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Abstract 0 S ,‘T |

BNL has been developing a remote sensing technique for the detection of atmospheric pollutants
based on the phenomenon of resonance Raman LIDAR that has also incorporated a number of new
techniques/technologies designed to extend it's performance envelope. When the excitation frequency
approaches an allowed electronic transition of the molecule, an enormous enhancement of the
inelastic scattering cross-section can occur, often up to 2 to 4 orders-of -magnitude, and is referred to
as resonance Raman (RR), since the excitation frequency is in "resonance” with an allowed electronic
transition. Exploitation of this enhancement along with new techniques such as pattern recognition
algorithms to take advantage of the spectral fingerprint and a new laser frequency modulation
technique designed to suppress broadband fluorescence, referred to as Frequency Modulated
Excitation Raman Spectroscopy (FreMERS) and recent developments in liquid edge filter technology,
for suppression of the elastic channel, all help increase the overall performance of Raman LIDAR.

Introduction:

Brookhaven National Laboratory (BNL) has been tasked to examine and improve upon the
performance of Raman spectroscopy-based lidar platforms. This multi-year effort has resulted in
the fabrication and field testing of two state-of-the-art Raman lidar platforms. The reason that
Raman lidar is so valued as a pollution sensors originates from some of the advantages]-‘6 thata
Raman-spectroscopy offer, namely: (1) very high'selectivity (chem1ca1 specific fingerprints), (2)
independence from the excitation wavelength (ability to monitor in the solar blind region), (3)
chemical mixture fingerprints are, to first order, the sum of its individual components (no spectral
cross-talk), (4) near independence of the Raman fingerprint to its physical state (very similar spectra
for gas, liquid, solid and solutions), and (5) insensitivity of the Raman signature to environmental
conditions (no quenching, or interference from water). The detection of atmospheric components
using Raman backscattering of laser radiation dates back to the pioneering work of Leonard? in
1967. In that study, he used a pulsed N gas laser at 337.1 nm to generate Raman return signals
from Ng and Og. Further investigations during the early 1970s pushed the envelope of performance

for a Raman LIDAR.8-11 However, due to the lack of tunable UV laser sources, thése early
investigations were not able to take advantage of near-resonance enhancement of the Raman cross-
section wlnch occurs when the excitation frequency approaches an electronically excited state of the

molecule™ 12'16 The enhancement of the scattering cross-section can be quite large, often
approaching 2 to 4 orders of magnitude. This improvement in the cross-section, in conjunction with
the global advantages of Raman spectroscopy cited earlier and the availability of frequency-tunable,
all solid-state UV laser systems and high-sensitivity/low-noise array detectors, provides a promising
optical platform for the remote open-path atmospheric sensing.

Experimental:

-Since the specifics concemmg the acquisition of Raman and resonance Raman return signals

has been documented elsewherel?, only those issues relating to the details of the two units (a 48’
long x 13" high x 8' wide trailer and a 33" long van) under evaluation at Brookhaven will be
discussed here. The BNL resonance Raman chemical sensor is typical of most Raman LIDAR
configurations. The two platforms are composed of three main subsystems: (i) a laser system and
beam transport optics, (ii) signal receiver telescope and spectral fingerprinting detection unit, and
(iii) equipment control and data acquisition/processing subsystem. In the case of the main trailer
unit, the laser source is a frequency agile laser system (Spectra-Physics 730 MOPO system) whereas
the van is a single frequency 266 nm Nd:YAG laser (Coherent Infinity). All timing aspects of each
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system are based on a single master oscillator which provides triggering to the laser and gate delay
, }Jmmg to the detector circuitry.

LY

' _ For the trailer system following the laser trigger from the master oscillator, the 6 mm
can: & (ligngdter, 270-560 nm laser beam (of 3-4 ns duration) was expanded to a diameter of 100 mm via a
*¥77 7 1:16 beam expander prior to exiting the trailer. The return signals were collected by an effective 27-
. . -inch Cassegrain telescope and focused onto the slits of a single grating spectrometer (1200
i . grooves/mm) and then detected by an Oriel's Intaspec V intensified CCD (charge-coupled device)
camera for spectral fingerprinting. For the lidar system in the van, the laser wavelength is fixed at
266 nm, and the receiver telescope is 16-inches in diameter. All other features are the same as that
described for the trailer. In order to avoid the possibility of charge saturation of pixels by the
unwanted Rayleigh-return, and to prevent charge spill-over to the Raman channels, a Brookhaven
fabricated knife-edge filter was employed for the preferential removal of the Rayleigh signal return.

Results and Discussion:
Figure 1 displays the Raman return signals collected during a release of nitrobenzene. As

can be clearly seen in the figure the presence of nitrobenzene is unambiguous and clearly discernible:
against the background. In addition to collecting a vibrational fingerprint from the interrogated
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Figure 1: Raman Return Signals at 0.5 km

chemical plume, the resonance Raman chemical sensor has the other distinet advantage that every
spectra collected will also contain return signals from atmospheric nitrogen and oxygen, therefore
providing a self-calibration of the plume concentration with return-signal intensities.1-16 This
concentration self-calibration is accomplished by comparing the integrated areas under the
respective return signals for the knowns (N9 and O9) and the unknowns (in the present case
nitrobenzene), and using their respective scattering cross-sections. The Raman scattering cross-
sections for these two atmospheric species as a function of laser excitation wavelength is well
documented in the literaturel5. For the specific case of NOg-CgHj the resonance Raman scattering
cross-section as a function of excitation wavelength has been measured by Ahmad and co-




workers.18 For laser excitation at 266 nm, the resonance Raman scattering cross-section is
estimated to be on the order of 2 x 10-26 ¢cm2/sr. In order to insure accuracy of the field
measurements the Ng-to-Og return signals can also be used to provide an estimate of atmospheric
absorption effects. This is accomplished by exploiting the fact that the nitrogen-to-oxygen ratioin
the troposphere is a constant, therefore any deviation would provide a DIAL-like measure of the
atmospheric absorption. This application of the Ng to Og return-signals was pioneered by Renaut

and Capitini in the 1980s.19 The respective areas under the Ng, Og and NO9-CgHj return signals

were calculated assuming a Voigt lineshape for the Raman bands. By using the known
concentrations, measured integrated signals, and their respective scattering cross-sections, it is
estimated that the nitrobenzene concentration for the signal shown in Figure 1 was ~ 40 +20 ppm.

Since resonance Raman spectroscopy requires an allowed electronic transition, the potential exists
for concomitant photon emission through the fluorescence channel, which, if strong enough, can mask
the structured Raman spectral fingerprint. Furthermore, during daytime remote chemical sensing,
background solar irradiance can also obscure weak spectral signatures in the return signal.
Therefore, a technique is needed which can either suppress or eliminate this unwanted background
signal withiout distorting the underlying Raman spectral fingerprint. Additionally, this technique
should also be robust enough for use with any chemical species or chemical mixture, without

- becoming increasingly technically prohibitive to implement. Unfortunately, the LIDAR remote
sensing scenario effectively precludes many of the well-known laboratory-based techniques for
fluorescence and/or background suppression (i.e., addition of fluorescence quencher). In an effort to
address this problem, Brookhaven National Laboratory is developing a technique based on the
modulation of the excitation frequency (wavelength) which does not require phase-sensitive, lock-in
detection and which can exploit the advantages of multichannel detection for full Raman spectrum
collection for every excitation laser pulse. This technique is called Frequency Modulated Excitation
Raman Spectroscopy or simply FreMERS.

The origin for this idea can be traced back to the results of Mathies and co-workers20 in 1992. In
that study, an Ar+ laser pumped Ti:sapphire laser (tunable from ~ 670 nm to 1100 nm) was used

and Raman-plus-fluorescence spectra collected at two, slightly different (5-10 cm-1) excitation

- wavelengths. For such small changes in the excitation wavelength, the assumption that the
fluorescence will not change appreciably over the wavelength range becomes less of a limiting . -
.condition. Therefore, by taking the difference of two Raman-plus-fluorescence signals collected at
two slightly different excitation wavelengths, a fluorescence-free Raman spectrum can be generated.
This fluorescence-free spectrum will look like a first derivative signal. By examining the Raman
spectra from chloroform in various amounts of laser dye, Mathies and co-workers20 were able to
detect Raman return in samples where the fluorescence was 1000 times larger. We have extended
this technique to the visible and ultraviolet spectral regions and to pulsed laser systems. In

. addition, we are also developing a variation of this technique which requires only a single excitation
wavelength for background reduction as opposed to two excitation wavelengths, thereby greatly
reducing the required time for data acquisition and minimizing the complex data reduction schemes
otherwise necessary in order to correct for the effects of atmospheric turbulence at two wavelengths,

- In Figure 2 the experimental proof-of-principle of FreMERS is shown for a sample of 25,000 ppm of
carbon tetrachloride in a laser dye. The original signals are shown along with the generated
FreMERS spectrum. The upper two traces labeled "a” and "b" are the Raman-plus-fluorescence
S{gnals at two excitation laser wavelengths, offset for clarity, separated by a small wavelength -
difference ~0.3 A. This value of the wavelength shift, determined experimentally, is on the order of

“half the expected Raman linewidth. Right below trace "b" is the FreMERS signal, labeled trace "c".
Numerical integration of the resulting FreMERS spectrum is shown in trace "d". The Raman '
spectrum of pure carbon tetrachloride is reproduced here as trace "e” for reference. As can be clearly
seen, the FreMERS technique was able to extract the carbon tetrachloride Raman signal from high
background without any major spectral degradation. This experiment represents the successful
extraction of a Raman signal that is /1000 the size of the fluorescence background.
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Figure 2: 25,000 ppm of carbon tetrachloride in a laser dye.
Top signals (a & b) are the Raman-plus-fluorescence signals, and
below are the resulting spectral FreMERS signal (c), the numerical
integration of the FreMERS signal (d) and a Raman spectra of pure
carbon tetrachloride for reference.

Justification of this background suppression procedure can be seen by the following model, which
assumes that Raman lines are Gaussian-like. Within this approximation, the Raman-plus-
fluorescence spectrum of a molecule can be represented mathematically as

Sr+f =P(A)F(A)+R(A)]=P(2 F(A)+——I-—§‘A—icxp[ﬂ] : 6}
r+ _ N hE e ™ T 2 ||

where each Raman-plus-fluorescence signal is identified by N Gaussian-like Raman peaks, each of
~ which is characterized by area A;, a center position V,;, a standard deviation oj, and the
background fluorescence signal itself, (). The term P(A) accounts for the individual responsivity

of each pixel on the multichannel detector. By keeping the monochromator at the same spectral

" setting, this pixel responsivity can be eliminated. The generation of a FreMERS signal involves the
subtraction of two successive Raman-plus-fluorescence signals, collected at two slightly different
excitation wavelengths (A and A + 1/5), where 8 is on the order of a few wave numbers, and which
.can be expressed within this mathematical framework as

FreMERS(v)= TZ {’(V—z‘:)-%ﬂ} exp[%]} @

Since & is very small, F(A) = F(A + 1/8), the fluorescence background is removed by this process as
evidenced in Figure 2. This will be investigated further by conducting a series of experiments where
8 is changed incrementally and examining the behavior on the FreMERS signal. It is expected that,




with an 18-bit dynamic range of the detector, detection limit approaching 1/10,000 the size of the
background can be achieved.

In addition to the requirement of dealing with potential interferences from the fluorescence channel,
there also exists a need for better suppression of the elastic channel (Rayleigh & Mie scattering) so
that lower frequency modes of molecules of interest can be exploited. The development of super-
notch filters provided a giant leap forward, but due to material science issues these filters have been
limited in their use to the visible and near-IR spectral regions. - This limitation meant that in order
to suppress this channel in the near-UV and UV spectral regions, one was limited to either a knife-
edge filter or the dispersion provided by a double or even a triple - grating spectrometer. Very
recently however, Harris and co-workers21 have demonstrated a series of easily fabricated liquid
edge filters useful down to approximately 288 nm. These liquid filters allow vibrational modes as

low as 200 - 300 cm1 to be observed, thus opening up a new vibrations for spectral fingerprinting.
Field experiments will be commencing soon where these liquid edge filters will be evaluated as to
their utility with Raman lidar.

In an effort to take advantage of the Raman spectral fingerprints, Brookhaven has been pursuing
the development of pattern recognition algorithms. Of partial interest has been the development of
an adaptive mixing (AM) algorithm which has several advantages over artificial neural networks
and partial least squares algorithms when used in atmospheric LIDAR. One special feature of the
AM algorithm is its ability to use only one neat spectrum per chemical for chemical mixture
identification, and hence greatly minimize the required training. This is in contrast to the
conventional neural-net pattern recognition techmque(s) which usually require a large number of
field spectra, noise and all, for training. The large number of data set pertains to different field
conditions. Since typical field data are time consuming and usually difficult to obtain, that is why
the AM algorithm stands out as a simple and elegant method in comparison with the other
algorithms such as Partial Least Squares (PLS)22 23 and Classical Least Squares (CLS).24 In
both cases, AM algonthm can provide a more flexible frame work to accommodate diverse physical
constraints.

For field data analysis, it is important to be able to pre-process the spectral data removing the
artifacts, but retaining the spectral fingerprints, prior to chemical identification. For example,

- LIDAR artifacts such as Rayleigh scattering, self absorption, turbulence and speckle can greatly
influence the detection and recognition accuracy. Especially when these noise sources produce
amplitude response of the detector system equal to or larger than the weaker spectral components
of interest. In this case, special pre-processing technique(s) can help bringing out the weak chemical
fingerprints. Application of the AM algorithm to the detection of similar chemicals with
concentration differences approaching as high as 799:1, in both neat and noisy conditions
demonstrate the Iarge dynamic range potential of this technique.

The motivation to develop a simple algorithm to overcome the nonlinearities presented in the neural
net approach Multi-Layer Perceptron (MLP’s), is to find a reliable method which can analyze
mixtures with highly disproportion concentrations. The adaptive mixing (AM) algorithm is therefore
developed for solving this potential problem, and the algorithm is tested with the following exercise.

A simulated mixture spectrum is first constructed by summing prototype spectra from the neat
chemical spectral database. Each prototype spectrum has a corresponding weight representing its
contribution to the total spectrum, initially set to zero. A fitness measure is then made by
examining the squared Euclidean norm between the true and the simulated mixture spectrum.
Weights of each database spectrum are changed sequentially by a fixed step until no further
reduction in the total error can be obtained. The same procedure is then repeated by using
progressively smaller increments of weight correction until the total residual error is below a
predetermined threshold (based on the user's assessment of database completeness and
normalization accuracy considerations) and the process is halted. At this point the normalized
weights for each chemicals are output as the best estimate for the mixture coefficients. If the
residual error cannot be reduced below the predetermined threshold, AM will assume that one or
more out-of-database chemicals are present and report this finding to the user. The AM logic is
presented as follows:.




The ith chemical spectrum in a database of m chemicals is defined as S(i,j), j= 1:m, where i
indicates the m spectral samples from 1:m. A mixture of n-chemical mixture spectrum is defined
as:

M) = 3 W@ *SG, j) )

i=1

Initially W(i) = O for all 1<=i<=n. For an unknown mixture spectrum of U(j), j=1:n, the fitness or
error measure E is defined by:
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For n=1 the value W(1) is repetmvely increased by a fixed value A until no farther decrease in E is
obtained. The value W(1) is then fixed. W(2) through W(n) are adjusted similarly, ﬁxmg the value
W(n) when no farther error reduction is possible.

After this first cycle of estimation, the fixed increment A is then reduced by afactorof 10 G.e. A=A*
0.1). The above process is repeated for W(1) through W(N) until no further reduction of error is
possible. Error reduction is accomplished by immediately adjusting each W(i) before W(i+1).

The process is repeated several times, using a factor of ten smaller A each cycla from the previous
iteration. The process converges rapidly after a small number of iterations, typwally about five or
six. Each cycle, the values of W(i) are normalized so that their sum from i=1:n is equal to unity.
The final set of W(i) are saved, and their values are best estimates of the component chemicals.

We have tried this algorithm on a simulated mixture with 1000:1 concentration ratio and with
progressively larger values of noise. Clean spectra of trichloromethane and toluene were used to
simulate the mixture spectrum composing of 99.9% trichloromethane and 0.1% toluene. Gaussian
noise with increasing amplitude distribution were added to the mixture until S/N =1.0 was obtained
- relative to the smaller component. We found that for S/N=1.0 the concentration estimates for
trichloromethane and toluene were 0.999% 0.0003 and 0.0011 0.0003, respectively. The absolute
error is constant, i.e., 0.0003, but the relative error is progressively hlgher for the lesser component,
in this case 30 percent. )

Both Partial Least Squares (PLS)22 23 and Classical Least Squares (CLS)24 can be used to
directly compute the mixture coefficients in a LIDAR return signal. Though PLS works best when
multiple spectra for each chemical are used in training, it can be trained with a “single” spectrum
per chemical. In fact, CLS works this way, using a single spectrum to represent each chemical in
the database. Iterative methods such as the AM algorithm and similar methods appear to find the
same mixture coefficients, however at greater computing time. Qur results show that CLS performs
at the same level of accuracy as AM, though execution is faster in CLS, since it requires only one

. matrix algebra step. AM, however, is able to incorporate diverse constraints, which can not be done
in CLS. One example of diverse constraints is limitation of the estimated vectors to be within a
special region of space, hence quadratic.26 CLS and PLS are in the category of what are commonly

known as unconstrained optimization26, i.e. they search the entire space of both positive and
negative mixture coefficients.

Unconstrained optimization, though perhaps more computationally efficient, is not physma]ly
meaningful unless absorptive processes are involved. In a typical scattering scenario one normally
requires that the derived mixture coefficients are non-negative. Furthermore, since no finite
database can ever be complete to cover all chemicals, one needs to deal with the situation where an
unknown chemical may be present.




Conclusions and Prognosis:

We have discussed recent experimental results using a resonance Raman based LIDAR
system as a remote pollution sensor. This spectroscopy has the fundamental advantage that it is
based on optical fingerprints that are unique to each molecular species and are insensitive to
environmental perturbations or excitation frequency. By taking advantage of resonance
enhancement, the inelastic scattering cross-section can increase anywhere from 2 to 4 orders-of-
magnitude translating into increased sensing range or lower detection limits. The availability of
frequency-agile UV lasers, high-gain\low-noise multichannel detectors and other state-of-the-art
technologies now allows the phenomenon of resonance-enhanced Raman spectroscopy to be fully
exploited as a remote chemical sensor platform. Since many chemicals have electronic transitions in
the UV/VIS, it is expected that many will have pronounced resonance enhancements. In addition, a
new techmque designed to suppress the broadband fluorescence, should it accompany the resonance
Raman signal was also presented. We have demonstrated that the Adaptive Mixing algorithm is
able to accurately detect chemical mixture spectra which are contaminated by noise and distortion.
Accuracy exceeding 98 percent have been observed on highly similar o-, m-, and p-xylene spectra
having S/N ratios of 1:1 and (molar) concentration ratios of 799:1. Simulated multi-peak spectra
are correctly detected with an accuracy of 94.2 percent at the same S/N ratio. These results extend
to the more difficult problem of single-peak chemical fingerprints. Detection accuracy of 88 percent
at S/N ratio of 3:1 was obtained.
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