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Abstract

Percolation phenomena play central roles in the field of poroelasticity, where two distinct sets of
percolating continua intertwine. A connected solid frame forms the basis of the elastic behavior
of a poroelastic medium in the presence of confining forces, while connected pores permit a
percolating fluid (if present) to influence the mechanical response of the system from within.
The present paper discusses isotropic and anisotropic poroelastic media and establishes general
formulas for the behavior of transversely isotropic poroelasticity arising from laminations of
isotropic components. The Backus averaging method is shown to provide elementary means of -
constructing general formulas. The results for confined fluids are then compared with the more
general Gassmann formulas that must be satisfied by any anisotropic poroelastic medium and
found to be in complete agreement.

1 Introduction

When viewed from a point close to the surface of the Earth, the structure of the Earth is often
idealized as being that of a layered or laminated medium with essentially homogeneous physical
properties within each layer. Such an idealization has a long history and is well represented
by famous textbooks such as Ewing et al. {1957], Brekhovskikh [1980], and White [1983]. The
importance of anisotropy due to fine layering (i.e., layer thicknesses small compared to the
wavelength of the seismic or other waves used to probe the Earth) has been realized more
recently, but efforts in this area are also well represented in the literature by the work of
Postma [1955], Backus [1962], Berryman [1979], Schoenberg and Muir [1987], Anderson [1989],
and many others.

In a completely different context, because of the relative ease with which their effective
properties may be computed, finely layered composite laminates have been used for theoretical
purposes to construct idealized but, in principle, realizable materials to test the optimality of
_various rigorous bounds on the effective properties of general composites. This line of research
includes the work of Tartar [1976], Zhikov et al. [1979], Tartar [1985], Francfort and Murat
[1986], Kohn and Milton [1986], Lurie and Cherkaev [1986], Milton [1986], Avellaneda [1987],
Milton [1990], and deBotton and Castaiieda [1992], among others.

There is a great deal of current interest in the anisotropy of Earth materials, and especially
so when there is fluid present in pores and fractures in the Earth. Fluids of economic interest
to the oil industry are typically oil, gas, and water, while fluids of interest in environmental
applications are generally the same but for different reasons. Environmental concerns often
center around fluid contaminants which may be in the form of oil or gas, or could be other
undesirable organic materials in ground water. Brines (salt-laden waters) or steam may be
used to flush other fluids out of the ground, whether for economic purposes or for environmental -
cleanup. Thus, it is important to understand the role of pore fluids in determining effective
constants of such materials, and since we are usually dealing with Earth materials the fine
layering or laminate model again plays a significant role in the analysis.

In this work, we will study some simple means of estimating the effects of fluids on elastic
constants and in particular we will derive formulas for anisotropic poroelastic constants using
a straightforward generalization of the method of Backus [1962] for determining the effective
constants of a laminated elastic material. There has been some prior work in this area by Norris



b,

(1993], Gurevich and Lopatnikov [1995), and others. The main distinction between these earlier
approaches and ours arises from our desire to understand the transition from elastic analysis
to poroelastic analysis and make this transition as transparent as possible, whereas the earlier
work in this area has started with poroelasticity as given and then applies a generalization of
Backus’ approach to the lamination analysis. Finally, we should point out that methods similar
to the ones to be presented here could as easily (more easily!) be applied in the same context
to the problem of determining percolation for fluid flow or effective fluid permeability (Darcy’s
constant) and that would be of some interest in these applications as well, but we will focus
only on the elastic/poroelastic behavior in the present effort.

2 Notation for Elastic Analysis

In tensor notation, the relationship between components of stress o;; and strain uy; is given by

Oij = CijklUk,l, (1)

where ¢;;jx; is the stiffness tensor, and repeated indices on the right hand side of (3) are summed.
In (1), uk is the kth Cartesian component of the displacement vector u, and ux; = du,/0z;.
Whereas for an isotropic elastic medium the stiffness tensor has the form

Cijkt = A6kt + p (8ixbj1 + 64bji) (2)

depending on only two parameters (the Lamé constants, A and u), this tensor can have up to 21
independent constants for general anisotropic elastic media. The stiffness tensor has pairwise
symmetry in its indices such that ¢;ju = c¢jin and ¢ijer = cijix, which will be used later to
simplify the resulting equations.

The general equation of motion for elastic wave propagation through an anisotropic medium
is given by

pil; = 0ij,; = CijkiUkljy (3)

where ii; is the second time derivative of the ith Cartesian omponent of the displacement vector
u and p is the density (assumed constant). Equation (3) is a statement that the product of
mass times acceleration of a particle is determined by the internal stress force oyj;. For the
present purposes, we are more interested in the quasistatic limit of this equation, in which case
the left-hand side of (3) vanishes and the equation to be satisfied is just the force equilibrium
equation

aijj = 0. (4)

A commonly used simplification of the notation for elastic analysis is given by introducing

the strain tensor, where

6u; ou;
€ij = %(ui,j + uj4) = % (&: + -51:—:) . o (5)



Then, using one version of the Voigt convention, in which the pairwise symmetries of the stiffness
tensor indices are used to reduce the number of indices from 4 to 2 using the rules 11 — 1,
22 52,33 —-3,230r 32— 4,13 or 31 — 5, and 12 or 21 — 6, we have

011 €11 612 €13 en
022 €12 €22 €23 €99
g3 | _ |3 ¢33 cC33 €33
023 - 2044 e | (6)
731 2cs5 €3y
012 2c¢6 €12

Although the Voigt convention introduces no restrictions on the stiffness tensor, we have chosen
to limit discussion to the form in (6), which is not completely general. Of the 36 coefficients
(of which 21 are generally independent), we choose to treat only those cases for which the 12
coefficients shown (of which nine are generally independent) are nonzero. This form includes
all orthorhombic, cubic, hexagonal, and isotropic systems, while excluding triclinic, monoclinic,
trigonal, and some tetragonal systems, since each of the latter contains additional off-diagonal
constants that may be nonzero. Nevertheless, we will restrict our discussion to (6) or to the
still simpler case of transversely isotropic (TI) materials.

For TI materials whose symmetry axis is in the 3 direction, another common choice of
notation is ¢j; = €22 = @, ¢12 = b, €13 = ¢33 = f, €33 = ¢, €44 = ¢55 = |, and cgg = m.
There is also one further constraint on the constants that a = b+ 2m, following from rotational
symmetry in the z,z;-plane. In such materials, (6) may be replaced by

o1 a b f €11
022 b a f €22
o | _|f [ ¢ €33
023 - 2l €23 ? (7)

in which the matrix has the same symmetry as hexagonal systems and of which isotropic
symmetry is a special case (havinga=c=A+2u,b=f =X, andl =m = p).

3 Backus Averaging of Fine Elastic Layers

Backus [1962] presents an elegant method of producing the effective constants for a finely layered
medium composed of either isotropic or anisotropic elastic layers. For simplicity, we will assume
that the layers are isotropic, in which case the equation relating elastic stresses g;; to elastic
strains e;; is given by

o1 A+2p A A e1

022 A A+2u A €22

o33 | _ A A A+ 2u eas (8)
o3 | 2u e |

o3 2u €3

012 2u €12



The key idea presented by Backus is that these equations can be rearranged into a form where
rapidly varying coefficients multiply slowly varying stresses or strains. For simple layering, we
know physically (and can easily prove mathematically) that the normal stress and the tangential
strains must be continuous at the boundaries between layers. If the layering direction is the z or
z3 direction as is the normal choice in the acoustics and geophysics literature, then 033, 023, 031,
€11, €22, and e are continuous and in fact constant throughout such a laminated material. If the
constancy of ey, €22, and e;; were not so, the layers would necessarily experience relative slip;
while if the constancy of g33, 023, and o3; were not so, then there would be force gradients across
boundaries necessarily resulting in nonstatic material response to the lack of force equilibrium.
By making use of this elegant idea, we arrive at the following equation

[ 4p(d+p) 2Ap A
o111 Ad2u A+2u A2 \ e
o 2)p 4p(A+u) A
22 A 2u A 2pu A2 €22
—e33 A A .1 Oa3
= A+2u A4+2u A4+2u R (9)
€23 ' 1 023
24
€31 1 o3
2u
o e
12 \ 2% ) 12

which can be averaged essentially by inspection. Equation (9) can be viewed as a Legendre
transform of the original equation, to a different set of dependent/independent variables in
which both vectors have components with mixed physical significance, some being stresses and
some being strains. Otherwise these equations are completely equivalent to the original ones in

(8).

Performing the layer average using the symbol < - >, assuming as mentioned previously

that the variation is along the z or z3 direction, we find, using the notation of (7),

dp(A+n) A
(( ‘A‘+;u“ > ( 2+2u> A+2#> \
<o > 2hu (N p) €1
A
~<en> | _| (3m) (Sm) - (o) s
< €3 > % 023
< ez > # <L 031
<012 > \ 2u (2 )} €12
I
a-fe b= fc flc en
b-fc a-fic fle €22
_ fle fle  -1/ec 033
- ' 1/21 023 ’(10)
1/2l a31
2m e
which can then be solved to yield the expressions
A\ 1\ <u(A + #)>
= 4{ —), 11
¢ </\+2u> <'\+2I‘> + A+2u (11)
A \?/ 1 \7! < Ap >
= 2 ) 12
b <z\+2,u> </\+2p> + A+2u (12)
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C=<z\+12u>_l (13)

() ()
()

and
m = (g). (16)

Equations (11)—(16) are the well-known results of Backus [1962] for layering of isotropic elastic
materials. One very important fact that is known about these equations is that they reduce
to isotropic results, having a = ¢, b = f, and | = m, if the shear modulus u is a constant,
regardless of the behavior of A. Another fact that can easily be checked is that a = b + 2m,
which is a general condition that must be satisfied for all transversely isotropic materials and
shows that there are only five independent constants.

4 Porous Elastic Materials Containing Fluids

Now we want to broaden our outlook and suppose that the materials composing the laminate
are not homogeneous isotropic elastic materials, but rather elastic materials containing voids
or pores. The pores may be either air-filled, or alternatively they may be partially or fully
saturated with a liquid, a gas, or a fluid mixture. For simplicity, we will suppose here that the
pores are either air-filled or they may be fully saturated with some other homogeneous fluid.
When the porous layers are air-filled, it is generally adequate to assume that the analysis of
the preceding section holds, but with the new interpretation that the Lamé parameters are
those for the porous elastic medium in the absence of saturating fluids. The resulting effective
constants Ag, and ug. are then said to be those for “dry” — or somewhat more accurately
“drained” — conditions. These constants are also sometimes called the “frame” constants, to
distinguish them from the constants associated with the solid materials composing the frame
which are often called the “grain” or “mineral” constants.

One simplification that arises immediately is due to the fact that the presence of pore fluids
has no mechanical effect on the shear moduli, so g4, = . There may be other effects on the
shear moduli due to the presence of pore fluids, such as softening of cementing materials or
expansion of interstitial clays, which we will term “chemical” effects to distinguish them from
the purely mechanical effects to be considered here. We neglect all such chemical effects in the
following analysis. This means that the lamination analysis for the effective shear moduli (since
it is uncoupled from the analysis involving A) does not change in the presence of fluids. Thus,
equations (15) and (16) continue to apply for the poroelastic problem, and we can therefore
simplify our system of equations in order to focus on the parts of the analysis that do change
in the presence of fluids. ‘



The presence of a saturating pore fluid introduces the possibility of an additional control
field and an additional type of strain variable. The pressure p; in the fluid is the new field
parameter that can be controlled. Allowing sufficient time for global pressure equilibration will
permit us to consider p; to be a constant throughout the percolating (connected) pore fluid,
while restricting the analysis to quasistatic processes. The change ¢ in the amount of fluid mass
contained in the pores is the new type of strain variable, measuring how much of the original
fluid in the pores is squeezed out during the compression of the pore volume while including
the effects of compression or expansion of the pore fluid itself due to changes in p;. It is most
convenient to write the resulting equations in terms of compliances rather than stiffnesses, so
the basic equation to be considered takes the form:

€11 s11 812 812 —fB o11

€22 - s12 S11 s12 —-f 022 (17)
€33 s12 812 su P oaz |’

-¢ -8 -B -8B ~Ps

The constants appearing in the matrix on the right hand side will be defined in the following two
paragraphs. It is important to write the equations this way rather than using the inverse relation
in terms of the stiffnesses, because the compliances s;; appearing in (17) are simply related to
the drained constants A4, and jg4, in the same way they are related in normal elasticity, whereas
the individual stiffnesses obtained by inverting the equation in (17) must contain coupling terms
through the parameters 3 and ¥ that depend on the pore and fluid compliances. Thus, we find
easily that

1 Adr + ®
811 = —— T 18
n Edr “(3'\dr + 2/-") ( )
and
- Vir
812 = By’ (19)

where the drained Young’s modulus Ejy, is defined by the second equality of (18) and the dra.med
Poisson’s ratio is determined by

Adr
p = e, 20
v 2(’\dr + F‘) ( )
When the external stress is hydrostatic so ¢ = 01; = 022 = 033, the equation (17) telescopes
down to
( e ) - ( 1/Kqr —d/Kar) ( o ) (21)
-¢ —a/Kdr a/BKdr —Ps ’

where e = ej; + €22 + €a3, Kar = Adr + %u is the drained bulk modulus, a = 1 — K4,/ K,, is
the Biot-Willis parameter [Biot and Willis, 1957] with Ky, being the bulk modulus of the solid
minerals present, and Skempton’s pore-pressure buildup parameter B [Skempton, 1954] is given
by

1

B= T E/K - Ky (22)
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New parameters appearing in (22) are the bulk modulus of the pore fluid K; and the pore
modulus K}, = a/@$K 4, where ¢ is the porosity. The expressions for a and B can be generalized
slightly by supposing that the solid frame is composed of more than one constituent, in which
case the K, appearing in the definition of a is replaced by K, and the K, appearing explicitly
in (22) is replaced by K [see Brown and Korringa, 1975; Rice and Cleary, 1976; Berryman and
Milton, 1991; Berryman and Wang, 1995]. This is an important additional complication [Berge
and Berryman, 1995], but one that we choose not to pursue here.
Comparing (17) and (21), we find easily that

a
B=3 Ko (23)
and
_ o«
1= BRL (24)

With all the constants defined now in terms of measureable quantities, we can continue with
the analysis that generalizes the Backus [1962] approach to computing the layer averages. It
should be clear at this point that the appropriate Legendre transformed equations are

a11
022 _
—€33 -
¢
E/(1-v?*) vE/(1-1?) v/(l1-v) BE/(1-v)
vE/(1-v?) E/(1-1?) v/(1-v) BE/(1-v)
v/(1-v) v/(l-v) —-(-v-2Y)/(1-v)E B1+2)/(1-v)
BE/(1-v) BE[/(1-v) B(1+2v)/(1-v) -y -26%E/(1-v)]
€11
€22
X o33 , (25)
—Pf

with the fast variables on the left and the slow variables (actually constant) in the vector on the
right. Signs have been chosen so the matrix is symmetric. We have also dropped the subscript
dr from the drained constants v and E in (25) as there should be no confusion. Note that the
3 x 3 submatrix in the upper left is identical to that in (9) after the change in notation from
Au to E v is taken into account.

Once we have this equation, the averaging is trivial. If the assumed form of the resulting
equations is taken — in analogy to (7) and consistent with the general structure of the matrix
in (25) — to be

711 a b f g €11
o2 | _|b a f g]||ez2

. o | =1 f f c nfles] (26)
-ps g 9 h k/ \-(¢ _



then the resulting rearrangement of these equations is

<o > a-z b-—1z

b vy =z €1
<022 > _ -r a-x Yy z €22
— < e33 > - /] y v o33 |’ (27)
< (> z z v w —-ps
where
_[*k-2fgh+cg® _fk-gh _cg-fh
TE T g VS G T aR (28)
and
___* O 29
=cagom "Taom YT Taom (29)

It is not difficult to check that these equations reduce correctly to the earlier ones if we first set
g = h =0 and then let £ — 0.

Now all the matrix elements appearing in (27) are obtained directly by averaging (25) and
therefore are assumed known. We will not list all of these relations as they should be clear from
the expression already given, but to provide two examples we note that

=2({2 -(i=)
w—2<1_y (y) and z= 1T/ (30)
Given all these equations, it is then straightforward to invert for the desired final expressions:
E
a—<l_uz>+z, (31)
vE
b=(12) += (32)
w
c—-“‘uw_vzv (33)
f=cy+hz, ' (34)
g = hy + kz, (35)
v
= — 36
h=—s (36)
and
= (37)
uw — v



The order in which the computations are done in practice is this: first compute ¢, h, and k;
next compute f and g; then compute z using (28); finally compute e and b.

The results show that, whereas transverse isotropy in elastic materials due to layering pro-
duces five independent constants (recall that a = b + 2m in general for transverse isotropy),
transverse isotropy in poroelastic materials results in eight independent constants (a = b+ 2m
still holds for poroelasticity as is easily shown from our formulas). When performing the av-
eraging based on (25), we see that all the new terms in the matrix depend on averages of
the poroelastic constant § which is proportional to the Biot-Willis parameter and therefore
related to effective stress [the relative importance of external and internal loading — see (21)].
However, only the new diagonal term w depends directly on the bulk modulus K of the pore
fluid through 5. It follows that, when we solve for the effective constants, we will find that w
influences all these effective constants. So the presence of pore fluid can significantly affect the
pressure dependence of such materials, while having little or no effect on the shear response.

This completes the analysis of the constants for transverse isotropy in poroelasticity arising
from thin layering of isotropic elastic and porous materials. Now we should check that these
results are consistent with known general results for anisotropic poroelasticity {Gassmann, 1951;
Brown and Korringa, 1975).

5 Relations for Anisotropy in Poroelastic Materials

Gassmann [1951] and Brown and Korringa [1975] have considered the problem of obtaining
effective constants for anisotropic poroelastic materials when the pore fluid is confined within
the pores. The confinement condition amounts to the constraint that the increment of fluid
content { = 0, while the external loading o is changed and the pore-fluid pressure py is allowed
to respond as necessary and equilibrate.

To provide a simple derivation of the Gassmann equation for anisotropic materials, we
consider

en st 812 sz —H on

e | _ | %12 s:2 823 -5, 022 (38)
€33 813 823 Ss13 —Pa o3 |’

- -5 -B2 B3 7 2

The shear terms are excluded as before since they do not interact mechanically with the fluid
effects. This form is not completely general in that it includes orthorhombic, cubic, hexagonal,
and all isotropic systems, but excludes triclinic, monoclinic, trigonal, and some tetragonal
systems that would have some nonzero off-diagonal terms in the full elastic matrix. Also,
we have assumed that the material axes are aligned with the spatial axes. But this latter
assumption is not significant for the derivation that follows. Such an assumption is important
when properties of laminated materials having arbitrary orientation relative to the spatial axes
need to be considered, but we will not treat this more general problem here.

Before proceeding, we should discuss the significance of the matrix elements appearing in
(38) briefly. In the so-called “jacketed test,” a porous sample is enclosed in a thin jacketing
material with a tube into the pore space to permit the fluid to flow freely in or out while
maintaining constant fluid pressure. Then it is sufficient to consider the case with p; = 0. We
see that it is possible under these circumstances, at least in principle, to make 12 independent
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measurements by varying o;;’s and measuring e;;’s and (. In fact measurements of drained
elastic compliances are commonly made in such a manner, but it is less common for the 3;’s to
be measured this way. To complete the measurements, a second common test — the so-called
“unjacketed test” — is performed in which a uniform pressure field is applied to the sample so
that o1y = 022 = 933 = —py. Then, by making measurements of the e;;’s again as py varies,
we measure a set of solid material compliances «;, given essentially by row sums of the matrix
. in (38)

3
Ki=Y sij—f, for i=1,23. (39)
j=1
These constants are expected to be related to the compliances of the mineral grains composing
the porous frame; if the frame is microhomogeneous (i.e., containing a single solid constitutent),
the compliances k; will be the compliances of the mineral composing the frame such that
Y& = 1/ K, where K, is the bulk modulus of the mineral. If the measurement apparatus is
inadequate so that the §;’s could not be determined directly in the jacketed test, then we see
from (31) that they can be determined by combining results from the jacketed and unjacketed
measurements on the solid compliances. The remaining constant 7y can again be measured (at
least in principle) directly in the unjacketed test by making measurements on the changes in
fluid content {. An alternative to these difficult measurements is the confined test which we
describe next.
If the fluid is confined, then { = 0 in (38) and p; becomes a linear function of 11, 022, 033.
Eliminating ps from the resulting equations, we obtain the general expression for the strain
dependence on external stress under confined conditions:

€11 S11 312 %13 B/ J11
(622 = 1| 812 822 823) -7t (ﬂz) (B1 B2 B3 )] (022)
€33 S13 823 833 B3 033

shi S12 S13 o1
— »
= |82 822 3833 o2 | . (40)
- * L 3
313 S23 Sa3 033

The s;;'s are fluid-drained constants, while the sj;’s are the fluid-confined constants.
The fundamental result obtained by both Gassmann [1951] and Brown and Korringa [1975]
may be written as

ﬂTB’ for i,j=1,2,3. (41)

This expression is just the anisotropic generalization of the well-known Gassmann equation.
Equation (41) has often been written in a slightly different way, by making use of the formulas
(39) to eliminate the 8's in favor of the solid and drained compliances. The principal advan-
tage of the alternative formula is that all constants appearing explicitly can be obtained by
measurements of porous frame strain, without resorting to the more difficult measurements of
changes in pore fluid content.

Now it is not difficult to see that the lamination formulas derived earlier in the paper satisfy
these general conditions. This simple test provides one means of checking that we did the
lamination analysis correctly and also provides a convenient means of summarizing the results.

=
Sij = 8 —
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6 Conclusion

In this paper, we have shown how to make the transition from analysis of laminations of
elastic materials to laminations of poroelastic materials in the presence of saturating pore
fluids. Backus [1962] averaging based on the simple observation that certain variables are
quasistatically constant across a layered medium provides a very intuitive and mathematically
transparent approach to obtaining formulas of current interest. Such results are especially
important for applications to oil exploration using AVO (amplitude versus offset) since the
presence or absence of the fluid component, as well as the nature of the fluid, is the critical
issue and the ways in which the fluid can influence seismic reflection data need to be understood
in more detail than has been possible in the past [Thomsen, 1993; Mukerji and Mavko, 1994].
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