C@%ﬁq\oﬁﬁg\% A

USING C++ AS A SCIENTIFIC PROGRAMMING LANGUAGE

James S. Peery, Kent G. Budge, Allen C. Robinson,

Computational Physics Research and Development Division

SAND--91-1835C .

Sandia National Laboratories

Albuquerque, New Mexico

DE92 002098

David Whitney .
Cray Research
Eagan, Minnesota

1. Introduction

Large computational physics codes are increasing in complexity
as customers demand improved physics packages and more flexi-
ble algorithms and problem specifications. It is not uncommon
for a code to exceed one hundred thousand lines of FORTRAN,
and some codes are much larger. This poses a considerable chal-
lenge for program management.

The Computational Physics Research and Development Division
at Sandia National Laboratories is aggressively pursuing C++ as
the language of choice for new coding efforts. We feel that we
cannot meet the stringent customer requirements and delivery
schedules we now face with either FORTRAN77 or Fortran-90.

1.1 General Advantages and Disadvantages of C++
The advantages of C++ are:

Strong type checking. All variables and procedures are declared
prior to their first use. The argument lists of procedures must
match in separate compilation units. These strong type checking
features eliminate entire classes of program bugs common in
FORTRAN programs.

Superior language syntax. C++ is a superset of ANSI C and
shares its inherently block-structured syntax. The language is free
format in the sense that few assumptions are made about white
space. Thus, no artificial constraints on line length and continua-
tion are imposed.

Object-oriented programming support. The definitive feature of
C++ is the c1ass, which is an extension of the st ruct feature
of C. A class consists of a set of daia members and an enumer-
ation of functions that have access to those data members. It thus
enforces the concept of data encapsulation. Furthermore, it is
possible to invoke the functions associated with a class object
without knowing the exact type of the object; this supports poly-
morphism.

Superior dynamic memory management. C++ provides strong,
flexible support for the management of the free memory store.
This is vital for codes operating on large and flexible databases.

Operator and function overloading. C++ permits the meaning of
the standard operators to be redefined when applied to class ob-
jects. This permits unusually transparent programming syntax
which is tailor-made for particular applications.

Availability. C++ is available or is relatively easy to port to any
platform that supports C.

The disadvantages of C++ are:

Lack of an ANSI language standard. The language is very young
and is still evolving. It will be some time before the ANSI stan-
dard is completed. Fortunately, the AT&T CFRONT translator is
a de facto standard that is largely followed by other implementa-
tions.

Poor optimization. C++ code can be very inefficient. Many of the
known efficiency issues can be addressed by careful coding. Oth-
ers will be resolved only by the development of more sophisticat-
ed compiiers. We believe that C++ can ultimately become
competitive with FORTRAN from an efficiency standpoint on all

e omc. MASTER

C++ is growing in popularity as a scientific programming lan-
guage. At Sandia National Laboratones. the next generation
shock wave ghysncs code, RHALE++! and fluid dynamics code,
ZEPHYR++* are being developed in C++. In addition, PCTH?,
the parallel version of the 3-D Eulerian shock wave physics code,
CTH, is being written in C++ and will run on SIMD and MIMD
architectures. Moreover, Sandia development groups are using
the third party product ACIS* which is written in C++, to provide
solid modeling capabilities for their finite element codes.

1.2 The Rising Popularity of C++

In addition to Sandia, C++ scientific programming activities exist
at Northrup Corporation5 , University of New Mexico®, Universi-
ty of Colorado’, and Los Alamos?®,

2. C++: A Language for Mathematical Physics

C++ can be regarded as a meta-language whose dialects are por-
table from one platform to another. Therefore, one can tailor a
particular dialect to the expression of concepts in mathematical
physics. Through this approach, one is capable of writing code
that resembles the original equations. In other words, it is possi-
ble to write code that “reads like a book.” For example, given the
equation

f=VeT+b EQ1)

the corresponding C++ coding is written as

f = Div(T) + b;

where f and b are instances of a vector field class and T is an in-
stance of a tensor field class. It should be noted that the language
does not implicitly provide the means for adding vectors but rath-
er gives a programmer all the tools necessary to define how the
mathematics should be performed.

This example points out the difference between a “user” pro-
grammer and a “library” programmer. A user programmer would
program the physics as demonstrated above with Equation 1. It is
the library programmer’s responsibility to develop vector and
tensor classes that encapsulate the data and functions necessary
to describe the mathematics. For example, a vector class could be
defined with data and member functions as

class Vector/{
double x, vy, z;
public

Vector () ;

Vector (double x,
~Vector;
Vector& operator=();
Vector operator+(Vector&) ;

double y, double z);

};:

The coding for the -
as

yaded addition operator could be written

Vector Vector::operator+(Vector& b)

(

Vector c¢;

c.X = X + b.x
c.y =y + b.y
c.z2 =2 + b.z

return c<;

Hiding the actual operations in this fashion not only provides a
simple interface for user code but also isolates many coding er-
rors and architecture dependencies.

Programs that model physics typically require many types of
fields: scalar, vector, and tensor fields. For example, a finite ele-
ment code modeling continuum mechanics would require scalar,
vector, and tensor fields to describe pressure, displacement, and
stress for each element. By developing rich class libraries for
these fields that reflect consistent mathematical definitions, a user
programmer can simply develop his program by typing in equa-
ticns. Through the strong type checking feature of the language,
any inconsistences in the expressions will be flagged by the com-
piler. In addition, these field classes hide the bookkeeping and in-
dices from the user programmer, thus eliminating an entire class
of bugs.

In order to illustrate the power of the C++ language, consider the
divergence of the stress term in Equation 1. The physicist who
wants to model this phenomena is most interested in the internal
force field and is least interested in the topology of the problem.
If the physicist is given symmetric tensor fields defined for pres-
sure points (element centers) and vector fields defined at dis-
placement points (element vertices), he can find the internal force
field by rotating the stress to the current configuration and finding
its divergence. This is given as

VectorField BlockSpec::InternalForce()
{

// Rotate stress to current configuration

SymTensorField Rotated_Stress =
Sym(Rotation * Stress *
Trans (Rotation));

// Calculate and return the internal forces
VectorField InForce = Div(Rotated_Stress,
CurCoor) ;
return InForce;

}

This sort of code is easy for a physicist to understand and to mod-
ify. The library classes themselves are *“black boxes” so far as the
physicist is concerned; he very rarely will need to know anything
about their internal workings. Note, that the above example does
not provide any information about the dimensionality or topology
of problem; it simply replicates a portion of Equation 1. Of
course, the language cannot prevent bugs introduced by incorrect
equations. In the example above, it would be syntactically correct
to find the divergence of the unrotated stress and thus always cal-
culate the initial internal force instead of the current internal
force.

3. C++ Efficiency Issues

Programming in terms of objects is not without its drawbacks.
C++ implementations are notorious for inefficiencies in memory
and execution speed. This is particularly true for scientific pro-
gramming since overloading operators will be desired. In these
types of member functions, C++ is a “‘memory hog.” For exam-
ple, consider a matrix class with overloaded + and * operators
and the following expression:

Matrix B(rows, cols);
Matrix C(rows, cols);
Matrix D(rows, cols);
Matrix A;

A =B+ C*D

where A, B, and C are matrices. Using overloaded operators, this
expression will result in the following set of calls to evaluate the
expression

Matrix Matrix::operator*(Matrix&)
Matrix::Matrix(int& rows, int& cols)
Matrix::Matrix(Matrix &)
Matrix::~Matrix()Matrix

Matrix: :operator+(Matrix&)
Matrix::Matrix(int& rows,
Matrix::Matrix(Matrix &)

int& cols)

Matrix::~Matrix()
Matrix& Matrix::operator=(Matrix&)
Matrix::~Matrix()

which in pseudo code is

operator *

1) create temp_1 of size rows by cols [4]
2)temp_1=C*D 4]
3) temp_2 = temp_1 {5]
4) delete temp_1 (4]
operator +
5) create temp_3 of size rows by cols (5]
6) temp_3 =B + temp_2 (51
7) temp_4 = temp_3 [6]
8) delete temp_3 {51
operator =
9) create A of size rows by cols (6]
10) A =temp_4 {6]
11) delete temp_2 [5]
12) delete temp_4. 4]

where the number in brackets is the number of allocated matrices
at the corresponding step. Without user optimization, steps 3, 7
and 10 require a loop over the total length of the matrix where
each element of a matrix is assigned the value of another matrix

element. This is a tremendous number of unnecessary assignment
operations. In addition, while the user only requested four matri-
ces, at steps 7, 9, and 10 there are six matrices allocated. In gen-
eral, every overloaded operator on the right hand side of an
expression requires a temporary. For large memory objects, the
creation of temporaries could severely limit the complexity of ex-
pressions. Later it will be shown that allocating memory can be
very expensive in terms of CPU cycles and therefore, the creation
of temporaries should be avoided.

We have implemented two methods to control the creation of
temporaries: reference counting and container classes.

3.1 Reference Counting

Reference counting basically eliminates the creation of objects in
copy constructors and overloaded = operator. Reference counting
can be implemented in a class by adding an integer pointer to the
private data of a class. With reference counting, the pseudo code
for the matrix class example becomes

operator *

1) create temp_1 of size rows by cols (4]
allocate temp_1l.rc; set to zero
2)temp_1=C*D 4]
3) &temp_2 = &temp_l; *temp_l.rc++ (4]
4) *temp_1l.rc-- 4]
operator +
S) create temp_3 of size rows by cols [5]
allocate temp_l.rc; set to zero
6) temp_3 =B + temp_2 (5]
7) &temp_4 = &temp_3; *temp_3.rc++ [5]
8) temp_3.rc--; {5]
operator =
9) &A = &temp_4 (= &temp_3) (5]
*temp_4.rc++ (= *temp_3.rc)
10) delete temp_2 [4]
11) *temp_4.rc-- (= *temp_3.rc = A.rc) (41

where rc is the integer pointer added to the matrix class. As one
can see in this example, reference counting eliminated the unnec-
essary assignment operations but only eliminated one temporary.
Reference counting will only eliminate one temporary per ex-
pression and thus it would be more memory efficient to program
the matrix expression as

which leads to the pseudo code

operator *
1) create temp_1 of size rows by cols (4]
allocate temp_1.rc; set to zero
2)temp_1=C*D (4]

3) &temp_2 = &temp_l; *temp_l.rc++
4) *temp_1.rc--
operator =
5) &A = &temp_2
*temp_.l.rc++ (= *temp_l.rc = A.rc)
6) *temp_2.rc-- (= *temp_l.rc = A.rc)
operator +=
7) A+=B.

(4]
(4]

(4]
(4]
(4]

The programming style shown above eliminates temporaries and
unnecessary assignment operations.

In order to test the efficiency of C++ with reference counting, a
matrix test case was constructed that basically performs a series
of matrix operations. This test case does not resemble any known
algorithm. Equivalent coding was developed in FORTRAN. A
set of matrices with rank 95 were used and the results from the
two codes are given in Tables 1 and 2 for different compiler op-
tions on a SUN SparcStation II and a single processor on a CRAY
Y-MP.

Table 1: C++ Matrix Class Test 95 x 95

. User Ratio
Vendor Options Time CPU / Peak CRAY
CPU
SUN (default) 6.0 26.5
SUN -04 34 14.8
CRAY | (default) 1.53 6.7
CRAY | -O1 1.52 6.6
CRAY | -02 1.42 6.2
CRAY | -h vector0 1.52 6.6
CRAY | -hrestrict=f 1.39 6.0
CRAY | -hrestrict, bl 1.26 5.5
CRAY | -hivdep 0.24 1.0
CRAY | -hivdep, bl 0.23 1.0

Table 1 shows a vectorization gain of 6.6 for the C++ coding exe-
cuted on the CRAY (-h vectorQ versus -h ivdep). However, when
one compares the SUN execution speed to the CRAY, it is evident
that the C++ coding is not even approaching the peak speeds of
the CRAY Y-MP. In addition, the performance of C++ is even
more disturbing when one compares the execution speeds of
FORTRAN to C++ for both architectures. As shown in Table 2,
the FORTRAN code actually ran almost five times faster than the

equivalent C++ coding on the CRAY (C++ is more than 30 times
slower, if C++ + tault compuiation is compared to FORTRAN

Table 2: Equivalent FORTRAN Test 95 x 95

User Time
Vendor Options User Time | Ratio F/C++
ﬁe (C++/F)
[m
SUN -04 0.9 0.26 (3.8)
CRAY 0.049 0.21 (4.8)

default compulation). Further investigation revealed that the dis-
crepancy in these numbers could be partly explained in two ob-
servations: (1) chaining of functional units cannot be obtained
with the C coding generated by AT&T CFRONT and, (2) a tre-
mendous number of cycles are lost in allocating memory from
the heap: a requirement in overloaded oper-i:or functions. Later,
other observations determined that the parts of C++ coding that
did vectorize, only vectorized for a maximum loop size of 64.
The compilier option -h restrict=f informs the compiler that
pointer arguments passed through the function call are not aliased
elsewhere. With a matrix class, the pointer argument is an in-
stance of a matrix object and not a pointer to the data. It would be
very beneficial if C++ would allow the keyword “restrict” (an ex-
tension to ANSI C provided by CRAY to promote full vectoriza-
tion of loop constructs in C coding). This limitation can be
bypassed if C functions are called to perform the actual matrix
operations. Results from this enhancerent are given in the next
section.

Currently, we do not know of a method in the current C++ lan-
guage definition to obtain chaining when overloaded operators
are used. For chaining toc work with these types of functions, the
CRAY C compiler would not only have to combine loops but also
eliminate the memory allocation and deallocation calls that ap-
pear between the loops for temporary object creation and destruc-
tion. Reference counting helps these operations to be memory
efficient but it does not eliminate many of operations that occur
between the loops. If C++ allowed for overloading temary opera-
tors, chaining could be achieved.

3.2 Container Classes

In the previous section it was argued that part of the inefficiencies
in C++ lie with allocating and deallocating memory for the data
segment of temporary objects. One method of eliminating these
inefficiencies is to develop a class that manages its own data.
Classes that manage themselves are called container classes. The
general rule of container classes is to never deallocate memory
that has been allocated. For example, in a series of operations,
temporary objects are created and deleted. Most of the inefficien-
cy in this process results from user specified data segment alloca-
tion and deallocation (we are not concerned with the allocation

and deallocation of an instance of an object). Within a container
class, when memory is needed for the data segment of the class,
the class first looks at its “free store” to see if memory is already
allocated. If not, the new object allocates memory from the heap.
When an object is deleted, its data segment is returned to the
“free store” for the class. At some point in the execution of the
program, the maximum amount of memory required for the prob-
lem is reached and the container class will cease to request mem-
ory from the heap.

In order to test the effects of the container class concept on the ef-
ficiency of C++, a very simple test case was developed and is
shown below.

Matrix a(len);
Matrix b(len);

Matrix c;
for (register i=0;i < max_iterations; i++) {
c =a + b;

)

This test case was programmed in FORTRAN, C, and C++. The
test case was intentionally kept simple to determine if C++ could
be made as efficient as FORTRAN. Since C++ is translated to C
by AT&T CFRONT before it is compiled, equivalent C coding
was developed to determine the optimization that could be
achieved with the CRAY C compiler on the mangled code that
AT&T CFRONT produces. In addition, many variations of loop
constructs were tested in the three languages. The megaflop
(Mflops) performances of the three different codes on the CRAY
are given in Table 3. Each code was compiled with the most ag-
gressive compiler optimizations available.

Table 3: Matrix Test a = b + ¢ (rank = 100, 10,000 iterations)

Code Mflops Remarks
e — |

Fortran | 58.3 Two loops, outer index - inner loop

Fortran | 102.21 Two loops, inner index - inner loop

Fortran | 1439 Single loop

C 929 Single loop

C 135.2 Declare argument pointers as restrict

C++ 383 No memory management - Only refer-
ence counting.

C++ 90.3 Use a.Add(b,c) function - no temporar-
ies are required.

C++ 84.1 Memory management and reference
counting

C++ 121.5 Memory management, reference count-
ing and call to a C function with argu-
ment pointers declared as restrict

Table 3 shows that this particular C++ coding performed well
against FORTRAN and C coding under the conditions that one
develops classes that use reference counting, perform their own
memory management and take advantage of optimizations pro-
vided by the vendor. Note that by developing code in C++, when
an optimization is made in a class function, the optimization is re-
alized in every portion of the code that uses the member function.
In other words, the user code does not have to be modified. In a
FORTRAN code, the optimization would have to be replicated in
every location that the operation is performed.

3.3 Suggestions for Compiler Improvements

Consider again the expression analyzed earlier:

A =B+ C * D;

This expression can be optimized by operator substitution. A
good optimizing compiler could replace the original parse tree

/\

//////I\\\\\\
el B
C D

with the parse tree

+

/\ B
/\ i
A C
The obvious advantage is that no temporaries are used. A less ob-
vious but equally important advantage is that no constructors or
destructors are called between operations. Because no construc-
tor/destructor calls separate the operations, a compiler that can

inline loops can also chain the operations together. This implies
performance near the theoretical maximum.

However, a number of assumptions are made when transforming
the parse tree in this manner. These assumptions are:

1) The operations A=A*D and A*=D are equivalent.
2) The operations A=A+B and A+=B are equivalent.
3) The + operator commutes.

Note that these assumptions are true of both real numbers and of
the Matrix class we described earlier. However, while a C++
compiler is allowed to make these assumptions about real num-
bers, no construct in the C++ language permits the compiler to
make such assumptions about a user-defined class. An extremely
intelligent compiler might be able to decide whether such as-
sumptions are safe from the definition of the class and its inline
operators; but such compilers are years away if they can be writ-
ten at all. We feel that it would be advantageous to invent new
C++ language constructs to informn compilers of which such com-
mon assumptions apply to the operators of a given class. For the
present, such constructs might take the form of new #pragma
directives.

4. Conclusion

In the above discussion, it has been shown that C++ can perform
efficiently as a scientific programing language. In order for C++
to be efficient, C++ library programmers will have to be aware of
the cost of creating temporaries and utilize any vendor specific
optimizations that may exist. By using C++ as the programming
language, a code project can have a single user code that links
with specialized libraries which seek to achieve the peak perfor-
mance of a particular vendor’s architecture. Lastly, we believe
that with the features of C++, scientific programs can be devel-
oped in less time with fewer defects than with any other lan-
guage.

5. References

1. RHALE++, Computational Physics Research and Develop-
ment Division, Sandia National Laboratories, Albuquer-
que, NM,, private communication.

2. ZEPHR++, Computational Mechanics and Visualization
Division. Sandia National Laboratories, Albuquerque,
NM., private communication.

3. PCTH, Computational Physics Research and Development
Division, Sandia National Laboratories, Albuquerque,
NM., private communication.

4. ACIS, Spatial Technology Inc., Boulder, CO.

5. Ian Angus, Northrup Research and Technology Center, Pa-

los Verdes Peninsula, CA., private communication. This report was prepared as an account of work sponsored by au agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assur .es any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

6. T. J. Ross. L.R. Wagner, and G.F. Luger, ""Object Oriented
Programming in C++ for Scientific Codes.” ASCE 8th
Conference on Computing, June 10-12, 1992,

7. Dan Quilan, Department of Applied Mathematics, Univer-
sity of Colorado at Denver, CO., private communication.

8. D. Forslund, C. Wingate, P. Ford, S. Junkins, and S. Pope,

“A Distributed Plasma Particle Simulation Code in C++,”
ASCE 8th Conference on Computing, June 10-12, 1992.

DISCLAIMER

TJnited States Government or any avency thercof.

-~ DATE
FILMED

/17

a——t

