cylinder
of varying radius, a change of variables is required. This change of variables is
performed to specifically treat the problem of the changing radius.

Select the following change of variables:

r

?= R(y)

r=R(y)p =

z=y = y=1=z

where R(y) is the y dependent radius of the plasma boundary. This choice con-

veniently sets the plasma-vacuum boundary at p = 1 and results in the partial
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By the same token, the second derivatives are seen to be

# 1 &
6r2 — R*(y) Op

i o[ p,,0 8
= = 5|5t

1] 2 N2 a2 - N 2
_ & 2R(y) 8 +(pR) i} (R)p@

5 R ooy \E) 87 \E) "5

Recall that 5
BRIy ™ ETn
Slow-z Approximation
Because the magnetic field is assumed to be a slowly varying function of z,

it can be easily shcwn that the wave number of the ICRF waves in plasma is
much larger than the inverse of the field variation scaling length, in other words
)y € Lp, where Lp is the field variation scaling length. This is because the
elements of the plasma dielectric tensor have a much faster axial variation than
the field when resonance is approached. Therefore terms with % and p% can
be dropped in the 82/8z? equation.

o 52 pR'\? &

agzzayz'*( R) 82
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The basic equations reduce to

ol
gy';xp + k3 Kixp + ki Kagp = 0
6 1 8
8‘y’¢‘° Ig’ 8p 3 % + k2K1¢p kgKﬁxp =0

The equations can be further simplified by a stretching transformation on y,
defined by

dy
%= ")
This yields
5 618
Bz = Rocrae
_ & _wRo
T ¢ R 8¢
. &
~ 3@
The differential equations then become
ario + BHKuma(€)% + RKaral€)dy = 0 (3.30)
610 2 2
¢z d’P + pa _"'4’9 + kg K1pa(€)dp — kg Kara(€)xp = 0 (3.31)
where
Kir(§) = Ki(ORYE) ;  Kam(€) = K2(6)R(€)

This is the desired from of the differential equations. These equations are
now solved by a combination of techniques involving separation of variables and

Fourier analysis.

Fourier Analysis

Define the Fourier transforms Jap, Xp, and f(l,mg as

Bolorke) = [ ™ y(p, )it
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Xp(Py ke) = f e xp(p, €)dt

Kiara(ke) = [ € R2(€) [K1(€), Ka(€)] ¢

After performing the Fourier transform, equations 3.34 and 3.35 become

- kg;ép(‘% k{) +

+ J Kapa(ke — kL), (, kt)dk,

816 )3 + ] Runalke — k2)d, (p, K2)dk!
(‘k? - P'g““g—%) bplpr ke) + k5 .1 f):" ‘e =0
pPOP — I Kzra(ke — k)X, (p, kg )dke
(3.33)
The method of separation of variables can be employed to solve the above

equations The radial dependence of &,, Xp is found by assuming solutions of the

form:

8180 , 27
P%;g;qsp‘_a @p

where « is a separation constant.

The radial solution to the above differential equation is pJ; (ap). Thus, we can

write

Bo(pr ke) = B, (s ke)pdi (ap)

)ACp(Pa k{) = ;Zp(ai kE)PJI (aP)

The differential equations for ¢, and x, then can be written as

(3.34)

N + f Kira(ke — kL) Xp(a, Kt )dk,
- fxp(a,kc)‘l'kg( 1 ErT T =0

+ f Kapa (ke — kt), (o, kt)dky
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+J Kipa(ke — k) (o, k) dky

(=K% — o®)d,(cx, ke) + K2 . . ,
. — I Kara (ke — kg)xp(x, kg )dkg

) =0  (3.35)

where the pJ,(ap) term is common tc all terms and is simply dropped.
Equations 3.36 and 3.37 are a set of coupled integral equations where the
integral terms arise because of the z-dependence of the equilibrium. We will
see that ¢, is explicitly determined from the boundary conditions. Cne of the
equations is used to eliminate x, in terms of ¢,, the other equation then gives the

dispersion relation” a = a(ke)

3.7.2 Fourier Transform of Kz and Kops terms

The evaluation of the transformed functions of K;g, and K;g, is now addressed.
In order to allow for a rapidly converging Fourier series, a series of steps are taken
as listed below.
A. Subtraction of infinity value

Recall Equations 3.34 and 3.35 and rewrite K g, and K,g, as follows

kiKipe = k3Ki(€)R*(€)
= kIK,(£)R*(€) — k2K oo R2, +k3K1,°°R§°

\—

I

KKpe = KK(€)R*(€)
= k2K (£)R*(£) — KKz, RZ, +k3 K> 00 R2,

v

I

The subtraction of the values of K> and K2gs as £ — oo implies that the
term (I) in the functions Kigrs, Ka2re converges to zero as £ — oco. This results
in a rapid convergence of the integrals containing the (I) terth. The remaining

constant term is integrated analytically.
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Recalling that K; = S, K, = —iD in conventional dispersion terms, and
taking the same Fourier transform as defined before, the transformed differential

equations 3.34 and 3.35 become

+ f Sralke — k) xp(x, L)dk}
\ —i [ Dro(ke — K.)d, (o, kL )dk,
~ Mgl k) + 4| DR RIBORIR | o (age)
+SNXp(aik€)

—iDoodp(, k)

+ 1 Sralke — K) By K )
i Dpalke — K)Rple Kk

(—k2 — ), (e ke) + k2 X =0 (337)
i ° +Soo¢p(a’ kf)
+tiip(ai kf)

where
Snalke) = [ €€ [RA(€)K1(€) — R Kioo]
Dra(ke) = [ €*¢ [R(€)Kal(€) — RiKaeo] dé
Sw = RiKh,o

Doo = zRﬁngm

B. Pole Removal

The second step in obtaining a rapidly converging Fourier Series of K,p, and
K,p, involves the analytic removal of the pole in Sre and Dg, as w — ;. This
results in a smooth function across the singularity which again leads to a faster
convergence of the Fourier series. The peaked function which is subtracted is then
transformed analytically by Residue Calculus [53].

Recall that in the sharp boundary model, the magnetic flux through a circle
of radius R is given by

& = B(z)R?*(z) = constant
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Using the conservation of magnetic flux, the cyclotron frequency can be expressed

as

where R, is the radius at the location of the w = w, resonance.

Writing K g, and K,g. out fully

Ko = RO [1 - g2

w? — W + 2w

2

K2R2 = _sz(e) [ Wpiei ]

w(w? — Wi + 2ivw)

The resonant portion of both K)g; and K,g; are:

1
R= w? — wk + 2ivw
Substituting for w? yields
R
R = w?R* — w?R: + 2ivw R4 (3.38)
R /w?

~ RY-Ri+2:RS (3.39)

To proceed further, we specify a function R(£) that conforms to the geomeiry

of the system.
Selection of z(£), R(¢)

The function z({) must conform to the following conditions

1. As§£ — 0, R(z) » R
2. As £ — o0, R(z) = R

3. At§ =&, Ry = 3(Ro+ Rw)
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where R, is the radius at 2 =0, Ry is the radius at » —, oo, and §; the ¢ at which

the plasma radius is half way between R, and R..

Select the following function to model the experimental situatijon

_ ¢+ cf?
MO =Tiee

Using the first two conditions listed above yields

R(¢) = ot el

1+ csé?
and
Rearranging R(¢§) yields
RE)= 2 l= i g,
The third condition given above yields
W1
T
This results in 4
R(f) = R + o~ Bw (3.40)

1

which is the desired expression for R(£). Now consider z(€). From the defini-

tion of ¢, it is seen that

_d
R

Then z as a function of £ can be found by

dz = R(€)d

or

0= Rt + 6o Rt (£) (3.41)

1
The computed results of R(£) and z(¢) are plotted on Figure 3-6. Note that £

is very similar to z except at the origin.
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The Resonance Function
Now recall that the resonance location is given by R = R,,. The £ location of

resonance is given by

Ro R
R= ==
Ro=Re + 175
Ro — R,

> =6 (——R., — R,,) (3.42)

If we recall that R is given in Equation 3.43 by

R*/w?

R R R ik

then this can be rewritten as

=%
R= e+
where c; is a constant, and
O =1- 22
T RY(§)
T w

The constant of proportionality co will be ignored for now as we examine the

¢ dependence of R. Therefore let

_ 1
R=To i

Using a Taylor expansion for R near resonance

1
T fAE)E + fi(€)E +ie

and assuming a subtracting function of the form

%

1
N 3 3.43
s (1 4 ec1) fé€ + 1e(1 + cz¢) (3.43)

then P )
__g' (62 - 26661 f“ 2"' 1 )

R

'R.—'R.mb:
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Figure 3-6: R(¢) and 2(£) for geometry modeled in analysis as given by Equations
3.44 and 3.45
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where

£=€a
4R 6R
= RO O |,
4 0
= E;'a_fR(f Ea)
v _ 0 (1_ Ry )
¢ = 56 "B ) e,

— -20 Q_@)z + _.4_._012_@
= 5

It is assumed here that f} # 0, i.e. the resonance does not occur at the exact
center of the machine. The case of f} = 0 is treated shortly.
If we select ¢, and c, such that the coefficients of £ and ¢? are equal in the

numerator and denominator,
. £t
—1

- (R

(4]

= i
2fe)?

It is seen that in the limit of § — 0,

C

(R — Ruus) = — =30
(R~ el = 3y

and is finite.
The entire R,., must then contain two portions, one taking care of the singu-

larity at £ = +£., the other eliminating the poie at £ = —§,, in other words

1 1
~f ~

S +
(1+ ecn) fo€ + ie(1 + erze) 1+ Cczl)foé + 2€(1 + ca2€)

R =
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where

~

E=€—¢€a
E=6+éa

f(; = f(ll(£ = +£a)
Fo= £(E = —€a)

So the actual subtracted peak function are

Se(f) = Ri_“"z"[ . . ]

- +
2 . ~a
W fektie il +ie
—w?.
- :;’”R:,R.u,,

2. 1 1
Dmb(f) = Riw,‘:‘: e L + XN
fol +ie  fo€+ie
= “’3“;’“ RRop~ f—%RﬁRM
W w

The Fourier transform of S,., and D,,; are then seen to be

2. ~
% R2 R s (k)

w

Seu(ke) =

2
~ (79 ~
Dyus(ke) = —3 RaReus (ke)

/00 eik(fdg +‘/\oo i eik(fdf

= X ]
-0 fo(§ —&a) +ie Voo f (e 4] +ie
oo eikcadm +e—ik‘€° /oo eikemldzl

2 ; =7
- foz +ie T fox! + i€

R (k)

= etketa

where
z={—¢a ) ' =€ —¢a
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and
4 dR({ = £a)

f°=R,, & <0
% _ igR(f = "'Ea)

Depending on the sign of k¢, the £-integral will be closed in either the upper
half of the complex £ plane or the lower half.

1. k¢ > 0 - For k¢ > 0, the £-integral would be closed in the upper half plane
and includes only the ¢ = £, — ie/f} root. The resulting R, is then

R = _7_"% eikeba ghee/ )
0
2. k¢ < 0 - For k¢ < 0, the {-integral is closed in the lower half {-plane and
includes only the § = —§,—1¢/ }:, root. Because the integral path is reversed,
the resulting R, is

n —ar2 . Al
Res = -71,'2e""“e“ek‘e/fo

fo
. ~t
Typical order of magnitude estimates of ¢ and fj, f, show that
R -1
e~10"°  fl~-02 ; fo~+0.2

From the Fourier spectrum of the best-fit curve of the source term ¥, on Figure
3-5, it is seen that the range of k, that is relevant to this problem is approximately

ke < 5. In other words

etk ~ 1

Therefore

kg >0=> 'fZ,.,,,(kE) o~ %ei’*‘“
1]

kf <0= ﬁaub(kf) o~ %@e_ihee“
fo
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EIm

K& >0
E=Eo-ie/f0'E=Eq)
N\ ERe
\ E=—Ea—ie/f0'(E=-Ea)
EIm
KE<O A
E=La—ie/f0'(E=Eq)
ERe

E=—Ea—ie/f0'(E=-Eq)

Figure 3-7: Residue integral path used in the extraction of poles of K;g, and

K2r2. Top case is for ke > 0, Bottom is for ke < 0. Note that different poles are
inside the contour path for each case.
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R.. for resonance at center of machine

If the resonance should occur at the EXACT center of the machine, this implies
the slope of R is zero. The old expansion and R and R, is no longer valid.
Therefore a special set of formulation is required to handle this case.

Taking the Taylor series expansion of R for fj = 0 and f}"” = 0 in a symmetric

machine yields

R~ 1
RS+ VS e
Selecting the following subtraction function

1
(1+ ecl)f,;- + i€(1 + ecy)

R.Ub = "
(1}

then leads to
(%) 6 - B eagr - im]

R — ,
f\2 . fugs &
('g') [f“ + 216(—)?5;75 - 4@5]
-1 fIV
and (R — Rawble_yo = ?(;:)T)z
Equating the coefficients of £ yields
—1 ({V
G = —-”—5
6(fs)
—1 ({V
Co = —;,'—2
6(fq)
The transform of this fitting function is then
R:ub(kf) - [m a1£2+b1
1 e etkel dg
- a; J-oo 62 + ;bt
1 eik¢£d£
a oo (i) (€ +i2)

o e 11
B 2a1\/§/e¢df[5_\/§— £+\/E]
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where

a

"
-21(1 + €c;)

(,)' IV
= F (- ialp) <0

a=—a; >0

by = el +ecy)
IV
- (l - ‘6(f~>2)

The poles and the contour integral paths for k¢ > 0 and k; < 0 are plotted on

Figure 3-8. From the residue contours, it is seen that

n ) i b
kf >0= Rmb(kf) = T k‘\/;?

2a1\/£_’1:c

o —1 —ik. S
kg <0= Rmb(ke) = il e ke ;‘;
201 i‘;

The negative sign for the k¢ < 0 case is due to the reversed direction of the integral

contour.

In the limit of ¢ — 0, b; — 0 and it can be shown that

o=+
ke > 0= R 2( f,,)l/z
- 41 +3)m
kf <0=>R,w > ( f”)1/2
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EIm

K& >0

v E=(1+i)(e/f0"W(1/2)

X

/ B ERe

E=—(1+i)(&/f0")(1/2)

EIm
KE<O A

E=(1+)E/0"YN(1/2)

R -

E=—(1+i)(&/f0"YN(1/2)

Figure 3-8: Residue integral path used in the extraction of poles of K, and K,p,
for the case of resonance at § = 0. Top case is for ke > 0, Bottom is for ke < 0.
Note that different poles are inside the contour path for each case.
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Substituting these results into the basic equations yield

+J [Sem(ke — k) + Sk — k2)] Rp(e, ki )k

A —i [ | Dy (ke — k) + Do (ke — k)| . (, ki)dK:

Kook + | T (Do = KO Dualle = kO byl B | _
+S°°Xp(a1k5)

_iDacQ;p(aa kE)

(Sl — kL) + Suus (e — k)] Bt k)l
i [Dam(ke ~ k) + D (ke ~ k)] Rplex, kg
+ Sy, ke)

+iDooXp(, ke)

(—k2=®)y (0, k) + k2

where

Sra(he — k) = [Sum(he — k) + Smalhe — K]

Dra(ke — k) = [Dam (ke — k) + Do (ke — k)]

S,., and ]..7,‘,,, are the Fourier transforms of the subtracted terms whose kernals
are derived in this section and seen in Equation 3.47. S, and D,,, are the smooth

functions that result after subtracting out the S’,.,;,, ﬁmb terms from S 'R2 and ﬁm.
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3.7.3 Solution of Coupled Integral Equations

By the procedure outlined in the previous section, it is possible to find the Fourier
transforms Sg, and Dg,. These would then, in principle, allow for the solution of
the coupled integral equations given by Equations 3.40 and 3.41. The unknowns
are o and )A”(p. Note that ;Sp is found from the boundary condition and is given by

Equation 3.24.
Method of Solution

The two equations involved are

2 =i | Dom (ke = k¢) + Dius (ke — ki “a,kdk
_k?)zp(aa kf) + kg 2 [ ( ¢ €) 'ub( ¢ 5 ] ¢ E) (3 . 0
+Sggxp(a, ke)
~iDoo Py, ke)
+ [umle — kE) + Suus(Re — k2] by, Ktk
[ em (ke — k&) + Daus (ke — kt)] x,(a, ki) dk{
+S°°¢p(a, k{)
+iDooXp e, ke)

(—kZ—a?)¢,(cx, ke) +kd

We solve the two coupled integral equations by a simple finite differencing
procedure

Let
ki=k ky = kg

xi = xp(a(k;), ki)
éit = dp(alk;), ki)
Si-t = [Som(ks — k) + Swus(ks — k)]
D1 = [Dum(ks — k) + Dous (k5 — b))
The equations above then become
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— kix;i + k3 [E Si—ixalk —1Y Dj-t¢thkz] + k3 (ScoXjj — 1Daotpj;) = 0
1 1
(3.44)

—(Kj+af)ds;+ kg [E Sibalk+4i3 Da'—tXﬂAkz] +k3 (Seois +iDooXs5) = 0
1 [

(3.45)

The steps to be followed to solve these two coupled difference equations are as

follows:

1. Pick an array of k;, k2...k,

2. Focus on a particular longitudinal wave number k; and corresponding per-
pendicular wavenumber a; which is as yet unknown. An initial guess for
a; is determined by using Equations 3.34 and 3.35 and letting 5855 = —k?.
The resulting equations can then be simultaneously be solved to yield a; in

terms of k; and is seen to be

kiD2

af = —-k? + kS, + m

3. Solve for ¢; array using Equation 3.24

4. Substitute o, k;’s, and ¢; array into Equation 3.48 to obtain the matrix

equation for x;

M-x=ba

5. Calculate x;. The procedure selected for solving the system of simultaneous
linear equations is the LU-decomposition method as outlined by Press et al.

in Numerical Recipes [54].

The matrix representation of the problem is

111



- -
Z=0b

I

If A is represented by A = L - U, then

A-Z=(L-U)-g=L-(U-%)

]

L-y=5b
Vector i can first be solved from

L-y=5
and then the vector Z can be solved from

U-z2=y9

The advantage of this method is that L is a matrix that has nonzero elements
on the diagonal and below, while U is a matrix that has nonzero elements on
the diagonal and above. This makes the forward and backward substitution

required very simple to implement.

. Substitute x; into Equation 3.49 to iterate for new ;. If we rewrite Equa-

tion 3.49 as

— (K2 + a3)¢jj + k3Ca + kg (Seois + iDaox35) = 0

then the following equation is obtained for o;:

b3 bij

. Reiterate to step 3 until convergence is obtained.

(3.46)

. Pick the next longitudinal wave number k;;; and continue starting with

Step 2
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9. Regenerate ICRF EM fields by inverse Fourier transform. After solving for
the a; that corresponds to each kg;, the resulting arrays of ¢ and x can then

be obtained. The plasma electric fields can then be found by

Eolp, ke) = Bo(a, ke)pi(ap) = i pJi(ap)

( a, ke)
r

. N B ACN

E,(p, k) = Ev(, ke)pi (ap) = i’ (r E)pr(aP)

The ICRF EM fields as a function of (p,£) is found by inverse Fourier-

transforming to yield

1 7 -
Eo(p,€) = o / E(P,kee "e‘dke

= p(0y ke )pJi (ap)e™ ¢ dig

27rpR(£)
-2 z}‘:(f) ¢p(a,k€).]1(ap)e_'k“dk
1 foo . .
Epf) = 5 /_ E(p, ke)e™ ¢ dky
= 21rpR (€) J- xp(a,ke)pr(ap)e el kg
R

iwB,(p,f) = VxE

. 16rE, IBE,__(:)_i
wB.(pd) = 15" "8 = 7 or
=0
- W 8¢P(P7£)
PR(G)R(E) Op
BUpi€) = ey s 9wl 00 o0)
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_ 2% /_: -y dk‘%:f’;e) [a J(ap) + Jl(:P)

1 % ik}
2w R2(€) [_ e ®o( e, ke)ado(ap)dk,

In evaluating these integral, it is implicitly assumed that a = a(k¢) has been

determined as described above.
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3.7.4 Alternative Method of Solution of o

Equation 3.48 can be expressed as a matrix equation

A x=4,'9¢

Then x can be expressed as

x=(4;"4,) ¢

The second coupled matrix equation (Equation 3.49) can then be written as

(k25w — k2 — 03) 5 + BAKSim - ¢ + ikiDwo(é5- A7+ 4,) ¢
+ ik} AkiDjmi - (A7 44) ¢=0

where
A (i,3) = (—k2 + K2S)8(i — 5) + KSi; 0k
A,(i,3) = i Deb(i — ) + iR Dy ARy

It can be seen that both é and _4¢ are independent of . Therefore they
only have to be calculated once when searching for the optimum a. Therefore an
iteration for o using the second coupled matrix equation given above is the only
step necessary for solving the perpendicular mode o that corresponds to each k.

The rational for using an alternative method of solution of the coupled equa-
tions is to speed up the calculations. Instead of performing two sets of matrix
operations, this alternative method performs one set of matrix inversion at the
onset of calculations, and subsequently requires only one set of matrix operation
to solve the a;, x;, and ¢;. Implementation of this scheme on the CRAY resulted

in a 10 fold increase in speed.
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3.7.5 Figure of Merit Calculation

The figure of merit to be used in the cylindrical geometry case is one that is
commonly used in literature [55, 56, 57, 58] to determine optimal coupling, namely
the antenna impedence. It can be easily shown [59, 44] that the absorbed power

is calculated by
P= %Re/E_‘-,l‘dV
The volume integral in cylindrical geometry can be expressed in terms of the
(p,€) coordinate as follows:
% &

9z 8z
8 8p

dV = rdrdzdf = pR(§) dpdfdo
N’

r

where
dz=R(§)dE 3 r=pR()
After some algebra, it is seen that
dV = pR®(£)dpdé df
Thus the power absorption integral becomes
P = %Re/ﬁ-l‘dV
= Re [ T2E(p,8)- (K() - L) - E" (o, £)pR¥(€)dpie

Hoc?
Expressing E and J in terms of their Fourier coefficient:

—imw | pR(E) [E(oy ke)e ¢ pJi(ap)] - [K'(€) — L] ,
P =Re / / f / e { (B ke i) dkedk,dpde

Expanding the dielectric tensor yields
= P s ; = ® o [ p8( gy —itlg—kl) 7¢ |
P = Re/p:o P Jl(ap)Jl(ap)dp[_mdkg_/;w dk,_,/_mR (€)e Ode

Er(a, ke) [(S(€) — 1) En(o, k) — iD(€) Eo(!, k)] +
Eg(a, ke) [iD(€)E.(o!, k) + (S(6) — 1) Eo(, k)] +
Ez(a’ ké)[(P(E) - I)Ez(a,’ ké)]‘
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Again the last term involving E, is dropped because E, is much smaller than
E., E,.
Recall that .
Ev(p,€) = === Xs(p:€)
pR(E)™.

PR(£)

The absorbed power can then be expressed in terms of x and ¢

EB(P’E) = ¢P(pa€)

P = ":‘:"Re ./:_—.o ~ipdi(ap)a(etp)dp [ dke [ dky [~ R(g)emi kMGt
{ xola ke) [(8(6) = 1xp(es k) — iD(€)pl' k)] + }

do(cs ke) [iD(E)xp(es k) + (S(€) — 1)pled’, k)]

Two types of { integrals have to be performed:

Lia) = [ eRE)[S°(6) - 1)

I@)= [ ™R(E)D(E)

where a in this case is simply kg — k.

This transform is similar to what was calculated previously with the Fourier
transform of R%(£)S(¢) and R%*(¢)D(€). The same procedure for obtaining the
Fourier transform of R2D, S as outlined in the previous section is employed.

Define the following transformed functions

Sm(@)= [~ RE)(S(6) - 1]t
Du(e) = [ : R(€)D* (£)e™¢dg

ansm = R(oo) [S"'(oo) - 1]
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Kawpm = R(oo)D‘(oo)

and using the well-known identity

/_: e“*?dz = §(a)

The equation for the absorbed power then becomes

2 ) -]
P = ”zz“’Re / ' ipdi(ap)di(cp)dp / dke / dk;
{ [Sra (K — ke) + KRaosoo8(kg — ke)] [xplos ke)xp(es k) + dp(cx, ke)dp(es kE)] + }

[IDm(kg — k¢) + 1K RooDeob (kg — ke)] [XP(Q) ke)dbg (e, k) — do(c, ke)xp(a, k)

The above equation can be separated into two components: P = P, + P,

mhiw /1 2 oo
= d dk
P R A (ap)dp f_ _ ke

{ Kreosoo [[Xe(et, ke)? + 165(cr ko) ] }
+1K RooDoo [Xp(a7 kf)qs‘(a’ kf) - ¢P(a’ kf)X‘(a’ kf)]

wkgw

P = Im/ pJ1(ap)ti(a'p) dp/ dkf‘/ dky -

{ Sm(ke — K2) [xplan ee)xa(ed's k) + ol ke )y, k)] }
+iDpy (ke — kg) [xo(cn ke)d5(, k) — ol ke)xp(, k)]

It can be shown that

[paiep)ip = = [(ap)Tiap)dlar)
1

= — [z
= 2 {2 (Jo(z)+J1(z))—zJo(z)J1(Z)}

o2
Therefore
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{5 Ma(@) + 73] - ool )]

o

1
fo pJi(ap)dp =

P, is seen to be

T

P = ﬁ'iwhn[: dk [% [Jg(a) + Jf(a)] - %Jo(a)Jl(a)] '

{ Krosio [[xo(, k)" + (k)] }
+tKRooDeo [Xp(aa kf)gb‘ (a’ kﬁ) - ¢P(a’ kf)x.(a’ ke)]

From Gradshteyn & Ryzhik [52], it is seen that

/zzp(aa’)Bp(ﬂG)dﬂ: = ﬂmzp(az)Bp'l(ﬁzg :;fzp-l (a’a’)BP(:B‘”)

vhere Z,(z) and B,(z) are arbitrary Bessel functions.
Therefore the a integral in part P, is seen to be

o'pJi(ap)Jo(a’p) — apdo(ap)di(a’p) |
a2 — al2

1
/0 pli(ap)di(ap)dp =
p=0

= a2 _'_9_ o [&' i (ap)Jo(a'p) — aJo(ap)Jl(a'p)]::o
1
= az—_';,; [a,JlaJOa' - O!Joa-]h,n]

The second component of the power interal P; is seen to be

1rk2w 00 oo 1 )
P, = ,u: Im/_x dke /_w dk (——_—az a'z) [’ Jradoar — aJoadiar] -

{ g}n (kg - ké) [Xp(a, kg)X;(alv ké) + ¢p(a’ k€)¢;(ali ké)] }
+iDpa (ke — k) [xp(ce, ke)dp(er's kg) — Bplon, ke)xp( k)]

This section performed the power integral in Fourier space. While it might

appear that performing the volume integral in real space (p, ) is equally valid and
much simpler, it is not done here due to the presence of the w = w, resonance

in the geometry. Some elements of the dielectric tensor behave asymptotically as
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resonance is approached in { and render the volume integral in (p,{) space highly
unstable. It is for this reason that the power integration here is performed in
Fourier space.

After solving for the absorbed power P, the plasma impedence could be cal-

culated by

2P
=T

where I is the current of the dipole source loop. It is this quantity Ry that will
be examined as the figure of merit in the analysis and comparisons performed in

the next few sections.
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3.8 Code Benchmarking and Comparison to Lit-

erature

A code CYLWAVE implementing the theoretical methodology outlined in this
chapter has been written as part of this thesis. The calculations performed by
the CYLWAVE code are benchmarked to ensuret = ~uracy of the results. Both
benchmarking and comparison with literature were performed and are listed be-

low.

1. Benchmark: Straight Cylinder Case. The fields for a straight cylinder are
formulated, computed and cornpared to the CYLWAVE code results. The
straight cylinder fields are relatively easy to solve becaues the integral equa-
tions become algebraic. This yields a precise quantitative benchmark against

which CYLWAVE results can be compared.

2. Comparison to literature. Because the analysis undertaken in this chapter
is unique in that it handles both the field inhomogeneity and the cylindric.l
geometry, it is difficult to benchmark against the existing literature quan-
titatively. However, qualitative order-of-magnitude comparisons with other

well known theoretical and analytical studies are made.

3.8.1 Benchmark: Straight Cylinder Case

The fields in the case of the straight cylinder are relatively simple ‘o formulate
because the convolution integral become delta functions when K, > and R are no
longer functions of £. In other words, the two coupled integral equations 3.36 and

3.37 become simple algebraic ones:

— k2 (he) + R2Ky R2%, (ke) + R2Ka R, (ke) = 0

(—ke — az);p(kf) + kéKer‘;«?,(ke) ~ KK Rix, (k) = 0

121



In ¢ der for both equations to hold, the determinent must then be zero, yielding

a dispersion relation for a(ke):

(ki + o® — K3 R3K, ) (ki — k3 R3K,) + kg Ry K3 = 0

2 _ L2+ K3R3KG

= a -y

where
L=k - RRK,

-~
~

X, can then be determined in terms of $p

. kiRZK,
Xp(ke) = mfﬁp(ke)

Recall that the ¢ conld be found in terms of the source term ¥ from Equation

3.24

Bolcs ke) = - 57 [b?‘G - %Fé]
ado(a) — Jy(a) 25 9P p=1
The ICRF B, fields for an almost-straight case (Ry = 0.9a, Ry, = 0.89a) and
the analytical limit of the straight cylinder case were computed on the surface of
the plasma cylinder are are plotted on Figure 3-9. It is seen that the agreement
between the CYLWAVE case and the analytic limit of the straight cylinder is very
good.
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Figure 3-9: ICRF B, plots along the surface of the plasma cylinder for a straight
cylinder case. Both B, as computed by CYLWAVE (Solid line), and the B,
computed from the analytical limits of a straight cylinder (open circle line) are
plotted versus the axial coordinate £. Waves are launched from antenna located
at p = 1.171, £ = —3.613. For this case, ICRF resonance location is located

OUTSIDE the chamber.
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3.8.2 Comparison of CYLWAVE results with literature

In the early 60’s, Hooke et al. [60] performed experiments on the B-66 machine
using a pickup loop to pick up the cross-sectional area integrated ICRF [ B,dA.
The antenna used in the experiment is approximately a multiple turn loop. The
results of the [ B,dA obtained from the experiment is shown on the top half of
Figure 3-10. For the geometry shown, the antenna is located at approximately
z = 4+20cm. It is seen that the [ B,dA decays as the resonance is approached.
The [ B,dA is also computed using the CYLWAVE program. It is seen that
the results obtained from CYLWAVE agree in general with the results of the
B-66 experiment. The differences in the launching antenna and geometry (the
conducting wall does NOT scale as the plasma cylinder) probably account for

much of the difference in the results.
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Figure 3-10: Comparison of [ B,dA versus distance from the centerline for the B-
66 experiment[60] (Top) and versus the distance from the antenna for the CYL-
WAVE code (Bottom). The location of the antenna in the B-66 experiment is
approximately at z = 20cm.
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3.9 Discussion of Results

Several cases of interest were examined for relevant physics. The cases are

32.9.1 Resonance in chamber vs. Resonance out of cham-

ber

Both the Resonance-out-of-chamber (ROC) case and the Resonance-in-chamber
(RIC) case are computed and shown in Figures 3-13 and 3-16. Several qualitative

differences are visible:

1. The structure of the perpendicular mode numbers a are quite difference
between the two cases. The o’s for the RIC case as seen in Figure 3-14
exhibit a behavior which is very similar to the infinite plasma dispersion
relation. The a’s for the ROC case as seen in Figure 3-11, on the other hand,
exhibit a markedly different behavior from the infinite plasma dispersion

relation.

2. The small amplitude oscillations that are prevalent in the ICRF B, fields
of the ROC case as given in Figures 3-12 and 3-13 are practically absent in
the RIC case shown on Figures 3-15 and 3-16. This agrees well with the
assumption that a resonance located in the chamber would damp out most

of the field oscillations as the waves propagate towards resonance.
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Figure 3-11: Real and Imaginary components of the perpendicular mode number
a versus k¢ for case of plasma density n. = 1 x 10"em™2 : apg. (Line plot) am
(Open circles). Note that the behavior of a for the ROC case is quite different
from that of the infinite plasma dispersion relation.
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Figure 3-12: ICRF B, at p = 1 versus k¢ for case of plasma density n, = 1 x
10*em 3. ICRF resonance location is OUTSIDE the chamber. This is the same
case as Figure 3-11. The peak corresponds to the axial location of the antenna at
¢ = —5.00.
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Figure 3-13: ICRF B, plot as function of (p,£). Waves are launched from antenna
located at p = 1.397, £ = —5.000. For this case, ICRF resonance location is
OUTSIDE the machine. 65 k¢ spectral points were taken to generate this profile.

The geometry is Ry = 0.77a, Ry, = 0.50a. Note the presence of small-amplitude
oscillations away from the antenna.
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Figure 3-14: Real and Imaginary components of the perpendicular mode number o
versus ke for case of plasma density n, = 1x10''em™3 : ag, (Line plot) ay,, (Open
circles). Top plot is the case of the infinite plasma dispersion relation. Bottom
plot shows the a eigenmodes calculated for a Resonance-In-Chamber (RIC) case.
Note that the behavior of a for the RIC case is similar to the a behavior of the

infinite plasma dispersion relation. 130
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Figure 3-15: ICRF B, at p = 1 versus k¢ for case of plasma density n, = 1 x
10"'em=3. ICRF resonance location is located IN the chamber at ¢ = +0.977.
This is the same case as Figure 3-14. The peak corresponds to the axial location
of the antenna at § = —5.00.
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Figure 3-16: ICRF B, plot as function of (p,£). Waves are launched from antenna
located at p = 1.397, £ = —5.00. For this case, ICRF resonance location is located
IN the chamber at £ = +0.977. The geometry is Ro = 0.77a, Roc = 0.5a. Note
the absence of small-scale oscillations away from the antenna relative to Figure
3-12.
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3.9.2 Mirror Ratio Scan

A scan of the mirror ratio and the resulting R, allows the determination of the
optimum mirror ratio to maximize RF heating. However, it must be kept in
mind that in a magnetic mirror the confinement degrades with lower mirror ratio
because of the loss cone.

A scan is performed using different values of mirror ratio M where

Bree B2

Bmin = E?:
The R, is kept constant and only the R, is varied in the calculation of the mirror
ratio. Ry is varied from 0.2a to 0.76a while Ry is kept at 0.77a. The resulting

M=

mirror ratio then varies from 1.054 to about 14.83. The normalized impedence
results from the scan are plotted on Figure 3-17.1t is seen that as the mirror ratio
decreases, the plasma loading impedence R, increases.

A resonance volume theory [61] has been proposed which simply states that
the coupling resistance is proportional to the amount of plasma volume close
to resonance. When viewed in this context, the result of the analytical analysis
conform to predictions because as the mirror ratio approaches 1, larger portions of
the plasma become closer to resonance, resulting in more damping. By comparing
a normalized "resonance volume” to the actual plasma impedence, one can verify

this. The volume close to resonance can be approximated by

AV =2rRAL = 21rR—é—B—

(%)
where AB is the determination of how close to resonance the volume should
be, and dB/df is the slope of the macroscopic axial magnetic field at resonance.
Therefore it is seen that this resonance-volume is inversely proportional to dB/df.
The normalized resonance volume has been computed and plotted (open circle)
on Figure 3-17. Comparing the CYLWAVE results (solid line) to the resonance
volume, it is apparent that the general behavior of the plasma loading impedence

at different mirror ratios agrees with that of the resonance-volume. The difference
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between the two curves is probably attributable to the difference in incident field
intensity that is sampled by the resonance volume since the resonance layer moves
when R, changes.

The results of the mirror scan show that the maximization of the plasma
loading impedence is accomplished by lowering the slope at the resonance point,
in other words lower the mirror ratio. However, the trade off is that in a mirror
geometry, lower mirror ratios result in worse confinement. Therefore a careful
examination of the confinement-heating dilemma should be made (but is beyond
the scope of this thesis) in order to produce good heating yet not contribute to

excessive loss of confinement.
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Figure 3-17: Plasma Impedence R, (Solid line) and Normalized Resonance-
volume (Open Circles) calculations performed for different mirror ratios. ICRF
antenna is located at { = 5.0. Plasma parameters are: n, = 1.0 x 10'’em3,

T. = 10eV.
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3.9.3 Resonance Location Scan

The behavior of the antenna-plasma coupling impedence as a function of resonance
location is also performed.

For plasma paramaterse n. = 1 x 10"'em™3 and T, = 10eV, the computed
plasma coupling impedence R, at different resonance locations {,., are plotted
on Figure 3-18. The coupling impedence is seen to peak at two locations — reso-
nance at plasma center, and resonance directly underneath the antenna. In fact,
the resonance-under-antenna case shows just as large a peak in plasma loading
impedence as the resonance-at-center case. This indicates that, depending on the
mirror ratio, locating the resonance close to the antenna may be just as important
for coupling as locating the resonance at the plasma center. Thus an optimum
coupling condition, from a wave-propagation point of view, would be to have the
resonance located either directly underneath the antenna or at the center of the

machine.
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Figure 3-18: Plasma Impedence R, versus resonance location &,.,. Plasma pa-
rameters are: n, = 1.0 X 10*2em™3, T, = 10eV. Note that the peaks in Ry are
located at £ = 0 field minimm, and £ = 5.000 antenna location.
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3.9.4 Density Scan

A density scan is performed in which different plasma densities are used to calcu-
late the resulting plasma impedence. The case chosen is for a case of Ry, = 0.77a,
Roopt = 0.50a, and v, = Ryau/Ru = 1.75. The temperature is held constant at
10eV and the density is scanned from 10*'cm™2 to 3 x 10'2ecm™3. The resulting
plasma impedence is plotted (open circle) versus density on Figure 3-19. The
computed Ry is compared to a 1/,/n. dependence (solid line). The reason that
R, is compared to a 1/,/n. behavior is that a simple examination of the FPy,,
shows that Pj,, scales as 1/a. Since the perpendicular wave number o behaves

like that of the infinite plasma dispersion which behaves as
o? o« (8, D) o w?; ox 7,

it is seer that a 1/,/n. behavior is the expected scaling of the plasma impedence.
This is a very simple analogy, but it is seen to be valid when the comparison is

made.
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Figure 3-19: CYLWAVE computed R, (Open circle) and a normalized 1/,/n.
(Solid line) are plotted versus the plasma density n.. It is seen that the plasma
impedence R, agrees well with the 1/,/n, scaling.
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3.10 Conclusion

From the developement of an ICRF theory and the results obtained from this

theory, several conclusions can be drawn:

1. A new model of the ICRF-plasma wave coupling problem in cylindrical ge-
ometry with inhomogeneous B, is examined. The ICRF B, fields computed

from the analysis are consistent with benchmark.

2. Although differences in geometry, physics, and antenna geometry make
quantitative comparisons impossible, it is nevertheless seen that the value
of the plasma impedence R, computed by this approach is of comparable

order to both literature and experimental values.

3. The resonance-in-chamber (RIC) case contains much less small-scale oscil-
lations than the resonance-out-of-chamber (ROC) case. This is due to the
presence of the resonance which damps out the small-scale oscillations as
the waves propagate outward from the antenna in the +€ direction towards

resonance.

4. Impedence calculations at different mirror ratios reveal that the plasma load-
ing impedence R, generally agrees with the ”resonance-volume” model and
is roughly proportional to 1/(dB/df). The ramification is that a trade-off
between mirror confinement and heating is necessary to obtain good heating
without sacrificing too much confinement loss due to particle diffusion into

the loss cone.

5. Results from the plasma impedence calculations at different resonance lo-
cations show that, depending upon the mirror ratio, locating the resonance
directly beneath the antenna could be just as important to maximizing Ry

as locating the resonance at the field minimum in the center of the plasma.
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The theoretical work discussed in this chapter is by no means an end, but
rather a simplified illustration of a powerful new technique of addressing the ICRF
wave-plasma coupling problem. Much work still remains to be done to refine this
technique to be applicable to existing antenna geometries and to include the other
mode (TM). These issues and more are addressed in Chapter 6.

The analytical study described in this chapter has two significant advantages
over other studies. First, the axial inhomogeneity and cylindrical geometry are
both treated in a theoretically rigorous and consistent manner, and secondly, the
subtraction and proper treatment of the resonance pole allow the ICRF waves to
propagate up to and through the resonance. These advantages demonstrate the

power of this new method of analysis.
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Chapter 4

Computational ICRF Analysis

The work performed in this chapter is a simulation of ICRF wave behavior as it
propagates towards a magnetic beach resonance. The concept of a magnetic beach
upon which to damp electromagnetic waves is not a new idea. First proposed by
Furth in 1959 [62] and continuing in the 60’s with the B-66 machine and through
the C-Stellerator [3, 63, 64], the magnetic beach concept has been the subject
of many theoretical and experimental studies. The thrust of this chapter will to
build upon these pioneering work and later work by McVey [65] and Myer[66],
culminating in the development of a new methodology to treat the problem of the
axial inhomogeneity.

A multimodal analysis is undertaken in this Chapter, resulting in the devel-
opment of the BEACH computational code. The chapter is organized as follows:
Section 4.1 develops the basic theory underlying the BEACH code development.
Section 4.2 offers a brief description of the BEACH code and some background on
the theory and algorithm of the BEACH code. Some physics issues that are of par-
ticular importance and relevance to the BEACH code are discussed in Section 4.3.
Section 4.4 then provides the results obtained from the BEACH computational
analysis for various combinations of plasma properties. Next, the experimental
results of the legendary B-66 machine are compared to the computational simu-

lation performed by the BEACH code. Finally, the key differences between the
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BEACH and the CYLWAVE analyses are discussed in Section 4.5. Note that com-
parison to the experimental results obtained from the PPEX machine is provided
in Chapter 5, the experimental chapter.

This chapter presents a different approach to simulating the propagation of
ICRF waves towards a magnetic beach. The approach taken is different from the
previous chapter in the way that the field inhomogeneity is treated. The work
performed breaks the inhomogeneous axial magnetic field into a set of discrete
homogeneous axial slices, and within each slice the uniform field is responsible for
generating a set of discrete field eigenmodes. It is a more localized approach than
the previous chapter. However, this chapter allows the treatment of both modes
("almost TE” and ”almost TM”) of the dispersion as well as a simulation of more
realistic ICRF antennas. It is yet another step in the evolution of a complete

solution of the cylindrical ICRF wave-plasma coupling problem.
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4.1 BEACH Code Theory

4.1.1 Formulation of Field Solution

As mentioned before, previous work on ICRF often ignore either the cylindrical
geometry or the axial field inhomogeneity. The BEACH code represents the first-
of-its-kind analysis that includes both the axially inhomogeneous magnetic field
and the cylindrical geometry in its treatment of ICRF propagation. BEACH code
models an axially varying cylindrical geometry. The advantage of this geometry
is that it accurately simulates the geometry of the experiments of interest. The
basic geometry used in the cylindrical geometry analysis is seen in Fig. 4-1

The analysis of the ICRF-plasma coupling problem is presented in the context
of the procedure outlined in Section 3.2.2. The development of the theory is
similar to the approach taken by McVey [4]. First, the functional dependences of
the vacuum and plasma fields are solved, then the boundary conditions are used
to couple together the field solutions in different regions. Finally, plasma power
absorption will be examined. '
VACUUM FIELD SOLUTION

Starting from Maxwell’s equation, it can be readily shown [4] that the vacuum
field solutions in a straight cylindrical geometry reduce to the following differential

equation:

2
iE'z + 1—d—Ez - (v’ + :—2) E, =

dr? rdr
d? 1d . n?
FH,-{-;;;H,—(V +:2-)H,-—0

where n is the azimuthal mode number and appears in the fields in the functional
form ™. The solutions to the above differential equations are the Bessel functions
I.(vr) and K,(vr).

PLASMA FIELDS
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Figure 4-1: Cylindrical ICRF geometry model used in the BEACH code. The
axially varying magnetic field plotted at the bottom is simulated by slicing up the
cylinder into adjacent axial slices each of which assumes a constant B,.
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It has been shown that Maxwell’s equations can be decoupled into two compo-
nent solutions in a vacuum: TE and TM. While the presence of a plasma prevents
a complete separation into the two modes, Maxwell’s equations in plasma are
shown by McVey [4] and Myer [67] to be simplifiable into two similar modes: the
“nearly” TE mode, and the “nearly” TM mode:

From Maxwell’s equations, it can be shown that
V x (V x E) = K2¢(z) - E

where ¢ is the dielectric tensor.
If axial gradients of plasma properties are allowed, the following equations for E,

and H, are obtained:

8 (18(PE;) 8 (DH,
2 2 L — e i) ——
V3iE. +kPE; + Oz (S Oz ) I‘Owaz ( S )

2
Vi + B, 4 O, o @DOPE)

°s 82" § Oz
where S,D,P,R,L are elements of the dielectric tensor.
Assuming

V2E, H,=-K\E,,k,
leads to

PE, = Z i (Jn(kl"')gnl + Jn(k27')£n2)

H, = Z Ciad (Jn(klr)"im + Jn(kz"')H—nz)

Where k;, &,;, and H,; are slowly varying functions of z compared to the parallel

wave number, in other words

d
7o (s By Hog)| < 1k (R Ensy Hos)|

This permits simplification of the differential equations when ordering
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WKB Solution

If the k, varies slowly as a function of z, the following is obtained

() + (4~ W1P) £ = - () (4.1)
N~ (k"' _RL ) Hoy = &2 cwDg (4.2)

If the plasma properties are not functions of of z, the differential equations

can be shown to result in two sets of identical 4th order differential equation:

kiD?
v + Mo (SC — Lprs + 5 ) —L,LprLsSHn; =0
EIY + EL. (SC,,—L + ng’) —L,LRrsSE; =0
n; T En; RLS + —¢ L,LprsSEq; =

where Lp and L, s are defined as

Lr = (k2 - K/P)
RL)

Lrrs = (sz - kg—g-

Since the two equations are identical, and the boundary conditions at the plasma-
vacuum interface are the same, the functional dependences of H,;(z) and &,;(z)
are identical. Thus H,,; and &,; differ by only a constant of proportionality. This
constant of proportionality is found by substituting H,; = h1&,; into Equations
4.1 and 4.2. |

Assuming WKB solutions [68] of the form

£nj = f“/’s"tnj =gy

where

Y= eif."'(")d"
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This WKB approximation is valid for small field gradients

dlnBo
dz

It must be noted that the WKB approximation fails near resonance and turning

<k,

points because the above small field gradient requirement is violated. This means
that the BEACH code is not valid for propagation very close to resonance.
Ordering

To Lowest Order in f and g : assume no functional dependence of f and g,

Equations 4.2 and 4.1 simply yield the dispersion relation:

Sk% + [K3(S + P) — k(SP + RL)JK* + P(k? — K3R)(K* — K2L) =0  (4.3)

To First Order O(f’,g’): It can be shown [67, 4] that

H, = HpJn(krlr) + yzEpJn(krz"')

E, = ¥ HpJn(krlr) + EFJ'\(,k"zr)

where
iu)[l-o kl D

T P(E-RS)+ kS
—iwegk, PD
¥ 7 S(k, + ¥2) - RLE;
Th H, terms of both equations correspond to the Magnetic Modes, or the

2

Nearly TE Mode, while the E, terms correspond to the Electric Modes, or the
Nearly TM Mode.

4.1.2 Boundary Conditions

As mentioned before, the axial inhomogeneity is treated by separating the plasma-
vacuum cylinder into discrete axial slices. In each axial slice, all plasma properties
and axial magnetic field are constant. For the geometry of Fig 4-1, boundary

conditions are imposed for each individual axial slice.
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1. At r=a (plasma-vacuum interface)

El(a) = E3(a) (4.4)
E}(a) = E(a) (4.5)
Hy(a) = Hj(a) (4.6)
H}(a) = H(a) (4.7)
2. At r=b (Antenna location)
E,f,(b) = E;‘j(b) (4.8)
E2(b) = E3(b) (4.9)
Hy(b) — H(b) = Jx(b) (4.10)
H2(b) — HZ(b) = Jo(b) (4.11)
3. At r=c (Conducting Wall)
E3(c) =0 (4.12)
E3(c)=0 (4.13)

Using the above boundary conditions, the field coefficients of the three regions

can be fully determined and are given in Appendix C.

4.1.3 Absorbed Power Calculation

Having solved for the field coefficients, an estimation of the power absorbed by

the plasma can be made. The power P absorbed by the plasma is given by:

P(w/m?) = —;—Re( . J*)

1
= SRe(E.J: + Eo - J; + E.J})
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The plasma current is found by the product of the conductivity tensor and the

electric field. The conductivity tensor g can be expressed in terms of the dielectric

tensor K.
VxB =184 ,J (4.14)
==K . E (4.15)
Since J = ¢ - E,
—iw S —w . = -
K BT By B
_ —w(K-I)
= 2 o

According to Myer [69], the E.J; contribution to the dissipated power is mostly
absorbed by the electrons. This is due to the fact that electrons will act to flow
along the field lines and zero out any Ej. In fact, current drives in tokamaks take
advantage of this fact by launching favorably shaped E, spectra to couple to and
drive fast electrons. However, in the context of this thesis, this energy absorbed

by the electrons will not be examined.
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4.2 BEACH Code

The goal of the computational analysis is to provide an alternative method of mod-
eling the wave-plasma coupling problem than the analytical approach taken in the
previous chapter. While the analytical approach examined a continuous spectrum
of axial wavenumbers k¢ and their corresponding perperndicular wavenumbers a,
the BEACH code solves for the discrete eigenmodes that exist in each individual
axial slice. In other words there no longer exists a continuum of k, in each slice,
but rather an infinite number of DISCRETE modes. However, this computational
analysis is not simply a purely numerical simulation. Much analytical work is done
to reduce the fields to functional form , i.e. I,(k.r), Kn(k,7), Ju(k117) before the
numerical “number-crunching” is handed over to the codes.

BEACH is a code that was developed as a major part of the thesis. It has
the major feature of being able to take into consideration the axial magnetic field
inhomogeneity. Thus, the thesis places great emphasis on the BEACH code as
well as the CYLWAVE code because of their ability to simulate propagation in an
inhomogeneous axial magnetic field, a topic of great importance to ICRF heating.

The unique feature of the BEACH and CYLWAVE analysis undertaken as part
of this thesis lies in the generality of their approachs. Other studies 33, 34, 32]
have been performed which either look at the k,(z) variation as it impacts upon

amplitude transport in a WKB [68] sense:
[P+ Tlo =[P+ The Sl

or have relied upon a single mode solution of the boundary conditions coupled
with the above WKB analysis. However, no attempts have been made to examine
both the variation of the field amplitudes as well as the wave number k,(z). The
BEACH and CYLWAVE codes take into consideration all these factors and are
thus more complete treatments than other approaches before them. Together
BEACH and CYLWAVE demonstrate two different approaches to simulating the

same problem.
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4.2.1 Background

BEACH is a code that was initially begun by Myer at MIT to examine the ICRF
wave propagation problem taking into consideration the axial magnetic field pro-
file. A major portion of the work accomplished in this thesis was to complete the
BEACH code and apply it to model the magnetic geometry of PPEX and of other
machines to examine ICRF wave propagation and plasma heating.

The BEACH code assumes a radially uniform density profile. How would that
affect the results of the computation? It must be noted here that one of the
significant results that emerged from the theoretical and experimental work on
wave coupling by Sigmann and Reinmann [70] and Hosea and Sinclair [33] was
that coupling to homogeneous plasma very nearly equals that of an inhomogeneous
plasma if one uses the volume average density of the inhomogeneous plasma for the
homogeneous plasma case. This result suggests that the use of a radially constant

profile is a plausible starting point for the development of new techniques.

4.2.2 Theory & Algorithm

The BEACH code extends the analytical approach of cylindrical geometry solution
seen in Section 4.1

The BEACH code solves for the ICRF wave propagation in an inhomogeneous
axial magnetic field. The inhomogeneous axial magnetic field B,o(2) is handled
by separating the axial length into discrete axial “slices”, each of which contains
a homogeneous axial magnetic field. The eigenmodes in each slice can then be
calculated as if the field in that slice were constant.

The code first finds the eigenmodes that exist in each axial slice by satisfying
both the infinite plasma dispersion relation and the boundary condition. The
boundary condition of the plasma-vacuum system is obtained from the boundary
conditions as seen in Equations 4.4 through 4.13 and is shown by McVey [65] to
be given by

152



Cal + CzEp = 81J¢

CaHp + CQEP = 82J¢

The solution to the above are:

g, = e —aa) (4.16)
D
_ (eac; — eyc3)
E,=—"———J, (4.17)
D
D = c;cq — cacs (4.18)

where the elements c;,...,c, and e;, e, are defined in Appendix C. The term D in
Equation 4.18 represents the boundary condition of the bounded plasma~vacuum
system. Solving for the zero of this boundary condition coupled with the infinite
plasma dispersion relation (Equation 4.3 ) yields the eigenmodes of the cylindrical
system.

After solving for the eigenmodes of the system, the code then computes the
excitation coefficients of the initial axial slice as driven by the source term (An-
tenna). The excitation coefficient of the next axial slice can then be determined
by imposing two conditions of continuity on the boundary between the two axial
slices: conservation of the integrated axially propagating Poynting Flux f S.rdr |
and the continuity of wave phase. These two conditions uniquely determine the
excitation coefficients of the different eigenmodes in the next axial slice. This
analysis is then performed for all axial slices.

As this chapter shows, it is evident that in order to adequately reproduce the
ICRF field profiles the solution of about 30-50 eigenmodes is required. These
eigenmodes, upon summation, form the resulting field solutions. The reason that

so many modes are required is that there is no one dominant mode that is excited
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seen is that a multitude of modes is excited, each of whoge excitation coefficient
is about the same order as the others, Thus, for completeness, it is found that
the summation of at least 30 modes is required for the inverse Fourier transform
in order for the solutions to converge.

The program algorithm is shown on Fig. 4-2.

A sample page of output from the BEACH code illustrates the functionality
of the code. Part A (Upper left figure) of Figure 4-3 presents the eigenmodes that
are found to exist in this system, part B (Upper right figure) shows the integrated
axially Propagating Poynting flux for each mode. Parts C & D (lower two plots)

give the excitation coefficients E, and H, which are the fiel coeflicients given in

Equations 4.16 and 4.17.

4.2.3 BEACH Subcodes

The basic algorithm of the BEACH code js seen on Figure 4-2, BEACH consists
of three subcodes - xdisp, xfield, and xplot. The xdisp code solves for the finjte
discreet eigenmodes for the bounded plasma-vacuum system, xfield solves for the

excitation amplitudes in different axial slices, and xplot plots out the results.

physical phenomena, Some of these are discussed below,

POWER CON SERVATION

Changes were then undertaken as part of this thesis to correct the code so0 that

energy is conserved.
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Figure 4-2: BEACH Code Algorithm
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Figure 4-3: Sample output from BEACH Code
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In order to conserve energy, the parallel propagating Poynting Flux for each
individual eigenmode is first calculated. From the fields calculated by the geome-
tries, the Poynting Flux power flow per cross-sectional area can be calculated by
(44, 47]:

S(w/m?) = 5 Re(E(®) x H(7)

The integrated axial power flow is then found by
2 Qo g 1 o T g
P,(w/m )=/S-dA=/§Re{E(1'-') x B} - dA

This P, is then held to be a conserved quantity across the interface between the
different axial “slices” of the geometry. This ensures the conservation of flowing

energy across axial boundaries.

Power Conservation Across Adjacent Axial Slices

The power conservation across adjacent axial slices is formulated here.

From the expression for the vacuum and plasma fields found in Appendix B,
the field coefficients E,...E,, H;... H; can be determined in terms of the plasma
field coefficients H, and E,. From Equation 4.16 and 4.17, it is seen that for a
sourceless slice, E, = —% Hp. Thus, the transverse fields in each region can all be
expressed in terms of H,, and are given below

Vacuum Regions I (b<r < ¢)

E, (r) = Hchrl (1’)

Ey(r) = HyCgp(r)

H,(r) = HyCrri(r)

Hy(r) = HeCrau(r)
where

k, Ao
14 Aac

Ci )
(Jnla y2Jn2a 02

Ay
Contr) = ) , then

%=
aCz l/2 T Aac’

(Jnlnzl —Jn
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—k.n A, C ) JAY C
CE¢1(T) = Vzrnr (Jnlazl ~Jn 1) - o o (Jnla - szn2a—l')

Co) " v Bae Ce
_ wegn A 9_1_ 1k, Agy (o))

cHrl(r) = V27‘ Au (Jnlazl - Jn2a Cz) + v Aa.c' (Jnla - sznzuE;‘)
tweg Ao C k.n Aoy C

cHd’l(r) = '_VG_O_A—' (Jnlazl - anaé) - Vz:_A_c_‘_' (Jnlc - y2Jn20'C_,i)

Where A,y is defined in Apppendix C, Equation C.20.
Vacuum Region II (b<r<a)

Using a similar approach
E.(r) = HyCga(r)

Ey(r) = HpCpga(r)
H,(r) = HyCpya(r)
Hy(r) = HyCpya(r)

Where C(r)’s are likewise defined.

Plasma Region, (r < a)

Substituting for E, in Equations B.15 — B.18 in Appendix B, the transverse

plasma fields are found to be

E =H, [e,.l(r) - g—:-e,.z(r): = H,Dg,(r)
By = B, [enlr) - Grealr)] = HyDs(r)
By = Hy [ba() = Ghoalr)] = Ho D)
H, = H, :hdﬂ (r) - g‘:'hqbz("): = HpDhy(r)

where the variables e,;(r) through h,2(r) are defined in Appendix C.
Using these fields then, the axial propagating Poynting Flux S, can be found

1 [ ] [ ]
S. = 3 Re(E,Hy - EyH;)
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Since (AB)* = A*B"*, it is seen that

Seaca = HoH [ConCirgy — ConCirnn]

Sz,vac,z = HpH; :cEr2c;I¢2 - CE¢zc;ir2]

Septas = HyHy [Dp-Dity ~ oo Dy,

where
HyHp = (Hp e + Hpim)
Thus the continuity of power flow across the boundary between axial slices
yields a continuity equation in terms of the real and imaginary components of the

plasma magnetic field coefficient H,. A second boundary condition is required to

fully solve for both the real and imaginary component of H,.

Conservation of Wave Phase

This second boundary condition at the interface between axial slices is the con-
servation of wave phase, which states that the wave phase across the boundary
is continuous. This means that even though H, can change, the ratio
2 = tan(Buoe)

cannot change across the boundary. This condition is the standard electromag-
netic continuity condition across the boundary between two different dielectric
media detailed by Kong [59].

The conservation of the area-integrated Poynting Flux [ S, -dA along with
the conservation of the phase angle of the wave, 8 = tan™*(Hp im/Hp,re) yield a
set of solutions of the excitation coefficients H, and E, that uniquely satisfy the

boundary condition and the dispersion relation.
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DISSIPATION vs. NO DISSIPATION

In solving for the eigenmodes of the system, different methods of solution are used
for the dissipation and dissipationless models. Solving for a dissipationless case
requires only solving for real k, roots, while solving a dissipation case requires
finding imaginary k, roots. A straightline linear interpolation scheme is used to
find the k, roots in the dissipationless case, while Miiller’s Method [54] is used (via
the IMSL subroutine ZANLY) in finding the complex roots for the dissipational
case. Comparison of execution times shows that a sample dissipationless case of
50 roots takes about 5 minutes of CRAY (XMP) cpu time, while the dissipation

case takes about 100 minutes.

BOUNDARY CONDITION ISSUES

The discretizational modeling of the inhomogeneous axial magnetic field B, raises
a major question — that of the non-divergence of B. Namely, is V - B=0?

The approach taken in the BEACH code is to conserve the total magnetic flux
in the system. Thus, when the magnetic field in region 1 is GREATER than B;o
in region 2, the cross sectional area of the plasma is SHRUNK so as to conserve
the flux contained in the plasma tube. The magnetic flux in the vacuum region
is not conserved. This non-conservation of the magnetic flux is then a source of
error in the code. In order to examine this error, the BEACH code maintains an
option to allow the physical geometry, i.e. vacuum chamber wall, to expand and
contract with the magnetic field B,o(z) in order to conserve the magnetic flux.
After comparing the results from the two cases (one with fixed wall geometry,
other with variable wall geometry), it was concluded that the error involved in

keeping the geometry stationary had negligible effect on the propagation modes.



4.4 Compatational Results

The aim of the computational analysis is to make comparisons between different
cases of differing plasma properties and to make recommendations on how to
maximize the antenna-wave-plasma coupling.

Several different studies are performed in this computational analysis to ex-
amine the effects of various plasma characteristics on ICRF wave propagation.

These are listed below:

1. Collisionless vs. collisional plasma

2. Full Turn Loop vs. Dual Half Turn Loop Antennas
3. Electron density - n.. (Collisional only)

4. Temperature dependence. (Collisional only)

5. w/wct at launch point (Collisional only)

Comparisons to experimental data are also made. Special attention is given
to two experiments: the B-66 experiment as reported by Uman & Hooke (3], and
the PPEX experiment that was constructed as the experimental portion of this
thesis. Comparison with the PPEX experimental results will be provided in the
next Chapter on Experimental Results.

Because the analysis undertaken here is a cold plasma treatment, the validity
of temperature dependence must be delimited. The type of plasma for which the
current treatment is valid is a cold collisional plasma. Since the PPEX machine
operates at relatively low temperatures (< 1KeV), the cold collisional plasma
approximation is valid. However, it must be recognized that the cold collisional
approximation may not be valid for the higher temperature regimes of the B-66
machine.

The Computational Results section is organized as follows: Section 4.4.1 will

describe the baseline model and magnetic geometry used in the analysis. Section
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4.4.2 then gives the comparison of results obtained for a collisional vs. a colli-
sionless plasma model. Section 4.4.3 presents the comparison between the fields
generated by a Full Turn Loop vs. a Dual Half Turn Loop antenna. An analysis
of the effect of density on propagation is then examined in Section 4.4.4, followed
by a temperature analysis in Section 4.4.5. An analysis of the launch frequency
is also examined in 4.4.6, and finally comparison to experimental results from the

B-66 machine is made in Section 4.4.7.

4.4.1 Baseline Model

The computational simulations for all subsections (except the B-66 section) were
performed using the magnetic field geometry of the PPEX machine, as shown on
Figure 4-4.

The baseline model is driven by a Full Turn Loop (FTL) antenna. Because
it is symmetric in 8, the full turn loop antenna excites only the n=0 mode. 'i'he
Jo(k.) spectrum is calculated for the FTL system and plotted on Figure 4-5.

The BEACH code is used to compute the propagational profiles of the B, and
E, ICRF fields and the results are seen on Figure 4-6 (B,) and 4-7 (E,).
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Figure 4-4: PPEX axial magnetic field B,q(z) profile as modelled by BEACH code
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N=0, NE= 1.00x10'*, W/WCIO= 0.786 , COLD COLLISIONLESS MODEL
NO. MODES = 30
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N=0, NE= 1.00x10'’, W/WCI0= 0.788 , COLD COLLISIONLESS MODEL
NO. MODES =30

Figure 4-7: ICRF E; Propagation in a Cold Collisionless Plasma, Full Turn
Loop Antenna, w/wci0 = 0.788
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4.4.2 Collisionless vs. Collisional

The collisionless vs. collisional analysis performed here uses the baseline plasma
properties as given in Section 4.4.1. The launching antenna used in the collisionless
vs. collisional analysis is the Full Turn Loop antenna. Thus, the collisionless results

are already given in Figures 4-6 and 4-7.

COLLISIONLESS

The calculation of the k, eigenmodes of the system allows a selection of either a
collisional or a collisionless model. Selecting a collisionless model allows the code

to make the following assumptions:
e S, P, and D (Elements of the dielectric tensor ¢g) are real.

2
w?.
—1-S"—F _
S=1 Ew’—w’-
a ct

¢ Only real k, eigenmodes exist , i.e. no damping modes can exist

The collisionless model is provided here as a baseline against which the damp-
ing results of the collisional model could be compared. A cold plasma model is
also useful as a check to see if the code results conforms to basic physical in-
sight. Because there is no dissipation mechanism (Cold plasma, no collisions),
some effects are expected physically from this simple propagation.

Upon examination of the propagation results as given in Figure 4-6 and 4-

7, three important results are evident as the waves propagate towards resonance
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- Decrease in axial and radial wavelengths, buildup of |B,| as resonance is ap-
proached, and the inward propagation of the large edge E, field. These results

are discussed below.

1. |B;| Increases - This is an expected result. Stix showed (2] that for a

homogeneous lossless medium, the group velocity is

P+T
Wo

Vg =

where P is the Poynting Flux, 7 the nonelectromagnetic energy flux due to
the coherent motion of the charge carriers (T = 0 for cold plasma), and W,

the wave energy density.

When resonance is approached, ihe group velocity slows down, resulting in
an increased energy density Wy. This increased energy density is apparent

in the increase in |B,|, since the energy density varies as

_ 1B, |EP
Wo = po 5t
2. Increase in axial and radial k; - As resonance (w = w;) is approached,
the left hand cut-off (k2 = kZL) increases, causing an increase in the resulting

k, eigenmodes. This is consistent with the slowing down of the group and

phase velocities as resonance is approached.

3. High edge electric fields £, E_ and E, that propagate inward - This
is a result that could be consistent with experimental observation. Machuzak
[71] indicated that although a high edge electric field is predicted by the
ANTENA code [72], experimentally no edge ICRF electric field downstream
from the antenna is detectable. The BEACH simulation shows that the
reason that no edge electric field is detectable is that the edge spike moves

radially inward into the plasma as resonance is approached.

168



COLLISIONAL

Although a cold plasma is the medium in which the theory is performed here,
collisions may be added to the analysis to allow wave-plasma energy trasnfer and
to better simulate a realistic medium.

The model used here takes the expansion of the plasma Z-function by excluding
finite temperature effects and including terms up to order O(v;/w). The code
results for the case of ICRF propagation in a cold collisional plasma is seen below
in Figure 4-8. What the result shows is that in the presence of collisions, the
wave amplitude initially rises as before, but that the wave amplitude also decays
as resonance is approached. The decay in field amplitude is due to the damping
of the waves from collisions. This decay differs markedly from the collisionless
results which shows a continuos growth of the wave amplitude as resonance is
approached. Likewise the results for the propagation of the ICRF electric field
in the presence of collisions shown on Figure 4-9 also shows a decay as the wave
propagates towards resonance.

The presence of collisions manifests itself in a complex dielectric tensor. Recall
that the dielectric tensor is given by Equation 3.3

S —iD 0
e=|1::D S 0
0 0 P
Where

§=5(R+1)

1
=3(R-1)

As seen in Appendix A, the presence of collisions in a cold plasma produces

the following expressions for S, D, and P

521_2%{ Wl =+ 07) }

= wDp —w;(w? + Wi+ VF)
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N=0, NE= 1.00%10"*, W/WCI0= 0.788 , COLD COLLISIONAL MODEL
TI-PERP= 10.00, TE-PERP= 10.00, TI-Z= 10.00, TE-Z= 10.00
NO. MODES = 30

Figure 4-8: ICRF B4 Propagation in a (‘old Collisional #}ssma., Full Turn Loop
Antenna, w/wyo = (.788
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N=0, NE= 1.00x10'!, W/WC10= 0.¥86 , COLD COLLISIOGNAL MODEL
TI-PERP= 10.00, TE- PERP= 10.00, TI-Z= 10.00, TE-Z= 10.00
NO. MODES = 30

Figure 4-9: ICRF E, Propagation in a Cold Collisional Plasma, Full Turn Loop
Antenna, w/wo = 0.788

171



20

D~-E 5
2 _ 2

w  (w? —wd — v} + 4w

wei (w? — w2 — v} — 2iwy;)

P~1-% _ Y
- = w(w +iv,)

Using these complex elements of the dielectric tensor, the dispersion relation
can be solved with the geometric boundary condition to yield a set of eigenmode
solutions for this plasma-vacuum geometry. The difference between these solu-
tions and those of the cold collisionless plasma is that the k, eigenmodes are now
complex — these waves are now damped as they propagate towards the cyclotron

resonance. This damping transfers energy from the waves to the plasma, causing

plasma heating.

COLLISIONLESS vs. COLLISIONAL

The propagation characteristics of the collisional case resemble, for the most part,
that of the cold collisionless model. However, some key differences are evident.
These differences are given in Table 4.1 and are discussed below.

The differences in propagation characteristics between the collisional and col-
lisionless case is evident upon comparing the propagating ICRF fields.

The collisional vs. collisionless results for the ICRF [ B, - dA of a full turn
antenna are compared in Figure 4-10. The factor [ B, - dA is used here as an indi-
cation of the amount of damping that an ICRF wave encounters. An examination
of Figure 4-10 shows that the damping mechanism introduced by the collisional
process is able to remove the energy buildup as resonance is approached. Thus,
for the collisional case, although there is initial growth in [ B, - dA, the damping
that sets in as resonance is approached is able to greatly reduce the propagating
field.

The ideal nondamping case shows a conservation of the axially propagating

Poynting flux as well. This is to be expected since there is no damping mechanism
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to decrease this flowing power. However, the collisional case shows that this
integrated Poynting flux does decrease over the length of an axial slice. (Recall
that the integrated Poynting flux is conserved across the boundary between two
adjacent slices) This again is due to the fact that collisions introduce an axial
damping mechanism which removes energy from the propagating Poynting flux.
The results obtained agree with intuition. Collisionless propagation does not
decrease the ICRF B, because there is no mechanism for dissipational damping.
Collisional propagation, on the other hand, contains dissipation mechanisms to
damp the energy buildup of the waves as they propagate towards resonance, hence

the decrease in ﬁ,.
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4.4.3 Full Turn Loop vs. Dual Half Turn Loop

The Full Turn Loop(FTL) and the Dual Half Turn Loop(DHTL) are the two
antenna examined in this thesis whose geometries are shown in Figure 4-11.

The FTL is symmetric about 6 and thus it does not have any azimuthal de-
pendence e'?, Therefore, the FTL geometry is sometimes also referred to as the
n = 0 geometry, since the only mode that the FTL antenna excites is the n = 0
mode.

The DHTL is asymmetric in 6 and thus it has a finite azimuthal dependence
e, The largest azimuthal mode that the DHTL excites is the n = 1 mode, thus
the DHTL geometry is also referred to as the n = 1 geometry in this thesis.

The plasma characteristics used for the comparison of the Full Turn Loop and
the Dual Half Turn Loop are identical : n, = 2 x 10*2em™3, 30 modes, and an
initial launch frequency of w/wgo = 0.788.

FULL TURN LOOP, n=0 Mode

Figures 4-12 and 4-13 show the propagation characteristic of the ICRF B, and E,
fields as the waves propagate from the launch point (z=0) towards the resonance
point downstream. The main features of this propagation are that the waves again

peak as resonance is approached.

DUAL HALF TURN LOOP, n=1 Mode

The solution of the dual half turn loop (DHTL) geometry poses a more difficult
problem than the full turn loop (FTL) solution. The main difference between
the DHTL and the FTL lies in the f(k,) driving term, specifically the radial
feeders. This is different from the Full Turn Loop (FTL) geometry in which the
contribution from the radial feeders cancel out (Since one leg is entering and the
other is exiting, net J, is zero). The modelling of the driving term J(k,) for the
DHTL is detailed in Appendix B.
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N=0, NE= 1.50x 10", W/WCI0= 0.788 , COLD COLLISIONLESS MODEL
NO. MODES =30

Figure 4-12: ICRF B, Propagation in a Cold Collisionless Plasma, Full Turn
Loop Antenna, w/wci0 = 0.788. Waves are launched by the ICRF antenna at
z = Ocm and propagate towards resonahl ¢ at z = 50cm.



N=0, NE= 1.50%x10", W/WCI0= 0.788 , COLD COLLISIONLESS MODEL
NO. MOBDES = 30

Figure 4-13: ICRF E, Propagation in a Cold Collisionless Plasma, Full Turn
t I~

Antenna w/weil = 0,788
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The computational simulation of the n=1 mode ICRF wave propagation is
shown on Figure 4-i4. From Figure 4-14, the basic characteristics of ICRF prop-
agation towards resonance are similar to the FTL (n=0) case, i.e. increasing k;,
and k,, and increasing B, amplitude. The main difference is the larger k; and
k, for the DHTL case, which is to be expected since the asymmetric (about r=0)
DHTL excitation necessitates radial eigenmodes that have smaller perpendicular
wavelengths (larger k) ) and hence larger k,.

The peaking of the edge electric fields can be seen on Figure 4-15. The E, field
appears to be similar in structure to the FTL case, with an initial edge peaked
E, that propagates towards the center of the plasma as resonance is approached.

As mentioned before, the CYLWAVE analysis performed in the previous chap-
ter differs from BEACH in that CYLWAVE waves do not change k¢ and therefore
do not change their phase velocity. This constant phase velocity means that there
is no buildup of wave energy due to the slowing down of phase velocity. Hence the
key difference between the BEACH and the CYLWAVE results is that BEACH
shows initial peaking and subsequent decay of the ICRF wave amplitude, while
CYLWAYVE results contain only the decaying portion.
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N=1, NE= 1.50%10", W/WCI0= 0.788 , COLD COLLISIONLESS MODEL
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Figure 4-14: ICRF B, Propagation in a Celd Collisionless Plasma, Dual Half
Turn Loop Antenna, w/wci0 = 0.788
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N=1, NE= 1.50%10", W/WCIO= 0.788 , COLD COLLISIONLESS MODEL
NO. MODES = 30

Figure 4-15: ICRF E,; Propagation in a Cold Collisionless Plasma,Dual Half
Turn Loop Antenna, w/wci0 = 0.788

181



SIMILARITIES & DIFFERENCES

As mentioned before, there are some basic characteristics to ICRF propagation
towards resonance that show up in both the n = 0 and n = 1 cases. The charac-
teristics that are inherent in both the n = 0 and n = 1 cases are basically those
of the collisionless model listed in the Section 4.4.2 - |B,| increase towards res-
onance, and |E,| peak moves inward. The key difference between the n=1 and
n=0 modes is, as mentioned before, the higher k,’s and k,’s that are generated
by the n=1 mode antenna. This finding again agrees with physical insight which
dictates that the asymmetric boundary conditions imposed by the n=1 antenna
would result in higher mode numbers and thus a larger number of field oscillations
in the plasma. An examination of the radial field profiles readily shows more ra-
dial oscillations for the n=1 mode. The radial field profile for the n = 0 mode is
computed and shown on Figure 4-16. Contrasted with the n = 1 mode on Figure

4-17, the increased oscillations for the n = 1 mode is clearly evident.
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Table 4.1: Cold Collisionless vs. Cold Collisional Plasma as w — wg;

COLLISIONLESS

COLLISIONAL

COMMENTS

J S.rdr remains constant

J S;rdr decreases

Damping due to collisions
decreases the propagating
Poynting Flux

B, increases
towards resonance

B, increases initially
but then decreases
towards resonance

Collisional Damping more
than compensates for
increasing stored field
energy

Edge peaking of
E,E,E._.

moves inward towards
center of plasma

Initial edge peaking of

E,, E,, E_ near launch
point moves radially inward
as w — wqy much faster
than collisionless case

Agrees with experiments
which show no large

ICRF E-field at edge

downstream from antenna
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4.4.4 Effects of Density on Propagation

Changes in plasma density affects the propagation characteristics both by chang-
ing the boundary conditions as well as altering the eigenmodes that exist in the
plasma-vacuum system. Different densities were used in different runs to examine
the effect of density on propagation.

One way to examine the effect of density on propagation is to look at the

element S of the dielectric tensor ¢. From Appendix A, it was shown that

2
W
§=1+3 —2 {w(w® —wk +1}) - in(w’ + wk + )}
a D

where

Dp = (w? — w2 — 1?)? + 4w}

Since S o w3,, S is proportional to the plasma density n.. (assuming n; = n.)
The dispersion relation shown on Figure 3-1, k, (k,), shows the point k? = k}S.
A preliminary eigenmode k, scan showed that no waves exist at k? < k25 for the
geometries examined (PPEX, B-66). Thus, within the context of the geometries
examined, the point k3S represents the minimal point below which the waves
cannot propagate. As the density n. increased, the location of the point k2S
begins to move up on the k? axis, pushing up the lowest possible k, eigenmode.
Thus, an increase in density would precipitate higher k, eigenmodes and thus
more radial and axial oscillations in the field amplitude.

Two different density simulations are presented on Figure 4-18. The upper
graph shows the propagation of the integrated B, for a plasma of density 1 x

10*2cm™2 while the lower graph shows propagation at 5 x 10'2cm™3.

The main
difference to note is the difference in the damping of the wave amplitude. The
5x 10*2cm™2 plasma peaks earlier than the 1 x 10'2cm™2 plasma, but then damps
out much faster as well.

The damping aspect of higher density can be observed by examining the k,

roots for the first and last axial slices. Figure 4-19 shows a comparison of the
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ne = 1 x 10'? density case versus the n, = 5 x 10'? case. The upper graphs
show the complex k, roots for the n, = 10' density case. The upper left graph
is the complex k, roots found for the first axial slice, w/ws = 0.788. The upper
right graph is the complex k, roots found for the last axial slice, w/we = 0.997.
As can be observed, the imaginary part of k, becomes much larger as resonance
is approached. The lower two graphs again show the complex k, roots for the
n. = 5 x 10'2 case. Comparing the results for the first and last slices with that
of the n, = 10*? case shows that the imaginary k, is much larger for the higher
density case, thus resulting in more damping of the fields and greater energy

transfer to the plasma.

The issue of higher density raises an interesting question. Since higher density
results in larger k25 and therefore larger k, roots, the modal excitation coefficients
should, in principle, be excited to a lower level because the k, spectrum of the
launching a::tenna (n=0, Full Turn Loop) favors lower k,. So shouldn’t a higher
density result in less efficient coupling to the plasma instead of better coupling
as claimed before? The answer is no. The n = 0 antenna spectrum on Figure

4-5 shows the first minimum in Jy(k.) at approximately k, = 80m™".

As seen
on Figure 4-19, the initial k, g, roots for the n, = 10'>cm™2 (Upper Left) and
n. =5 % 10'2cm™3 (Lower Left) plasma cases show that even though the density
increased fivefold, the minimum k, root only increased by a factor of about 2,
which is to be expected since k, = kov/S \/n.. However, although the minimum
k, root has increased by a factor of 2, the remaining roots do not grow likewise. So

what is seen is that the entire k, eigenmode spectrum for the n, = 5 x 10%cm™3

case is upshifted in k, by k; jmin (Where k; min is the n, = 10'2cm™ case’s minimum
k, root) over the n, = 10'2cm™ eigenmode spectrum. Figure 4-19 shows that
although the n, = 5 x 10'?>cm™2 eigenmode spectrum is upshifted by this amount,
the 30th k, mode found is approximately 35m~!, which is still well less than the
first minimum of the Jy(k,) spectrum located at k, = 80m™'. Thus, the upshift
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the modal excitation coefficient.

Another interesting effect that is observable is the peaking location of the ICRF
B, field. Figure 4-18 shows that the peaking location for the n, = 5 x 10'?cm™3
plasma is located axially earlier than that of the n, = 10'?cm™3 plasma. This
difference could be explained in terms of the difference in the collision frequency
due to density. The higher density case would have a higher collision frequency
since ¥ o« n.. Because the collision term often appears as part of the factor
(w — wg + 1), it is seen that the damping effect of collisions is not really felt
until |w — wg| ~ ¥;. Since a higher density plasma dictates a higher collision
frequency, this means that wci(z) can be farther away from w before collisional
effects are felt. Thus, it is seen that a HIGHER density plasma results in collisional
damping effects that begin to set in EARLIER on in the propagation than a lower
density plasma, hence an earlier peaking of the ICRF B, field for higher density

is expected.
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4.4.5 Effects of Temperature on Propagation

The examination of the effect of different plasma temperatures on propagation is

again limited to a low temperature treatment, i.e. w > k,v,, where v, is given by

[3]
- (2)"

This means that the propagation analysis is valid for low temperatures (<
100eV'), but will not be valid at higher temperatures (1keV and up).

Again, intuition would indicate that since the collisional frequency v « T~%2,
the dissipation due to collisions would DECREASE as temperature is increased.
Therefore, less damping of the wave fields would be expected as the temperature
is raised. A comparison of results generated by BEACH for two different temper-
ature plasmas appears to agree with the above analysis. Figure 4-20 shows that
the lower temperature (10ev) plasma appears to be more effective at damping the
wave amplitude, while the higher temperature (50eV) plasma appears to be less
effective at removing the buildup of energy as resonance is approached.

The damping aspect of different temperature plasmas can be observed, as for
the densities, by examining the k, roots for the first and last axial slices. Figure
4-21 shows a comparison of che 10eV case versus a 50eV case. The top two graphs
show the complex k, roots for the 10eV case. The upper left graph is the complex
k. roots found for the first axial slice, w/we = 0.788. The upper right graph is
the complex k., roots found for the last axial slice, w/ws = 0.997. Again, the
imaginary part of k, becomes much larger as resonance is approached. The lower
two graphs show the complex k, roots for first and last slices of the 50eV plasma
case. Comparing the results for the first and last slices with that of the 10eV case
shows that the imaginary k. is much larger for the lower temperature case, thus
resulting in more damping of the fields and greater energy transfer to the plasma.

There is one major difference between varying density and varying temperature

- changing the temperature of the plasma does not affect the REAL k, solution.
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This is obvious because temperature doesn’t affect the minimum limit k, = kyv/S
since S is not a function of temperature. However, as seen on Figure 4-21, varying
temperature does affect the imaginary k., which is again expected since collisional
dissipation v; is dependent ‘upon temperature.

The peaking location of the ICRF [ B,rdr for different temperature plasmas
behaves as expected. Figure 4-20 shows that the peaking location for the 10eV
plasma is located axially earlier than that of the 50ev plasma. Again, this dif-
ference could be explained in terms of the difference in the collision frequency
due to temperature. The higher temperature case would have a lower collision
frequency since ¥ o« T3/2, Because the collision term often appears as part of
the factor (w — we + iy;), the damping effect of collisions is not really felt until
|w — wei| ~ v;. Since a higher temperature plasma dictates a lower collision fre-
quency, the w(z) must be closer to w before collisional effects are felt. Thus, it is
seen that a higher temperature plasma results in collisional damping effects that
begin to set in LATER on in the propagation than a lower temperature plasma,

hence a later peaking of the ICRF B, field for higher temperature is expected.
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4.4.6 Effects of w/w,; on Propagation

The difference in w/w,; at the antenna location affects the resulting propagation
and heating characteristics of the ICRF wave. Simulations for different w/wgo are
shown on Figure 4-22.

There appears to be an optimal w/w, for launching ICRF waves. BEACH
simulation has been run for one magnetic geometry but three different launch
locations (and therefore different w/w,; ). Note that because the magnetic geom-
etry of the three cases are identical, the imaginary k, damping mode numbers
are also identical. Thus, a k; comparison is inappropriate for determining the
optimal w/w,; for launching ICRF waves. Two other characteristics are therefore
examined — [ B,rdr of the ICRF B, field, and the modal excitation coefficient of
each of the eigenmodes. By comparing the [ B,rdr , one can see which of the
w/we; cases generates the largest energy buildup and decay. The modal excitation
coefficient directly shows how each mode is excited by the Jp(k,) driving term.

The [ B.rdr results are shown in Figure 4-22. As can be seen, it appears that

[ B.rdr is largest for the w/we =0.788 case and steadily decreases for large w/we:

The reason that lower launching values of w/w,; fare better than larger w/w, is
not difficult to understand. Examination of the driving source term Jp(k,) (Figure
4-5) clearly shows that the Full Turn Loop antenna favors lower k, modes. For

1. it is seen that less drive

the specific antenna geometry in question, if k, > 80m~
is available to the eigenmodes. Since lower initial w/w,; results in lower initial k,
(Since k2S is less, the lowest k, roots will be less), these lower k.’s couple better
to the FTL antenna spectrum and therefore result in larger modal excitation
coefficients. On the other hand, the larger initial w/wy results in larger initial
k.’s which don’t couple as well to the antenna spectrum. Therefore, it is seen that

lower w/w.; allows better coupling to the power spectrum of the n=0 Full Turn

Loop antenna.
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4.4.7 Comparison of BEACH Results to Other Experi-
mental Results — B-66

The BEACH code results qualitatively reproduce many of the experimental results
obtained on other machines. Two machines were modelled - the B-66 machine and
the results obtained on it by Uman(3], and the MIT-PPEX machine as described
in Chapter 2.

The two experiments were selected for the main purpose of verifying the
BEACH code. The B-66 machine provides good AXIAL measurements of the
ICRF B, field, while the PPEX experiment provided RADIAL measurements of
the ICRF B,. Thus these two experiments combined give a good set of empirical
data against which BEACH could be benchmarked. The comparison of BEACH "
to the experimental results of the PPEX machine are presented in the radial B,

results section in Chapter 5. This section will concentrate on the B-66 machine.

B-66

The B-66 machine [3] was a linear magnetic mirror device that was one of the first
to examine the magnetic beach heating phenomenon. The plasma is generated
inside a glass vacuum tube by microwave breakdown. The surrounding magnetic
field coils generate a maximum field of 2.6 Tesla with a minimum center cell field of
about 1 Tesla. ICRF power (16-MHz, 1-MW) is fed to the plasma via a multiturn
induction coil. ICRF B, is detected using a wave probe that consists of “one turn
of solid-jacketed, 50-Q coaxial cable with a symmetrically placed 1-in. break in
the jacket”[3] which is embedded in ceramic. The loop thus completely surrounds
the plasma and is capable of picking up only n = 0 ICRF oscillations.

The B-66 device was selected as a benchmark for BEACH both for its relatively
simple geometry as well as for its easily modelled diagnostic data, f B,»dr . Since
there is currently no axial measurement ot the ICRF b, on the PPEX experiment,

the B-66 is selected to provide experimental axial field profiles for comparison to
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BEACH results.

The basic schematic of the B-66 machine is shown in Figure 4-23. ICRF waves
are launched by an antenna located at z = Ocm and propagate towards w = wg;
at z = 61.2cm.

As mentioned before, the B-66 experimental B-dot probe data was obtained
using a loop that completely surrounded the plasma. Thus the signals detected
were the n=0 mode and were also integrated over the entire cross-sectional area
of the plasma, [ B, - dA.

The B,o(2z) magnetic field geometry of the B-66 machine that is modelled by
BEACH is plotted on Figure 4-24.
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BEACH vs. B-66

Using the magnetic geometry of the B-66 machine, the ICRF [ B,-dAis computed
by BEACH for a coliisionless case and plotted on Figure 4-25. Again, as in
the cases seen in Section 4.4.2, the field amplitude grows larger as resonance is
approached. This can be compared to the collisional case shown on Figure 4-28,
in whicn collisional damping is able to reduce much of the energy buildup that is
characteristic of undampened propagation towards resonance. Nevertheless, the
wave amplitude is still able to begin to increase as w gets closer to w;, although
at a much lower rate than the collisionless case.

Note that even with the inclusion of finite temperature effects (Single mode
calculation), the simulations conducted by Uman & Hooke fared no better than
the cold plasma approach undertaken in this thesis in attempting to fit to the
experimental data. The results of Uman & Hooke’s analysis are shown on Figure
4-27. For a plasma with a measured temperature of 100eV, Uman had to use a
simulation temperature of T} = 20eV to adequately match to the data, while a
55eV plasma required a simulation temperature of T}, = 10eV.

The experimental B-66 data are plotted against the results obtained from the
BEACH simulation. Figure 4-28 shows the results for a T}; = 5eV, n. = 1.75 x 1013
simulatior. Figures 4-26 and 4-29 the results of 7eV and 10eV plasma simulations
for n. = 2 x 10'*3. There is a qualitative fit for most of the cases but divergence
between B-66 results and BEACH simulation occurs for the higher temperature
simulations (10eV) as resonance is approached. This is again intuitive because
higher temperature results in lower collisional damping which in turn results in

less removal of the field energy that is building up.
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Possible Sources of Error in B-66 Simulation

Althogh much effort was spent on trying to simulate the geometry of the B-66
device as closely as possible, some differences between the BEACH simulation of
the geometry and the real B-66 geometry remain.

The first and perhaps major difference is the antenna. The simulation of the
B-66 uses a simple Full Turn Loop antenna to generate the n = 0 mode ICRF
waves. The real B-66 antenna is a multiturn antenna which spans some 30cm.
This difference in the geometry of the wave launcher could account for some of
the differences between the BEACH simulation results and the B-66 experimental
data.

The second difference is the location of the conducting wall. The B-66 machine
used a glass vacuum tube as its vacuum chamber, while the real metal container
is located at a larger radial location. The BEACH simulation uses this larger
radial location as its conducting wall. However the real B-66 has a break in this
conducting wall for the ICRF leads. This could also introduce a difference in the
field propagation characteristic.
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4.5 Differences between BEACH and CYLWAVE

There are some key differences between the CYLWAVE analytical theory of the
previous chapter and the BEACH computations presented in this chapter. These

are

1. BEACH is a local propagation analysis, while CYLWAVE is a global
analysis. This means that the ICRF waves in the BEACH analysis "sees”
only the k, of the slice they currently are propagating in, and the physics
changes according to the "local” conditions. CYLWAVE, on the other hand,
treats the geometry in a global manner. The parallel wave number k¢ and
the perpendicular wave number a reflect the OVERALL geometry of the

system and do not change with the wave’s phase front.

2. The BEACH code is an axial propagation code, while the CYLWAVE is a
standing wave code. The BEACH code tracks the propagation of the waves
towards resonance, altering wave k, to match the changing plasma conditions
that are encountered. The CYLWAVE code analyzes the overall effect of the
spatially dependent dielectric tensor and computes the ICRF fields in the
presence of this dielectric tensor. CYLWAVE does not track wave fronts or
change k,. This difference is evident in Figure 4-31 which shows the BEACH
computed [ B,dA peak up due to the increased wave energy resulting from a
slowing down of the parallel phase velocity. CYLWAVE, on the other hand,

exhibits no such buildup because of its constant k.

3. The two approaches differ on their treatment of the axial inhomogeneity in
B, and the changing plasma radius. BEACH splits the cylinder of changing
radius into many constant radii slices, while the CYLWAVE code performs
a coordinate transform and a stretching transform in order to simplify the

boundary condition.
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4. BEACH is invalid close to resonance and cutoff, while CYLWAVE can han-
dle resonances and cutoffs. The WKB approximation used in the BEACH
code becomes invalid when approaching resonance. CYLWAVE handles the
resonance by performing a Fourier transform and analytically integrating

the poles.

5. BEACH contains both the almost-TE and the almost-TM modes, while
CYLWAVE contains only the almost-TE mode. BEACH is able to decouple
the almost-TE mode and the almost-TM mode because of the cunstant
plasma parameters it assumes for each axial slice. CYLWAVE, on the other
hand, contains elements of the dielectric tensor that are strong functions
of £&. This prevents a simple decoupling of the differential equations that
couple the TE and TM modes together.
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Figure 4-31: ICRF [ B,rdr Propagation in a Cold Collisional Plasma. CYL-
WAVE results (Solid line) and BEACH results (Open circle line) are plotted ver-
sus axial distance from antenna. BEACH assumes a full turn loop antenna, while
CYLWAVE uses a dipole loop antenna located at z = 0.
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4.6 Summary of Computational Study

In order to complement the analytical model, a computational multimodal eigen-
value simulation of ICRF propagation and heating is undertaken in this chapter.
The simulation uses a computer code, BEACH, that was developed as part of this
thesis. BEACH takes into account the axially inhomogeneous B, by dividing up
the axial length into different slices., each of which has a constant axial magnetic
field. This allowed the simplification of the EM plasma fields into a fourth order
equation which could then be separated into two coexisting modes — the “almost
TE” and the “almost TM” modes. BEACH first solves for a finite number of K,
eigenmodes for each slice (usually 30-50 modes are taken), and then solves for
the excitation coefficient of each of these modes as driven by the antenna driving
source J(r,n, k;). Two conditions — Poynting power conservation and wave phase
conservation are used to match fields across the boundary between two adjacent
axial slices. This solves for the set of unique excitation coefficients for the next
(non-driven) axial slice. After all the fields are solved for each slice, the 30-50

modes are then inverse-Fourier transformed to obtain the full EM fields.

RESULTS

The results of the BEACH computer simulation indicates that

1. Higher density results in higher eigenmodes. Although these modes have
only slightly higher REAL parts, the imaginary k, of these modes are sig-
nificantly increased as a result of higher density. Thus, BEACH code found
that higher density is better for ICRF heating.

2. Lower Temperatures generates larger k; ;m, causing the ICRF waves to damp
out more and coupling more energy to the plasma. Thus, LOW TEMPER-
ATURE is better for ICRF heating. This finding, however, is only valid in

the context of a cold plasma approximation (T}, < 100eV).
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3. There is an optimal w/w; for launching ICRF waves. This optimal w/wg
depends mainly upon the k, spectrum of the launching mechanism, i.e. an-
tenna. For the Full Turn Loop antenna, it was found that lower launch

w/we is more suitable for coupling to the ICRF waves.

4. Comparison of the BEACH results with the B-66 experimental results show
a qualitative fit, however the two results begin to diverge as w/w; — 1. It
is seen that the BEACH results often did not contain enough dissipation
mechanisms (BEACH contains only collisional dissipation) to completely

damp out the rapidly growing field energy.

5. There are many differences between the BEACH analysis and the CYL-
WAVE analysis. BEACH uses a "local” propagation approach, while CYL-
WAVE uses a "global” approach. BEACH separates the geometry into dis-
crete axial slices of constant plasma properties, while CYLWAVE employs
coordinate transformations and Fourier transform to handle the axial inho-
mogeneity. BEACH contains both the almost-TE and almost-TM modes,
while the CYLWAVE contains only the almost-TE mode. Each approach
has its strength and weakness. Future improvements of either analysis must
incorporate features of the other in order to best simulate a realistic physical

geometry.

In conclusion, the study of ICRF wave propagation undertaken in this chapter
is able to generate intuitive results for ICRF wave propagation and damping,
as well as produce results that qualitatively agree with the experimental data
obtained from the B-66 experiment. BEACH and CYLWAVE are seen to differ
on several fundamental issues. The best features of both should be incorporated

into the next generation analysis.
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Chapter 5

Experimental Results

As indicated in Chapter 2, the experiments were conducted on the MIT-PPEX
mirror machine that was constructed as part of this thesis. It is the goal of the
experimental work to try to verify some of the predictions of the simulation results.
Thus, the main focus of this chapter is on the experimental results obtained from
the PPEX machine, in particular the B-dot probe’s pickup of the ICRF B,. The
results from radial scan of the ICRF B, will be compared to predictions of the
BEACH code.

PPEX offers many “controls” to the experimentalist in order to tailor a plasma
discharge of the desired plasma parameters. These controls are given in Table 5.1.

Two sets of ICRF antenna are used in the heating of the PPEX machine: one
in the anchor at 7.5MHz, the other in the center cell at 3MHz. Measurements of
plasma properties commence before the firing of the ICRF shot and continue well
beyond the end of the ICH pulse. The ICRF B, measurements by the B-dot probe
usually takes place during the ICRF shot because of the short scan period dictated
by the limited memory of the digitization module (512K of RAM corresponds to
~ 0.5ms at the 100MHz digitization rate).

Over 2400 shots were taken from the inception of computer assisted data ac-
quisition to the present time. Of these 2400 shots, over 1000 shots were with
ICRF.
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Two types of ICRF shots are identified in this thesis - Type I and Type II.
Type I shots are those for which the ICRF frequency of the antenna is greater
than the cyclotron frequency at the antenna location, i.e. w > wgane. Type II
shots are the opposite, i.e. w < we;ane. Type II results are the results that will be
simulated by the BEACH code, thus emphasis will be placed on the B-dot probe’s
ICRF B, measurements from the TYPE II shots.

This chapter is organized into several sections. Section 5.1 will first present
the ECRH plasma shots. The next section will provide the rationale for the
separation of the ICRF shots into two types: w > wy (TYPE I) and w < wy
(TYPE II). Section 5.3 will present the results obtained for a TYPE I ICRF
discharge, followed by Section 5.4 which presents the results for the TYPE II
ICRF discharge, including the radial B, scan that will be matched against the
theoretical predictions of the eigenmode code BEACH as described in the previous

chapter. Finally, Section 5.5 will summarize the experimental results obtained.

5.1 Baseline ECRH Shots

As mentioned 11 Chapter 2, the PPEX machine has three heating systems : one
Electron Cyclotron Resonance Heating (ECRH) system at 2.1GHz, and two Ion
Cyclotron Range of Frequency (ICRF) systems at 3 and 7.5MHz. The results
presented in this section are obtained from plasma shots heated by solely the
ECRH system. There are two reason that these results are presented. First, to
provide a set of baseline plasma characteristics that can be obtained without use of
ICRF power, and secondly, to provide sensitivity calibration of the interferometer
and Langmuir probe diagnostics

The ECRH discharge is created by running the center cell and anchor coils
at lower currents (I = 200A, I = 400A versus I, ~ 600A, I, ~ 1600A
for typical ICRF discharges). This is done to produce the 750G field required

in order to locate the first harmonic ECH resonance close to the ECRH wave
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launcher. However, lower current and thus lower axial field B, results in much
larger Larmor radii for both the electrons and ions, hence a lower density.

The diagnostic results obtained from an ECH plasma shot is shown on Figure
5-1. The top graph shows the Langmuir Probe’s response. The middle shows the
microwave interferometer’s phase shift response, and the lower graph is the H,
light emission from the plasma discharge.

The Langmuir probe allows a good estimate of the edge plasma density and
electron temperature. From the linear region of the I vs. V plot of the Langmuir
probe response curve, the average electron temperature for an ECH discharge is

estimated to be 18 + 3eV. The density can be found using the following equation:

I,,-e% m;

From the ion saturation current measurement of I,; ~ 1lmA and an electron

temperature of 18V, a plasma density of 7.9(+1.3, —0.6) x 10°%cm™2 is found.

The H, light emission shows the heating of the plasma from the ECRH source.
The H-a emission data is used as one further check to verify the operations of the
other two diagnostics.

The microwave’s phase difference digitization is performed with the Jorway
J1808 phase digitizer. For a mean plasma radius of 10cm, this level of interferom-
eter response corresponds to a maximum chord-averaged ECH discharge density
of 8.1+ 2.0 x 10%m ™3,

From the data acquired from the Langmuir Probe and Interferometer diagnos-

tics, it is seen that the Langmuir Probe’s density of 7.9 x 10'%cm™3

agrees quite
well with the interferometer’s maximum density of 8.1 x 10'°. Both diagnostics
used in combination thus could provide relatively good and mutually verifiable

measurements of the chord-average electron density.
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Figure 5-1: Processed PPEX ECH Shot Data. From Top to bottom : Langmuir
Probe Current, Interferometer Line Density, and H-a Light Emissions. The Lang-
muir Probe current is obtained by sawtooth scanning the LP Voltage at 300V,
1kHz.

217



5.2 ICRF Shots

Although the PPEX machine has ICRF antennas located in both the center cell
and the mirror cell, only the CC ICRF is used in the experiments described in
this chapter. This is because the mirror ICRF antenna launches waves that are
damped in the mirror cells, therefore the B-dot pickup probe in the center of the
machine has difficulty picking up adequate signals. The mirror ICRF antenna is
unable to launch waves at lower frequencies because its matchbox was designed
for operation at frequencies of resonance in the mirror cell (~7 MHz) and not for
center cell resonance (~3 MHz).

CC ICREF shots are used to extract information about ICRF wave damping
and wave energy absorption by the plasma. Special emphasis is placed on the set
of experimental results obtained from the B-dot probe, the Langmuir probe, and
the interferometer to obtain a set of plasma properties n,, T;, as well as ICRH
heating and propagation characteristics.

A representative CC-ICRH discharge has the time sequencing and setting
shown in Table 5.2.

5.2.1 Classification of ICRF Discharge

The ICRF discharges to be examined in this thesis are basically grouped into two
types — TYPE I is the class of discharges with w > w,;, and TYPE Il is the class
of discharges with w < w,. The magnetic geometry of the two systems are seen
in Figure 5-2. There are two reasons why the discharges are thus classified ~ the
difference in level of plasma oscillation, and the different physics inherent in the
two types.

The difference in the oscillation level between the two discharges can be seen on
Figure 5-3, which shows the H-a acquired during TYPE I and II discharges. From
the figure, it is obvious that TYPE I discharge is much noisier. This noisiness

makes it difficult to reproduce ICRF shots with similar plasma characteristic and
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Figure 5-2: Difference in geometry between TYPE 1 and TYPE II discharges.
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is one of the two reasons that the radial B, scan is performed for the TYPE II
plasma.

The second reason that TYPE II is chosen to perform the radial scan is that
for w > w,i, the ion cyclotron resonance at w = w,; is not crossed. Crossing the
w = w, resonance layer alters the physics of the propagation because the L in
the dielectric tensor becomes negative, and thus there is no longer the k2 = k2L
cutoff on Figure 3-1. This results in the elimination of the TE mode and leaves just
one k; for every k. Hence, the propagational physics is different if the w = wg
resonance is cross. The TYPE I discharge has only one k, associated with each
k. eigenmode, while the TYPE II discharge has two k, ’s associated with each k,.
The BEACH code simulations is performed assuming both k; modes exist, which
is similar to the TYPE II discharge. Thus, in order to maintain similar modal
characteristic with the BEACH code, the radial B, scan is only performed for a
TYPE II discharge.

5.2.2 Verification of the BEACH code

To compare the results of the PPEX experiment to the BEACH code, the plasma
density must be known. ‘The plasma density is required for BEACH to produce the
radial profile that can be compared with the PPEX results. Accurate knowledge
of the ion and electron temperatures is not required in producirg the radial profile
because their contribution to the wave propagation comes in through the cellision
term, which affects the axial profile (through the e*sim* term) much more than
the radial profile.

Given that the main plasma property required for coinparison with the BEACH
code is the plasma density, the great majority of the diagnostic effort is devoted
towards obtaining a set of independent measurements of plasma density. Three
diagnostics are used to provide density data: Interferometer, H-a detector, and
Langmuir Probe. The interferometer is used to provide the line average density

of the plasma. The H-a detector is not absolutely calibrated, due to a lack of an
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Figure 5-3: Comparison between the H-a output of TYPE I and TYPE II dis-
charges. TYPE I (Top) shows a much higher light emission level as well as the
three different regions identified as Ramp-up, Oscillatory, and Quiescence. TYPE
IT (Bottom) shows little light emission and is relatively quiescent
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abeolute light source. Therefore, its purpose is to verify the temporal behavior of
the interferometer and Langmuir probe diagnostics. Because the time resolution
of the interferometer system used (8kHz digitization rate) is sometimes unable to
catch the fast timescale ch.anges in density, resulting in missing one or more 27
radian phase shifts, the H-a emission is monitored to determine if the interferom-
eter is still phase-locked on the microwave signal. The H-a light output should
have the same temporal characteristic as the interferometer density measurement.
Finally, the Langmuir probe is used to provide edge density measurements that
could be compare to the interferometer. If both the Langmuir probe and interfer-
ometer yield similar resuits for density, then the measurements can be seen to be
self consistent.

However, it must be pointed out that the radial dependence of the ICRF B,
field is NOT a strong function of density. BEACH code simulations show that
density variation by a factor of two does not affect the characteristic radial profile
very much. Thus, the accuracy of the density diagnostics is not extremely crucial
to provide adequate modeling of the ICRF B,(r) radial field profile.

A radial scan is performed to compare the PPEX experimental results against
the predictions of the BEACH code. As mentioned before, this scan is only done
for TYPE II discharges. The B-dot probe [25] is inserted into the plasma and
the ICRF B, fields are measured during an ICRF pulse. At least five shots are
taken at each radial location before the probe is moved to another radial location.
After a complete scan is performed, the results are then compared against the
BEACH predictions. The B-dot probe’s pickup loops have a diameter of %”. This
imposes a limit on the resolution of the B,(r) measurements because according
to Hutchinson (73], any field structure whose scale length is less than size of the
pickup loop (Diam:%”) will be distorted by the presence of the probe. Thus, the
fine structure of the B,(r) field will not be accurately represented. However, field

structures with sizes greater than i" can be resolved.
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5.3 TYPE I Discharge - w > w

As mentioned before, BEACH code results are comparable in magnetic geometry
to the TYPE II dischafges. Therefore TYPE I discharges were not considered in
the theory portion of this thesis. However, several interesting characteristics of
TYPE I discharges were found during the course of experiments and are presented
in this section both for completeness and also as a lead-in to possible future work.

The data acquired during a sample TYPE I ICRH shot is shown in Figure 5-4.
The three diagnostics whose data are given in Figure 5-4 are (Top to bottom):

Langmuir Probe Current Interferometer, and H-o light emission.

5.3.1 H-a and Interferometry Results

Light emission from the H-a is a good indicator of the ionization process. The
interferometer data yields an indication of the chord-averaged electron density,
which is essential in the context of this thesis to examine ICRF propagation.
Taken together, the H-a and the interferometer data yield a correlatable and
coherent measurement of plasma density.

Analysis of the H-a output shows that there is significant plasma ionization
during the ICRF shot, but that both the H-a and the microwave interferometer
output drop rapidly to zero after the ICRF is turned off. This indicates a low
confinement time which is estimated from the density decay time at Tpqpticte <
0.5ms.

The H-a and interferometiry results obtained from TYPE I discharges lead the
PPEX team to identify three distinctly different regimes in an ICRF discharge
- Ramp-up, Oscillation, and Quiescent. As seen in Figure 5-4, the H-a output
is seen to initially rise slowly, with very little noise. This is identified as the
Ramp-up phase. After a plateau is reached, the H-a then goes through a period
of intensifying oscillations (Oscillation), culminating in a final Quiescent period

of almost no noise before ICRF power is cut off.
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Interferometer data shows peak line densities of approximately 5 + 0.85 x
10'2cm™2, or densities of 2.5 £ 0.42 x 10'’cm~3. Average line density is ap-
proximately 2 + 0.85 x 10'2cm~2or density of approximately 1 + 0.42 x 10**cm™3.

H-a Light emissions are at a level that is generally much higher than for ECH
emissions. For the Quiescent phase, light emissions are typically about 2.8 times

larger than the ECH emissions.

5.3.2 Langmuir Probe Results

The Langmuir Probe data is shown in Figure 5-5.

The Langmuir probe results clearly show the chaotic nature of the TYPE I
discharge. Two distinctly different sets of data are evident — the coherent set of
data points labeled as Set B and the rest of the points, labeled as Set A. Set A is
the Langmuir probe response during the Ramp-up and Oscillatory phases, while
Set B consists of data obtained during the Quiescent phase of ICRF discharge.
The Langmuir probe tip has a diameter of 1.78mm. Based upon the Langmuir
Probe data, the electron temperature at 6.67cm is T, = 45 + 10eV, while the
density is estimated at n. = 0.86(+0.11, —0.076) x 10*'cm™3.

Note that the Langmuir probe density results are in fairly good agreement
with the interferometry result - n.(LP) = 0.86(+0.11, —0.076) x 10''cm~3versus
n(IF)=1%0.42 x 10"em™3.

5.3.3 B-Dot Probe Results for w > wg

The ICRF B, data obtained are analyzed by Fast Fourier Transforming the sig-
nal into its frequency components. This allows an examination of the level of
excitation of the base 3MHz frequency as well as of any other harmonics.

The B, data are presented as follows. Section 5.3.3 introduces and examines
the spectral broadening phenomenon that is predicted and observed. Subsection

5.3.4 discusses the results obtained in each of the three regions of the ICRF dis-
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Figure 5-5: Diagnostic data obtained from the CC-Langmuir Probe during a
TYPE I ICRF shot. Note the two distinctly different types of data labelled A
and B. A is the Langmuir probe response during the Ramp-up and Oscillatory
periods. B (dense cluster of data points) is the LP response during the Quiescent
period. For set B, T, ~ 45 % 10eV, n, = 0.86(+0.11, —0.076) x 10! cm™
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charge as discussed previously in the H-a Section.

Frequency Spectral Broadening

One of the predictable effects of plasma loading is the detuning of the resonant
tuning circuit by the addition of plasma impedence and resistance. Recall that

the Q-factor of a tuned circuit is given by

An additional resistance due to plasma loading will significantly lower the Q-factor
and broaden the frequency spectral profile of the ICRF output. Thus, one would
expect significant broadening of the ICRF spectra during maximal antenna-plasma
coupling.

To observe the spectral broadening phenomenon, a comparison of a vacuum
shot to a plasma shot is necessary. The Fourier spectrum of the blank shot is seen
in the top half of Figure 5-6. The 3MHz base ICRF frequency is clearly evident
at about 1000 times the amplitude of the largest of the other detectable frequen-
cies. Other non-3MHz-multiple frequencies are clearly also excited in the vacuum,
most likely generated by the imperfection of the ICRF amplifier (The Continen-
tal Electric Co’s Transmitters). Several noteworthy features of the vacuum B,

spectrum and are listed below

1. The 3MHz base ICRF frequency (Also referred to as the primary mode) is

prominently excited at a normalized magnitude of 1.

2. Multiples of the primary 3MHz mode (6, 9MHz, etc) are also excited, al-
though their amplitudes are much lower than the primary mode. Typically

these amplitudes are about 0.1% of the primary mode amplitude.

3. Non-harmonic modes are generated (See next subsection).
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The Fourier B, spectrum of a plasma shot is seen in the lower half of Figure
5-6. The relative magnitude of the 3MHz primary mode remains unchanged from

the vacuum shot. However, several significant differences can be observed.

1. For the plasma shot, the background level of the Fourier spectrum has in-

creased a factor of 10 over the blank shot.

2. In the presence of a plasma, significant broadening of the vacuum ICRF
spectrum was observed. This is hereby referred to as the Log-Q Effect since
the broadening is readily apparent not so much on the linear scale as on the

logarithmic scale.

NON-HARMONIC MODES

As observable in the vacuum shot of Figure 5-6, non-harmonic frequencies (non-
multiples of the base 3MHz frequency) are generated and picked up by the B-dot
probe. This is an indication of the imperfection of the ICRF transmitters. An
examination of the signal produced from two -70dB couplers on a dummy load
shows that this is indeed an artifact that is generated by the ICRF transmitters
used and NOT produced by the geometry of the system. The cause of this artifact
is the fact that a high power RF amplifier tube operates in Class C mode with a
conduction angle of less than 180 degrees. Thus the amplifier system relies upon
an ideal output tuning system to regenerate a perfect sinusoid and tune out other
harmonics. However, the tuning system of the transmitters are difficult to tune
and are hardly ideal. Thus, some non-harmonic frequencies are also produced,
e.g. the mode at ~ 4MHz in Figure 5-6. Note that these modes are excited at
much lower amplitude than the base frequency, typically at 10~ times the 3MHz

amplitude.
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Figure 5-6: Fourier Spectral Broadening of a Plasma 3MHz CC-ICRF Shot. Both
the Reference vacuum shot (Top) and the Plasma shot (Bottom) are shown
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5.3.4 B, Measurements in Three Regions of ICRF dis-

charge

As identified in Section 5.3.1, the ICRF discharge can be temporally separated
into three regions: Ramp-up, Oscillation, and Quiescence. In order to obtain
self-consistent results, B-dot probe measurements are taken in each of the three
different temporal regions. As seen in Figure 5-7, there is significant qualitative

difference between the three regions.

The first region is identified as the Ramp-up region. This is the region in
which the H-a emission increases linearly with little oscillation. The Fast Fourier
Transform (FFT) [74, 75] of the ICRF B, as seen in Figure 5-7 shows significant
spectral broadening during this phase of the discharge. As explained in Section
5.3.3, this indicates that the wave-plasma coupling is maximum in the Ramp-up
region.

The second Oscillatory region is one in which the oscillations in both the
light emission and the interferometer measurements are seen to oscillate, initially
with very large amplitude and frequency, but with gradually lower amglitude and
frequency. The FFT of the ICRF B, obtained for this regime (See Center Figure
in Figure 5-7) shows a spectrum with very little broadening lower amplitude than
the Ramp-up region.

Finally, the Quiescent region is also seep on Figure 5-7. Again, as for the Oscil-
latory region, there is minimal spectral broadening. The 3MHz signal amplitude
is seen to be considerably less than that of the Oscillatory region.

Because the broadening is only visible on a logarithmic basis, the Q-value of
the spectra could not be resolved very accurately due to the limited resolution of
the FFT Fourier spectrum. However, it is estimated that Q > 40 for all the cases
and regions examined. This means that given the frequency of the ICRF system
(3MHz) and the inductance of the antenna (~ 1uH), the plasma resistance is

less than 1Q) for all cases examined. This value of plasma resistance agrees
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4oV



well with other studies and experiments [11, 12, 4].
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Figure 5-7: ICRF Fourier Spectrum for m%Y(MLr), Oscillatory (Middle),
and Quiescence (Upper) Regions for a TYPE I (w < w.i ) Discharge
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Control

Table 5.1;

Typical Range

Plasma Properties Affected

Neutral Gas Pressure P,
ECH Switch-On Time

ECH Duration

ICRF Switch On Time
ICRF Duration

ICRF Cathode High Voltage
ICRF Frequency

CC Coil Current

Mirror Coil Current

1075 — 10™* Torr
0-200ms

0-700ms
300-500ms
2-100ms

1-10kV

3-7TMHz
120-800A

200-2000A

Ney TCX

N,

Ne

Wei

Ne, N4, T'ia Te

Ney Ny, 111', Te

ICRF Resonance Location
w = wg location,n,

w = wg location,n,

N
(1]
(V]




Table 5.2: CC-ICRH Sequence of Events

TIME | EVENT SETTING DURATION
(ms) (ms)
0 Icc, Inirr ON Icc = 680A, Inrrr = 1600A | 1000
0 Diamagnetic Loop ON DAQ at 1-100KHz 2000
100 ECH ON Freq=2.1GHz, Power=2KW | 700
580 Interferometer ON Freq=35GHz base, 500
Af =80KHz scanning freq
580 Langmuir Probe DAQ ON | V=200V 70
600 CC-ICH ON HV=8kV 10-30
615 B-Dot Probe DAQ ON DAQ at 100MHz 0.6

630

CC-ICH OFF

N
(%)
LS




5.4 TYPE II Discharge - w < wy

The TYPE II discharge (w < wg ) is of greater relevance to the simulations
performed in this thesis. Because the waves do not cross the w = w,; resonance,
there will always exist two roots (TE and TM) for each eigenmode. Since the
BEACH code expects that both roots to exist, the TYPE II discharge is therefore
more similar than TYPE I to the theoretical analysis performed in the previous
chapter.

The experimental results obtained for TYPE II discharges will be presented
as follows. Section 5.4.1 will present the density results as obtained through the
H-a and interferometry measurements. Section 5.4.2 gives the Langmuir probe
results both before and during an ICH discharge to provide edge density and
electron temperature measurements. Finally, the B-dot probe measurements will

be discussed in the context of the radial scan.

5.4.1 H-a and Interferometry Results

Data collected during a typical TYPE II discharge is seen on Figure 5-8 As evi-
denced by the H-a and interferometry data on Figure 5-8, the TYPE II discharge
is much more quiescent than the TYPE I discharge. However, it must be noted
that both discharges have a much lower frequency oscillation (period of about
10ms) that is much more pronounced in TYPE II discharge. This oscillation is
seen to be caused by the periodic nature of the ECRH heating pulse. Recall that
the ECRH heating pulse is a half-rectified sine oscillation with a mean period of
about 10ms. This oscillating source of heating corresponds well to the oscillation
in both the density and H-a output. It is thus seen that although the ECRH
by itself could not generate large plasma densities, ECRH coupled with ICRF
produced a much larger plasma density than could ECRH or ICRF alone.

From the interferometer measurements, the w > w,; discharges generate densi-

ties that are lower than the w < wy discharges. Peak line densities obtained from
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the interferometer is approximately 3.2 =+ 0.85 x 10'2cm™2, which corresponds to
a plasma density of approximately 1.6 + 0.42 x 10'’cm™3. Average line density is
lower at approximately 2.6 4 0.85 x 10'2cm™~2 or about 1.3+0.42 x 10'cm™3. The
uncertainty is due to both pickup as well as the J1808 phase digitizer’s resolution
limit of 1/16 fringe.

5.4.2 Langmuir Probe Results for TYPE II Discharge

The Langmuir probe measurement can be seen as part of the shot data on Figure
5-8. The Langmuir probe results are seen to be consistent with the H-a and
interferometer output in their temporal behavior, i.e. all three diagnostics show
peaking when the ECH heating source is on. As seen in Figure 5-8, the abrupt
increase in Langmuir probe current occurred with the commencement of the ICRF
pulse at 600ms and continues until the end of the ICRF pulse at 630ms. Again,
as with the H-a and interferometry data, the Langmuir probe showed the ECRH
modulation of 10ms.

The Langmuir probe response during ICRF is examined in Figure 5-9. From
the Langmuir probe data, the average electron temperature is calculated to be
approximately 30 £+ 5eV The average ICH ion saturation current is seen in Figure
5-9 to be approximately 6mA. Given this level of I,; and the electron temperature
of about 30 + 5eV, a rough estimate of the maximum edge density during ICRF
discharge can be obtained via

1
I.ea [m;

Agq VT,

ne =

For the probe tip diameter of 1.78mm, this results in a density of about n, ~
1.06(+0.10, —0.08) x 10**cm™3 at the probe location (e = 6.7cm). This density
result is in fairly good agreement with the interferometer’s average density (from

the previous section) of 1.3 & 0.42 x 10'cm™3.
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Figure 5-8: Processed Diagnostic results from a TYPE II (w > wy; ) CC-ICRF
shot. Diagnostics are (Top to bottom): Diamagnetic loop voltage, Langmuir probe
current(mA), Interferometer line density, and H-a Detector. Note that for this
particular shot, the ICRF power starts at 600ms and ends at 630ms
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PPEX Shot No. 2099. Imirr= 1600, lcc= 680
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Figure 5-9: Langmuir Probe Data obtained for a TYPE II (w > w, ) CC-ICRF
shot. The points shown are experimental data obtained during an ICRF shot.
Coil Currents are: I.. = 680A, I = 1600A. Average T, ~ 30 £ 5eV, Average
n, ~ 1.06(+0.10, —0.08) x 10''cm™3

238



5.4.3 B-Dot Probe Results — The Radial Scan

The B-Dot Probe data obtained from a typical CC-ICRH shot is obtained by
inserting a B-Dot probe (The details of this particular B-dot probe is given by
Chen [25]) into the plasma at a radius of between 0 to 12cm. The adjustability of
the radial location provides flexibility in obtaining radial profiles of the ICH B,
field. Because the pickup coils of the B-dot probe used in the PPEX experiment
were located in the tip of the probe, multiple shots had to be taken to obtain a
radial profile of the ICRF magnetic fields. The radial scan is performed for the
TYPE II plasma (w < w ) and not for the TYPE I (w > wy ) plasma mainly
because the BEACH code simulation assumes that w < we . This is done so as
to ensure that there are two roots to the solution of the infinite plasma dispersion
relation. If w > wy in any region of the plasma, the TE wave would be cut off,
leaving only the TM wave. Since the BEACH code requires that both TE and
TM branches exist, a radial scan is performed in the w < w,; case for comparison
to the BEACH simulation. '

Given the rationale for performing the radial field scan during TYPE II dis-
charge, the scan is then performed for two different central cell currents. This is
to examine the effect of proximity to resonance on the radial field profile. Because
BEACH predicts that the ICRF B, contains a large edge peak that propagates in-
ward as resonance is approached, raising the central cell current effectively moves
the resonance further away from the probe located at the z=0 field minimum of
the machine. In other words, INCREASING I effectively DECREASES w/w
at the B-dot probe location (z=0). Thus, what is predicted by BEACH is that
increasing I.. causes the edge peak to be located closer to the edge of the plasma.

The result of the ICRF B, radial scan is now presented. Figure 5-10 shows the
B-dot probe’s pickup of the ICRF B,’s 3 MHz signal at various radial locations.
The magnetic coil current settings are I.. = 68CGA and I;.r = 1600A, The neutral
pressure is maintained at between 5 to 9x1075Torr. The ICRF cathode high
voltage was set at approximately 5kV. Length of the ICRF pulses was 30 msec.
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Each radial point represents at least 5 shots. The vertical error bars represent
the statistical o spread in the experimental results. The horizontal error bar
represents both the size of the coil (Diam:-};”) and the error in measuring the
location of B-dot probe relative to plasma centerline. Each data point is obtained
from the processed 3MHz signal level of the Fourier spectrum of the B-dot probe
signal. |

The ICRF B, measurements taken by the B-Dot probe for the I, = 680A
case are shown on Figure 5-10 plotted against the BEACH code results. The
value of w/w, = 0.94 was selected because of the center cell current I setting.
Since resonance of w/we = 1 at 3MHz corresponds to I, = 640A, an I current
of 680A corresponds to w/ws of 0.94. The main feature to note on both the
simulation results and the experimental results is the presence of a peak near the
edge of the plasma. The amplitude of this peak is seen experimentally to be about
3 to 4 times larger than the B, data for the other radial locations. The BEACH
code is seen to predict the presence of this peak, although the amplitude of the
simulation differs somewhat from that of the experiment. The B, measurements
at smaller radii appear to differ from the prediction as well. This difference could
be attributed to the larger disturbance to the plasma due to the larger physical
presence of the B-Dot probe in the plasma when taking small radii measurements

of B,.
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Figure 5-10: PPEX Experimental Results vs. BEACH Predictions. I.. = 680A,
I'nmirr = 1600A. Horizontal error bar includes allowance for finite size (1/4" Diam)
of the B-Dot Probe pickup loops as well as for measurement errors.
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5.5 Summary of Experimental Results

A magnetic mirror machine, PPEX, was designed, constructed and made opera-
tional as part of this thesis. The machine has 3 heating systems - one microwave
electron cyclotron heating(ECH) unit (2.1 GHz) in the Center Cell, one ion cy-
clotron heating unit (7.5MHz) in the North Anchor, and one ICH unit (3MHz) in
the Center Cell. Up to 200kW of power is available to each ICH units, while the
ECH unit is capable of putting out 2kW. Diagnostics currently in place include
a Langmuir Probe, a 35 GHz microwave interferometer, an H-alpha detector, a
diamagnetic loop, and a B-dot probe. Measurements of the ICRF B, field during
a plasma discharge are taken using the B-dot probe to obtain a radial profile of
the B, field. The baseline ECH results obtained from I.. = 200A, I = 400A

produced an electron temperature of T, ~ 18eV, n. < 8 x 10'°%cm™3,

For the ICRF discharge, two types of discharges are identified : TYPE I
(w > w somewhere in the plasma) and TYPE II (w < w, everywhere in the

plasma).

Typical TYPE I discharges are created by setting I.. = 640A, I, = 1600A.
Experimental Langmuir probe results obtained during TYPE I discharge indicate
that T. ~ 45 =+ 10eV and density of n. ~ 0.86(+0.11,—0.076) x 10*'cm™3, while
interferometry yields a chord-averaged density of n. = 1 & 0.42 x 10*cm™3. The
TYPE I discharge is characterized by an initially large amount of oscillations in the
plasma density. The total ICH heating period can be classified into three temporal
regions or phases: Ramp-up, Oscillatory, and Quiescence. These 3 regimes are
selected because of their characteristic H-alpha and density output. During the
Ramp-up phase, the H-alpha output grows linearly without much noise. After
reaching a plateau, the Oscillation regime is entered, characterized initially by
large amplitude (up to 20% of the plateau level) and high frequency (~ 10KHz)
oscillations which gradually decrease in both amplitude and frequency. After a

certain point, the oscillations cease abruptly, followed by a Quiescent phase of
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quiescent plateau, ending with the shut-off of the ICH heating power.

ICRF B, obtained via the B-dot probe is taken in each of the three different
phases identified above. Significant differences in their spectral characteristics are
noticeable. In region 1 (Ramp-up), the B, signal appears to be growing and the
fundamental 3MHz frequency is very much broadened. The data obtained during
the Oscillatory phase indicate that the B, signals have plateaued and show signs
of losing the spectral broadening observed during the initiation phase. Finally,
phase 3 (Quiescence) B, show that the amplitude has indeed plateaued and may
even start decreasing. However, it has not been established whether this decrease
is due to the e~*/" decay of the RF amplifier’s high voltage capacitors, or due
to wave-plasma coupling. The spectral broadening observed in phase 1 is almost
nonexistent in phase 3. Based upon these results, it is believed that maximum
ICRF wave-plasma coupling accurred in the Ramp-Up region.

For the TYPE II discharge, the electron temperature obtained from Lang-
muir probe measurements is T, ~ 30 + 5eV, and the density was found to be
approximately n, ~ 1.06(+0.10, —0.08) x 10''cm™3. Again, the Langmuir probe
density results are in good agreement with the interferometer result which yields
a chord-averaged density of 1.3 + 0.42 x 10*'cm™3.

A radial scan of B, is performed on the PPEX machine to examined the B,(r)
radial profile. The scan was performed for the standard magnet coil current setting
of I.. = 680A and I = 1600A. The major characteristic observed in the radial
scan was an edge peak, which was predicted by the BEACH code. The BEACH

code results produced a very good fit to the experimental data.
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Chapter 6

Conclusions and

Recommendations

6.1 Conclusions

This thesis examines the characteristics of the ICRF propagating wave in a mag-
netic mirror geometry. The s.. dy consists of three parts - an analytical study,
a multi-eigenmode expansion computational study, and an experimental study.

Some conclusions can be drawn from the studies performed in this thesis.

6.1.1 Analytical Study

A theoretical analysis was undertaken in Chapter 3. The uniqu'e""and new contri-
bution of this analysis is in its inclusion of both the nonuniform axial magnetic
field and a cylindrical geometry in its solution of the wave-plasma coupling prob-
lem. The analysis also treated the resonance poles in a coherent manner that
permitted the examination of the entire plasma-vacuum system in a global man-
ner that included the resonance poles. The analysis assumes a dipole loop as the
ICRF antenna and includes the "almost TE mode” as the field considered (the
"almost TM” mode is NOT considered). The results of this study presented in
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Chapter 3 show that the ICRF waves are indeed damped as they leave the antenna
and propagate towards the resonant beach. This damping is more pronounced if
the resonance is located in the machine. Examination of two cases - one with the
ICRF resonance inside the machine, one outside - shows that there is significant
damping associated with the presence of a resonance inside the machine. The
case with resonance in the machine has very little oscillations in the ICRF B,
field as the wave propagates away from the antenna, while the case with reso-
nance OUTSIDE the machine shows considerable axial oscillations away from the
antenna.

Plasma coupling impedence R, was observed to rise as the mirror ratio is
decreased. It is postulated that this is due to the increased volume of plasma
close to resonance as the slope of the field is lowered. A scan of a normalized
resonance-volume versus the mirror ratio was performed and compared to a scan
of the plasma coupling impedence R, versus the mirror ratio. The result a.ppéa.r
to confirm this assumption. The two curves show surprisingly good although not
total agreementi. The difference could be attributed to many factors such as the
changing source fields experienced by the resonant volume as the mirror ratio is
lowered.

The behavior of plasma coupling impedence versus the resonance location §,,
was examined. It was seen that the plasma coupling impedence peaked in two
locations: when the resonance is directly under the antenna, and when the reso-
nance is in the center of the machine. Thus an optimum heating condition, from
a wave-propagation point of view, would be to have the antenna located directly

above the resonance.

6.1.2 Computational ICRF Study

The multi-eigenmodal analysis uses a different approach from the analytical study
of the previous chapter in its modeling of the axial inhomogeneity. The approach

simulated the inliomogeneous axial magnetic field by separating the cylindrical
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plasma-vacuum systems into axial slices and assuming a homogeneous field in
each slice. The analysis includes collisions as the damping source. The multimodal

analysis found

1. Higher density results in larger k, eigenmodes with slightly higher REAL
parts k; r. and much larger imaginary parts k, ;. This larger k, m results in
significantly increased damping for higher density. Thus, it is recommended
that higher density operation will enhance power transfer from the waves to

the plasma.

2. Lower Temperatures do not change the real k, wave number much (5% at
most), but generates much larger imaginary k, ;,, causing the ICRF waves
to damp out more and coupling more energy to the plasma. Thus, lower
temperature is seen to allow more ICRF power coupling to the plasma. This
finding, however, is only valid in the context of a cold plasma approximation

(T} < 100eV).

3. There is an optimal w/we for launching ICRF waves. This optimal w/wei
depends mainly upon the k, spectrum of the launching mechanism, i.e. an-
tenna. For the Full and Dual Half Turn Loop antenna, it was found that
lower launch w/w,; is more suitable for coupling to the ICRF waves in that it
allowed the eigenmodes to he excited at higher levels by the antenna power

spectrum J(r,n, k).

The results of the BEACH code are also benchmarked against the experimental
results obtained on the B-66 machine by Uman [3]. It is seen that a qualitative
fit to the experimental data could be obtained, although the BEACH code uses
lower temperatures than the B-66 experimental results in order to obtain adequate
profile agreement.

The results of the BEACH code were compared to that of the CYLWAVE for

a full-turn loop. Although some differences were seen, the major agreement is
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that both codes predict a decay as the waves propagate towards resonance. It
is difficult to compare the results of both codes because of the different antenna
geometries (full-turn loop for BEACH, dipole loop for CYLWAVE), and different
physics (both TE and TM modes for BEACH, only TE mode for CYLWAVE)

that separate these two codes.

6.1.3 Experimental Results

The experimental phase includes the construction of a linear magnetic mirror. The
PPEX machine was brought from the design stage to the current data acquisition
stage. One ECRH and two ICRF systems are employed for plasma heating. Two
types of discharges are identified. TYPE I (w > wy ) and TYPE Il (w < wy ).
The TYPE I discharges is seen to be separable into three distinct temporal regions
during ICRF discharge - Ramp-up, Oscillatory, and Quiescent. The ICRF spec-
trum obtained during the Ramp-up showed significantly more spectral broadening
than in either the Oscillatory and the Quiescent regions. Because spectral broad-
ening is also an indication of the degree of detuning of the frequency resonant
system, the large spectral broadening indicates introduction of maximal plasma
resistance. This plasma resistance allows coupling of energy from the antenna to
the plasma. Hence, the largest wave-plasma power coupling occurs during the
Ramp-up regime.

The experimental work conducted for TYPE II discharges involves obtaining
a set of radial ICRF B, measurements near resonance. A B-Dot probe is used to
scan multiple radial locations. The results from the probe show a large peak in
the B, at the edge of the plasma which is seen to agree well with the BEACH
predicted profile. BEACH simulations show that the ICRF edge field peaks were
more prominent for lower density plasmas than higher density plasmas. This could
be explained by examining the role of density in shorting out the parallel electric
field. The higher the density, the easier it is to shield out the parallel electric field,
hence the smaller the E,. Because the E, fields constitute the TM modes, or the
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edge modes as described in Chapter 3, the lower density plasmas would have a
larger fraction of the fields being made up of these TM Edge modes. Thus, lower
density plasmas are seen to have a larger edge component of the ICRF fields than

higher density plasmas.

6.1.4 General Conclusion

In conclusion, this thesis attempts to model ICRF propagation and to verify the
modeling experimentally. A new analytical method of ICRF analysis is proposed
and developed as part of this thesis which includes both the inhomogeneous axial
magnetic field as well as the cylindrical geometry. A multimodal analysis is also
undertaken which shows that many modes are required to adequately simulate
the propagating B, field profiles. Both theoretical analyses show that achieving
oprimal coupling requires the optimization of density, temperature, mirror ratio,
and resonance and antenna locations. The two theoretical analyses examined in
Chapters 3 and 4 each has its own advantages and disadvantages. The ultimate
goal is to reconcile both approaches to include the advantages of both.

The experimental results obtained from the PPEX machine that was con-
structed as part of this thesis appear to qualitatively agree with the BEACH
analysis predictions. The PPEX radial B, results agree very well with the BEACH
code, while the experimental axial B, profiles from the B-66 machine agree qual-

itatively well with BEACH predictions.
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6.2 Recommendations for Further Studies

6.2.1 Theoretical — Analytical (CYLWAVE)

The theoretical approach put forth in this thesis in Chapter 3 is an elegant new
method of including both an inhomogeneous axial magnetic field and a cylindrical
geometry in the solution of ICRF propagation and heating problems. Several
changes and modifications could be made to improve the sophistication of this

approach. These include

1. Inclusion of finite temperature effects. The dielectric tensor would be mod-
ified for inclusion of finite temperature effects. This would permit a more

realistic simulation of finite temperature plasmas.

2. Inclusion of almost-TM mode (E, # 0). This would result in a set of FOUR
coupled integral-differential equations instead of TWO. However, the general
approach would remain unaltered. This would permit simulation of both the

almost-TE and almost-TM modes.

3. Simulation of more realistic antenna geometries. This would allow the code
to be able to simulate actual experiments. Antennas such as the full turn

loop, dual half-turn loop, and other more exotic ones could be simulated.

6.2.2 Theoretical - Computational (BEACH)

The BEACH code could be improved by the addition of

1. Finite temperature effects. Again, the elements of the dielectric tensor would

have to be modified.

2. Examination of resonance. Further examination of the behavior of waves
up to and through resonance should be examined. This would require an

extensive reformulation of the WKB formalism used.

249



6.2.3 Experimental

The PPEX is an extremely versatile machine that is ideally suited for studying
atomic and plasma physics phenomena. It is ideal for the experimentalist because
it is small enough to be run by only two people, yet powerful enough to do
interesting physics studies. The experiments conducted in this thesis have only
scratched the surface of the capabilities of this machine. From the experimental
results obtained during the ICRF runs, several interesting phenomena have been

identified will be briefly discussed below as possible projects for future studies.

Plasma Broadening of ICRF Spectra

One of the results obtained during this thesis is the broadening (by the plasma)
of the ICRF frequency spectra during a shot. Although the PPEX team has
identified this as indicative of maximal ICRF coupling to the plasma, the cause
of this phenomenon is still unknown. Much work could be done to uncover the

exact mechanism of this ICRF spectra broadening.

Oscillations During TYPE I ICH Discharge

The H-alpha detector produced some interesting data during some ICH discharges.
On some shots, the H-alpha light grew up to a plateau, then oscillations in the
light level began to grow until about 20% of the peak value, then at some point
abruptly ends, resulting in a quiescent plateau level of H-alpha light output which
dies off upon the shut-off of the ICH heating power. Many postulates have been
made by the PPEX team as to the exact nature of this oscillation, but more studies
and diagnostics would have to be in place to determine the exact mechanism and

cause of this oscillation.
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Blowout of the plasma at high RF cathode voltage

When the plate voltage of the ICRF amplifier was set at above 6kV, it was seen
that the discharge would initiate, but after one milisecond would extinguish. This
effect is similar to the "candle effect” that was observed by Goodman [76] on

Constance. It would be useful to find out the exact mechanism of this blowout.
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Appendix A

Useful Plasma Definitions

A.1 Plasma Dispersion Function Z(§)

The plasma dispersion function Z(£) was first tabulated by Fried and Conte[46]
and has been extended by Landau and others [77, 78] and is defined by

26) =7 [ at T = diexp(~) [ deexp(~12)

- Yph _ _w
where ¢ = = e

The derivative of Z(£) can be shown to be

dZ

The plasma dispersion function also has the following properties
Z(0) = in}

2069 = exp(-) (inh —2 [ o)

Z(iy) = imh exp(y?)[1 — erf(y))

The series expansion of Z(§) are :
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1. Power Series (Small Argument §)

2 4 8
Z(E):iw%exp(—fz)—% (1—%—+%—%+...)

2. Asymptotic Series (£ > 1)

Z(£) = it g exp(—£2) — ¢ (1 + 2—2—2 + 4% + 8155; +)

where
0y > [z
e=11 | < lal”
2y < —[z7

A.2 The Plasma Dielectric Tensor

The elements of the plasma dielectric tensor given here are derived in the kinetic

limit as shown by Ichimaru [79]. The plasma dielectric tensor ¢ is given by

S —iD 0
e=|iD S O (A.1)
0 0 P
whose elements are defined as:
1
S=-(R+ L)
2
D=~(R-L)
2
_Wha
R=1+ 20‘: o Z(&) (A.2)
Wha
L=1+ ; wk,vaz(g_l) (A.3)
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_1__

Z'(%)
D v,,)z T+ 2= 2(G) (A4)

W+ Wo + MWy
k.va

fn = (A5)

Where v, is the collision frequency using the Krook collisional factor. Z(,)

is given in the previous section.

A.2.1 Expansion of the Plasma Dielectric Tensor for a

cold collisional plasma

For a cold collisional plasma, the elements of the dielectric tensor can be expanded
by taking expansions of the plasma dispersion function. In the cold plasma limit,
kjvei < w, therefore, {=Large. So taking the expansion of Z(¢) for large ¢,
it g f1a L3
Z{€) = i\/mee 13 (1+ f+4f4+ )
Recall that D and S are defined as

D=-(R-1L)

N e

(R+L)

Solving for D:

2

D=3 [X o (2(6) - 2(6-)

Expanding Z(£) — Z(€-1)

1 1 1
2(6) - Z(€) =~ + 7~ gt g

It can be shown that
Wiwe w?—wd — v — 2wy,
g (wz - wct ‘2) + 4w} Vi

D~

Two limits can then be constructed: w # wq, and w — wy.
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w Wes

For this case, since w >> v;, drop all terms of order O(v?/w?):

wwy (w’ —wi - 2iwu.-)

~ f 4]
P Ty

Separating into Real and Imaginary components, where

D= DRe +1:D.'m

(A.6)

2
—-21/.-wp,~wc,-

w(w? — w?)?

Dim = (A.7)

W — We
In this limit, it is seen that (w? — w?) — 0, and thus

2 0. 2 __ 9%,

D= WoWei —NU; 2wy
w V4w
1 3 %

Dropping terms to O(v?/w?)

2iw
D~ wf’::"‘* (1 L;::v)

Separating into components D = Dg, + 1D,

_wz.wc‘-
Dpe = — 55 (A.8)

2
_ —2wpwg

Dip = (A.9)

4w

Next, solve for S in these limits
s=14 1[5 2= (z6)+ 2(6-))
2 1% wk,v,
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Expanding Z(¢:) + 2(¢-1)

Z(&) - 2Z(¢- 1)————1—_—"‘5"_4""
Keeping terms to O(1/¢)
2(6) + 2(6-1) = TP {ulo? — o)  ini(w? —w + 1))
where Dp is definied as
Dp = (v* —w} — )" + 4™}
Therefore S is
—1+E {w(w —wk + 7)) — iy (w? + W3 +V’)}

Now taking limits

W Wei
In this limit, we can drop O(v?/w?) and obtain

§ o1 = 3 [ ) — i )

w (W = WE)

Separating into real and imaginary components : S = Sg. + 2Sim

2

Sre=1-% (wzw_- - (A.10)
Z viw + g (A.11)

o - a)wwz—wz

W — Wy
In this limit, we cannot drop O(¥?/w?) until we have eliminated the w?—w? terms.
It can be shown that

woa [1 v(w? + w3)
er-g (i)

4w v;
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Separating into components S = Sg, + iSim

Spe=1-Y 2 (A.12)

Sim=3_ Pl T el (A.13)
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The derivation of elements of the plasma dielectric tensor in the cold plasma
collisional limit is presented here. The results derived show that including the
collisional frequency results in the coupling of the ion and electron terms which
invalidates the simple substitution of m — m(1 +iv/w). Note that the collisional
frequencies used are given by the NRL Plasma Formulary [80] as

v, =291 x10"%n,In I\T;W"'sec_1

v; = 4.80 x 10782%u~?n;1In AT‘-—B/ ?sec™?

where n,, n; are given in cm~3, T}, e are given in eV, and p = m;/m,,.
The continuity equation for species j is given by

-
-

mjnjai = n4q; (Fj + v; X o) — VP; — mjn;vi, [0 — Vi)

In the cold plasma limit (VP; >~ 0)

Ion
ini‘aﬁ =niq E + Ui X Eo — minv;e [U; — Ve
THI Gy
Electron

-

m‘n‘ﬁ: = Neqe (E + 1;; X EO) = MNeVei ['U-; - 6:]
Substituting in for the plasma current J, where
J= en(v; — V)

Separating into components

Ions

x — Uy = %(Elc + vinO) - Vier/en
y — Wy, = &,(E']y — v, Bo) — v J, /en
z —tw;, = ff;Eu — VieJ: [en
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Electrons

x — Wy = ;’;“‘—(En + VeyBo) + VeiJz /€N
vy — WUy, = %(Ely — Ve Bo) + veiJy Jen
z — Wy = i“-E‘u + VeiJ: Jen

Combining the ion & and 3 equations yield

Viz("wz + Q?) = —ﬂElz + _giniEly _ Q"U"eJy + ",‘,‘“‘/‘-e‘]a
m; m; en en
The electron terms yield
Vi(w? 4 @) = - gy Geqp Db, Wi,
me m. en en

DEFINE: U; = 2 — u?

Combining to form J, = en(viz — Vez)

Je (1 —w [_ + _]) = Ej,(iwen) % .:ﬂ.‘.]

U,-m,- Ugmg

- ini - eQe
+ Buy(en) [U‘-Im- + qu ]

—Qivie  Qelei
+ J"( U, . )

Likewise, the ion & and § equations can be combined to find Vjy, Ve,:

wg; i Qivie WVie
Vi(—w?+02) = —=2p - Eop, - ey Ty
m; m; en en
The electron terms yield
] e e Qe el ) et
Vo(—w? + Q) = - 2%p _Lqp, ey K,
me me en en

Again, using the identity J, = en(V;, — V) yields
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J, (1—w[fU‘i+”—D = E,y(—iwen)[’q‘ “"]

. Ul Um; Usm,
"Qini "Qene]
+ El"(en)[U;m.- t+ U.m,
+ J (niVie +ﬂeVei)
*\ U U.
Defining
o = VieS); +VeiQ¢
SRR /7 U.
a = —1+4+w (Eﬁ+ﬁ)
2 = NN T2
= 2 _ qi qe
% = wen[ m,-U.-+m,U,]
— _QiQi q:Qe]
G = ”“[ mi; T miU,

The currrents J, and J,, can then be expressed in terms of a, ... a4

1 )
== @ 1ad [— Er2(aia4 + aza3) + Ery(—aras + aza4))
J——-—I——[E (a1a3 — azaq) + Eyy(—a1a4 + azas))]

v= @ + a2 1z(21a3 204 1y(—a1a4 + azag
Now since
w ~
= ——KE
Therefore
K-E=1E+i—
4 i cow

Recall that K is defined as
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S —iD 0
K=|iD S 0 (A.18)
0 0 F
Therefore, S, D and P are found to be

Ar
S=1+ A5
Where
_ Ui (2:9Q, — v?)
Ar = w +w b T [w u,,+w V“U + . ]
Vie U Vei
= k(1) +eig (1457)
2 2
+wU, [(Q.Qe w?)(Wive +w V,,)]

U; U; VieV,
2 telei
AB-—-Q - W ‘—2W(Vte+uetUe)+utc+VetU +2 lj’e [QQ ]

And D is found to be

Dr
D = —I;
Where
Dy = w2 + w2 A A
w w U,
Finally, P is found to be
Pl Yt

w2 L + it + 2]
Dropping terms to O(m./m;) and simplifying
2 [1 - iy

Q? — w? — 2wy, — VA (w?/w32)

S>~1+
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Likewise for D

2

D~
wei[w? — QF + 2wy, + Vi (w?/w3)]

Compare this to a simple substitution in for v

2 .
§=1— Wpj (w + ;)
- ~ w w?—w -4 Qrw
ej — Vj 3
w2 wej
D= Z 2

7 ww? =Wk — V2 + 2ivw)
There are some qualitative differences, although in the limit of w — we, the

differences approach zero.

A.2.2 Real and Imaginary parts

The real and imaginary parts of S and D are hereby examined.

From the previous derivation, it was seen that

wi 1 - %]
w? — Q2 + 2wy, + V3 (w?/03)

S~1-—

w?, [1 - z‘-’a‘?] [w? — Q2 + V2 (w?/Q?) — 2wy,

(w2 — 0F -2 (2 - /) + 4o}
2 ( 2 :
= 1- :-‘:% iwz = O = v (W* /) — iview [1 + g? * V?eg_?]}

where

2
Ac = [w2 - Q;"]2 + 2w2 (1 + %)

Likewise, D was found to be

w"'-w

D~ =
weilw? — 2 + 2iwvie + V2 55]
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Expanding,

2

Wei [w’ - Q% 4 2wy, + VR (-g—;)]
2
= Il_fg_“f [wz -0 + 3 (w?/Q2) - 2iwu,-,]
c 4

Separating into real and imaginary components

S = Ske + 1SIm

D = Dg. + 1Dy,

w2,
Spe = 1-— chl [u.:2 -2 - Vi(wz/ﬂf)]

Wi View 2,2 o W
S]m = &Ac (1 + w /Q‘ +Vieﬁ?)

Dp, = Yo [w? - 02 + V2 (w?/03)]
e ACQi T 1e 1
w2.wy;
Dy, = 2B %
! 2 Aclly;

For w < (;, it is seen that

Slm
Drg.

A ANV V
© ©o o o

Dlm

A.2.3 Perpendicular wave number K, for TE Mode

Recall that the perpendicular wave number k, was found from Maxwell’s equation

to be
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Sz_Dz
=S D) e

S
Expanding the term §’_-§l_23
(s?-D% __ 1 (Sre + iStm)? — (Dpe + iD1m)?)
S T ShetiSpy v e ml TR T
2 _ 2 S%, + 215,eSim — S
E_S_E__) = (SR — iS1m) e ¥ 5reSIm = Dl
Ste t Stm — [D}. + 2iDg.Dym — D7,

Sre(Si. — D%,) + Sgr.Sin

1 +Dim(SReDim — 2DReS1m)
She + Stm < +1[Stm(Ske + Do) — 2SpeDReDim
+81m(Stm — Dim)] )

\
It is seen that the real part of this is positive since |Sg.| > |Dg.| and Sg., Dge >
Stm, Dim- The imaginary part of the above is now examined. Recall also that

|Stm| < |Dimly DRes Dim < 0 and Sge, Sim > 0.

5'2 — D2
Im ( S ) = Sim(Sk + D) + Stm(S7m — Dim) — 2SReDreDi1m

= Sjm(SRg + Dm)2 - 2SReDRe(SIm + Dlm)
= ®+6

= 777

From this, a criterion for Im(k2) > 0 can be obtained. It is important to have
Im(k2) > 0 in order for the EM waves to damp and transfer their energy to the
plasma. If Im(k?) < 0, the sign of Re(k,) would be different from the sign of

Im(k.), and the wave would no longer be damped.

2 _ 2
Im(k:)oclm(s SD ) >0
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52 . D2
Im ( 5 ) = Slm(sjzie + D}2h) — 2SR¢DReDIm + Sl‘m(s}‘m - D?m) >0

Stm(S3. + D%.) > 2Sr.DpeDim
1. Limit: w — wei
In this limit, we assume that w is so close to w; that w? — w? < V2.

2

W .
Sm’_‘:l-{—ﬁ

So the Im(k;) > 0 criterion becomes

S? — D?
Im ( 5 ) = S]m(S}z;e + D?{e) — 2SReDr.Dim
o S]m(Slzge + Dlzge) + 25reDReStm
= Sim(Sre + Dﬂ,)2

Since Spn > 0, it is seen that in the limit of w — wgy, Im (5—2—’523) > 0,
therefore both Re(k;) and Im(k.) are positive.

2. Limit: |w? — Q2| > v2
In this limit, the frequency is sufficiently far away from resonance such that

terms of order O(v2 /w?) can be ignored
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2
Wi

SR‘, ~1- ————-—-—[wz_ﬂf]

2 [O2 1 2
Sy o Wyiwlie (€2 +u2: ]
0 [u? - )

wiw

~ —— P
Dre = gl — 09

2,2
WoiW Vie

Dim = —2Qi[“"2 - Q7

Therefore it is seen that

Dim wll;

Stm (U +u?)

Sosthe imaginary part of k, is proportional to

52 — D? —2wS);
Im( 5 ) = Sim [S;"h + D?k — 2SR.Dg. (m)]

_ a 2 (i — w)?
- Stm [(Sﬂc + DR:) 2SReDRe ng +w2 ]

Since Sg. and Dg. have opposite signs, it is seen that k, > 0 for practically

all cases.
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Appendix B

Current Driven Boundary

Conditions

The presence of a current source (antenna) at » = b is what drives the fluctuating
EM fields. The formulation of the source terms is hereby examined. Section
B.1 shows the formulation of the Full Turn Loop source, section B.2 shows the
development of the Dual Half-Turn Loop Source term, while Section B.3 examines

the problem of the radial feeder in detail.

B.1 Source Term, Full Turn Loop

The geometry under consideration is shown in Figure B-1. The derivation of the
source term of the full turn loop antenna is derived by Myer [personal communi-
cations] and presented here for completeness.

The full turn loop antenna is essentially a source of Jy current given by
I
Ja("a ¢’z) = _W"Sr(b)Uz(iW/2)

where W is the width of the loop, 6,(b) = §(r — b), U,(£W/2) is the step function
Uz + W/2,z — W/2).

The Fourier transform of the above source is then performed by
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o 00 , .
Jp(ryn, k) = 51;/0 d¢/_°° dze"“"’e""‘-é—&,.(b)U,(:!:W/2)

After some algebra, it is seen that the Fourier-transformed antenna source term

for a full turn loop antenna is given by:

J¢(7‘,n = O, kz) = % 5r(b) Sin (klzvv)

B.2 Source Term, Half Turn Loop

The problem of the dual half turn loop can be considered as a summation of two
half-turn loops. Examining the right half turn loop shows that the driving source

term is given by

J. = 17(17 U("r‘ b) (66 = —m/2) — 6(8 = 7/2)] U(W/2)
Jo = —%5(1» = b)Us(=1/2, m/2)U(£W/2)
Since
- e
VeT==g

the formulation must be such that V-J = 0, otherwise there would be free charge
buildup in the system.
The left half loop can be likewise formulated. The J, remains the same, how-

ever, the Jp term is changed to
Jp = ‘—1475(1‘ = b)Us(/2, 37 /2)U, (2 W/2)

So the dual half turn loop driving term is simply the summation of these two

halves
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Current IN

Current
ouT

Full Turn Loop (FTL) Schematic

Driving
Current IN

Current OUT

Dual Half Turn Loop (DHTL) Schematic

Figure B-1: Geometry of Current Source
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5, = ZEC 28 gy p2) - so(m/2)0 (2 W2)]

Jo = b (B)UL(EW/2) [Up(~r/2,7/2) + Vo /2,3/2)

The Laplace transform is then found by

2 . oo
E(r,n, K)) = -211;/0 en4 ‘[.w eIz E(r, 0, z)

It can be shown that this generates the Laplace transformed driving terms

r— sin (¥
J,.(r,n, kll) = ;'{,U( r b)(i)n (éﬂz) ) [1 + (—1)"’“]
sin (A
Jo = 511; 5,1(11,) (@) ——55222) ) [1+ (-]

B.3 The Radial Current Feeder Problem

The radial current feed problem arises in the physical modeling of an ICRF system.

An antenna always has an input and an output feeder that has an r-component

(Jfa = Jo(r)?). This extra radial driving term significantly alters the nature of

the problem and is often ignored in theoretical ICRF analyses. Work has been
done by both McVey [4, 72] and Myer [personal communication] to include the
radial feeders as part of the EM fields’ driving term to better simulate reality.

The steps taken in this analysis are shown below.

B.3.1 Modified Solution of the Vacuum-Plasma Eigen-

modes

Using the basic Plasma-Vacuum Geometry as seen in Figure 4-1, Maxwell’s equa-

tions can be solved in regions I, JI, and III using boundary conditions across

r=a,r=b,r=c.

270



Taking into consideration the radial feeders requires altering the solutions of

the vacuum field in region I (a < r < b). Maxwell's equations are

- d —
VxFE= —EEB (B.1)
V x B = po(J + & E) (B.2)
After some simple manipulation
= 16FE d -
2 S = fo—
VE-Gm =ty
25 1 8B _ -
v B 62 6t2 = [Jov x J

Taking the # components of the above two equations yields

V?E, + K2E, =0

ﬂo OJ
r 8¢

V2B, + k2B,

Taking the Fourier-transform

E(r,n,ku)-— / dp [~ dzE,(r,4,2)e mbemikre

Bt oy ( * ;,-) 2 =0 (B-3)
@ . 1dB, . n?\ . Mo. s
ET—Z-B, + = — (V + F) B, = -;-mJ,. (B.4)

The above equation can be solved using the method of variation of param-

eters.

¥(r) = yu(r) + y2(r) _/ v{,(( ):j’l dt — y:(r) / I{'f(ﬁ)yz t2) Wil oo %

4L Y
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yu(r) = HyK,(vr) + Hyl,(vr)
n(r) = Kalor)  walr) = Liw)  WlLy2) = o

f(t) = I‘O?jr(t) n, kll)

Using the method of variation of parameters as outlined above, the solutions

to Equations B.3 and B.4 are found to be

E, = EsK,(vr) + Ed,(vr) (B.5)

H, = H;K,(vr) + HI,(vr) + G(r) (B.6)

where G(r) and its derivative G'(r) are defined as

0(r) = inw [Lo(wr) [ Kalrt)(t,m, )t = Kalir) [ Taw)Ju(t,m, k)]

, dg . r " r "
G'(r)= -2 = inv [I,',(ur) [ Kntwt)i(e,m, k)t — Kior) [ I,,(ut)J,.(t,n,k")dt]
The solutions to Equations B.3 and B.4 are
E, = EsKn(vr) + Egdp(vr)

H, = HyK,(vr) + HyI,(vr) + G(r)

The inclusion of the term G(r) significantly alters the boundary value problem
of the system. While the boundary conditions per se remain unchanged, the
field coefficients of the initial driven eigenmode solutions will all contain this G(r)
driving term.

The fields in the other regions remain unchanged.
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! ..\W e

il

Region 2, b<r<a

E,’ = B Kn(vr) + EpI(vr)

ﬁ,z = H,K,(vr) + HyI,(vr)

Plasma Region,r < a

E.S = 2 HyJ (kiyr) + EpJdu(kiar)

H,” = HJ,(k11r) + y2Epn(KLor)

The transverse vacuum fields are then

. —ik,dE, L WHon g

E=—ra e 7
b kg iwpo n dH,
*T et 2 odr
i weo M - ik, dH,
Y I N
- —iwedE,  k.n

Hdg — 0 z vz

z
v: dr vir

(B.7)

(B.8)

(B.11)

(B.12)

(B.13)

(B.14)

From Maxwells equations, it can be shown that the transverse plasma fields

are

Er = €érn (T}Hp + er2(r)Ep
Ezﬁ = ep(r)Hp + eg2(r) Ep
H, = hoi(r)Hp + hro(r) Ep

Hy = hgy(r)Hp + hga(r) Ey
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Appendix C

Transverse Plasma Fields and

Excitation Coefficient Definitions

(Source: McVey [65] )
Using Maxwell’s equations and the bounded plasma boundary condition, the

transverse plasma fields can be expressed in terms of the coefficients of the E,

(TM) and the H, (TE) fields.

E. =e.Hy + e E, (C.1)
Eg = epnHy + epaE, (C.2)
H, = hyHy + hyo E, (C.3)
Hy = 4 H, + ha E, (C.4)

where the coefficients are defined

2D + € (k2 — k2S)) J!
er1 = wiokm A (ko & (k; 65)] Jn(kear) (C.5)
+1(k2 ~ K35) + kD] 2l
: [(k2 — k2S) + €2k3 D] Ji,(ky2r) }
2 = ik A_l{ , " C.6
i ks 1+ (k2D 4+ gy (k? — k28)) Bfullrar) (C-6)
\ LI R 4] I “Z\"vg 0~ /] Kpar J
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[(kZ — K§S) + 13 D] J; (km‘)

egr = twpok A
+ [k2D + € (k2 — k’S)]

hn"
(k3D + ex(k2 — k3S)] Jp(krar)

+ [(k? — k2S) + k3 D] “lalbear)

eg2 = ko kAT {
[(k2 — K3S) + 61k D) I, (kea7)

hey = —ikky A7
{ + [k3D + 6;(k? — k38)] =alnr)

(k2D + b3(k7 — K3S)] Jo(Kear)

+[(k2S ~ k3RL) + 6,k3 D) ~alear)

hey = —weoknaA™? {

(k2D + 6,(k2S — K2RL)] J.(knr)

hgy = k kA1
{ + (k2 — K2S) + 6,k3 D] 2alkerr)

hga = —iweokpa A7} { (k7S — KGRL) + 52k2D] J! (ke2r)

+[K2D + &5(k? — kZS)) nalkear)
Where
—1ik,
€ = zZ
Ho
o = w
2 — kz y2
—iwey
ik,
6, = : Y2
Who

The excitation coefficients are seen as

. Aalcl
o =tegy(r=a)+ %}#—2 (—— + _el_n) Jn(krra)

Aul 14

kz Aalcl

cy = tege(r =a) — -; ( + € A ) Jn(kr2a)
kz n Aa‘c

C3 = h4,1(1‘ = a.) - —; (; + 81 Aac > Jﬂ(k,.la)

Aaic

e = haa(r = a) + 22 (22 4 6,2 J, (ra)

Vv \ Qg /

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)
(C.14)
(C.15)

(C.16)



_ wpob ALC

€
va Acc'
. = —k3n Ape
) = — 2
k.,v? a Aac

A= (k3R - K2)(KiL — K?)

Aab' = KMI:Ib - K,',bIm
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Appendix D

ICRF Wave Propagation in Slab

Geometry

The propagation of ICRF wave in slab geometry has been studied in great detail
c-er the course of the past 30 years [59, 45, 81]. This Appendix will demonstrate
the steps required in the solution of such a problem. Two cases are examined -~
the k, = 0 case and the k, # 0 case. It will be seen that different physics are
inherent in each case. For the k, = 0 case, it is seen that the TE and TM modes
are decoupled in the plasma, allowing a relatively straightforward solution of the
fields. The k, # 0 case couples the TE and TM modes in the plasma, thus making

the boundary conditions more difficult to handle.
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D.1 Full Slab Model: k, =0

The first geometry to be analyzed is the slab geometry with k, = 0. The approach
taken in this analysis is the standard solution of electromagnetic fields as given
in Kong [59] in which the waves are separated into two independent components,
TE and TM. It will be shown that in the limit of k, = 0, these twec modes are
effectively decoupled from each other and form two independent solutions to the
problem.

The geometry under consideration is a semiinfinite slab in which EM waves
are incident from source at £ = —oo upon the vacuum-plasma interface at = 0.

The plasma is infinite in the y and z extent.

D.1.1 Field Formulation

Recall Maxwell’s equations:

Vacuum
. OB
VxFE —-—é't—
. 108E
VXxB= ZEE
Plasma
. 8B
V.x E ——8—t-
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<

N

Bu = "%‘Ez
wB, = k,E, — k,E,
Ampere’s Law:
E,=-%2p,
E, = %28,
wE, = —c? [k, B, — kB,
Combining
Ll
Ox?

The solution to the above is

B,,E, = (K2 — K)B., E,

Bza Ez = BzO’ EzOe‘k'z-Hk'y—Wt

Where

Rk -k

The vacuum solutions for Incident Wave is then given by

um !:m F uh’ Ebg Bbj

EzOIeik."H-ik’y
_kjf_ EzOI etk, 1e+iky,y
w

w

Bopeker= ik
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Reflected Wave

The reflected wave is directed in the - direction, so substitution of k, — — &,

yields the following set of Reflected Wave fields:

2
c s ,
Es — —%Bzoﬂe kg r ok, y
kzc? : .
Ey - £ BZORe zh,;w-}-tk,y
Ez = E‘one—-s'k.gz+ik,y
B,, = _kg Ezone-ik,xc+ik,y
w
kﬁ -tk 13
B, = —=E,gpe >tk
w
B, = Bzone—ik.]:n+ik,y

Note: k.1 = kyr because the medium is the same (vacuum).

Defining a reflection coefficient R such that
B.or = RrgB.or

EzOR = RTMEzOI

the entire vacuum field can be seen to be

E: = "b’f‘Bzol [e"k"z + RTEe"‘"‘-“’]
TE Mode{ E, = _l;:’s’. B.o; [eik.z — Ry e—ik,z]
B, = B..r [eik'm + RTEe_ik"”]

B, =4E,, [ei""’ + RTMC"‘"‘"]
TM Modeq B, =-%E,, [eik.m — Ry Me—ik,z]

E, =E,; [eik.z + RTMe—ik.m]

Plasma Fields

Gauss’s Law still remain the same:

»h

12
p o)

u3= z

e
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<%
&
i
|
5
=

3  wB,=kE, -k,

Ampere’s Law yields:

%  B.=—g[SE.-iDE,]
§  B,= - [iDE. + SE,]

"%Ez = [kmBy - kam]

N

It is seen that the solutions can be decoupled into two sets of independent
solutions, the TE and TM modes
TE Mode

_ C2 Ssz+kav
v = L g_pr b
c? Sky—ka,,BB
w S2-D2 *

TM Mode

TOTAL PLASMA FIELD

So the plasma fields are :

E, = _§ 2 —:?)k BzOPeik'az+ik'y

TE Mode{ E, = £(kptiDh) B petheratiky

B, = B, Opeik,aw+ik,y
B, = ky E.op eikene+ikyy
w
TM Mode{ B, = ’T‘: E,ope*ena+iky
E, = E,opetter=tiky

7’

e
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D.1.2 Plasma Dispersion Relation for TE and TM Modes

TE Mode
Recall that the TE mode fields are given in terms of B, as

e Skyp + iDk,
b= 0 e _p b
b= 0T

Substituting the above equations, into the Gauss’s Law yields

W o _ kan(Skep + iDky)

(Sky — iDksp) o
c2 - S2 — D2

S2 — D2 z

B, +k,
= k3(S? — D?) = S(k2g + k:)
Finally, the dispersion relation is found to be

S§2 — D?
k:B =k(2)( S )

—k:

Compared to k2 = k3 — k2 for the vacuum solution.

TM Mode
Recull that the TM mode fields are given in terms of E, as

k:vE
By = —-—“U—Ez
B, =fp
W

Substituting into the third Ampere’s law yields the TM Plasma dispersion

relation of

kg = k2P — K

D.1.3 Boundary Conditions
The boundary conditions are as follows:
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1. E; Continuous

2. D, Continuous. This arises from the zero surface charge condition.

3. B) Continous. This condition valid only if no surface current is present.
4. B, condinous. Valid since no magnetic monopoles.

TE Mode

Assuming
B.or = RB,or
B.op = T Bor
1. E; Continuous:

1 (Sk.p +iDk,)

1-R= S _D? T
2. H| Continous:
1+R=T
Combining:
To = 2k, (5% — D?)
TE = (82 = D3k, + Sk,p + 1Dk,
Bre = Tos — 1 = k.(S? — D?) — Sk,p — 1Dk,
TE = ITE = %= (62 _ D?)k, + Sk,p + iDk,
TM Mode

1. Ej Continous

I
e

[
€

+
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2. H) Continuous

knE
1-R= _k:T
Combining
2k,
TTM - km + kmE
ky — kg
Rry=Tru—1=¢ +kZ
Rewriting both
1 —yYrE
R = —
TE 1+Yre
2
T = -
e 1 +Yre
1 —trym
R = —
™ 1+ vYrm
2
T = —
™ 1+ 9Yrm
Where
_ SkoB -+ ‘I:Dky
Yrg = *(ST-D?)
ks
YrM = 7c—E_

These results are identical in form to the results obtained on p.113 of Kong

[59).
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D.1.4 Dissipation and Figure of Merit for TE Mode

Although conventional literature uses the plasma impedence Ry, as the standard
measurement of heating efficiency [55, 56, 57], it is not used as the figure of merit
in this analysis because the launching structure is not considered as part of the
problem. In this section a different figure of merit is developed and computed for
various plasma properties.

The time averaged Poynting vector is shown [59] to be given by
< §>=2Re{E x ")
2
The incident, reflected and transmitted Poynting Flux are thus given by

~ — IBzﬁlzcz - ~
< S >= o (kso + kyF)

| R|?| Bzo|?c?

<8 >p= 2o
0

(_kwoi + k‘,‘g)

- Tszzz
< 5oy [TPIBuole
2pow

(Re(C,)2 + Re(C.)3)

where

Cy = ‘I’TEkmo

C. = (Skv_ka:nB)
== (57 D)

Looking at the geometry of the system in Figure D-1 shows that the energy
that is actually transmitted through the interface is the perpendicular Poynting
flux.

Then a reflectivity » can be defined [59] as the ratio of the —& directed reflected
Poynting flux to the +& directed incident Poynting flux. Likewise a transmitivity

t can be defined as the ratio of the +& directed incident Poynting flux to the +&
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Figure D-1: Geometry of TE and TM wave incident on vacuum-plasma interface

for k, = 0 case.
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:E~<§>R

r= ————— = |RJ?
-z < 8§ >;
—3-< 8>
t= ———"T = Re(yrg)|T|?
-2 < S >p
Since it has been shown that
1 —YrE
R =
TE 1+ 9Yre
2
T =
TE 1+YrE
It is easily seen that
r+t=1

and this is indicative of the conservation of the normal power flow across a bound-
ary.
Therefore a figure of merit F can be defined as

- < §>T

F S
—&- < S >p

t

W
]

= Re(yre)|T|?
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Figure D-2: Re(yrg) (Top) and |T'|? (Bottom) versus w,; for k¢ = 0 case. Plasma

density of this scan was fixed at n, = 1.0 x 10°cm

-3

288



FI16G0M

0.8 0.9 0.95 1.00 1.0 1.10 1.15 1.20

0.80

0.70 0.75

FIGURE OF MERIT CALCULARTION

T | L i 1 1 1 L]

L T
0.0 0.5 0.60 0.6 0.70 0.7 O0.80 0O.85 0.80 0.95 1.00
W/WC]

Figure D-3: Figure of Merit calculation for k, = 0 case at different ion cyclotron
frequencies w;. Plasma density of this scan was fixed at n, = 1.0 x 10*°ecm 3.
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Figure D-4: Re(vrg) (Top) and the transmission coefficient |T'|* (Bottom) calcu-
lation for k, = O case at different densities. Frequency ratio of this scan was fixed
at w/ws = 0.85.
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Figure D-5: Figure of Merit calculation for k, = 0 case at different densities.
Frequency ratio of this scan was fixed at w/w.; = 0.85.
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D.1.5 Discussion of Results
The results of efficiency calculation performed in this section show that
1. The lower the w/w; the higher the figure of merit, and

2. there exists an optimum density that produces an optimum figure of merit.

These results are consistent with expectations. Because of the infinite slab
geometry, all the Poynting Flux that is transmitted across the boundary is even-
tually absorbed by the small damping introduced by collisions. Thus the only

issue is essentially the transmission that occurs across the boundary.
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D.2 Full Slab Theory of k, # 0 TE/TM Waves

The previous section dealt with the case of k, = 0. The next logical extension of
the problem is for a wave that is allowed to propage in the z direction.

As will be seen, there will be two modes that are found to exist in this system,
the TE and the TM mode. However, these two modes will be shown to be no
longer independent of each other. The TE and the TM modes are still separate
and independent waves in the vacuum region, but they now coupled together via
the plasma.

The basic formulation is arrived at in much the same manner as the previous
section. However, linear algebra methods will be used to provide better insight

into the solution of the problem.

D.2.1 Formulation

Maxwell’s equation is used to express the transverse fields in terms of the parallel

fields B, and E,. It can be shown that:

Incident Vacuum Field

et'k.:c
E, = kg — kf [_kaBzO - k:cszzO]
eik,:c
Ey = m [wk,B,o - kyk,Ezo]
Ez = Ezoeik'z

B = kgeik,z _k,,k,
T R-E[ R

B, + Ev—Ezo]
w

kiet*== [ Kk, k.
B, = kg-— 2 [-— K2 By - ’;EzO]
Bz - BzO eik,z

Likewise, the reflected fields are expressable in terms of the incident fields as

well:
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Reflected Vacuum Field

—thgyz
Ez' = -’;%TF [—wkvRBBzO + kcszEEzO]
—ikyo
E, = -s—— [~wk.RpBso — kyk. ReEx]
ko - k‘
E, = RgE, e "
kze—ik.m kz kz ky
Bee [ kkp o ke
BV = k&—kf - kg RBBzO"";REEzO

B, = RpBue ™"

The plasma fields are more difficult to obtain but the methodology is the same
as for the vacuum fields. It has been shown [82, 4] that the fields are given by

Plasma Fields

B, = B, €% + yuoE, e*"

E, = %Bﬂ eka® 4 E,,etkea®

E. = w(8B. + 6.kyB,) — iks(6,E. + 6ok, E.)
= egp1 B e*” + epea Eppe™e”

E, = iw(§B,+ bokyB,) + k.(8FE, + k6, E.)
= emBa ehn® 4 eyegE,ge""""

B, = —ik,(6,B. + bok,B) — %(5,E; + 62k, E.)
= by By €% + byea Eppete®

B, = k(8B.+k6B,)—i% (6B, +6.k,E)

= b1 Bue*®® + byer Eppe’e?”

Where
B! = ikyy B,1€%9® 4 ikpayapo Ezpe™*"
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tky 2 ; .
E, = —;i—‘B,le"*-“’ + ikgy Epete®
0

8s = (kGR — K}) (kgL — k)

_ K!S —K2RL
= ——3,'3‘—"_
= wwpok, D
17 P(k?— K2S) + k3, S
_ —twegk, PD
Y2 = 5(k2, + k%) — RLk2

b2

kx kal 51 F 4y _ ikykz 5021

Ho
€nez = twhoyaptokzz + wdikyyapo + kebikoz — ikyk 6o
ik,,lk,&;zl + kyk,&z]

Ho Ho
Cpe2 = ——wp051 kz2 + i(d}l«gkusoyz + ik,k,z&) + kyk,&
. wozkyy  whkyz
b = kykg 6, — .80 — -
bl 161 — ikyk 6o — 1 2o o
brez = pok.b1y2kz2 — ikyk.boy2p0 — i:)"25zka2 - %52’“11

. wbzz1 kay wb, kyzl
b = ka: z z -
bl 1 1k 60 -+ kyk 5] + c’po (] c’po

w52 k.,z N iw&, ky
c? c?

eob1 = thnywby +wbik, +

€1 = '—UJ61 k_-,,l + iwkuﬁo +

bz = 16ok.kzay2pto + kyk:61y2p0 +

D.2.2 Plasma Dispersion for k, #0

Recall Maxwell’s equation



186B
VXB‘—‘-ET%— + podJ

VxVxE:V(V-E)-—V’E=iw(:g-)E+pol)

V(V-E)-V?E =

Grouping into components

E. (k] + k — k3S) + E,(iDk2 — kok,) ~ Fok,E, = 0
Eq(—koky — iDk3) + E (k2 + k? — k2S) — kyk,E, = 0

~kok. E, — kyk,E, + (k2 + k2 — K2P)E, = 0

The determinant of this 3 x 3 system is then zero

ki + k? — k3S  —kok, + ik2D —kok,
~kok, —ik2D K2 4+ k2 — K2S —kyk, =0
—kok, —kk, k2 + k2 — k2P

Grouping in terms of k? yields

KS(=K2S) + 2 —agk? + 2ax3k k, — agsk?
=\ " N T
+a11833 + a11a22 + a?

where
a) = k3+ k; - kozs

Qgg = kf - kgS

Qa3 = —kykz
a1z = *—‘LDkg

Solving the above quadratic for k2 yields two roots, k2, and k2,.
g ] zl =2
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D.2.3 Vectorization

The transverse fields E,, E,, B,, B, can be formulated in terms of the longitudinal
fields B, and E,.

where

<
]
AR

a; Q2

az; Qazz

I
1l

as: as2

| @41 Q42

Ezo
BzO

~

Y=

Written in this form, the incident and reflected wave’s transverse field compo-

nents can be written as
Ui = A, (W ka by, k) - Vet

Ur=A (w,—ke,ky, k.) - We ek

. RgE,
W= E L0
RBBzO

The total vacuum wave is then the sum of both these components

Uy=U;+Usr=4,-Y+4 W
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Now the plasma transverse field coefficients can also be expressed as

Up=4,'Y,
where
E,
Y, = ? ]
le J

Elements of the A matrix

From Section D.2.1, the elements of the A matrices for the vacuum and the plasma
regions can be found.

Recall that the incident transverse matrix consists of

~

Q;=A+'K

It can be seen then that 4_ is given by

[ kok why ] i T
Tk-k2 T Kg-k3 411 @412
keyfe ke
-wta tiae Qi1 Q422
A = kO z ko = =
=4 2 oot
w(ka—k3) " k3—k3 Q431 G432
2)e, k
| ook Ti—kz 1 L %+ Gtaz

Likewise the reflected transverse matrix is defined by

Qn=_A_._‘rZ

It can be seen then that 4_ is given by

[ +;.'§'_'.'"¢i:§ “i'%i? 1 1 a_;1 G-12 -
A = "p’?;% —;:5'—_'_‘7;? = a-21 Q-22
o +;—(,’:§"E'k3—) +ﬁ a_3 G_33

i +;(—:§é';5 +;.l§’_i‘,‘:? l | G-q1 Qg2

Using the definitions given in Section D.2.1, the vector A can be constructed

as well
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€xe2 €xb1 ] Gp11 Qp12 W
_ | w2 w1 | _ | G2 Zp22
ép B brez baob1 B Qp31  Gp32
1 byez by i | Gpa1  Gpq2 |

where e, . . . by are defined previously.

D.2.4 Boundary Condition

Next, thc boundary conditicns at the vacuum-plasma interface is utilized:

1. E,, B, continuous

2. E,, B, continuous
BC (1) E;, B; continuous

Z
Ez hand EzO + REEzO = Ezp = L2 + ;'1' z1
0

B, — B.a+ RgB,o = B.; = By, + poy2Ez2

The result of this is

zpz '_‘Z

e

where

QE( 1 )[ (1+ Rg) —2(1+ Rp)
= 1—-1y,2 —poy2(l + RE) (1 + RB)

= 1 Q12 (D.1)
a1 a2z
This results in
Qp=é?.zp=ép.(g.2)
QV = é+ ) K+ é— K
BC (2) Ey,By continuous
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Define
P,=[01 0 0

P,=[00 0 1]
E, continuity condition becomes:
B4 -@Y))=P-4 V+4 W

B, continuity condition becomes:

Pr-l4,-(a-V)=P-4, V+A4A_ W]

Since W = R Q, where

Therefore
{B14,d-B:i-[4,+4_ B} V=0

Likewise

{B.-(4, 9~ Pr-[4,+4 BRI} V=0
Recall that ép is defined as

Qpi1  Qp12
Gp21  Qp22
Ap3y  Qp32
| %11 Gpaz |

A=

Therefore

@p11811 + Gp12G21  Gp11G12 + 8p12822

Gp21Q11 + Gp22a21 Gp21G12 + Ap22022

I

e
i

=4

rps

Gp31011 + Ap32d21  Qp3:Q12 + Gp32a22

Apa1@11 + Qpa2@21  Qpa1@12 + Gpa2Qa2 |
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Also
[ a4y + Rga_y; a4+ Rpa_;2

ayn + Rga_a a4z + Rpa_2

a4s1 + Rpa_3, a3+ Rpa_a»

| a+a1 + Rga-a a432 + Rpa_q2 |

P,- (A, +A_-RB)=la4a + Rea-n @422 + Rpa_z;]

P,-(4 + 1 A -B)=[a4a + Rpa_g a142 + Rpa_42)

. -a) = 1+ Re [ap21 — as22) 1+ Rs e ta
2,78 1 =222, p21 — HoY20p22 1— 22 Yo p21 22

1+RE\‘ (1+RB)[ 21 ]]
P, -(A - = —_— — +
P;-(4, 9) [(1 “ oz ) [ap41 — 10Y20p42] T—gn, ) | g% T %0

So then Equations D.2 and D.3 become

E. (—i—ﬂll_::,,) (@p21 — HoY2ap22) __A 1‘-:%-2-) (%22 —a %21)
* N
~(a421 + Rga-n) —(a+22 + Rpa_22)

E 0 (11-::21) [a-p41 - poyzapﬂ] = —-B 0 (11—::21) (amz - ﬁap‘u)
—(ata + Rpa_4) —(@ta2 + Rgpa_y,)

This can be written as
i 112%‘.‘: Rg (™ + 7‘1BE%§
Iy lzz%ﬁ Rgp T2 + TzBE%:g
where

Gp21 — MoY28p22
1—y2z

hy
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1—1y22zy
l Qpa1 — HoY2ape2
21 = a_q
. 1 -y
T - o dpi1
22 = a_4q2
1-y22
Qo2 — A
M = HoY28p22 p21 +am
1-y2z
[ —ap2 + 2 apn
T™BE 1— y::l + Q.22
Py = Hol20p42 — Qpq1 +ara
1—y2zy
[ —Gpa2 + S apy
T2BE = 1 y“: + G442
— Y221

The reflection coefficients can then be calculated to be

_ (laary — liar2) + %:g (laarBE — hi2T2BE)

lirepe — laamieg) + B2 (liyrg — loyr
Rp = (hares 21" l)D| Bro (hare — lam) (D.6)

|D| = liylaa — Lialas

Deﬁning CREh CREz and CRBla CRBz as

B,
RE=CRE1+CRE2EO
z0
E,
RB=CR81+CR82BO
z0
where
laory — Ly
Cre1 = 22 1|D|12 2
o _ lyoriBE — LioT2BE
hER = |D|
Crpy = lu"’zBEu-Jllzl"‘l BE
Cmaz = 1117'2|;|1217'1
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D.2.5 Figure of Merit Calculation

The figure of merit in the k, # 0 case is similar to that k, = 0 case. The ratio of
the transmitted x-directed Poynting flux to the incident x-directed Poynting flux
is used as a figure of merit, i.e.

& < 8§>1

F - P d
<85>

where we recall that the time-averaged Poynting flux is given by
— 1 - -o‘
<S>=-2-Re(ExH )

Incident Poynting Flux

The x-directed incident Poynting flux is seen to be
a 1 [ ] -
< S>R= mRe[Esz - E,By]

Using the vacuum fields from Section D.2.1

1
——————— Re
2uo (kg — k%)

_ wk, 2 I-Ezol2
B 2uo(k3—k3)Re{'B‘°' T

~ kk,
< S >z [B;O(wszzO - kyszzO) + EzO (kysz:o + 0 E:O)]

w

Reflected Poynting Flux

'Simila,rly the x-directed Reflected Poynting flux can be shown to be given by

= —wk

=% [p. B, 4 EolRel

Transmitted Poynting Flux

Likewise the x-directed Transmitted Poynting flux can be shown to be given by
< § >re= —Re {e|TsBuol® — biea Tl Euol?)}
210 ve
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The unknowns are now Tg and Tg. (Recall that Rg and Rp are solved previ-
ously.
An examination of the boundary conditions at the plasma-vacuum interface

shows that Tr and Ts can be expresed in terms of R and Rp.

|

BzO
EzO

Tg =

— Y22;

[(1 + Rg) — i‘;(l + Rg)

expanding Rg and Rp:

1 z B, z z
T = [(1 + Cre1 — —I'CRBz) + == (Cmsz - = - —lc'nm)]
1 -2z Ho Ey Ko Mo
or
BzO
Tg = Cre + CTERE (D.7)
20
where
1 21
Cre = 7 1+ Crg1 — —Chrp2
— Y221 Ho
1 2z z
Crer = (CREz -1 —1-0331)
1 —y22 Ho  Ho
Likewise it can be shown that
]. EzO
Tg = {(1 + CrB1 — Hoy2CRE2) + (CrB2 — poy2 — poyY2CRrE1)
— Y22 BzO
or
EzO
Tp=Crs +Cr8g (D.8)
z0
where
Crs = ———(1+ Cr1 — poysCras)
TB = 1— 2z RB1 — HoY2C RE2
1
Crer = 1 (CrB2 — toY2 -~ 1o¥2CrE1)
— Y225

Next, a reflectivity » and a transmisivity ¢ can be calculated (Note that our

figure of merit is the transmitivity t).

8>

[?)
A A
e |

—:i:-<S>R
z-< 8 >

T

]

Uy| Uy
ViV
[
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2
o [Bof + 1Raf iy
2

1+ 5i325

‘o (kg — k2\ | evpr1re| TB|* — byezre|Ts|” ‘%ﬁ

wkc ) (1+:1§|%:2|2)
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D.2.6 Variational Solution of 7

In order to find the optimal 7, a variational technique is employed here to find

the optimum %:g and then 7op.

Recall from previous section thLat the figure of merit F was found to be

) 2 CrEer 2
F=t= 1T IXP ewiRe |CrB + CrBRCX|” — bye2Re l(CTE + ¥ ) (cX) ]
(D.9)
where
_ kg - k% — EzO
a= (.Uk,, ! x= CBzO

This can be rewritten as

F G { €ylbe (ICTB|2 + cC3CrBr& + CCBTC}BRX' + c2|CTBR|2|X|2) % 10

1+ |xp ~byezre (IC7ER|? + cCrECFERX + cCpCrerX* + ¢|Cre|*| X|?)

Separating F into a numerator and a denominator (F = &) yields
N-DF=0

and applying variational technique
X — X+ X

and keeping terms of O(6&), the following is obtained

ep1Re (cCrCTBROX + cCTrCrpréX" + A|Crer|*[X6X* + X*6X])
—bye2re (cCTECTEROX + cCrpCTEROAX” + |Crel?lx6Xx* + x*6X]) | =0
—5[355\." + X*6X]

This can be written as

ew1Re(cCC3pCrBr + |Crpr|*Ay) ! eyp1Re (cCCrBChgr + ¢|CrBr|*X)
6X { —byeane(cCeCrer + A|Cre|2 X)) (+6X° ¢ —byerne(cCreCipp + *|Crel*X) =0

L e _t
=% = &0
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Since the §X term is simply the complex conjugate of the §X* term, it is seen
that the optimal F is found to be

C

Fopt = X [c(eye1r:Cr5CrBR — byerreCrECgR) + X5 (eyprre|Crarl® — bye2re|Crel?)]

The optimal X can be found by substituting in for F from Equation D.9

€ylbe (IC'TB|2 + cC1pCrBRAX + cChr

CC1 eWIReC}BCTBR - uezHeCTEC;"ER cl
—byezre (|CrER|* + cCCrECTERX + cC

s +cX; (eyp1R:|CTBR|? — byeare|CTE|?) 1+ (X[

The result of this is an equation for the optimal value of A*:

N1(’Yo‘pt)2 + Nz’Y;p: + N3 =0
where
N, = c(ep1reCreCrBR — byezr-CTeCTER)
N, = E,48.|CrB|?* — bye2re|CTER|? — & (eybIRCICTBH|2 - byc2Re|CTE|2)
Ns = c(bye2reCrECTER — €61RCTCTBR)

This can then be solved quadratically to yield the optimum value of X*.
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Figure D-6: Figure of Merit calculation for k, # 0 case at different ion cyclotron
frequency ratios w/ws. Plasma density of this scan was fixed at n, = 1.0 x
10'°%cm~3. Note that for the w scan the optimum X is recalculated at each value
of w/we.
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Figure D-7: Figure of Merit calculation for k, 3 0 case at different plasma densities
n.. The value of w/w, of this scan was fixed at w/wy = 0.1. Note that for this
density scan the optimum X is recalculated at each value of w/wg. Unit of density
is [m™3].
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Appendix E

Derivations used in the

Analytical ICRF Analysis

This appendix includes the detailed derivations whose results are shown in Chap-

ter 3.

E.1 Boundary Condition for the Analytical Model

Two boundaries exist in the analytical model described in Chapter 3. The first
boundary is the plasma-vacuum interface at p = 1. The second boundary is the
conducting wall located at p = x. This appendix will describe these boundary

conditions in detail.

E.1.1 Boundary I: Vacuum chamber wall p = &

At p = k, the tangential electric field Eian is zero.

Recall from Equation 3.15

At the vacuum chamber wall
Uwatt = (v + Puire)yay =0
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Taking the Fourier transform of yields
\iiv(n,kf) + \i'u,;,,(n, kf) =0

where the Fourier Transform of ¥..(p,€) is defined as:

Buirelp = myke) = [ *eWina(p = 5, £)dE (E.1)

Since the source term is fully known, ¥, is also known. This allows the

expression of one of the two constants in terms of the other.

er(ke) = gois [ Bonnel ) — s (k) s )

Thus
By (o, he) = s (K (e ep) = () el (2) T B, )
Define

Dy = Ki(ker)i(kep) — (kes) Ki(kep) (E.2)

Dy = Ki(ker)Ii(kep) — Li(ker) Ky (kep) (E.3)
where

I(z) = —-——dIl(z) and K{(z) = dI(;:z)
Then

by (o) = o0 Ay — (£) LB b,

So the total ¥ is given by ¥ = (¥, + ¥yre)

o= o () BB bt

E.1.2 Boundary II: Plasma Vacuum Interface p=1

Two conditions exist at the plasma-vacuum interface boundary : E,,, is continu-
ous; B,,, is continous.

Eian continuous
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Assuming that the corresponding plasma ¥ is known, and defined by O

&o(p, ke), the boundary condition is expressed as

‘;SP(P =1,k) = ‘i’V(P =1,k¢) + ‘i'wt're(P =1, k)

= &Sp(l’kf) = Cl(kf)ﬁ(l’ k€) + é(l’kf)

where
- A
Flo. k) = PSre_
(p’ f) Kl(kfn)
A - _ (P Ki(kep) , b .
G(P, kf) = (n> Kl(kg‘ﬂ) ‘I’unre(n’kf) + ‘I’unre(P’ kf)
sh def

ﬁtm continuous
Since the B-field is given by Equation 3.14
V¥ x ég

r

B =

By the slow-z approximation

10
Bion = B, = ~ =¥

Thus we have

0 - 0 - 8 .
5;¢p(1’k5) = B_'O‘I’V(P = 1,ke) + 'a_'pq’wire(P =1, k)

0 - 9 . o
3—p¢p(1,ke) = Cl'é;F(l,ke) + 5;G(1,k5)
Using Equations ?? and 7?
(L, ke) — G(L,ke) = aF(1,ke)
0 /- A o .
5p ($rlLike) = G(L k) = g-F(L,k)

Dividing one by the other yields
% (¢ 6)

~

_aF
¢ — G F

p=1 p=1
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(E.8)

This results in

1

Since F' and G are known, Equation ?? can be explicitly solved for ¢,(1, k¢)

Assume ¢,(p, ke) is given by

Bo(pr e) = 3,(a, ke)p i (ap)

(This assumption will be shown to be valid in Section 3.7)

Then, using the identity
3 wdilap)) = apdo(ap

-
Sa_ %G} (E.9)
p=1

2; is found to be
dp

1

ép(ai kf) = [
ado(a) — Jl(a)-eﬂ—
where F' and G are given in Equations 3.21 and 3.22. Their derivatives are

seen to be
0 pkEA g JAN
F k £+ o
(k) = K (eem) ™ Kelkem)
OF/08p Dy
— =1+ kg2
Fo|_ Do | =
8 1 Ki(kep) _ kep Ki(kep) 7
G(pikf) - um"e("c k{)[ RK1(k5n‘.) K Kl(k.f"') + ‘I’um-e(PikE) (E 10)
Since
ado(a) — J1(a) = al{(a)
&’ can then be expressed as
o &
1 [-o;é - a_p“F A]
Ji(a)ke gz |0 2

‘i> o, ke) =
p( 5) J{( )
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Examining the last term

..?_A . = _a_ . kg€
apq’mre(Ps kf) = ap/‘pwwe(Paf)e e df

o ke
= —_— . 3 (6
/ ap\I’wwe(Pif)e df
Recall that ¥(p, ) is given by Equation 3.13 as

Woire(p, £) = 4poiapR(€) [(2 — k2)K(ka) —2E(ka4)

y/a? + p2R(€) + 22(€) + 20pR(¢) | k4

W1 Vw3

Therefore

¢ 8 o
gé‘l’wire(P’s) - \I’w2'5;‘pwl+q’w15’;‘l’w2

6 BkA ) a‘puﬂ

= \I’w25;‘ywl + ‘I’wl (—’oTp_ 3k,4

where it can be shown that
0%ur _ _ 4pol aR(£)[a® + 2% + apR(€)]
8 (a?+ pR¥(€) + 22(€) + 20pR(£))*?
Jackson’s notation [44] defined k4 as

4apR(£)
a® + p*R%(€) + z(£)? + 2apR(§)

_ 4apR(¢)
v T J F PPRAE) + 2(6)? + 2apR(E)

K

It can be shown then that

Bk _ aR(€) a? — p? R} (£) + 22(€)
& ~  p [a?+pPR2(E) + 2(€)? + 2apR(€))° /2

Next

8%, 8 [(2—Kk2)K(k4) — 2E(k4)
ka Bk 5]

- Zli (K (~2kaK(ka) + (2 — K)K'(ka)) — 263 E'(ka)

—~2ky [(2 — K2 K (k) - 2B(ka)]}

1
= = [~ 4K (ka) + ka(2 = K2 K'(ka) + 4E(ka) — 2ka B'(ks)]
A
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From Gradshteyn and Ryzhik [52], it is seen that

dK(ka) _ _ E(ka) _ K(ka)
dk,  Fa(l— kL) ka

dE(ka) _ E(ka) — K(ka)
dk4 kg

It can then be easily shown that
a\I’wz _ 1 4— 3ki 2
o = { (5252 Bk + K85~

So then we can plug back in and solve for 8¥,,,./9p by

aq’wire _ awwire 8kA
8p =~ Oks Op

E.2 Curve Fitting of Vacuum Field Source Terms

A fitting function ¥y, is chosen to model the actual ¥ of the wire dipole antenna.

An error € can be defined as

€ E/ (Pactuat(§) — Cyie)” df

— /~ } (02 1 (€) — 2Wactuat (€) it + W] de

4

= [ Wty - 2oy e — )+ e - )]
| ()]
9

1 +26,(€ — &) + 2¢2(€ — £u)? + (€ — £u)? ] «
+E(E — £u)* + 20102(E — £u)?

T [1 + (‘—’;fm)z]!i

2 2
= @a; + aq¢; + azcz + a4cy + asc; + agC1c2

where the coeflicients a, ... ag are defined as

W% w2
[1+(‘:§¥)2] " [1+(‘%§“)2]
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az_/ —2(€ — £€.)¥actuat (€)¥o 0 2(¢ — £.,) U2 «

[+ )" e

* |22 = o) a0 | 2AE—El'¥E |
S L

[ mern
=L e

w= [~ [16 f”)4‘1’25de

)]

s 7 HECST
Ny

The error € is minimized in order to obtain the ¢; and c; that best fits the

actual W se.

Oe Oe¢
Be, =0 Be "

This results in ¢; and ¢, being

azag — 2azag

C =
40«4(15 - a%
20:4(13 — Qadg
C2 LI e

a2 — daqa;

From Gradshteyn & Ryzhik [52], it is seen that

—oo (14 x2)5 ~ 128

/°° dz 357
(
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o T
-/:oc (1 + mz)sdm =0

/09 m2 dm _ 51!_
—oo (14+22)5 128

-] wa
[-oo (1 + mz)sdm =0

/oo md d _ 31|’
oo (L 22)5 7 128

Therefore we get

a4 = /: o2 (f) = 2 oceuat (€)¥o it 35PN

actual [1 R (ﬁ:ﬁ!)z] 5/2 128

—oo [1+ (%)2]5/2

0p = [ 2 bl Remai()T0

G

9T 32
a1 = 73527 %o

_3m sy
% = 182 Vo

GG=O

317



and

G = —=
20,4
Cy = —
205
a? a?  a4al + asa? agaqas
0 — 2% — 2
2a; 2a5 4a? 4a? 4asag
a? a2
a - = — —=
4(14 4ag
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Appendix F

Diagnostic Theory & Calibration

Since the basic theory of plasma diagnostics have been quite thoroughly researched
over the past 30 years, a brief summary of diagnostic theory will be given in this
appendix. More thorough treatment could be found in works by Huddleston&
Leonard [83], Hutchinson [73], Meuth [84], and Auciello [85].

Calibration of a diagnostic is essential for ascertaining the accuracy of the data
that it acquires. Much effort was expended in the calibration of the diagnostics
that were used on the PPEX machine. Somc diagnostics could be calibrated out
of the machine, while others had to be calibrated in-situ. The calibration methods

that were used are detailed below.

F.1 Diamagnetic Loop

F.1.1 Basic Theory
BASIC PRINCIPLES

The diamagnetic loop is a magnetic field probe that is positioned around the
plasma. The loop detects the magnetic flux that it surrounds and the voltage
induced on the loop is subsequently measured and processed to yield the plasma

beta.
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Using Maxwell’s equations and the MHD Equilibrium condition, it can be

shown that the magnetic field inside a plasma of finite 3 is given by
B; = /1 — ﬁBo

where 3 is defined as the ratio of the plasma pressure to the magnetic field pressure,
B = P/(B?/2uo). The flux that passes through the diamagnetic loop is then found
to be

@2 Total = N ( / " B2rrdr + / ‘ BOZm'dr)
1] Tp

The plasma contribution is then seen to be

4 NBB3mr}
z,P =

2

The output voltage that is induced in the loop is RC integrated to yield the
magnetic flux and is seen to be
d’z
Vo = —=
°~ RC
Thus the plasma B can be found directly from this output voltage and is seen to

be
2RC

Ve
N ngr;‘;7 ¢
where the factor v takes into account the frequency response of the diamagnetic

loop [86].

B =

F.1.2 Calibration

The diamagnetic loop is deployed in the center cell of the PPEX machine. Its
output is processed through an integration circuit before being digitized by an
Aurora A-12 unit.

The in-situ calibration is performed by a “blank discharge”. A blank discharge

is a plasmaless shot that is produced by simply discharging a known current
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through the central cell and mirror coils WITHOUT any auxilliary heating power.
The known magnetic field that is generated by this discharge (Calculated by the
magnetic field code EFFI) is correlated to the resulting integrated diamagnetic
loop signal. The magnitude of the integrated diamagnetic signal is then calibrated
to the known magnetic field.

F.2 Spectrometer

F.2.1 Basic Theory

The Doppler shift due to a source moving parallel (with velocity v,) to the direction

of observation is

AN = +2)
C

It can be shown (H&L, p.268) that for sources of Maxwellian velocity distri-

bution,

I, A )]
I(AX) = exp |— | —
(AN = 1A p[ (AAD
where I, is the total line intensity. The intensity is half its maximum value

when the exponential reaches ;. The full width half max (FWHM) (H& L. p.269)

line width is found to be
Ay p = 7.16 x 107"\(T/M)*

(T; is in degrees Kelvin, M is the molecular wt of the ion) Therefore the ion

temperature is found to be

M
~ (7.16 x 10-7)A)?

T (F.1)

The rotating mirror assembly is constructed to convert the J-A Monochrometer

Spectrometer into a scanning spectrometer. The reason for using a rotating mirror
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assembly is to translate the incoming beam by a glass slide, hence shifting the
wavelength entering the photomultiplier slit.

Using Snell’s Law, the amount of beam translation is found to be

bz =tsinb; |1 — cos b
\'/n2 — (sin 6;)?

By translating the beam with a rotating glass slide, the wavelength that is

being examined by the photomultiplier assembly is thus caused to vary.

F.2.2 Calibration

The spectrometer that was used on the PPEX machine was a Jarrel-Ashe 82000
Spectrometer (0.5m focal length). The spectrometer was acquired from a source
that did not maintain it very well, and as a result, much effort was expended in
obtaining proper mirror adjustment and focus.

The calibration light source used were a hydrogen lamp and a mercury lamp.
Both the mercury blue line (4358.3 A) and the Hj were used to calibrate the
mirror focus. A He-Ne laser was used to calibrate the vertical positioning of the

slit and diffraction grating.

F.83 Interferometer

F.3.1 Basic Theory

The basic principle of plasma interferometry utilizes the phase shifting of the

plasma O-mode wave whose dispersion relation is
2 _ 2 212
w' = wg, +c'k

where
€ "o

?N

€M,
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is the electron plasma frequency. The index of refraction can then be defined as :
N= El—c- = [1 - ‘f-;-]i
w w

The phase change due to the wave propagating in the plasma medium of length [

(in addition to its normal propagation in vacuum) is then
A¢ = KI(N — 1)

From the measured value of the A¢, the line averaged electron density can be
found by:

n, = "’22‘;’"' (1 - [1 - %—’] 2) (F.2)

FREQUENCY SWEPT OPERATION

The above is for a homodyne interferometer. The interferometer used in the PPEX
experiment is a frequency-swept interferometer. The basic principle of the phase
shift is the same as that of the homodyne interferometer, the difference being that
the frequency of the interferometer is swept over a fixed range. Sweeping frequen-
cies from 100KHz to 1MHz have been used. The interferometer in the PPEX
experiment utilizes a 80KHz ramp generator to produce the sweeping frequency.

For such a frequency swept interferometer, Meuth [84] shows that the phase

shift in radians is given by

A¢ = 2m x 1.34 x 107'® n.(z,t)dz(m™?)

s |

For the 35GHz interferometer used on the PPEX, this works out to be
Ad = 2.405 x 1077w, Az

or

fieAz = Ad x (4.158 x 10'®m~?) (F.3)
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where A¢ is the phase shift in radians. If a plasma radius of 10cm is assumed,

this becomes

e = A¢ x (2.08 x 10" em™?)

F.3.2 Calibration

The interferometer used on the PPEX machine was previously deployed on the
TARA tandem mirror machine. TARA deployed two types of interferometers :
35GHz and 60GHz. The 35GHz version was not used much on TARA because
of the amount of refraction that the dense TARA plasma (> 4 x 102em™3 )
generated. The refraction limited the upper density limit of operations for the

35GHZ units to approximately 2 x 10'2cm™3 [84].

F.3.3 Problems

Problems were encountered in attempting to calibrate the interferometer, specif-
ically, in calibrating the IF output of the mixer. The IF output is supposed to
mix a referene leg with the plasma leg. This output is then supposed to be tuned
to resemble a sinusoidal waveform. However, the ramp generator that was to be
adjusted for this purpose often drifted during the course of minutes, forcing a
recalibration that was often imprecise (due to the errors in judging the likeness
of the IF output to a sinusoid). This created significant problems in providing a

consistent set of electron density data.

F.4 Langmuir Probe

F.4.1 Basic Theory

Basic Langmuir probe theory states that at negative voltages, the probe should
attract only ions at an ion saturation flux given by Huddleston & Leonard [83] to

be

324



1
1 kT \?
Ii,lat = "2'nOA ( M ) (F.4)

where A is the probe area, no the plasma density, and M the ion mass.

As the probe voltage is increased, more and more electrons can penetrate the
negative potential until a floating potential V; is eventually reached. The probe
being at the floating potential means that the net inward electron flux equals the
net inward ion flux. As the voltage is continuously raised, the probe now attains
a linear regime in which the electron current behaves in an exponential manner,
assuming a Maxwellian electron distribution [83]. This is known as the transition
region and has the characteristic:

i
2
I = Ay, (.’fﬂ) el

2rm

From experimental observations of the current-voltage characteric, the electron
temperature T, and density n. can be found. To calculate the electron temper-
ature, the slope of the transition region is used. Taking the region of constant
slope in this region, Hutchinson shows [73] that the electron temperature can be

found from

e(] — I,)
dI/dV
d

where I is the Langmuir probe current in the middle of the linear region, WI is

T = (F.5)
the slope of the Langmuir Probe I-V characteristic of the linear region, and I,;
the ion saturation current.

From thie value of the electron temperature, the edge plasma density can be

found from the ion saturation current I,; (Hutchinson, p.60):
-1
I; =neA,C,qe”3

where A, is the area of the Langmuir Probe tip, C, the ion sound speed (C, =
(T./m;)% ). The density is then found to be
I,,,-e%

A,C,q

(F.6)

Noo =
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F.4.2 Calibration
F.5 B-dot Probe

F.5.1 Basic Theory

The B-Dot probe picks up the ICRF fluctuating magnetic fields that are either
propagating in the plasma or evanescent but still detectable. The B-Dot Probe
works with a similar principle to the Diamagnetic Loop, namely that the time-

varying RF field is picked up and read as an induced loop voltage V, where
d — -
v=2 [B.dA

This induced loop voltage can then be detected and digitized.

F.5.2 Calibration

The B-dot probe was calibrated using a Helmholtz coil calibration apparatus that
is similar to the one described by Philips [87]. A Helmholtz coil is wound around
a G-10 insulation spool in which three orthogonal holes have been drilled. The
B-Dot probe has 3 pickup loops arranged orthogonally at the tip. By inserting
the probe in each of the three orthogonal holes and measuring the voltage from
the pickup loops, the B-Dot probe can be calibrated.

The maximum signal that each probe picks up during calibration is recorded
and compared to the other probes that are used as well as compared to the known
magnetic field that the Helmholtz setup should produce. By doing this, one can

obtain both the absolute as well as the relative calibrations.

326



Appendix G

Problems Encountered during

PPEX Experiment

As with any experiment, the PPEX team encountered difficulties with several
aspects of the experiment. Several of the more noteworthy difficulties are listed
below, along with the actions that were taken to resolve or minimize these prob-

lems.

G.1 Heating Systems

G.1.1 Incorrect ECRH Microwave frequency

The field necessary for Ion Cyclotron Resonance at the center cell field minimum
is about 2kG, which is much higher than the resonant field of the ECH heating
unit (750G). This nonresonant heating results in an inabiiity to produce plasma
breakdowns. This lack of preionization then creates a significant problem during
ICH discharges. If there is an insufficient amount of plasma present, the ICH will
not couple any power into the plasma and thus will not heat the plasma.

The easiest solution to this problem is to obtain an ECH unit that does res-

onate at the field of the mirror central cell. However, no suitable unit was located
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within the constraints of the experimental budget. The remedy taken in the exper-
iment was to leave the ionization gauge turned on during the shot. This generated
a source of “seed” electrons that could be picked vp and amplified by the ECH
unit. Although this improvisation resulted in shert ion gauge filament lifetimes,

it proved to be an effective method of generating a source of preionized plasma.

G.1.2 Power output of the ECH Unit

The second problem is also related to the ECH system. The system is a Raytheon
microwave unit outputting 2kW of power at a frequency of 2.1GHz. The output of
the unit was factory designed to be a half-rectified waveform. This half-rectified
power envelope restricts the length of time a preionized source of electrons is
available to the ICRF waves. This proved to be a problem at lower power levels
(< 30kW) because the ICRF was seen to have difficulty sustaining a discharge.
Higher levels of ICRF power appeared to be able to sustain the discharge and
thus minimized the problem. However, this half-rectified waveform did affect the
ICRF wave-plasma coupling because at the time of its initial turn-on, the ICRF
may not see much plasma and thus will not begin to couple to the plasma until

well into its pulse when the ECH power begins to ramp on.

G.1.3 ICRF System

The Continental ICRF Amplifiers used in the PPEX experiment are vintage 1967
US Navy communications equipment. As such, the electronics and plumbing are
fragile, old, and decaying. Although attempts were made to service the systems,
many problems cropped up which interrupted experimentation. Some of these
problems were: recirculation water line leakage, burnout of a high voltage charging
supply due to a failed capacitor, breaker failure, timer failure, and many stuck
switches. As such, it is not recommended that the further operations of the

PPEX machine be contingent upon having an operational Continental amplifier.
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It is recommended that a new ICRF source be either built or acquired with as

much solid state equipment as possible to minimize component failure.

G.2 Diagnostics

Most of the diagnostics used on the PPEX were obtained from the now defunct
TARA tandem mirror experiment at MIT. Although much effort was made to re-
calibrate and fix the instruments to obtain the best results, many problems were
encountered in getting accurate data out of some of the diagnostics. Of these diag-
nostics, the interferometer was the most troublesome. Initially, the interferometer
yielded phase data which were undecipherable. After much troubleshooting, the
main problem was found to be with the gunn oscillator and mixer units. After
the gunn oscillator and mixer units were replaced, the results appeared to be con-
sistent with the other diagnostic results. However, vibration of the chamber due
to the magnets discharging cause the horns to move, thereby creating a source of

error and noise that could not be eliminated.

G.3 Ground Loop

Many of the diagnostics suffered from ground loop because of insufficient isolation.
Although care was taken to isolate the physical parts of the diagnostic from the
machine (where possible), the power supply ground was not isolated from the
machine, thereby creating a large source of ground loop. The solution was to
physically isolate as much of the diagnostics from the machine, isolate the power
supply ground, and isolate the Andrews cable coax from the instrumentation

ground. After doing this, most of the ground loop pickup was eliminated.
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