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1 Introduction

The microwave instability is usually described by linearizing Vlasov equation in the angle-
action variables I, ¢ and assuming that the interaction of azimuthal harmonics p,(I) of the
distribution function p is weak, where

o(1,6,) = Y pulI, )™ | &

The argument implied here is that the Hamiltonian flow smears out particles over invari-
ant tori characterized by the action variables, and the remaining azimuthal dependence of
the distribution function is small. Indeed, such an approach successfully describes bunch
spectrum and the threshold of the microwave instability. However, recently there have been
interesting observations of bunch centroid and bunch shape oscillations above instability
threshold at LEP [1] and the damping ring at SLAC [2]. There are also indications that
the oscillations sometimes occur in localized region in the longitudinal coordinate instead of
affecting the entire longitudinal distribution as one expects by an action-angle analysis.

In this paper we describe an alternative approach to the problem of bunch stability using
decomposition of the Fokker-Plank equation in the system of nonlinear equations for the
moments of the distribution function. In particular, this approach allows us to avoid the
conventional action-angle decomposition. The physical quantities we are interested in, the
moments, are expressed in the Cartesian z — é phase space. To close the infinite hierarchy




of moments equations, we assume that higher order correlations are small. Although
both the action-angle and the Cartesian languages must be equivalent before truncation,
they may have different speed of convergence depending on the problem being studied. It is
hoped that Cartesian expansion approach would converge faster for the cases corresponding
to those observed recently above threshold. This approach, is well known in kinetic theory.
It has been used recently by Wurtele et al. citeWurtele in their study of the threshold of the
instability. The recent experimental observations made us interested in it again. This note
is a progress report of our work.

2 Moments of the distribution function

Longitudinal motion of a particle is described in terms of the distance z of a particle from
the position of bunch center in the RF bucket (z > 0 for a particle in the head of a bunch),
and the deviation § = p — py of the momentum from the momentum pg of an equilibrium
particle at the zero current. We use the dimensionless coordinates ¢ = z/0g, p = —6/60 and
dimensionless time s = w,t, where oy is the rms bunch length, §y is the rms energy spread,
and w,/27 is synchrotron frequency at the zero current, wso0 = adcg.

We start with the Fokker-Plank equation for the distribution function p(q,p,s), (with

[ dgdpp(q,p,s) = 1),

9p  Op Ou(g)dp 0 .. 0p :
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where 7 is radiative decrement, and the equilibrium temperature 7o = 1 in the dimensionless
variables we choose. The self-consistent potential u(g) is
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Here f(q,s) = [ dpp(q,p,s), and W¥(2) is the wake-field, W%(z) = 0 at z < 0, describing the
energy loss Apcy = —e?W?(2) of a trailing particle due to the field excited by a point-like
leading particle with the separation z > 0 between particles. The coeflicient A is proportional
to the number of particles per bunch, Ns:
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Let us define the average of an arbitrary function ®(g, p, s) with the distribution function:
®(q,5)f(g,8) = /dpp(q,p, 5)®(q,p,s) (5) -
In particular, for ® = p” we get for n = 0,1, ..,4 correspondingly
of 9
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ang _( 4f) +3 2_f — _37(p —25)f, (9)
agsf __( ) +4p o f = —4y(o* — 3p°)f (10)

This derivation is quite analogous to the denvatlon of the equations of hydrodynamics from
the kinetic equation. The first equation is the continuity equation assuring conservation of
mass, the second equation corresponds to the conservation of momentum, etc.

The system of Egs. (6)-(10) has a steady-state solution f(g), 0f/8s =0,

0f(g) _ du ‘
S LA 11
ﬁ:o, p2=To=1, p3::07 p4:3, (12)

This solution corresponds to the Haissinski solution [4]

2
pr(g,p,8) = poe LT HuI], fu(q) = foe™9, (13)

and results for p* corresponds to the averaging p* = [dpp™e?"/2/ [ dpe™7'/2 ie. p?
2™T'(m + 1/2)/sqrt(x) for even n = 2m and is equal to zero otherwise.
Define functions v{g,s), 7(g, ), ¢(4,5)s Gs(d):

v(g,8) =P (14)
T =1+7(¢,8)=(p—p)? (15)
((g:8) = (p—p)® (16)
3+r(g,8)=(—p)* (17)
(s =(p-p)° (18)
The average moments can be written now as
p=v(g,s) (19)
PP=1+7+0" (20)
PP =( +3v+3vr+0° (21).
=3 +r 4+ 4( + 6v* + 60°7 + v* (22)
P° = (s + 150 + 5ur + 100%¢ + 100° + 100%7 + o°. (23)

Note that these moments are functions of the Cartesian longitudinal position ¢ and time




3 Basic equations

Define 1(q, s) as a perturbation of the distribution function around the Haissinski solution
Eq. (13) according to
flg,8) = full + ¥(g, s)]. (24)

Note that conservation of number of particles gives
[ dafataypla,s) =0 @)

for all s.
The potential Eq. (3) has two parts u = ug+ u; where ug is the Haissinski self-consistent
potential

dL;q(_ﬂl =q- )‘/qoo dq fa(qd"\W°[(q — ¢')oo] (26)
and ; 3
uc;q(q) = _)\[; dq,¢(q,, S)fH(q/) W‘S[(q - q')ao]. ' (27)

The system of Eqs. (6-10) can be continued indefinitely. To close the system, we need
some way to define the higher moments 7,(,r,(s,.. in terms of the lower moments. The
obvious criterion is the requirement that the truncated system of equations has to have
correct spectrum of coherent bunch oscillations at least in the case of the zero beam current.

To close the system of two equations with variables v, v it is sufficient to put 7 = 0.
Similarly, taking { = 0 we get the system for three variables v, v, and 7. To get a closed
system of four equations, we can define r(q, s) by the condition

3+r=(p-p)=3lp-p? =31+1)" (28)

The coefficient here is defined by the number of pairs (p — p)? which can be chosen out of
four multipliers (p — p)*.
Similarly, to get a system of five equations, we can define (5 by the condition

(p—p)* =10(p — p)* (p — p)* = 10(1 + 7)(. (29)

where the coefficient is chosen in the same way.
After some algebra, for example, the system of four Egs. (6)-(10), with the definitions of
¥ and r given by Egs. (20)-(24), takes the form

) .
_5% + o' =y = — (Y + uhoe, (30)
%+¢'+T’—u6'r+u'1+70 =—vv'+%¢', (31)
QZ + 20+ —uil + 297 = —vr' — 270" — ——g——l/l' (32)
Bs 0 14+97°




% + 37" +3v( = =3r7" = 3¢V —w(’, (33)

where prime means taking derivative with respect to ¢.
Similarly, to derive the system of five equations, we use Eq. (29). One find that Eqgs.
(31-33) remain the same, while Eq. (34) should be replaced by

a !

'5% — 37" 4+ 6ugT + 1’ — upr + 3¢ = 377" — v’ — 3¢ — 3r%uy + 1 :li 1/)[67' +37% —r], (34)
or ! ’ ’ ; ’ ’ ! ' 6¢'C

£+12’U —6ug(+10¢"+4v(r—37) = —vr'—4rv' — 107" = 6{ 7'+ 6{Tuy — T ¢(1 +7). (35)

To understand how many equations are needed to describe the instability, let us con-
sider the system in the simplest case with 7 = 0 neglecting nonlinear terms in the RHS of
equations. This gives the system of two equations

0 ov

a—f-{-%——uov:O, (36)
dv 0 ,
S+ = (37)

which in turn can be reduced to one equation for V(g), v(g,s) = V(q) exp{g®/4 — iQds]. At
zero current and neglecting damping, we get the Schrodinger-type equation
1" 2, 1 ¢
Vit [+ -—-=]V=0 (38)
2 4
For an arbitrary €, one of two solutions grows as V o e’ /4 at large ¢, giving v fy — const,
which is unphysical. To avoid such a solution, {2 has to be quantized, giving the spectrum
of bunch oscillations at zero current: 2 =n, n = 0,1, ... Compared with what is expected
under the condition, namely (2, = n, one notes that only the lowest frequency (rn = 0 and 1)
give the correct result. This is the result of taking into account only two equations for ¢ and
v. To get correct frequencies of multipole oscillations, it is necessary to take into account
more variables.

Keeping three equations in the system of Egs.(6-10) we were able to get correct spectrum
of dipole and quadrupole oscillations, four equations would give correct spectrum including
sextupole oscillations, etc. To minimally describe the experimental observations, one must
include at least three or four variables.

For the sake of simplicity, let us take an impedance as a sum of pure resistive and .
inductive terms (delaying the subtle question of divergence of the impedance at w — o00).

In CGS units,
Z(w)=R—i—. (39)

Here ¢ is velocity of light. The wake for this model is

AW?(goo) = Reb(g) + Le&'(q), (40)
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where the effective K. and L. are
(41)

The model has been studied before in terms of the interaction of the azimuthal modes of the
distribution function and results are available [5]. In this model,

uy=q — Refu(q) + L fyy(q); uy = —Refud + Le(fuv)'. (42)
The Haissinski solution for the model is defined by
RefH —4q
o —
fir = —bf = 7=, (43)

and, normally, has only one maximum f7; = 0. Correspondingly, ug(g¢) has only one minimum
and does not satisfy the assumption of the Baartman-Dyachkov model [6] about a potential
having two minima.

For such a model, the linearized system of three variables can be reduced to a second-
order equation. Without radiation damping and for the time dependence e~ it takes the
form

v" —a(g)v’ + b(g)v =0, (44)
h
where a(g) =+ R.fu + upLe fu (45)
=" 3+ LefH
1 /
b(g) = m[m —ug(1 4+ Lefr) + Refrug + Lefu(ug)?]. (46)
The new function V(g),
v(q) = V(g)er Jo (@) (47)

satisfies the Schrodinger-like equation:

1

V" 4+ m[m — uess]V = 0, (48)
with the effective potential
ers = WL+ Lefir) = (Rt Leif + 22l gy 32 Ly (a9
At large distances, |¢| — oo, Eq. (49) is similar to Eq. (38)
yr g (EE12 “;1/ 2_ %V =0, (50)

giving spectrum Q? = 3n+1,n = 0,1,... The eigen functions define the asymptotic behavior
of v(g) in terms of the Hermitian polynomials H,(z)

v(q) o ﬁn(—j—ﬁ-). (51)
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The potential ues; describes a set of eigen functions with the discrete spectrum of 2.
We studied it numerically for the range 0 < R.,L. < 5.0. In this range the lowest eigen
value is positive and the solution describes stable oscillations around Haissinski solution.

Such an analysis, as well as analysis of the system of four and more equations is more
complicated, and we use another method described below.

4 Polynomial expansion

Let us consider the system of four equations, which gives, in the linear approximation,
correct spectrum up to sextupole mode. The system of Eqgs. (31-34) is still too complicated
to solve directly. To simplify it we expand all variables in terms of the normalized Hermitian
polynomials H,(g), for example,

o

7(g,8) = Y _ Tu(s)Hn(q), (52)

n=0

and retain a finite number of terms from n = 0 to n = A.

The system of Eqgs. (31-34) takes the form of a system of ordinary differential equa-
tions for the vector V(s) with components equal to the time-dependent coefficients of the
polynomial expansion

—‘%ﬁ—s—) + AV = —a, Vi Vi (53)

The vector Vi(s) of the rank n, x h, where n, is the number of equations in the system
Egs. (31-34) and k is the number of polynomials taken into account. For the system of four
equations, and A = 4, there are 16 components of V}: b, ¢y, ..¢3, vo, ..v3, To, ..T3, {0, --, (3. The
matrix A, includes damping. In the RHS of Eq. (53) we, for simplicity, keep quadratic
nonlinear terms of the RHS of Eqgs.(31-34) neglecting nonlinearities of the 3-rd order or
higher.

The linear matrix A, has two sets of complex eigen functions X2 and Y2,

Apm XA = AXA, (54)

YAA, . = AYA (55)

with complex eigen-values A,. The eigen-functions are orthogonal and can be normalized
by the condition

YA XA = §p1p. (56)
Expand
- Vm(s) =) Xagals). (57)
A
Then, for the coefficients ga(s) we get the system

d
-gf + Aga = =G pugnrgar, (58)




where
Gﬁ',AH = Z KAafn,erﬁle " (59)
l,m,k

In the linear approximation, the RHS should be dropped. The eigen values A define the
mode frequencies w, = ImA,, and the decrements 4, = ReA,, of the n-th mode. The number
of modes is equal to n, x h. Fig. 1 shows the mode frequencies for different A and n, in
the case when the wake is turned down, R, = L. = 0. For the fixed n, = 3, the number of
modes increases with A, but all new modes either increase degeneracy of the existing modes
or add new spurious modes with higher frequencies, see Fig 1(a). For this reason, we choose
in the following kA = n,. Fig. 1 (b) shows modes for n, = 3,4,5 variables, and A = n,. The
number of correct modes increases with n, as it was mentioned above with one exception of
f=177at n, = 5.

Variation of the frequencies with the wake-field parameter A is shown in Fig. 2 for
ny, = h = 4 and the radiation damping v = 0.01. Variation of the damping v, with A is
shown in Fig. 3.

The set of Egs. (59-60) can be split in two subsets, one for oscillating modes with ImA # 0
and another one for a quasi-static modes with ImA = 0. The oscillating modes come in pairs
with the same ReA. We indicate pairs of oscillating modes with v,9, v,5 = 1,..,n,: A, = A},
XV = (X7)*. The quasi-static modes are indicated with the index ¢, ¢ = 1, .., n,.

To simplify solution of the system of equations, we can average out fast oscillating terms.
Although the resonance interaction between modes is possible at certain parameters L., R.
and may describe interesting physics of mode splitting and of mode recombination (see Fig.
2), we are not interested in such special cases because the saw-tooth instability does not
have resonance character taking place at some range of currents rather than at one certain
current.

Averaging out oscillating terms, we get

dgC - C = c c
ds + Acge =~ Z Gci 291 Ger — Z[Gv,ﬁ + Gﬂ,v]gvgﬁ c=1,..,n (60)
C1,C2 v=1
dg’v = v v
ds + Avgy = — Z{Gv,c + Gc,v}gvgm v=1,.,m, (61)
e=1
dgq‘) o T 7] . —
ds -+ A{,gr, = - Z[Gﬁ,c + Gc,z’;]gﬁgc’ v = 1, s V. (62)
c=1

The coefficients Gy, + G2, = [GF . + GZ;]*. Therefore, g; = g}, and Eqgs. (60)-(62) can be
written for the variables g., |g.[?. '

d c i C & c c
di + Acgc = - Z Gci,62gclgc2 - E[Gv,ﬁ + Gﬁ,v:”g'UP c=1,.,n, (63)
€1,C2 =1
d'gvlz * 2 _ = v v 2 -
dS + (AU + Av)lg‘vl - Z[Gv,c + Gc,v + c.c]gc|gvi 3 v = 1) ey Ny (64)
c=1
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There is always a trivial solution g. = |g,|2> = 0 corresponding to the Haissinski solution.
Small fluctuations around such a solution may lead to instability only if ReA, < 0. In this

case, ¢, grows with time
19.1° = g.,(0)? exp{— / ds[2ReA, + £cgcl}, ke =[G, .+ Gty + e (65)

provided ¢,(0) # 0. That drives growth of ¢g. and the growing g. may stop growth of g,.

Numerical analysis shows, at least for the impedance model Eq. (39), that, for R, > 0,
and n, = h = 4 there is only one pair of unstable modes with ReA, < 0 and two c-type
modes. Retaining only these modes, we get the system of three equations for X = g,
Y = gn2, and Z = g, |?

dX

d_ + AlX - —-auX - Of12XY ﬂl (66)

dy

7— + A2Y = —(122Y - a21XY 62 (67)
dz

'd—— + A3Z = -—IilXZ - &2YZ (68)

where Ay s = Aae, Az = Ay +cc, an = GG 4, an = GF 4, a1a = GGy, ao1 = G5 4,
P2 = Gf,lvz-i— = Gii, k12 = [GY,,, + GY,, + cc|. The system reminds the system of
equations for the Lorenz attractor [7] and can describe quite different motion depending on
parameters.

The trivial solution X =Y = Z = 0 corresponds to the Haissinski solution. Generally,
there are other fixed points X = ¥ = Z = 0 in the 3-D phase space X,Y, Z. In the vicinity
of a fixed points, stability depends on the eigen values of the system linearized around the
fixed point. Variation of the 3-D volume around a fixed point with time depends on the

trace of the Jacobian Jus(X,s) = DX,(s)/DXs(0). For the system Eq. (67-69),
T?‘J(S X) AM+Ar+As+ (20511 + a9 + &1)X + (CY12 + 20099 + Iiz)Y (69)

For the impedance model Eq. (40), for large R., Ay and A; are positive while Ag is
negative. In this case, the fixed point at the origin is instable and the instability starts with
exponentially growing Z. The growing Z drives X and Y and their growth can stop the
instability when |k X + #2Y| > |As|. After that, Z exponentially decay while X and Y can
stay about constant at their maximum X,,.., Y0 until Z becomes so small that the driving
terms 7 in the equations for X and Y can be dropped. After that X and Y decrease and.
the system can go back to the origin. Unfortunately, at least for the case n, = h = 4 we
were unable to find the proper parameters. The dynamics we found is shown in Fig. 4. The
time dependence of Z and X corresponds to our expectations. However, the system does not
come back to the initial conditions we used, X(0) = Y (0) =0, Z(0) = 107%. It is not clear

at the present time whether this is related to the way we truncate the system or something
else.
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