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ABSTRACT

The dynamical principle for a population of interacting
individuals with mutual pairwise knowledge, presented by the
author in a previous paper for the case of constant knowledge, is
extended to include the possibility that the knowledge is time-
dependent. Several mechanisms are presented by which the mutual
knowledge, represented by a matrix K, can be altered, leading to
dynamical equations for K(t). We present various examples of the
transient and long time asymptotic behavior of K(t) for populations
of relatively isolated individuals interacting infrequently in local
binary collisions. Among the effects observed in the numerical
experiments are knowledge diffusion, learning transients, and
fluctuating equilibria. Evidence of metastable states and
intermittant switching leads us to envision a spectroscopy
associated with such transitions that is independent of the specific
physical individuals and the population. Such spectra may serve as
good lumped descriptors of the collective emergent behavior of
large classes of populations in which mutual knowledge is an
important part of the dynamics. |
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INTRODUCTION

In a previous paper [Schmieder, 1994, hereafter referred to as Paper I], the
author developed an approach to simulating the emergent collective dynamics of
populations of objects that have minimal cognitive ability. It is assumed that the
individuals have the ability to store and process knowledge about other
individuals, and that their individual actions depend on that knowledge. This
approach will be most appropriate to small populations of complex individuals
such as simple animals, robots, computer networks, agent-mediated traffic,
simple ecosystems, and games.

To quantify this idea, a simple dynamical principle based on reasonable
physical arguments was proposed: First, we define a set of dynamical equations
describing the time evolution of the state vector X of the system. Next, we define
a matrix K whose elements are a normalized measure of the amount of pairwise
knowledge linking every pair of individuals. Finally, the dynamical equations for
X are modified by insertion of K to modify (generally, weaken) the pairwise
interactions. The combined {X,K} dynamical equations therefore describe the
behavior of the population modified by the cognitive ability of the individuals.

In Paper I, it was assumed that the matrix K is constant in time. This enabled
us to demonstrate a variety of interesting behaviors associated with partial and
incorrect knowledge. For instance, we found that a set of point vortices with
“completely correct” mutual knowledge would circulate forever in a smooth
centric flow, whereas if they were given some “incorrect” mutual knowledge,
they would move chaotically, switching intermittantly between several quasi-
stable configurations and complete chaos.

In this paper, we examine some consequences of allowing the knowledge K to
evolve in time. After some preliminary remarks about time-dependent
knowledge, we identify some physically reasonable mechanisms by which K(t)
can change. Next we examine some transient effects in small populations, and
some phenomena that appear as asymptotic equilibria at long times. As expected,
we find processes like diffusion, learning transients, and fluctuating equilibria. In
addition, we envision a spectroscopy derived from transitions between
metastable configurations. Such spectra may be useful descriptors of the
emergent collective behavior of populations in which knowledge plays a
significant role, independent of the specific individuals or population.
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Definition of the Knowledge
We reiterate here the definition of K presented in Paper L. K represents the
amount of knowledge, normalized to (-1,1), not the knowledge itself. It is derived
from physically defined probabilities as follows:
We focus attention on two individuals in the population, {i} and {j}. Assume
that {j} can be in any one of G possible states, and that the probability that {i} is
able to correctly identify the state of {j} is pij- Then the (mutual) knowledge K;; is

defined as
Opy 1/G<pii<
G-T <pij=!
Kijj=
Gpij—l OSpijSI/G

The meanings of these relations for various values of p; are shown in Table 1.

For a 1-bit state, G=2, and both formulas above reduce to K;;=2 p;; - 1, or p;;
=(1+Kj; )/2. In the limit G—>o, Kij—>P ij-

We emphasize that p;; is presumed to be determined by the complex internal
structure of the individual, and therefore is traceable through physics (or
perhaps biology!). It can be measured empirically by asking {i} to identify the
state of {j}, and tabulating the answers from many repeated trials. Therefore, the
knowledge K is also traceable through physics, and we may assume it is a well-
defined physical quantity.

Note that K refers to whatever state variables of the individuals we wish. It
could refer to position, size, age, color, sex, state of motion, internal state, or any
other properties of interest. We could incorporate all properties into a single state
variable, or we could separate them and define several matrices K, K', K" ... , each
with its own associated probabilities p, p', p" ... .
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Dynamiéal character of the knowledge

It is tempting to actually define the knowledge K as a dynamical variable,
since we could simply specify additional numerical quantities (the matrix K(t))
that enter the physical equations of motion. We could modify the state of the
system described by the configuration X to a system described by {X, K}, and
both X and K would then evolve according to well-defined dynamical equations.
In this context, K would act more like properties of the individuals, i.e.,
dynamical variables. In this case, the population is essentially expanded to
include two species, those described by X and those described by K.

However, K really describes pairwise properties of individuals. Thus, it has
the character of an interaction between individuals rather than a property of a
single individual. In this context, K acts more like constraints on the system,
similar to forces that constrain particles in a rigid body. We would expect that as
K—>0, the forces of constraint would vanish, and the system would be just a
collection of independent individuals.

In principle, both of these viewpoints are correct. An individual can have two
kinds of knowledge: knowledge that does not represent other individuals, and
knowledge that does represent other individuals. Both kinds of knowledge can
affect the behavior of the individual, and both can be altered by interactions
between individuals. The former are more akin to dynamical variables, while the
latter are more akin to constraints. Since we are more interested in the pairwise
knowledge that affects pairwise interactions, we will generally think of K more
as a constraint on the system rather than a dynamical variable.

General behavior of knowledgeable populations

We would expect to see certain general behavior in all systems in which
knowledge is part of the dynamics. One of these is knowledge diffusion. Suppose
a quantity of knowledge is given to one individual in the population. During
interactions, this knowledge is shared with other individuals, and in the absence
of losses the total amount of knowledge in the population grows. If losses do
occur, the total amount of knowledge in the population will grow to an
equilibrium. Thus, the population will exhibit a learning transient. In a finite
population, the equilibrium knowledge will exhibit fluctuations around its
equilibrium value. We will find all these phenomena in the examples presented
in this paper.
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MECHANISMS OF KNOWLEDGE ALTERATION

In this section, we examine several mechanisms by which the knowledge
matrix elements Kj can change in time. This list is not exhaustive; rather, it is
meant simply to provide several mechanisms with which we can exhibit the basic
phenomena associated with variable knowledge. Included here are three
individual mechanisms (creation, information, destruction), and two pairwise
mechanisms (incretion, decretion). These processes are roughly comparable to
inspiration, learning, forgetting, sharing, and eroding. Figure 1 shows schematics
of the 5 mechanisms. In each frame, some measure of the knowledge K is plotted
as a function of time. It is clear that the several mechanisms can compete,
possibly producing equilibria at long time, and we will find this to be the case.

Our interest lies mainly in the pairwise mechanisms, since they lead to more
interesting behavior. Hence we will first mention and then generally neglect the
individual mechanisms.

A possibly important mechanism of knowledge alteration in populations of
complex objects is group action: a group of critical size may take some action that
produces new knowledge for the individuals, while a smaller group takes no
action. Similarly, there might be a specific group size, or a maximum group size
that can effect such actions. There will be a rich variety of such mechanisms, and
the behavior of populations correspondingly complex and interesting. However,
since they can be generated by a simple extension of the pairwise mechanisms,
we omit explicit development of these here.

Creation
Perhaps the simplest mechanism for increasing knowledge in the population
is to create it mirabile Dei gratia. For this purpose, we can use the Heaviside unit
step function:

K;;(H) = K;(0) + AK;; H(t)

and simply define AKj arbitrarily. Obviously the same mechanism can be
invoked to suddenly delete the knowledge from the population.
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Information

A second means of increasing knowledge is by receiving information, or
learning. An individual {i} receives some information Iij about another individual
{j}, and stores it internally as knowledge K;;. We therefore need to relate the
incoming information I to the stored knowledge K.

In the classical definition of information (Brillouin, 1962), we are presented
with a system having R possible configurations. Initially, we have no knowledge
of the configuration of the system. If we receive an amount of information I=c
In(R/R"), where c is a units constant, we have enough knowledge to reduce the
number of possible configurations to R’.

To apply this convention to the present case, let g;; represent the number of
states that {i} would infer that {j} has available to it. If {i} initially infers gi;(0),
then receives information I; (1), and thereby infers g0, the classical relation is

N 8;;(0)
Lij(h=c log( gij(t) ]

Since {i} makes guesses about the state of {j} with probability p;j of being correct,
{i} would infer that {j} has

( 1
G—— 0<K;<t

1+(G-DK;; Y

Pjj 1

1+ Kij

-1<K;s0

states available to it. Combining these relations and inverting to obtain K;;(t), we
obtain

‘ 1 'Ii-(t)/c 1 .
—1‘+Kij(0)‘ el 51 0<Kj<s!
Kji(t) =

[1+K;(0)] "¢ 1 ~1<K;;<0

which gives the increase in knowledge Kj; due to receipt of information I;.
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If we simply use the definition p;=1/g; in the formula for Ij; we obtain
pij(t) = pij(o) elij(t)/c

This relation shows that the receipt of information causes a simple exponential
increase in the probability of correctly identifying the state of the transmitter.

Note that Ij can be negative: this represents incorrect information that
produces incorrect knowledge in {i}. It makes {i} a poorer guesser than it was
before receipt of the information: pyj(0<p;; ().

Let us restrict the system to have G=2n" possible states, i.e., it is an n-bit
system. If the initial configuration is one of zero pairwise knowledge, then
K;;(0)=0, and p;;(0)=1/G=2-n. If {i} receives exactly I (t)=n bits, it would be able to
identify the state of {j} with certainty, i.e., p(H=1. This gives

1=(1/21) exp(n/c) = l/c=In(2)

From this we find the knowledge attained from receiving Iy(t) bits of

information:

[210) - 1]

o 1<Lj<n
K=

(2150 ~1] — oo <1

For a 1-bit state, n=1, and K;; ()=21i(V-1, valid for the full domain -oo<[ (D1

Destruction
Spontaneous loss of knowledge, i.e., forgetting, is an obvious mechanism for
knaoeldge change. If the process is quasi-continuous, we can invoke a relation
like

Kj;(® =K;(0) - K;5(0) t/t

If the interval t is sufficiently small, a large number of steps will approximate an

exponential decay, with characteristic time constant t.
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Pairwise interactions

Populations normally consist of well-defined, relatively autonomous
individuals that move (literally or figuratively) relative to one another.
Infrequently, pairs of individuals interact (“collide”), at which time something
interesting happens. Figure 2 shows schematically one possible sequence of
successive pairwise interactions of 4 individuals. We assume that the collisions
are relatively well-isolated from other individuals, and relatively abrupt in time.

If the individuals are cognitive, their individual knowledge can be altered by
the interaction, and such changes are likely to be complex. However, two very
simple processes appear to capture much of the dynamics of such pairwise
interactions. We can formulate these as follows:

(1) Interacting individuals each copy a fraction of the total
knowledge carried by the other individual;

(2) All other individuals lose a fraction of the knowledge they have
of the interacting partners.

The first mechanism seems obvious and reasonable, and while it is
superficially similar to diffusion, it has no known direct analog in physics. We
refer to this process as knowledge incretion.

The second is not so intuitively obvious, and while it bears some similarity to
spontaneous decay, there is again no direct analog in physics. This process will
be called knowledge decretion.. We are familiar with this mechanism in a social
context; with the passage of time, we tend to know less and less about a lost
friend (so long as that friend is interacting with others). After a year of no contact
with the friend, we may not know if he or she has the same address, phone
number, or job. After several years, we may be unsure whether he or she is
married, healthy, or still working. After 20 years we may not know whether he or
she is still alive. Note that we have not forgotton; it is the external interactions of
the individuals with other individuals that leads to our loss of knowledge about
them. This erosion of knowedge is easily compensated—a single brief interaction
will regenerate all this knowledge, and much more.

We now elaborate linear versions of these two mechanisms in detail, and
subsequently combine them to obtain a dynamical equation for the knowledge K.
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Linear incretion

The first pairwise mechanism, knowledge increase by copying, seems
intuitively obvious. Assume that individuals {A,B,C} are initially completely
independent of each other (they have no knowledge of each other). For a while,
all individuals proceed according to their independent dynamics. After an {A,B}
interaction, individuals {A} and {B} know about each other, but neither knows
anything about {C}. Next, a {B,C} interaction occurs. Now individuals {B} and
{C} know about each other, and therefore, {C} knows something about {A},
although {A} knows nothing yet about {C}. This process leads to an expansion
and general increase of knowledge within the population.

We can formulate this in a linear limit as follows: Before the {i,j} interaction
the knowledge held by {i} and {j} can be represented symbolically as

where 0sK;q Kjg<! and K;;=K;=1, and N is the number of individuals in the
population. We now assume that during the interaction, {i} gains a fraction (a) of

all the knowledge held by {j}. After the interaction, {i}’s knowledge is

Ki=K; +aK;
= {Ki1, Kp - Ky} +2 (K. K - Ky}
= {Kj;+a K, Kp+aKp .. Kn+aKjn)
= {Kj, Ky .. K'n}

The same relation, with i<—>j, is obtained for {j}’s post-interaction knowledge.
Written as a recursion relation, this transformation is

Kig(n+1) = Kiq(n) + 2 Ky () g=1..N
Kjq(n+1) = Kjq(n) + a Ky (0) g=1..N

with the proviso that any matrix element K>l is automatically truncated to
Kj=1, and also K;;=Kj;=1 always.
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Linear decretion

The second mechanism, knowledge decrease by erosion, is not intuitively
obvious. The following argument demonstrates the reality of this process: In any
interaction, both partners are inevitably and permanently altered (this must be
so, or else no interaction took place). We can indicate this by {A,B}—>{A',B'}.
Next, {B'} and {C} interact: {B',C}—>{B",C'}. However, since {A'} has no means
to know how {B'} was altered by {C} during this event, it knows less about {B"}
than it did about {B'}. With the passage of more and more time, {A} has less and
less knowledge of {B} because {A} has no knowledge of {B}’s other interactions.
This process clearly leads to a contraction and general decrease in knowledge.

As above, we formulate this in a linear limit: Before the {i,j} interaction, the
set of individuals that has knowledge of {i} can be represented by the ith vector
of the transpose matrix KT, and similarly for {j}:

KTi=(K;, Ky, .. Kjj ... Kpg )
KTj:{KlJ, KZJ’ weey Kij---, KNj }

We now assume that during the interaction, every individual {p#j} that has
knowledge K; of {i} loses a fraction (b) of that knowledge. Then after the
interaction,

KT=KT, - b (1-8;) KT
= (K, Kgj - Kji - Kni} - b (Kjj, Ko . 0. Ky}
= {(1-D)Kyj, (1-D)Ky; ... Ky ... (1-D)K )
= (K, Ky - K - K}

Similarly, every individual {p=i} that has knowledge Ky of {j} loses a fraction (b)
of that knowledge, and we have the same relation with i<—>j.
Written as a recursion relation, this transformation is

K(n+1) = Kj(m) - b K5(n) p=1..#..N
Kp(n+1) = K (n) - b K (n) p=1..#..N

with the same provisae as in the previous section.

Page 12




Combining incretion and decretion
The two binary interaction mechanisms naturally (perhaps unavoidably)
appear together in the dynamics. They are conveniently visualized together as a
matrix transformation K—{i,j}—>K', or K {i,j}K". For example, if we have N=7
‘individuals, the matrix K" after an {i,j}={3,5} transformation is:

N1 2 3 4 5 6 7

1 1 Ki2 (I-b)Kj3 Ky (I-b)Ky5  Kyg Ki7

2 Ka1 1 (I-b)Ka3  Koq (I-b)Kzs  Kog Ko7

3 K3j+aKs; Kap+aKsp | Kiyg+aKsy Kas+a Kig+aKsg Ky7+aKsy
4 K4 K42 (I-b)Kgq3 1 (I-b)K45  Kq¢ K47

5 Kgi1+aK3;  Ksr+aK3o  Kgz+a Ksq+aK3q4 Ksgt+aKzg Ks7+aKzy
6 Ke1 K2 (I-b)Kg3  Kgq (I-b)Kgs | Ke7

7 K71 K72 (I-b)K73  Kya (I-b)K75  Kgg 1

It is readily seen that knowledge incretion has the general form of a
transverse extension,

X'=x+ay

y=y+ax
while knowledge decretion has the general form of a longitudinal contraction

xX'=x-bx

y'=y-by

The simple vector diagrams shown in Figure 3 capture these relations. They
strongly suggest that circumstances can easily be found in which incretion and
decretion compensate, producing a population of asymptotically constant, but
fluctuating, total knowledge.




Successive interactions

Multiple successive binary interactions will be represented by multiple matrix
transformations K{i,j}K'{i'j'} K"... The result of successive transformations clearly
depends on the sequence of interacting partners, which in turn may depend on
the dynamics of the individuals themselves. We illustrate this for four
individuals {A,B,C,D} interacting with incretion and decretion. Assume that
initially the individuals have no knowledge of any individuals other than
themselves. Then K takes the following forms sequentially for two different
collision sequences:

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0o 0 0 1
{B,C} . {A,C}
1 0 0 0 1 0 a 0
0 1 a 0 0 1 0 0
0 a 1 0 a 0 1 0
0 0 0 1 0 0 0 1
{AB} {AD}
1 a a2 0 1 0 a a
a 1 a 0 0 1 0 0
0 (Iba 1 0 (Iba 0 i 0
0 0 0 1 a 0 aZ 1
{C,D} {B,D}
1 a (1-b)a? 0 1 0 a (1-b)a
a 1 (1-b)a 0 a2 1 a a
0 (1-ba 1 a (1-b)a 0 1 0
0 (1-bya2 a 1 a a a? 1
{A.B) | {A.C)
1 (1-b)a  (1-b)2a2 0 1 a 2a  (l-bla+a
a 1 (I-ba+a a2 (1-bya2 ] (1-bya3 a
a2 (l-bja+a 1 a (I-b)a+a  a 1+a2  (1-b)2a
0 (1-bZ? (I-ba 1 a a (1-b)a2 1
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State-independent pairings

Normally, we might expect that the selection of collision partners {i,j} would
depend on the individual state variables {Xi(t),Xj(t)}. For instance, individuals
would experience a collision when their spatial positions coinicide, or when their
internal structures are in resonance. The complete population behavior would
emerge from the simultaneous solution of the coupled {X(t),K(t)} dynamical

_equations.

If, however, we assume that the selection of interacting pairs {ij} is
independent of {Xi().X;(1)}, we can investigate the dynamics of K(t) independent
of the individuals comprising the population. This will be a good approximation, say,
if the fraction of the individual used to store the knowledge is small. In such
populations, every individual looks like every other individual. An example is a
computer network. With pfotocals such as TCP/IP, the exchange of data between
any pair of computers is independent of the details of the computers.

We conclude from this that, with respect to the movement of knowledge
within a population, so long as the individuals are “big and stupid,” it does not matter
what they are. We will use this approximation to study several exemplary
systems.

Note that the change of knowledge during the {i,j} interaction may very well
depend on K itself. For instance, we could easily define a process in which
knowledge is copied bnly if it exceeds a threshold, or has some other property.
Thus, the dynamical equation for K(t), even without coupling to the equations for

X(t), may very well be nonlinear.

Random pairings

Another approximation we will find useful is to assume that the interacting
pairs {i,j} are selected at random. This assumption imposes “full mixing” on the
population, and converts it from a deterministic system to a stochastic one. It
therefore has the useful potential for exhibiting average behavior, such as the
learning transient and fluctuations, that otherwise would be masked by systemic
behavior.

Thus, we will find it useful to examine the behavior of populations with
random, state-independent pairing, since they will exhibit properties of the
knowledge dynamics that cannot be seen in more complex populations.
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DYNAMICAL EQUATIONS FOR K

Discrete-time

For {i}-{j} pairwise interactions, we define an interaction matrix I'{i,j} by
T'{ij}pq = 88 +8p 9
and a corresponding noninteraction matrix A{i,j} by
Alijlpq = Opidq+ OO

For example, for N=4, we have

0 6 0 O 0O 0 0 O
r{23}= 0 1t 0 0 A23}=[0 0 1 0
001 0 0 10 0
0 0 0 O 0 0 0 O

Thus, for pairwise interactions, I' has 1’s on the diagonal only for the
interacting partners and zeros elsewhere, while A has 1’s for the off-diagonal
elements of the partners and zeros elsewhere. A straightforward extension allows
us to include collisions of more than 2 partners.

Let us identify the interacting pair {i,j} with the generation (n). With these
definitions, we can write the dynamical equation for K, including only incretion
and decretion, as

K(n+1) = K(n) + a I'(n)*K(n) - b K(n)* A(n)

In order to complete the dynamical model of the population, we must specify
how the matrices I'(n) and A(n) and the state variables X(t) evolve in time. A
typical behavior we might expect is that I'(n) and A(n) remain constant while X(t)
evolves continuously in time. Infrequently, a binary collision occurs, the partners
being determined by X(t). This allows us to specify I'(n) and A(n) and update
K(n) to K(n+1). After that, X(t) continues to evolve until the next collision.
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Continuous time
In the limit of continuous time, we consider the matrices T and A to be
continuous functions of t. That is, every element in I'(t) and A(t) is a function of t.
In a sense, every individual is interacting continuously with every other
individual, although some of these interactions may be defined to be zero. With
this assumption, the recursion relation goes over into a differential equation

%Itg=a TeK-b KeA

where aI'(t) and bA(t) play the role of time-dependent frequencies. The simplest
assumption we could make is that I" and A are constants. This allows us to write
the formal solution of the previous equation as

K(t) = eatF'K(O)e—btA
If in addition, al" = bA = Q, we have
K(t) = et K(0)e~<&

This is a similarity transformation, and it is interesting because under such
transformations, eigenvalues and matrix norms are preserved. There is obviously
complete formal identity between the last expression and the propagation of
matrix operators forward in time, familiar from quantum mechanics. For
instance, if Q and K commute, K is constant in time. This is, of course, not a
coincidence: earlier we remarked on the dualism of regarding K as a dynamical
variable versus a constraint. Here we see that dualism: K plays the role here of an
observable physical quantity; its evolution in time is given by the well-known
relation for observables in the Heisenberg picture.

The circumstance that alI” # bA ruins this neat picture; we must admit that the
evolution of knowledge K in general is more complex. This is traceable to the fact
that the individuals in these populations are not simple objects that have well-
defined symmetry and obey Newton’s Third Law. The emergent behavior of our
systems will, of course, be correspondingly richer.
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NUMERICAL EXPERIMENTS

In this section, we present several numerical experiments that illustrate the
transient behavior of knowledge. We will assume a small population of
individuals experience infrequent isolated binary collisions (numbered by n) that
change their mutual knowledge K(n) only by the pairwise processes of incretion
and decretion. Furthermore, we will assume the pairings are selected randomly,
and independent of any state variable X. The dynamical equation for K(n) is that
given above for discrete time, in which the matrices I'(n) and A(n) are randomly
reset after every collision.

Knowledge Diffusion

We have remarked that the spread of knowledge by incretion and decretion is
similar to diffusion. Figure 4 shows this clearly. Initially, a population of 30
individuals with no knowledge of each other was established; the matrix K is the
unity matrix, Kj (O)=8§j’ indicated by the black squares on the diagonal. At
successive generations, the incretion/decretion mechanisms (with rates a=0.5,
b=0.5) were applied, choosing nearest neighbors randomly for interacting
partners. This causes off-diagonal elements Kyj(n) to be incremented, indicated by
the gray squares. After 30 generations, the diagonal has diffused into a band;
each individual knows about several others within its immediate neighborhood,
but knows little or nothing of more distant individuals. After 300 generations the
matrix has equilibrated, and never diffuses beyond the ragged diagonal band.

Several interesting structural entities emerge in these matrices:

(1) Experts: These individuals know about significantly more other
individuals than the average individual does.

(2) Celebrities: These individuals are known by significantly more
other individuals than the average individual.

(3) Isolates: Distant individuals know more about one individual
than do close ones.

The last of these is most surprising. Apparently during the diffusion process,

knowledge can be transferred through some individuals to others (which then
lose it), resulting in "islands” of knowledgeable individuals.
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Individual knowledge
The knowledge K; held by individual {i} is the sum of its knowledge of all
other individuals and of itself:

N
Ki(n)= _ZlKij(n)
J:

Figure 5 show K;(n) for 3 populations of 9 individuals interacting as described
above, for 100 generations. The initial population in each case was set with
random mutual knowledge (K;,=0).

For Fig. 5(a), the incretion/decretion rates were a=1, b=0.1. This population
learns quickly and its knowledge erodes relatively slowly, leading to relatively
high individual knowledge (near the maximum K;=X(1)=9). Irregularly, the
individual K; fluctuate downward, although there is no directly compensating
upward fluctuation in other individuals.

For Fig. 5(b), the incretion/decretion rates were a=0.5, b=0.5. In this
population, knowledge grows and erodes are roughly the same intermediate
rate. The individual K; undergo upward rises, followed by sudden drops,
producing a sawtooth pattern.

For Fig. 5(c), the incretion/decretion rates were a=0.1, b=0.1. This population
learns slowly, but its knowledge also erodes slowly. The result is that the rise and
fall of any individual’s knowledge is more symmetrical than the sawtooth
pattern, and the fluctuations are smaller over the same time scale.

A striking result of these simulations are the rather long swings, either
upward or downward. One might have expected more randomness, considering
that the collision partners were randomly chosen at each generation. We
interpret this behavior as an expression of the coupling between all the
individuals: they are not independent, since they have some knowledge of each
other. Hence, complete chaotic behavior would not be expected. But they are also
not totally dependent, so some stochasticity is reasonable. We conclude that we
are seeing behavior that is characteristic of the peculiar processes of incretion and
decretion. We would expect other mechanisms of knowledge change to introduce
their own characteristic behaviors.
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Total population knowledge
The total knowledge K of the population is the sum of all individuals’
knowledge:

N
2

N
K(n)= ¥Kin)=
1=1 1=1 j=

N
21 Kjj(n)

Figure 6 shows K(n) for the same three cases of the population of 9
individuals. These figures show that the total knowledge K(n) is not constant,
although it appears to stay within bounds.

Learning Transient

If we start with no pairwise knowledge Kij(0)=6ijr the matrix elements
gradually increase by the process of incretion. Eventually, this increase will be
countered by decretion, so that K(n) will approach some equilibrium value at
long times. This process can be described as a learning transient. Figure 7 shows
this clearly for the population of 9 individuals as above with incretion/decretion
rates a=1, b=0.1. Initially the total knowledge was K(0)=9. As the individuals
interacted, their pairwise knowledge increased, then approached an equilibrium .
value slightly below the maximum possible X;; (1) = 81.

The number of generations in the transient (the “rise time”) will be of the
order of a few times N/a, as seen from the following argument: If we selected
interaction partners systematically, never choosing any individual more than
once, it would take exactly N/2 generations to mix the N individuals. But when
collision partners are randomly selected, it becomes increasingly likely that the
next selection will include previously selected individuals, hence not contribute
to the mixing. Therefore, several times N/2 generations will be required to select,
say, half the individuals. Since the fractional mixing at each collision is a, by
definition of the incretion process, it should take several times (N/2)(1/a)
generations to produce half full mixing, i.e., the FWHM of the learning transient.
The numerical experiments confirm these ideas. v

It may be noted that if the population starts with more than its equilibrium
knowledge K(n->e0), K(n) drops asymptotically. Figure 8 shows results of
numerical experiments on two populations of 20 individuals with incretion,
decretion rates a=1, b=1. Within the fluctuations, the knowledge in the two cases
approaches the same asymptote.
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Asymptotic equilibrium knowledge

Whatever the dynamics of the knowledge matrix K, it will typically evolve
from an initial matrix to an equilibrium at long times. The general behavior of the
equilibrium knowledge K(n) for n->e as a function of the incretion,decretion
rates a,b therefore is of interest. Figure 9 shows numerical experiments on 3
populations of 4 individuals. Each population has a fixed value of the decretion
rate b (0.1, 0.5, and 1.0). Each population is carried through 1000 generations,
during which the interacting pairs are selected randomly. In Fig. 9, we plot the
normalized total population knowledge

K(n)-N
km(n)= ————_N((I\? -

at the n=1000th generation, as a function of the incretion rate a. This quantity is a
reasonable approximation to the asymptotic value k(). It approaches 1 as
every individual approaches full knowledge of every other individual.

The plots indicate that increasing a increases the total knowledge, while
increasing b reduces the total knowledge, as expected. An interesting general
result is that for b=a, k,,,(e2) = 0.5. That is, if the incretion and decretion rates a,b are
comparable, the asymptotic total population knowledge is about half its maximum
possible value.

Another interesting observation is that for small b there is a substantial range
of a within which the asymptotic knowledge is independent of a. Apparently, the
asymptotic equilibrium knowledge is controlled more by decretion than by
incretion. The incretion, however, determines the duration of the transient to
reach the asymptotic equilibrium.

We have empirically found that k;,(e) can be approx1mated quite well by the

remarkably simple function
f(a,b) =1 —exp[—(a/b)*>'?]

Figure 10 shows plots of this function. The curves of Fig. 9 can be identified as

sections of this plot. We have no understandmg of the 51gn1f1cance of this

formula.
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The behavior of the knowledge for small a,b is quite peculiar. For b=0,
knowledge is never lost, so k() will grow inevitably to its maximum possible
value: ky, (o), p=0=1. But for a=0, there is no increase of knowledge, so any initial
knowledge will be lost: k() ,0,=0. Thus, there is a discontinuity at a=b=0, and
the long-time evolution of the population is extremely sensitive to the relative
values of a and b. In this region, k,,(e0)=0 if a > b, kp,(«0)=1 if a < b. Thus, in the
limit that a population increases and decreases its knowledge very slowly, all the
individuals will eventually attain either complete knowledge or zero knowledge. Because
organisms in Nature are very complex, the rate at which they alter their
knowledge is numerically very small (the fractional change in any interaction is
very small). Therefore, we might conclude that to the extent that the mechanisms
of incretion and decretion are significant in Nature, real populations will be
inherently unstable: eventually either all individuals will share the same
complete knowledge of each other, or eventually all individuals will have no
knowledge whatever of other individuals.

Fluctuations

At equilibrium, the total knowledge K(n) fluctuates around its equilibrium
value. The magnitude of these fluctuations is smaller in a population with a
larger number N of individuals, and depends on the values of a and b. We have
found that in some cases these fluctuations can be minimized.

Figure 11 shows results from a set of experiments on a population of 10
individuals interacting by knowledge incretion and decretion with a=1 and
b=0.1, 0.2, 0.3, 0.5, and 0.8. Collision partners were selected randomly, and the
population was first evolved for 10,000 generations, enough to be fairly certain
that it had reached equilibrium. Then it was evolved for another 1000
generations. The histograms show the number of times the value k;, (bin width
0.01) occurred in the 1000 generations, i.e., it is the trace of the fluctuating
population knowledge. Surprisingly, the fluctuations have a minimum at b=0.3.

The magnitude of the fluctuations is associated partially with the stochasticity
of selecting collision partners at random. But we might also expect larger
fluctuations if the individuals were somehow nonlinearly coupled by their
knowledge; the total population knowledge K(n) would undergo larger swings
because of theis coherence. Therefore, we conjecture that the minimum
fluctuations are produced by randomly selecting partners, and additional
fluctuations are produced by coherent effects of the mutual knowledge itself.
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Eigenvectors and eigenvalues
Eigenvectors of the matrix K represent linear combinations of the individuals
constructed in such a way that the eigen-individuals have no knowledge of each
other. Thus

K'Si= KiSi

defines the eigen-individual S;. The eigenvalues x; represent the total knowledge
held by the eigen-individuals.

Eigenvalues and eigenvectors are important to this work, since they are
another measure of the collective properties of the knowledge, in the same sense
as the total population knowledge K(n). We therefore expect to see the processes
of diffusion, learning transients, asymptotic equilibrium, and fluctuations in the
eigenvalues.

Figure 12 shows values of xj vs generation for two populations of 10
individuals, one with a=1, b=.3 and one with a=.3, b=.05. These numerical
experiments suggest that one eigen-individual usually dominates, containing
almost all of the knowledge, while the others fluctuate around roughly the same
(lower) value. The learning transient is clearly seen in the eigenvalues, as
expected.

Figure 13 shows another series of numerical experiments, all constrained to
have a=b. Together with Fig. 12, these results suggest that the dominance of one
eigen-individual is associated with small b. In the limit b—>0, the singular eigen-
individual has knowledge k=N, and all other eigen-individuals have knowledge
k=0. A low rate of decretion leads to dominance by one eigen-individual, while a
high rate of decretion leads to democratization among several eigen-individuals.
The dominant eigen-individual is a single assembly of all the individuals in the
population. Another way of describing this is as follows: Mutual knowledge
provides links between individuals, enabling the assembly of a coherent
structure. If those links are eroded quickly, the structure cannot persist.

Figure 14 shows that the population of 10 individuals has not yet reached
equilibrium, even at 10,000 generations. This is consistent with the idea that each
individual needs perhaps 10/a interactions to be significantly modified, and for N
individuals to be modified by sequential pairwise interactions we must therefore
have (N/2)10/a=(5)10/0.01=50,000 generations.
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All of this is understandable in the following way: Initially, the population is
comprised of N independent individuals (rows in K). Successive generations mix
these individuals (by adding a fraction of each row to other rows), so that the
rows (i.e., individuals) are no longer independent. If there is no mixing of
columns (b=0), the rows become more and more mixed with time, asymptotically
approaching complete linear dependence. If there is some mixing of columns
(b#0), this process of mixing is hindered, so the rows retain some measure of
independence. The independence is manifested as lower equilibrium population
knowledge K(n->0), larger fluctuations of K(n->e), and reduced asymmetry of
the matrix K.

Note that the value of b is related to the probability that the individual
changes its state during the interaction: smaller b means lower probabliity of
change, or more stable individuals. We therefore have the implication that
populations that are very stable spontaneously assume a configuration with one
eigen-individual that has complete knowledge of all other individuals, while all
other eigen-individuals are independent. On the other hand, when b is large, the
individuals have high probability of changing state upon interaction, and the
population does not separate as cleanly into one dominant eigen-individual.

There are numerous physical analogies that can help visualize this situation.
For instance, very slow solidification at low temperature results in crystalline
solids with high order, while fast solidification at high temperature results in
amorphous solids with low order. We can think of the crystal atoms as
comprising one large eigen-individual; every atom has complete knowledge of at
least one other atom; the entire solid is thereby linked.
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Symmetry

In general, the matrix K is asymmetric for finite values of (a,b). We interpret
this to mean that {i} may know more (or less) about individual {j} than {j}
knows about {i}. This concept is quite natural: a circling hawk knows some
things about a mouse on the ground below, but the mouse knows little of the
hawk. For (a,b) sufficiently small, K will be nearly symmetric, i.e., individual
pairs will be approximately symmetric in their pairwise knowledge.

It was noted previously that asymmetry in K is indicated by the appearance
of imaginary parts of the eigenvalues. Numerical experiments suggest that the
symmetry of K at equilibrium is greater than the symmetry of a random matrix. That is,
if we initialize a population with random pairwise knowledge, after equilibration
by many interactions of randomly selected partners, the pairwise knowledge will
be more symmetric. As an example, consider the following matrix describing a
population of 10 individuals, in which the off-diagonal elements in this matrix
were generated randomly:

1 0.18 0.37 0.66 0.42 0.42 03 0.96 0.99 04
0.81 1 0.7 0.74 0.77 074 0007 079 0024 048
0.45 0.18 1 0.28 L. 0.76 0.18 0.34 0.97 0.28
0.85 0.46 049 1 0.21 0.88 0.75 07t 0037 092
0.69 087 0.046 031 1 0.14 0.38 0.93 0.25 0.22
0.98 0.56 088 0027 0078 1 0.21 0.94 05 0.98
0.61 0.041 0.62 0.46 0.99 0.39 1 0.18 028 0.63
0.98 0.29 03 021 0.084 096 0.8 1 0.12 0.65

0.1 0.35 0.21 0.88 0.57 0.12 0.9 0.73 1 0.033
04 0.76 0.44 0.4 0.29 0.46 0.37 058  0.081 I

The eigenvalues, which sum to 10.00000 (=the trace of the matrix), are:

5.48365

0.993922 + 0.563914 1
0.993922 - 0.563914 1
0.796437 + 0.375661 1
0.796437 - 0.375661 1
0.343349 +0.791205 1
0.343349 - 0.7912051
0.337418

-0.04424 + 0.120764 1
-0.04424 - 0.120764 1




After 1000 generations using a=1,b=.1, the matrix and its eigenvalues became

I 0.25 0.12 1 0.12 0.12 0.5 0.12 0.063  0.045
0.094 1 0.14 0.85 0.18 0.085 0.78 0.027 0.11 0.03
0.35 0.25 1 0.7 1 021 0.78 0.16 0.12 1
0.45 0.25 0.11 1 0.12 0.12 048 0.029 0063 0.036
0.25 0.19 0.76 0.51 1 0.15 0.57 0.13 0.11 0.7

I 043 041 1 032 1 1 0.85 03 0.46
0.28 0.25 022 0.61 0.15 0.38 1 0.061 0.12 0.3

1 043 04 1 0.33 1 1 1 034 0.36

1 0.25 038 1 0.36 0.26 1 05 1 0.13
0.39 0.25 0.5 0.75 0.21 0.27 0.78 0.14 0.12 1

4.09448

1.55883

1.21346

0.822087 + 0.0908688 1
0.822087 - 0.0908688 1
0.689982

0.403431

0.247912

0.0840975

0.0636397

where again the eigenvalue sum is 10.00000. The second matrix is fully
conditioned; it represents an equilibrated population. Its elements fluctuate
wildly from generation to generation, which will produce wildly fluctuating
behavior of the individuals, but the population as a whole exhibits relatively
stable behavior.
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Metastability and spectroscopy

Figure 11 shows the evolution of the small eigenvalues of a population of 10
individuals interactin by incretion , decretion with rates a=b=0.01. The only
difference between the two experiments was the exact sequence of inferacting
partners at each generation (they were randomly chosen in each case). It is
evident that the population sometimes had a relatively constant eigenvalue, and
that sometimes one of those eigenvalues experienced a sudden change. This
suggests the interesting implication that certain configurations of the knowledge
matrix K are more stable than others, and some may be very stable (i.e.,
metastable). Metastable configurations can switch spontaneously to other
configurations, and there could be a characteristic time for this switching. The
jump in eigenvalue in such a switch is analogous to the energy difference
between bound states of a quantum system. This difference can be expressed as a
spectral line. In observing this line we are observing transitions between two
discrete configurations of the population knowledge. Thus, we have the
suggestion of a rich and very complex spectroscopy associated with populations
based entirely on the dynamics of their pairwise knowledge.

It is emphasized that this is independent of any specific physical dynamical
model, definition of the individual, population size, etc.




RELATION TO OTHER WORK

System that can be described as a population of cognitive individuals are almost
always described making use of the verb “to know.” Regardless of whether the
objects exhibit intelligence in human terms, we say that the object “knows” about
other objects” and “knows what to do.” Examples of these systems include
globally coupled relaxation oscillators [Christiansen and Levinsen, 1993; Hansel,
Mato, and Munier,1993], metapopulations [Gilpin and Hanski, 1991], cellular
automata [Gutowitz, 1991], simulated fish schools [Huth and Wissel, 1992],
flocking birds [Kshatriya and Blake, 1992], artificial life [Langton, 1989, 1992],
and ant swarms [Milonas, 1992], to name but examples. It is, however, possible to
incorporate the present language in the larger body of theory and modeling of
individual-based population models [DeAngelis and Gross, 1992; Lomnicki,
1988], and through that, with a much broader spectrum of models and theory
[Goel, Maitra, and Montroll,1971; Hoppensteadt 1982; Kampis, 1991; Murray,
1993; May, 1975].

CONCLUSIONS

We have noted that the knowledge matrix K can be treated either as a
dynamical variables or as constraints. We found that many properties of K(t) can
be found without reference to any specific dynamical system. General
considerations predict that in any dynamical system, K will exhibit diffusion, a
learning transient, and a fluctuating asymptotic equilibrium. We proposed a
variety of mechanisms by which the knowledge can be altered: creation,
information, destruction, incretion and decretion.

The dynamical equations for K(t) were derived for discrete and continuous
time. In a series of numerical experiments, we found configurations of K
corresponding to experts, celebrities, and isolates. The knowledge held by an
individual usually varies, as does the total population knowledge. The properties
predicted above are observed in these experiments. The FWHM of the learning
transient is a few times N/2a. We found that if K(t) changes very slowly, the
population eventually relaxes to either complete mutual knowledge, or zero
mutual knowledge. The fluctuations at equilibrium can be minimum for certain
values of the incretion, decretion rates a,b.
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For small decretion rates b, the population is formed into one eigen-
individual that contains essentially all the knowledge. For high b, the population
forms a set of roughly comparable individuals that share the knowledge.
Numerical experiments suggest that the population can form various metastable
configurations, and that it can switch spontaneously between these
configurations. The spectroscopy associated with these transitions may be a
useful indicator of the eigenvalue structure.

This paper was concerned primarily with demonstrating certain fundamental
behaviors of K(t) common to all cognitive dynamical systems. We placed most
emphasis on the incretion,decretion mechanisms for changing K(t). With this
background we can look forward to applying this formalism to more
complicated populations.

REFERENCES

L. Brillouin. 1962. Science and Information Theory. 2nd Ed. Academic Press, New
York. |

B. Christiansen and M. T. Levinsen, Collective phenomena in large populations
of globally coupled relaxation oscillators, Phys. Rev. E 48, 743 (1993).

D. L. DeAngelis and L. Gross, eds. 1992. Individual-based Approaches in
Ecology. Chapman and Hall, London.

M. Gilpin and I Hanski. 1991. Metapopulation Dynamics: Empirical and Theoretical
Investigations. Academic Press, London.

N. S. Goel, S. C. Maitra, and E. W. Montroll, On the Volterra and other nonlinear
models of interacting populations, Rev. Mod. Phys. 43, 231 (1971).

H. Gutowitz. 1991. Cellular Automata. Reprinted from Physica D 45 as special
issue.

A. Huth and C. Wissel. 1992. The Simulation of the Movement of Fish Schools. J.
Theor. Biol. 156, 365-385.

D. Hansel, G, Mato, and C. Munier, Clustering and slow switching in globally
coupled phase oscillators, Phys. Rev. E , 48, 3470 (1993).

F. C. Hoppensteadt. 1982. Mathematical Methods of Population Biology. Cambridge
University Press, Cambridge.

G. Kampis. 1991. Self-Modifying Systems in Biology and Cognitive Science. Pergamon
Press, Oxford.

M. Kshatriya and R. W. Blake. 1992. Theoretical Model of the Optimum Flock

Page 29




Size of Birds Flying in Formation. J. Theor. Biol. 157:135-174.

C. Langton, ed. 1989. Artificial Life, Proc. Interdisciplinary Workshop on the Synthesis
and Simulation of living Systems. Los Alamos, NM, Sept. 1987, Addison-Wesley

~ Publ. Co., Redwood City, CA.

C. Langton, ed. 1992. Artificial Life II. Addison-Wesley Publ. Co., Redwood City,
CA.

A. Lomnicki. 1988. Population Ecology of Individuals. Princeton University Press,
Princeton, NJ.

M. M. Millonas. 1992. A Connectionist Type Model of Self-Organizing Foraging

~ and Emergent Behavior in Ant Swarms. J. Theor. Biol. 159, 529-552.

R. W. Schmieder. 1995. Population Dynamics of Minimally Cognitive
Individuals. Part I. Introducing Knowledge into the Dynamics. Sandia
National Laboratories Report SAND 95-8505.

R. M. May, Stabz'lz'ty and Complexity in Model Ecosystems, 2nd Ed., Princeton
University Press, Princeton (1975).
J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin (1993)

Page 30




Table 1 - Correspondence between mutual knowledge and probability

{1}’s knowledge of {j}

Probability that{i} correctly
identifes the state of {j})

K Dij
completely correct 1 1 certainty
partial, correct ~ 0<Kj<l1 1/G<pjj<l  greater than random
none 0 /G random
partial, incorrect -1<Kij <0 O<pij<1/G less than random
completely wrong -1 0 Zero
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INCRETION

DECRETION

—

Figure 1 - Five mechanisms for changing the knowledge, together
with popular and technical descriptors of the processes.
In each frame, some measure of the knowledge is plotted
as a function of time.
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GENERATION

Figure 2 - Schematic of four individuals that change their total
knowledge by pairwise interactions. In this Feynman-like
diagram, time increases upward.




+ax

Figure 3 - Vector diagrams representing (a) knowledge incretion
and (b) knowledge decretion.
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Figure 4 - Diffusion of knowledge into a population. The matrix
elements Kj; are plotted as black (Kj;=1) or gray (K;j<1)
squares for: (a) initial population (no mutual knowledge);
(b) after 30 generations; (c) after 300 generations.

Page 35




- 0 e— = --. -
- - R ,/--.._’_ N ‘.-’ . a-.. Ly P — at [ - e . -
g} » g : rs o -1 3 '. .-.-‘ -~ -_.-’ - ..-_ ’.-) - —", K
- Ty
&l [y gl ) <k g
9
q af a
2 a 2
] (] 40 60 -}] 140 0 /¢ 4D (1] ep tao 0 av 44 &0 a0 14
——— 4 — prUIm—m—— gwme
. ; - - - o -
8 - - - . v 8t . ™o - il b - a8 Dt ] Py ~ o~
. - N .l - . g "
. o ~ -
1% ~ sF ° &f . o
-
a ar a
2 3r 2
] . 81 a0 ab eb 1 [ Ba 40 (14 ep Lgo 0 20 44 60 q0 14q0
——— —_— - —— . e ————
- N - - = ' e - - ¢ -
=t S T KN ] T A a e . .
B et s - .
¢ S oF - S
~
al q ap
2 2 2
] ab 44 &0 a0 14p ] £0 40 B0 00 106 ] a4 4p (%] 14 tao

GENERATION

Figure 5(a) - Knowledge held by individuals as a function of time.

The plots show K;=X;K;; for each of 9 individuals
interacting randomly with incretion,decretion rates
a=1.0, b=0.1. The initial mutual knowledge between all
individuals was random.
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Figure 5(b) - Same as Fig. 5(a), for incretion,decretion rates a=0.5,
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Figure 5(c) - Same as Fig. 5(a), for incretion,decretion rates a=0.1,

b=0.01
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Figure 6 - Total knowledge held by a population as a function of time. The plots show

K=% ;;K;j for 3 populations of 9 individuals interacting randomly with
incretion,decretion rates (a) a=1.0, b=0.1; (b) a=0.5, b=0.5; (c) a=0.1, b=0.1. The
initial mutual knowledge was random.
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Figure 7 - Learning transient. The plot shows the total knowledge
K=%; Kj; of population of 9 individuals with
incretion,decretion rates a=1,b=0.1. The initial mutual

knowledge was zero (i.e., there was only self-knowledge
K;(0)=1).
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Figure 8 - Learning transient. Same as Fig. 7, but for 20 individuals
with incretion,decretion rates a=1,b=1. Initial total
knowledge including self-knowledge: (a) 200; (b) 20.
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Figure 9 - Equilibrium total knowledge normalized as
[K(n->e0) - N}/N(N-1) as a function of the incretion rate a
for three values of the decretion rate b. (a) b=0.1; (b)
b=0.5; (c) b=1.0. The 3 population of 4 individuals were
carried through 1000 generations.
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Figure 10 -Analytic approximation to the data in Fig. 9.

(a) The surface f(a,b)=1- exp[—(a/b)3/ 21:
(b) Three sections of the surface that correspond to the
numerical experiments in Fig. 9.
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Figure 11 - Obtaining minimum fluctuations of the asymptotic
equilibrium knowledge. The population of 10 individuals
evolved through 1000 generations with a=1, b=0.1, 0.2,
0.3, 0.5, and 0.8. Minimum fluctuations occur for b=0.3.
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Figure 12 - Eigenvalues as a function of time for a population of 10
randomly interacting individuals. (a) a=1, b=.3; (b) a=.3,
b=.05.
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a=b=5
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Figure 13 - Eigenvalues as a function of time for a population of 10
randomly interacting individuals. All examples have a=b.
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Figure 14 - Approach to equilibrium for very small incretion and
decretion, for a population of 10 randomly interacting
individuals. a=b=.01
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Figure 15 - Switching and spectroscopy. A population of 10 individuals with
random initial mutual knowledge was advanced twice through 1000 generations
with random incretion, decretion collisions of rates a=b=.01. The obvioius
transitions near generations 3000 and 7000 in the second experiment suggest that
the spectra assocaited with these transitions is characteristic of the population
and its dynamics.
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