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RAPIDLY CONVERGENT ALGORITHMS FOR 3-D TANDEM AND STELLARATOR EQUILIBRIA

IN THE PARAXIAL APPROXIMATION
BRENDAN McNAMARA,

Lawrence Livermore National Laboratory, University of California,
Livernore, California.

Tandem and stellarator equilibria at high § have proved hard to compute and
the relaxation methods of Bauer et al. I,Chodura and Schluter“, Hirshman »
Strauss 4, and Pearlsteln et al. have been slow to converge. This paper
reports an extension of the low-f analytic method of Pearlstein,Kaiser, and
Newcomb 9 to arbitrary B for tandem mirrors which converges in 10-20 iterations.
Extensions of the method to stellarator equilibria are proposed and are very
close to the analytic method of Johnson and Greene - the “stellarator
expansion". Most of the results of all these calculations can be adequately
described by low-8 approximations since the MHD stability limits 8 occur at low
B. The tandem mirror, having weak curvature and a long central cell, allows
finite Larmor radius effects to eliminate most ballooning modes arnd offers the
possibility of really high average 8. This is the interest in developing such
three-dimensional numerical algorithms.

2. _CONNECTION BETWEEN KINETIC AND FLUID MODELS

Tandem mirrors have very large mirror ratios and large flux-surface
distortions and so any numerical representation of the equilibrium must use the
field 1lines as the basis of the coordinate system to place mesh points where
they are needed. This is done by defining the magnetic field in terms of two
scalars (¥,8) as

B = V¥ x V8 (1)

which ensures that VeB=0. 1In a Stellarator the field lines lie on magnetic
surfaces which naturally identify a set of flux surfaces, ¥. In tandem mirrors
the field 1lines are open and there are no natural magnetic surfaceg. However,
the systems are designed so that confined particles move on closed drift
surfaces and, 1in many designs, these are arranged to be the same surfaces for
almost all particles whose orbits intersect the same field line. These are the
so-called omnigenous drift surfaces of Hall and McNamara and are physically
the relevant choice for Y. The second flux-line coordinate, 6, i{s an angle-like
variable chosen to satisfy eqn.l. Even in systems which are not everywhere
omnigenous for particles moving in the 7acuum field alone it is speculated that
the plasma transport processes set up radial electric fields which re-align the
drift orbits much closer to an omnigenous set and this is to be expected also in
toroidal systemse. The assumption of omnigenity allows one to comnect the
microscopic distribution functions with macroscopic density and pressure
profiles most easily. Most fusion systems now have neutral beam or high-power
RF inputs which directly affect distribution functions and thereby affect the
equilibria, effects which need to be modelled.
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Tandem aizecors tend to self-anneal for a nuzber of reasons which need
further explanation. In stationary electric and magnetic fields the streng
constants of astion of a single parzicle of charge, e, mass, o, and velocity, v
are the energy,

R--;-nvi2+un+e¢ (2)
and the magnetic moment,
)
- 2

The magnetic moment is an adiabatic invariant and is destroyed by plasma
oscillations at or above the cyclotron frequcncy, but is not affected by the
global geometry c¢f the field, provided the Larmor parameter, € = (Larmor
radius)/(radial scale) 1is swall. The longitudinal adiabatic invariant, A, is
the action in the bounce motion,

A=[v, 41 (3

=] Eu-us - e0)l/2 as )

In the paraxial equilibrium theory 10 4¢ 1s found that B=B(Yy,s) in a mirror
cell at high B. (B= the ratio of plasma to magnetic pressure). The distance s
along a field line is approximately the distance, 2z, along the axis of the
system and so A = A(H,u,}) if ¢ 1s small. The drifts are dominated by the VB
drift and the surfaces are locally cmnigenous.

At low B8, B is independent of ¥ and so the drift surfaces are determined by
the difference between s aad z due to the weak field line curvature. At this
point I introduce Newcomb’s 10 notation for the covariaant compenents of the
field line curvature,

k = 5°V8
= RVY + ZOVO (5)

Then, it can be shown that the net drift off a surface, ¥, in one bounce of
a particle is
8y = -G v,2 +up) 20 & (6)
e n
If B 1s symmetric about the center of this cell then the integral will
vanish 1f ¥0 1s designed to be antisymmetric and the drift surfaces will be
omnigenouss

In the paraxial limit the potential is determined by the requirement of
local quasineutrality and then ¢=$(B,¥). Even in a low-B mirror cell which is
not omnigenous in the vacuum magnetic fileld, omnigenity i1s restored by the
potential, determined by radial 1losses and events in neighbouring cells. An
example of just such a case i1s the GAMMA-VI experiment 11, in which the end
plugs are aligned so that fans of field lines enetering the center-cell from the
plugs are both vertical. There are NO confined magnetic drift surfaces 1im the
centre cell and so the choice of ¥ 1s determined by the drift surfaces of the
high-temperature plasma in the plugs. These are omnigenous locally, with a
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circular secticn at the midplane of each plug. These cicles map into an
elliptic cross-scction flux tube in the center cell. Wwhen the center cell {a
filled with plasma the radifal losses lead to ralial potential drops of &= 3-4
Tgc and the Arifts are dominated by the ExB drifts and so the total system
becomes omnigenous. Reasonable models of the total pressure tensor can be given
ir the forus

B = 2(¥,B)
= w(¥) (P (¥,B)I+_B53) (¥,B)) an

where most of the Y-dependence has been extracted i{n the density profile
factor w, and_P depends only on weakly varying functions like the mirror ratio,
or on the radial variation of ¢. The electric fields have not been included 1in
the rest of this paper but will be essential in a fuller model of the tandem
mirror equilibria.

3. _THE CURRENT BALANCE ALGORITHM.

Newcomb and Strauss have derived the paraxial form of the equilibrium
equations from the static and dynamical equations respectively. I therefore
present only the most direct definition of the required relations. In addition
to the requirement that V-B=0, which is satisfied by the representation in eqn.
(1), the three-dimensional equilibrium of a guiding center plasma 1s described
by the force-balance equation,

JxB = Vep (12)

and Ampere’s law,

VxB = 3 (13)
In Strauss’ reduyction of the dynamical equations, the leading order equilibrium
condition, O(AY), comes from the perpendicular components of the force-balance.
Eqns. 12 and 13 can be combined to give

Vl(BZ/Z +rp) ’.E(Bz +p - p) (14)

In the paraxial approximation the curvature 1is small, O(AZ), and, on
dropping the curvature, eqn. 14 may be integrated to give

32/2 + p, = B, (2)2/2 (15)

This 1is to be solved for B(¥,z) ¢to establish perpendicular pressure
balance, where z 1s the distance along the axis of the system and B, 1is the
vacuum field on the axis. The next order equilibrium coandition is obtained from
the parallel component of the force balance, which is



37 ¢+ pad (16}

Thirs arises from consaorvation of (H,u). The pressure gradient 1is now
deterrined in £lux coordinates, along with the perpendicular current flow. It
remains to find the parallel current and the actual shape cf the flux surfaces.
At this point, the Lagrangian representation of the field is introduced in terms
of the position of a field line as

X = X(%,8,s) 17)
so that
B =5B =X'B (18)

and X’=3X/33 is the tangent vector. The parallel current per unit flux, {i,
is defined as

B+ J =182 19)
= BX"*VxX’B

= BX"* (VBxX* + B VxX")

- B?zf-szf (19)

In the paraxial approximation only the axial current contributes and so

ax’ 5y’
11 = 1(‘!,6,2) - _a_.y_ - _5;.
= B([X,X] + [Y’,Y]) (20)

where (x,y,z) are Cartesian coordinates and (X,Y,z) the position of a field
line. The conversion te (¥,0,z) coordinates introduced the bracket notation for

< 3fdg  3fdg
(£.e] = 5356 - o3¢ a9
~ fy 89 - fo gy 2h
and the Jacobian, in this approxirmation is
L = [X,7] 22
B ’ (22)

The definition of the parallel curreant involves only local quantities,” the
position of the field lines, but the equilibrium equations also demand that

Vel =0

= Vi3, + BV 1 (23)
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After substituting for J; from the force balance eqn. (12}, and a little
maniputlation, 1 is found to be the field~line integral

104,8,8) = 1[5 bek x V(UBZ)-‘% +1 (24)
B
where
. PL=P
o~ 1+ (25)
B2

The 1initial plane, s=-L, can be an arbitrary plane in the vacuum outside
the tandem mirvor where the integration coustant, i-L' is zero. 1In the paraxial
approximation,

- - Lz % 41 3
1, = 1(¥,8,2) = =[% 280 =5 2t o) (26)
where
P ={(p, +py)/2 (27)

The current balance algorithm moves the field lines to equate the local
expression, (20), and the integral expression (26)

This is equivalent to setting the integral of the parallel component of the
curl of the force balance to zero in Strauss’ dynamical model.

The starting position for the tandem-mirror field lines is obtained from
one vacuum field line close to the axis of the system ~f an actual coil
configuration. This gives the field strength, B,(z), and the ellipticity
factor, ¢ (2} for the field line coordinates

X =p cos 8 e Sy(2)

Y = p sin 8 e Cy(2) (29)

The radial factor, p, is chosen to give the correct Jacobian, (13), with
B(Y,z) calculated from the pressure balance, (18):

2y __d¥ ¢
= Josewn (30)

This choice of p takes care of the diamagnetism of the plasma ard usuzlly
provides most of the displacement of the field 1lines from their equilibrium
positions.
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Subsequent movement of the field lines must be done incompressibly so as to
preserve the pressure balance, (15), and also the Jacobian, (22), conservation of
vhich 1is used as numerical test of the accuracy of the calculations. Such a

motion is determined by a velocity potential or two-dimensional ‘Hamiltonian®,
u, for the (X,,Y) motion in each z-plane as

dX(¥,8,2)/dt = Vo x 2 (3
If the displacement is small then

X=X+ 9(Jude) x z +0(axd)
=Xy + V0 %2 (32)

or, in (Y¥,0,2z) coordinates,

X = X + B[Xq,0)

Y = Y5 + B[Y(,U] (33)

This may be substituted into the current balance eqn.(28), and il
linearised to give the equation for U

2 (BU) B
V221 = (1 - 1) + [U,1p] - BIXg,BU(Xg, 1]

-B[YO,BU[YO,BT;]] + o) - %Ip (34)
where
1y = B([Xg:Xgl + [YgsTgl) (35)

Since it does not linearise conveniently, the integral is evaluated, to all
orders in U, from the field line positions at the previous step in the iteration
process. The right hand side of (34) 1is evaluated on each plane and the
elliptic operator 1is inverted. The boundary conditions for the tandem mirror
are that U=0 on the symmetry planes, 8=0,7/2, and at a distant wall, ¥ o111

The last piece in (34} is needed to symmetrize the numerical representation
of the equation. The tandem mirror has ying-yang symmetry about the mid-point
and so computations are done only in an octant of the configuration. By
definition, every term of (34) has this symmetry exactly, except for the
integral, i_, which is dnne from z=-L. Without the symmetrizing addition, which
goes separately to zero at equilibrium, the midplane is driven away from
equilibrium. Needless to say, some meditation was needed to introduce this
correction to ther numerics.
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A final {ntegration then ylelds:

s 102 aoye da o (020
U= 373 a0 gz + 220
- Uy o+ (36)

The integration constant, ¢, on each field line 1s now determined by the
condition that the integral form of the current should vanish in the
symmetrically placed vacuum at z=+L.

T ip(?,e,L)

£ .
Wy Uy
2p
dz b4 " "
- é?’m? (%ge Xg + Ypo¥g)

25\}' " "
+ 682 —X(81xg,upl6 Ko + Kgp (B[XguUA1)" + (X))
L4

+ abgg + bdyg + cby + dbg + ed + 0(U?)

=0 37)

The function ¢ and its derivatives come out of the integral, yielding a
second-order parabolic equation! This is somewhat strange for an equilibrium
problem and is a consequence of the paraxial approximatisn and the conversion of
the corresponding axial boundary condition on the dynamical formulation into an
integral constraint. It does not occur 1in the fully three-dimensional
treatments (cf. Hall and Mcnamara). The coefficients (a—-e) are the
corresponding pleces of the integrals over U, and need not be written explicitly
here, except for “a’ which turns out to be the flute stability integral

2 R Py
Wy

(38)

dz
a é?

This would vanish at the flute stability boundary, with dire consequences
for the algorithm , but this would always be at betas above the stability limit
for ballooning or rigid-displacement modes.

The factor 1/{wy), is inserted im the integrals to keep all the
coefficients finite near the plasma boundary, where the whole equation would
otherwise vanish, leaving no useful wmeans of defining ¢. This would alse allow
the equation to be axtended into the vacuum region but ¢ will then never satisfy
any particular radial boundary coundition. There i1s no current in the vacuum
driven by plasma pressure and it seems Iincorrect to use the constraint on these
fleld lines. This leaves ¢ completely unspecified im the wvacuum and 1t can
therefore be chosen to be any smooth function which matches to the plasma @ and
which satisfies ¢=0 at =¥ a1
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The other boundary conditions on ¢ are therefore ¢=Q on the symmotry planes
8=0,*/2 and, because of the overall quadrupole symmetry of tandem mirrors, at
Bwr /4, about which ¢ is actually anti-symmetric. Only one boundary condition in
the Y-direction can be specified in the plasma, ¥(¥=0) = 0, and this parabolic
equation is then integrated outwards from the magnetic axis. Thils completes the
definition of U and the field line displacements needed to achieve equilibrium.

This completes the description of the basic algorithm.

4. _APPLICATION TQO STELLARATORS.

I have not written a code for the Stellarator version of this method but
believe it 18 a straightforward modification. The first change is to insert an
appropriate analytic guess at the initial conditions, similar to eqmns (29-30).
The next point is to confine the problem volume to one period of the Stellarator
and apply perilodicity counditions to the calculation. Thus, the integration
constant, i_;, in eqn (24) 1s a given function of ¥, corresponding to the net
induced current flowing on each surface.

The constraint on the parallel current flow 1s that it be periodic , which
yields a pair of conditions on the 1integration constant ¢ and 1ts surface
average. Thus, 1 (?,e,L)zip(W,e,zL)=ip(¥,9,nL). The second part of this leads
to the requirement” that the surface average of the parallel current should equal
1,8, The first part 1s constructed by iterating the mapping of the field
line positions at z=0 to their positions at z=L tc get the locations at z=2L.
The periodicity requirement then gives an eqn similar to (37).

5. _A TMX-UPGRADE EXAMPLE

This particular example was the first case successfully brought to
equilibrium by L.D.Pearlstein with the dynamical code in some 11,000 time steps.
The result shown is very close to that and both are close to the TEBASCO result
from the low-8 analytic theory.

The first figure shows the axial magnetic field profile as Byo(Zop) e

Improved accuracy 1is obtained by stretching the z coordainate and Fig2 shows
B(s(z)). The 1initial analytic guess at equilibrium gives the parallel current
profile of Fig. 3 at z=0 from the local expression and the profiles of Fig 4.
from the integral. They are far from agreement and the local form shows current
flowing im the vacuum. The axial variation of the local and integral currents
are shown in fig. 5 for a field line in the plasma and onme in the vacuum. The
differences supply most of the source for eqn. (34). The initial flow patterns
in the mid-~plane, which 1is all octupole and higher, and the end plame are in
Figs 6,7. The average beta in a plane has a maximum of 8.3%, peak central beta
being 25% with w=(1-¥/¥ las)z‘ This case coaverged in ten steps to 1% accuracy
everywhere. Current balgnce is shown in fig 8 and the convergence behaviour in
Figs. 9-12. Note the total current constraint is 0(8) smaller than the other
measures. Flux surface shapes in equilibrium show the characteristic diamond
distortion for a stable equilibrium.
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These results agree closely with the dynamical code and quite well with
Tebasco, the 1low=-beta analytic equilibrium calculation. The principal
differences are that the parallel curreant is about 157 higher in the finite-8
calculation and the geodesic curvatures are somewhat larger. The priacipal
curvature, and hence the MHD stability are hardly altered by the plasma.

At higher betas the code may fail to converge because the initial guess is
simply too far from the answer. Also, in tandems with more cells , numerical
accuracy becomes a problem. Work 13 continuing on extending the domain of
applicability of the code.
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