
USING C++ AS A SCIENTIFIC PROGRAMMING LANGUAGE

James S. Peery, Kent G. Budge, Allen C. Robinson,

Computational Physics Research and Development Division SAND-- 9 1-1 8 3 5 C
Sandia National Laboratories

Albuquerque, New Mexico DE9 2 0 0 2 0 9 8

and

David Whitney "'--_-- ...

Cray Research

Eagan, Minnesota

1. Introduction Superior dynamic memory management. C++ provides strong,
flexible support for the management of the free memory store.

Large computational physics codes are increasing in complexity This is vital for codes operating on large and flexible databases.
as customers demand improved physics packages and more flexi-
ble algorithms and problem specifications, lt is not uncommon Operator andfunction overloading. C++ permits the meaning of
for a code to exceed one hundred thousand lines of FORTRAN, the standard operators to be redefined when applied to class ob-
and some codes are much larger. This poses a considerable chal- jects. This permits unusually transparent programming syntax
lenge for program management, which is tailor-made for particular applications.

The Computational Physics Research and Development Division Availability. C++ is available or is relatively easy to port to any
at Sandia National Laboratories is aggressively pursuing C++ as platform that supports C.
the language of choice for new coding efforts. We feel that we
cannot meet the stringent customer requirements and delivery The disadvantages of C++ are:
schedules we now face with either FORTRAN77 or Fortran-90.

Lack of an ANSI language standard. The language is very young
and is still evolving, lt will be some time before the ANSI stan-

1.1 General Advantages and Disadvantages of C++ dard is completed. Fortunately, the AT&T CFRONT translator is
a de facto standard that is largely followed by other implementa-

The advantages of C++ are: lions.

Strong type checking. Ali variables and procedures are declared Poor optimization. C++ code can be very inefficient. Many of the
prior to their first use. The argument lists of procedures must known efficiency issues can be addressed by careful coding. Oth-
match in separate compilation units. These strong type checking ers will be resolved only by the development of more sophistical-
features eliminate entire classes of program bugs common in ed compilers. We believe that C++ can ultimately become
FORTRAN programs, competitive with FORTRAN from an efficiency standpoint on ali

Superior language syntax. C++ is a superset of ANSI C and computer architectures. MASTERshares its inherently block-structured syntax. The language is free
format in the sense that few assumptions are made about white 1.2 The Rising Popularity of C++

space. Thus, no artificial constraints on line length and continua-
tion are imposed. C++ is growing in popularity as a scientific programming lan-

guage. At Sandia National Laboratories, the next generation

Object-oriented programming support. The delimtive feature of shock wave I_hysicscode, RHALE++ l and fluid dynamics code,
C++ is the c l as s, which is an extension of the s truct feature ZEPHYR++" are being developed in C++. In addition, PCTH3,
of C. A c lass consists of a set of data members and an enumer- the parallel version of the 3-D Eulerian shock wave physics code,
ation of functions that have access to those data members. It thus CTH, is being written in C++ and will run on SIMD and MIMD
enforces the concept of data encapsulation. Furthermore, it is architectures. Moreover, Sandia development groups are using
possible to invoke the functions associated with a class object the third party product ACIS4 which is written in C++, to provide
without knowing the exact type of the object; this supports poly- solid modeling capabilities for their finite element codes.
morphism.

.......... _ _-,.,m rv_.l J_,_l'r I_ UNUMr[ItO

In addition to Sandia, C++ scientific programming activities exist Hiding the actual operations in this fashion not only provides a
at Northrup Corporation s, University of New Mexico 6, Universi- simple interface for user code but also isolates many coding er-
ty of Colorado 7, and Los Alamos8. rors and architecture dependencies.

Programs that model physics typically require many types of
2. C++: A Language for Mathematical Physics fields: scalar, vector, and tensor fields. For example, a finite ele-

ment code modeling continuum mechanics would require scalar,
C++ can be regarded as a meta-language whose dialects are per- vector, and tensor fields to describe pressure, displacement, and
table from one platform to another. Therefore, one can tailor a stress for each element. By developing rich class libraries for
particular dialect to the expression of concepts in mathematical these fields that reflect consistent mathematical definitions, a user
physics. Through this approach, one is capable of writing code programmer can simply develop his program by typing in equa-
that resembles the original equations. In other words, it is possi- tions. Through the strong type checking feature of the language,
ble to write code that "reads like a book." For example, given the any inconsistences in the expressions will be flagged by the com-
equation piler. In addition, these field classes hide the bookkeeping and in-

dices from the user programmer, thus eliminating an entire class

= VeT+ b (EQ 1) of bugs.

the corresponding C++ coding is written as In order to illustrate the power of the C++ language, consider the
divergence of the stress term in Equation 1. The physicist who

f - Div(T) + b; wants to model this phenomena is most interested in the internal
force field and is least interested in the topology of the problem.

where f and b are instances of a vector field class and T is an in- If the physicist is given symmetric tensor fields defined for pres-
stance of a tensor field class. It should be noted that the language sure points (element centers) and vector fields defined at dis-
does not implicitly provide the means for adding vectors but rath- placement points (element vertices), he can find the internal force
er gives a programmer ali the tools necessary to define how the field by rotating the stress to the current configuration and finding
mathematics should be performed, its divergence. This is given as

VectorField BlockSpec::InternalForce()
This example points out the difference between a "user" pro-
grammer and a "'library" programmer. A user programmer would (
program the physics as demonstrated above with Equation 1. lt is
the library programmer's responsibility to develop vector and // Rotate stress to current configuration

tensor classes that encapsulate the data and functions necessary
to describe the mathematics. For example, a vector class could be SymTensorFie ld Rotated_Stress =
definedwithdataandmemberfunctionsas Sym(Rotation * Stress *

Trans (Rotation)) ;

class Vector{

double x, y, z; // Calculate and return the internal forces

public

Vector() ; VectorField InForce = Div(Rotated_Stress,

Vector (double x, double y, double z) ; CurCoor) ;

-Vector; return InForce;

Vector& operator=() ; }

Vector operator+ (Vector&) ;

} ; This sort of code is easy for a physicist to understand and to mod-
ify. The library classes themselves are "black boxes" so far as the

The coding for the reded addition operator could be written physicist is concerned; he very rarely will need to know anything
as about their internal workings. Note, that the above example does

not provide any information about the dimensionality or topology
Vector Vector: :operator+ (Vector& b)

of problem; it simply replicates a portion of Equation 1. Of
C course, the language cannot prevent bugs introduced by incorrect

Vector c ;

c. x = x + b. x equations. In the example above, it would be syntactically correct
to find the divergence of the unrotated stress and thus always cal-

c. y = y + b .y culate the initial internal force instead of the current internal
c.z = z + b.z force.
return c ;

)

3. C++ Efficiency Issues element. This is a tremendous number of unnecessary assignment
operations. In addition, while the user only requested four matri-

Programming in terms of objects is not without its drawbacks, ces, at steps 7, 9, and 10 there are six matrices allocated. In gen-
C++ implementations are notorious for inefficiencies in memory eml, every overloaded operator on the right hand side of an
and execution speed. This is particularly true for scientific pro- expression requires a temporary. For large memory objects, the
gramming since overloading operators will be desired. In these creation of temporaries could severely limit the complexity of ex-
types of member functions, C++ is a "memory hog." For exam- pressions. Later it will be shown that allocating memory can be
pie, consider a matrix class with overloaded + and * operators very expensive in terms of CPU cycles and therefore, the creation
and the following expression: of temporaries should be avoided.

Matrix B (rows, cols) ; We have implemented two methods to control the creation of

Matrix C (rows, cols); temporaries: reference counting and container classes.
Matrix D(rows, cols) ;

Matrix A;
3.1 Reference Counting

A = B + C * D

Reference counting basically eliminates the creation of objects in
copy constructors and overloaded = operator. Reference counting
can be implemented in a class by adding an integer pointer to the

where A, B, ,and C are matrices. Using overloaded operators, this private data of a class. With reference counting, the pseudo code

expression will result in the following set of calls to evaluate the for the matrix class example becomes

expression operator *

Matrix Matrix: :operator* (Matrix&) I)createtemp_l0fsiterowsby c01s [4]
Matrix::Matrix(int& rows, int& cols) allocate temp_l.rc; set to zero

Matrix: :Matrix (Matrix &) 2)temp_l=C * D [4]

Matrix : : ~Matrix () Matrix 3) &temp_2 = &temp_l; *temp_l.rc++ [4]

Matrix ::operator+ (Matrix&) 4)*temp_l.rc-- [4]
Matrix. :Matrix(int& rows, int& cols) operator +

Matrix: :Matrix (Matrix &) 5)createtemp_3ofsiterowsby c01s [5]

Matrix: : -Matrix() allocate temp_l.rc; set to zero

Matrix& Matrix: :operator= (Matrix&) 6)temp_3= B + temp_2 [5]
Matrix: : -Matrix() 7) &temp_4 = &temp_3; *temp_3.rc++ [5]

8) temp_3.rc--; [5]
operator =

which in pseudo code is 9) &A = &temp_4 (= &temp_3) [5]
• temp_4.rc++ (= *temp_3.rc)

operator * 10) delete temp_2 [4]
1) create temp_l of size rows by cols [4] 11) *temp_4.rc-- (= *temp_3.rc = A.rc) [4]
2) temp 1 = C* D [4]

3) temp_2 = temp_l [5] where rc is the integer pointer added to the matrix class. As one
4) delete temp_l [4] can see in this example, reference counting eliminated the unnec-

operator + essary assignment operations but only eliminated one temporary.
5) create temp_3 of size rows by cols [5] Reference counting will only eliminate one temporary per ex-
6) temp_3 = B + temp_2 [5] pression and thus it would be more memory efficient to program
7) temp__4 = temp_3 [6] the matrix expression as
8) delete temp_3 [5]

operator =

9) create A of size rows by cols [6] A = C * D;
10) A = temp_4 [6] A += B ;
11) delete temp_2 [5]

12) delete temp_4. [4]
which leads to the pseudo code

where the number in brackets is the number of allocated matrices

at the corresponding step. Without user optimization, steps 3, 7 operator *I) create temp_l of size rows by cols [4]
and 10 require a loop over the total length of the matrix where allocate temp_l.rc; set to zero
each element of a matrix is assigned the value of another matrix 2) temp_l = C * D [4]

3) &temp_2 -- &temp_l; *temp_lxc++ [4] equivalent C++ coding on the CRAY (C++ is more than 30 times
4) *temp_l.rc-- [4] slower, if C++, *_aultcompulation is compared to FORTRAN

operator =
5) &A = &temp_2 [4] Table 2: Equivalent FORTRAN Test 95 x 95

*tem__2.rc++ (= *temp_l.rc = A.rc)
6) *temp_2.rc-- (= *temp_l.rc = A.rc) [4] User Time

operator + = Vendor Options User Time Ratio F/C++
7) A += B. [4] (C++/F)

The programming style shown above eliminates temporaries and SUN -04 0.9 0.26 (3.8)

unnecessary assignment operations. CRAY 0.049 0.21 (4.8)

In order to test the efficiency of C++ with reference counting, a
matrix test case was constructed that basically performs a series default compulation). Further investigation revealed that the dis-
of matrix operations. This test case does not resemble any known crepancy in these numbers could be partly explained in two ob-
algorithm. Equivalent coding was developed in FORTRAN. A servations: (1) chaining of functional units cannot be obtained
set of matrices with tank 95 were used and the results from the with the C coding generated by AT&T CFRONT and, (2) a tre-
two codes are given in Tables 1 and 2 for different compiler op- mendous number of cycles are lost in allocating memory from
tions on a SUN SparcStation II and a single processor on a CRAY the heap: a requirement in overloaded opera'.or functions. Later,
Y-MP. other observations determined that the parts of C++ coding that

did vectorize, only vectorized for a maximum loop size of 64.
The compilier option -h restrict=f informs the compiler that
pointer arguments passed through the function call are not aliased

Table 1: C++ Matrix Class Test 95 x 95 elsewhere. With a matrix class, the pointer argument is an in-
stance of a matrix object and not a pointer to the data. lt would be

Ratio very beneficial if C++ would allow the keyword "restrict" (an ex-
Vendor Options User CPU / Peak CRAY tension to ANSI C provided by CRAY to promote full vectoriza-Tinae

CPU tion of loop constructs in C coding). This limitation can be
bypassed if C functions are called to perform the actual matrix

SUN (default) 6.0 26.5 operations. Results from this enhancement are given in the next
section.

SUN -04 3.4 14.8

CRAY (default) 1.53 6.7 Currently, we do not know of a method in the current C++ lan-
guage definition to obtain chaining when overloaded operators

CRAY -O1 1.52 6.6 are used. For chaining to work with these types of functions, the
CRAY C compiler would nt_tonly have to combine loops but also

CRAY -02 1.42 6.2
eliminate the memory allocation and deallocation calls that ap-.-

CRAY -h vector0 1.52 6.6 pear between the loops for temporary object creation and destruc-
tion. Reference counting helps these operations to be memory

CRAY -h restrict=f 1.39 6.0 efficient but it does not eliminate many of operations that occur
between the loops. If C++ allowed for overloading ternary opera-

CRAY -h restrict, bl 1.26 5.5
tors, chaining could be achieved.

CRAY -h ivdep 0.24 1.0

CRAY -h ivdep, bl 0.23 1.0 3.2 Container Classes

In the previous section it was argu°,zithat part of the inefficiencies
in C++ lie with allocating and deallocating memory for the data
segment of temporary objects. One method of eliminating these

Table 1 shows a vectorization gain of 6.6 for the C++ coding exe- inefficiencies is to develop a class that manages its own data.
cuted on the CRAY (-h vector0 versus -h ivdep). However, when Classes that manage themselves are called container classes. The
one compares the SUN execution speed to the CRAY, it is evident general rule of container classes is to never deallocate memory
that the C++ coding is not even approaching the peak speeds of that has been allocated. For example, in a series of operations,
the CRAY Y-MP. In addition, the performance of C++ is even temporary objects are created and deleted. Most of the inefficien-
more disturbing when one compares the execution speeds of cy in this process results from user specified data segment alIoca-
FORTRAN to C++ for both architectures. As shown in Table 2, tion and deallocation (we are not concerned with the allocation
the FORTRAN code actually ran almost five times faster than the

,anddeallocation of an instance of an object). Within a container Table 3 shows that this particular C++ coding performed well
class, when memory is needed for the data segment of the class, against FORTRAN and C coding under the conditions that one
the class first looks at its "free store" to see if memory is already develops classes that use reference counting, perform their own
allocated. If not, the new object allocates memory from the heap. memory management and take advantage of optimizations pro-
When an object is deleted, its data segment is returned to the vided by the vendor. Note that by developing code in C++, when
"free store" for the class. At some point in the execution of the an optimization is made in a class function, the optimization is re-
program, the maximum amount of memory required for the prob- alized in every portion of the code that uses the member function.
lem is reached and the container class will cease to request mem- In other words, the user code does not have to be modified. In a
ory from the heap. FORTRA2q code, the optimization would have to be replicated in

every location that the operation is performed.
In order to test the effects of the container class concept on the ef-
ficiency of C++, a very simple test case was developed and is 3.3 Suggestions for Compiler Improvements
shown below.

Mat r ix a (1en) ; Consider again the expression analyzed earlier:.

Matrix b(len); A = B + C * D;
Matrix c ;

for(register i=O;i < max_iterations; i++) { Thisexpressioncanbe optimizedby operatorsubstitution.A
c = a + b ; gOodoptimizing compiler could replace the original parse tree

)

This test case was programmed in FORTRAN, C, and C++. The =
test case was intentionally kept simple to determine if C++ could
be made as efficient as FORTRAN. Since C++ is translated to C
by AT&T CFRONT before it is compile& equivalent C coding
was developed to determine the optimization that could be A tmp2+

achieved with the CRAY C compiler on the mangled code that tm_p_1 _
AT&T CFRONT produces. In addition, many variations of loop

constructs were tested in the three languages. The megaflop B
(Mflops) performances of the three different codes on the CRAY *A

are given in Table 3. Each code was compiled with the most ag- /_
gressive compiler optimizations available. / \
Table 3: Matrix Test a = b + e (rank = 100, 10,000 iterations) C D

Code Mflops Remarks with the parse tree

Fortran 58.3 Two loops, outer index - inner loop +=

Fortran 102.21 Two loops, inner index - inner loop /_
/ \

Fortran 143.9 Single loop ._- B

C 92.9 Single loop /_
/ \

C 135.2 Declare argument pointers as restrict "_ D

C++ 38.3 No memory management - Only refer- A
ence counting. / \

A C
C++ 90.3 Use a.Add(b,c) function - no temporar-

ies are required.
The obvious advantage is that no temporaries are used. A less ob-

C++ 84.1 Memory management and reference vious but equally important advantage is that no constructors or
counting destructors are called between operations. Because no construc-

tor/destructor calls separate the operations, a compiler that can
C++ 121.5 Memory management, reference count-

inline loops can also chain the operations together. This implies
ing and call to a C funcl_onwith argu-
ment pointers declared as restrict performance near the theoretical maximum.

However, a number of assumptions are made when transforming 6. T. J. Ross, L.R. Wagner, and G.F. Luger, "Object Oriented

the parse tree in this manner. These assumptions are: Programming in C++ for Scientific Codes," ASCE 8th
Conference on Computing, June 10-12, 1992.

1) The operations A=A*D and A*=D areequivalent.

2) The operations A=A+B and A+ =B are equivalent. 7. Dan Quilan, Department of Applied Mathematics, Univer-
3) The . operator commutes, sity of Colorado at Denver, CO., private communication.

Note that these assumptions are true of both real numbers and of 8. D. Forslund, C. Wingate, P. Ford, S. Junkins, and S. Pope,
the Matrix class we described earlier. However, while a C++ "A Distributed Plasma Particle Simulation Code in C++,"
compiler is allowed to make these assumptions about real num- ASCE 8th Conference on Computing, June 10-12, 1992.
bers, no construct in the C++ language permits the compiler to
make such assumptions about a user-defined class. An extremely

intelligent compiler might be able to decide whether such as-
sumptions are safe from the definition of the class and its inline
operators; but such compilers are years away if they can be writ-
ten at all. We feel that it would be advantageous to invent new
C++ language constructs to inform compilers of which such com-
mon assumptions apply to the operators of a given class. For the
present, such constructs might take the form of new #pragma
direcdves.

4. Conclusion

In the above discussion, it has been shown that C++ can perform

efficiently as a scientific programing language. In order for C++
to be efficient, C++ library programmers will have to be aware of
the cost of creating temporaries and utilize any vendor specific

optimizations that may exist. By using C++ as the programming
language, a code project can have a single user code that links
with specialized libraries which seek to achieve the peak perfor-
mance of a particular vendor's architecture. Lastly, we believe
that with the features of C++, scientific programs can be devel-

oped in less time with fewer defects than with any other lan-
guage.

5. References

I. RHALE++, Computational Physics Research and Develop-
ment Division, Sandia National Laboratories, Albuquer-

que, NM., private communication.

2. ZEPHR++, Computational Mechanics and Visualization
Division, Sandia National Laboratories, Albuquerque,

NM., private communication.

3. PCTH, Computational Physics Research and Development
Division, Sandia National Laboratories, Albuquerque,

NM., private communication.

4. ACIS, Spatial Technology Inc., Boulder, CO.
DISCLAIMER

5. Ian Angus, Northrup Research and Technology Center, Pa-

los Verdes Peninsula, CA., private communication. This report was prepared as an accountof work sponsoredby ali agency of the United States
Government. Neither the United States Governmentnor any agency thereof, nor any of their
employees,makes any warranty, expressor implied, or assur es any legal liabilityor responsi-
bility for the accuracy, completeness,or usefulnessof any information, apparatus, product, or
processdisclosed,or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specificcommercial product, process,or serviceby trade name, trademark,
manufacturer, or otherwisedoes not necessarilyconstitute or imply ,ts endorsement,recom-
mendation, or favoring by the United States Governmentor any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
t J_iteAState,sGovernmentor anya'_enc_,thereof.

