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RAPIDLY CONVERGENT ALGORITHMS FOR 3-D TANDEM AND STELLARATOR EQUILIBRIA 

IN THE PARAXIAL APPROXIMATION 

BRENDAN McNAMARA, 

Lawrence Llvermore National Laboratory, University of California, 
Llvermore, California* 

Tandem and stellarator equilibria at high (3 have proved hard to compute and 
the relaxation methods of Bauer et al. SChodura and Schluter2, Hirshman 3, 
Strauss , and Pearlstein et al. 5 have been slow to converge- This paper 
reports an extension of the low-B analytic method of Pearlstein,Kaiser, and 
Newcomb ° to arbitrary B for tandem mirrors which converges in 10-20 iterations. 
Extensions of the method to stellarator equilibria are proposed and are very 
close to the analytic method of Johnson and Greene ' - the "stellarator 
expansion"• Host of the results of all these calculations can be adequately 
described by low-g approximations since the MHD stability limits ° occur at low 
8. The tandem mirror, having weak curvature and a long central cell, allows 
finite Larmor radius effects to eliminate most ballooning modes and offers the 
possibility of really high average 6. This is the interest in developing such 
three-dimensional numerical algorithms. 

2. CONNECTION BETWEEN KINETIC AND FLUID MODELS 

Tandem mirrors have very large mirror ratios and large flux-surface 
distortions and so any numerical representation of the equilibrium must use the 
field lines as the basis of the coordinate system to place mesh points where 
they are needed. This is done by defining the magnetic field in terms of two 
scalars (̂ ,8) as 

j$ » VV x 76 (1) 

which ensures that V-_B»0. In a Stellarator the field lines lie on magnetic 
surfaces which naturally identify a set of flux surfaces, i>. In tandem mirrors 
the field lines are open and there are no natural magnetic surfaces. However, 
the systems are designed so that confined particles move on closed drift 
surfaces and, in many designs, these are arranged to be the same surfaces for 
almost all particles whose orbits intersect the same field line. These are the 
so-called omnigenous drift surfaces of Hall and McNamara " and are physically 
the relevant choice for ty. The second flux-line coordinate, 8, is an angle-like 
variable chosen to satisfy eqn.l. Even in systems which are not everywhere 
omnigenous for particles moving in the vacuum field alone it Is speculated that 
the plasma transport processes set up radial electric fields which re-align the 
drift orbits much closer to an omnigenous set and this is to be expected also in 
toroidal systems* The assumption of omnigenity allows one to connect the 
microscopic distribution functions with macroscopic density and pressure 
profiles most easily. Most fusion systems now have neutral beam or high-power 
RF inputs which directly affect distribution functions and thereby affect the 
equilibria, effects which need to be modelled* 
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Tandeai alrrora tend to aelf-anneal (or a number of reasons which need 

further explanation. In stationary electric and magnetic fields the strong 
conatanta of notion of a single particle of charge, e, mass, a, and velocity, v 
•re the energy, 

H - i a v 2 + UB + e* (2) 
2 

and the magnetic moment, 
•vx 2 

U - _ (2) 

The magnetic moment is an adiabatlc invariant and is destroyed by plasma 
oscillations at or above the cyclotron frequency, but is not affected by the 
global geometry o* the field, provided the Larmor parameter, e » (Larmor 
radius)/(radial scale) is small. The longitudinal adiabatic invariant, A, is 
the action in the bounce motion, 

A - / v, dl (3) 

- / (-(H - uB - e * ) 1 / r 2 ds (4) 
m 

In the paraxial equilibrium theory *" it is found that B*B(IJJ,S) in a mirror 
cell at high B. (B- the ratio of plasma to magnetic pressure). The distance s 
along a field line is approximately the distance, z, along the axis of the 
system and so A » A(H,W,4I) if * is small. The drifts are dominated by the VB 
drift and the surfaces are locally omnigenous. 

At low B, B is independent of ip and so the drift surfaces are determined by 
the difference between s a .id z due to the weak field line curvature. At this 
point I introduce Newcomb's 1 0 notation for the covariant components of the 
field line curvature, 

k - 6'VB 

- RV* + iOVe (5) 

Then, it can be shown that the net drift off a surface, t> in one bounce of 
a particle is 

A* = -(-)/ (v„2 + uB) JO $2- (6) 
e VM 

If B is symmetric about the center of this cell then the integral will 
vanish if 10 is designed to be antisymmetric and the drift surfaces will be 
omnigenous• 

In the paraxial limit the potential is determined by the requirement of 
local quasineutrality and then ^"•(B.'J'). Even in a low-B mirror cell which is 
not omnigenous in the vacuum magnetic field, omnigenity is restored by the 
potential, determined by radial losses and events in neighbouring cells. An 
example of just such a case is the GAMMA-VI experiment **, in which the end 
plugs are aligned so that fans of field Hues enetering the center-cell from the 
plugs are both vertical. There are HO confined magnetic drift surfaces in the 
centre cell and so the choice of i|i is determined by the drift surfaces of the 
high-temperature plasma in the plugs. These are omnigenous locally, with a 
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clrcular section ac the nldplane of each plus- These clcles aap Into an 
elliptic cross-section flux Cube In the center <*ell. Uhen the center cell Is 
filled with plasma the radial losses lead to radial potential drops of *~ 3-4 
T._ and the drifts are dominated by the JExjJ drifts and so the total system 
becoaes oonigenous. Reasonable models of the total pressure tensor can be given 
in the forms 

JP - £(¥,B) 

- *•>(*)(&« (¥.8)1+ BSp,(y,B)) (11) 

where most of the ^-dependence has been extracted in the density profile 
factor u, and P depends only on weakly varying functions like the mirror ratio, 
or on the radial variation of *• The electric fields have not been Included in 
the rest of this paper but will be essential In a fuller model of the tandem 
mirror equilibria. 

3. THE CURRENT BALANCE ALGORITHM. 

Newcomb and Strauss have derived the paraxial form of the equilibrium 
equations from the static and dynamical equations respectively. I therefore 
present only the most direct definition of the required relations. In addition 
to the requirement that V>_B«0, which is satisfied by the representation in eqn. 
(1), the three-dimensional equilibrium of a guiding center plasma is described 
by the force-balance equation, 

JXB - V-jp_ (12) 

and Ampere's law, 

VxB - J (13) 
In Strauso' reduction of the dynamical equations, the leading order equilibrium 
condition, 0(A°), comes from the perpendicular components of the force-balance. 
Eqns. 12 and 13 can be combined to give 

V (B2/2 + P l ) - k(B 2 + Pi - py) (14) 

In the paraxial approximation the curvature is small, 0(A 2), and, on 
dropping the curvature, eqn. 14 may be integrated to give 

B 2/2 + P i - B v(z) 2/2 (15) 

This is to be solved for B(¥,z) to establish perpendicular pressure 
balance, where z is the distance along the axis of the system and B y Is the 
vacuum field on the axis. The next order equilibrium condition is obtained from 
the parallel component of the force balance, which is 



J>«V • P-0 (16) 
This arises froa conservation of (H,U). The pressure gradient Is now 

determined In flux coordinates, along with the perpendicular current flow. It 
renalns to find the parallel current and the actual shape of the flux surfaces* 
At this point, the iagranglan representation of the field Is Introduced In terms 
of the position of a field line as 

* - X(f,9,s) (17) 
so that 

JJ - 6B - i'B (18) 
and £'»3X/3s is the tangent vector. The parallel current per unit flux, i, 

is defined as 
JJ • J. - IB 2 19) 
> BX''VXX'B 

» BX"'(VBxX' + B VXJC') 

- BV'VXX' (19) 

In the paraxial approximation only the axial current contributes and so 

1 3y ox 
- B([X',X] + [Y'.Y]) (20) 
where (x,y,z) are Cartesian coordinates and (X,Y,z) the position of a field 

line. The conversion to (*,8,z) coordinates introduced the bracket notation for 

1 , S J atae aeay K } 

m fy 8e " f6 8* (21) 
and the Jacobian, in this approximation is 

J - PC*] (22) 

The definition of the parallel current involves only local quantities," the 
position of the field lines, but the equilibrium equations also demand that 

V«_J - 0 

* v*Jj. + l * v i ^ (23) 
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After substituting for Ĵ  iron the force balance eqn. (12), and a little 
aanlputlation, 1 is found to be the field-line integral 

l(¥,e,s) - i /f L £'k * V(aB 2)^| + i_ L (24) 

where 

o - 1 Pl-Pn. 

B 2 ' 
(25) 

The initial plane, s—L, can be an arbitrary plane in the vacuum outside 
the tandem mirror where the integration constant, i_ L, is zero. In the paraxial 
approximat ion, 

i p - i(Y,9,z) = -1/« L 2K)|f 4i + 0(X 3) (26) 
B 

where 

P - (Pj. + P||)/2 (27) 

The current balance algorithm moves the field lines to equate the local 
expression, (20), and the integral expression (26) 

*1 ' ip <28) 
This is equivalent to setting the integral of the parallel component of the 

curl of the force balance to zero in Strauss' dynamical model. 

The starting position for the tandem-mirror field lines is obtained from 
one vacuum field line close to the axis of the system ^f an actual coil 
configuration. This gives the field strength, B v(z), and the ellipticity 
factor, c v(z) for the field line coordinates 

X - P cos 6 e cv( z) 

Y - P sin 6 e c v ( z ) (29) 

The radial factor, p, Is chosen to give the correct Jacobian, (13), with 
BC^.z) calculated from the pressure balance, (18): 

P 2 _ f* d* Jl d* . (30) 
This choice of P takes care of the diamagnetism of the plasma and usually 

provides most of the displacement of the field lines from their equilibrium 
positions. 
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Subsequent movement of Che field lines must be doni lncompresslbly so as to 

preserve the pressure balance,(IS), and also the Jacoblan, (22), conservation of 
which Is used as numerical test of the accuracy of the calculations. Such a 
motion Is determined by a velocity potential or two-dimensional 'Haallconian*, 
u, for the (X,,Y) motion In each z-plane as 

dX(¥,6,z)/dt - Vu * z (31) 

If the displacement is small then 

X - XQ + V(J U dt) * z + 0(AX 2) 

- XQ + VU x z (32) 

or , in C?,8,z) coordinates , 

X - XQ + B[X0,U] 

Y - Y 0 + B[Y0,U] (33) 

This may be subs t i tu ted in to the current balance eqn . (28) , and i i 
l i nea r i sed to give the equation for U 

72 W£_ _ ( ± Q _ i p ) + [ u > i o ] _ B [ X o f B O [ x 0 , ^ . ] ] 

-B[Y 0,BU[Y 0,-y-]] + 0(U 2) - | l p (34) 

where 

i 0 - B ( [ X Q , X 0 ] + [ Y Q , Y 0 ] ) (35) 

Since it does not linearise conveniently, the integral is evaluated, to all 
orders in U, from the field line positions at the previous step in the iteration 
process. The right hand side of (34) is evaluated on each plane and the 
elliptic operator is inverted. The boundary conditions for the tandem mirror 
are that U-0 on the symmetry planes, 6-0,TI/2, and at a distant wall, 1'»'1'wall. 

The last piece in (34) is needed to symmetrize the numerical representation 
of the equation. The tandem mirror has ylng-yang symmetry about the mid-point 
and so computations are done only In an octant of the configuration. By 
definition, every term of (34) has this symmetry exactly, except for the 
integral, i , which is done from z»-L. Without the symmetrizing addition, which 
goes separately to zero at equilibrium, the midplane is driven away from 
equilibrium. Needless to say, some meditation was needed to introduce this 
correction to ther numerics. 



A final integration then y ie lds : 

u - I / 5 (Bin- dz^^Ml 

- UA + i (36) 

The integration constant, *, on each field line is now determined by the 
condition that the integral form of the current should vanish In the 
symmetrically placed vacuum at z-+L. 

T p _ ip(T.B,L) 

xdz ^ r " "i 
h-l^T (xoe x0 + Y 0 6 Y 0 ) 
idz 2Pf/r " 

+ ^B"1^( Bf X0' U.'j6 X 0 + X o e(B[X 0,U A]) + (X+Y)] 

+ a* 6 9 + b̂ î g + cby + d*e + e* + 0(U 2) 

- 0 (37) 

The function $ and its derivatives come out of the integral, yielding a 
second-order parabolic equation! This is somewhat strange for an equilibrium 
problem and Is a consequence of the paraxial approximation and the conversion of 
the corresponding axial boundary condition on the dynamical formulation into an 
integral constraint. It does not occur in the fully three-dimensional 
treatments (cf. Hall and Mcnamara). The coefficients (a-e) are the 
corresponding pieces of the integrals over U A and need not be written explicitly 
here, except for 'a' which turns out to be the flute stability integral 

A dz 2 R P* 

This would vanish at the flute stability boundary, with dire consequences 
for the algorithm , but this would always be at betas above the stability limit 
for ballooning or rigid-displacement modes. 

The factor l/(u^,), is inserted in the integrals to keep all the 
coefficients finite near the plasma boundary, where the whole equation would 
otherwise vanish, leaving no useful means of defining $. This would also allow 
the equation to be extended into the vacuum region but <b will then never satisfy 
any particular radial boundary condition. There is no current in the vacuum 
driven by plasma pressure and It seems incorrect to use the constraint on these 
field lines. This leaves * completely unspecified in the vacuum and it can 
therefore be chosen to be any smooth function which matches to the plasma €> and 
which satisfies «-0 at W ^ j . 
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The other boundary conditions on * are therefore 4-0 on the symmetry planes 

S»0,*/2 and, because of the overall quadrupole symmetry of tandem mirrors, at 
6-ir/4, about which * Is actually antl-symmetric. Only one boundary condition in 
the ^-direction can be specified in the plasma, *('i'»0) » 0, and this parabolic 
equation Is then integrated outwards from the magnetic axis. This completes the 
definition of U and the field line displacements needed to achieve equilibrium. 

This completes the description of the basic algorithm. 

4. APPLICATION TO STELLARATORS. 

I have not written a code for the Stellarator version of this method but 
believe it is a straightforward modification. The first change is to insert an 
appropriate analytic guess at the initial conditions, similar to eqns (29-30). 
The next point is to confine the problem volume to one period of the Stellarator 
and apply periodicity conditions to the calculation. Thus, the integration 
constant, 1_T» in eqn (24) is a given function of f, corresponding to the net 
induced current flowing on each surface. 

The constraint on the parallel current flow is that it be periodic , which 
yields a pair of conditions on the integration constant * and its surface 
average. Thus, i (¥,8,1)-! (1i',6,2L)=lp('i',9,nL). The second part of this leads 
to the requirement that the surface average of the parallel current should equal 
i_^(¥). The first part is constructed by iterating the mapping of the field 
line positions at z»0 to their positions at z-L to get the locations at z«2L. 
The periodicity requirement then gives an eqn similar to (37). 

5_. A TMX-UPGRADE EXAMPLE 

This particular example was the first case successfully brought to 
equilibrium by L.D.Pearlstein with the dynamical code in some 11,000 time steps. 
The result shown is very close to that and both are close to the TEBASCO result 
from the low-S analytic theory. 

The first figure shows the axial magnetic field profile as B^G^cm^' 

Improved accuracy is obtained by stretching the z coordinate and Fig2 shows 
B(s(z)). The initial analytic guess at equilibrium gives the parallel current 
profile of Fig. 3 at z»0 from the local expression and the profiles of Fig 4. 
from the integral. They are far from agreement and the local form shows current 
flowing in the vacuum. The axial variation of the local and integral currents 
are shown in fig. 5 for a field line in the plasma and one in the vacuum. The 
differences supply most of the source for eqn. (34). The initial flow patterns 
in tht mid-plane, which is all octupole and higher, and the end plane are in 
Figs 6,7. The average beta in a plane has a maximum of 8.3Z, peak central beta 
being 25Z with ̂ (l-Y/T . « ) • This case converged In ten steps to 1Z accuracy 
everywhere. Current balance Is shown in fig 8 and the convergence behaviour in 
Figs. 9-12. Note the total current constraint is 0(6) smaller than the other 
measures. Flux surface shapes in equilibrium show the characteristic diamond 
distortion for a stable equilibrium. 
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These results agree closely with the dynamical code and quite well with 
Tebasco, the low-beta analytic equilibrium calculation. The principal 
differences are that the parallel current is about 15Z higher in the flnite-6 
calculation and the geodesic curvatures are somewhat larger. The principal 
curvature, and hence the MHD stability are hardly altered by the plasma. 

At higher betas the code may fail to converge because the initial guess is 
simply too far from the answer. Also, in tandems with more cells , numerical 
accuracy becomes a problem. Work is continuing on extending the domain of 
applicability of the code. 
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6 AND B-VHC 

Figs. 1,2. Axial magnetic field strength vs z and the stretched coordinate 
s(z) to improve accuracy. 
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Figs. 3,4. Compare local and integral values of the mid-plane parallel 
current from the initial guess. 
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Figs. 5. Solid line is parallel current at i|) = <I)Dias/2, 0 = ir/10. 
Nearby dotted line at i|i near \p wall. Other dotted line is integral value 
of current on (<liplas/2,j.iT/10). 
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Figs. 6,7. Initial flow pattern in mid-plane ai.d eno-plane to approach 
current balance. 
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Fig. 8. Local and integral currents balanced in 10 steps, 
reduced to zero. 
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Figs. 13,14. Flux surface shapes in mid-plane and first mirror throat. 
Coordinates normalized so dotted vacuum shapes are circular. 
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