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Abstract

We have found that the conventional exponentiated split operator procedure is
subject to difficulties in energy conservation when solving the time-dependent
Schrodinger equation for Coulombic systems. By rearranging the kinetic and

_ potential energy terms in the temporal propagator of the finite difference equations,
one can find a propagation algorithm for three dimensions that looks much like the
Crank-Nicholson and alternating direction implicit methods for one- and two-space-
dimensional partial differential equations. We report comparisons of this novel
implicit split operator procedure with the conventional exponentiated split operator

procedure on hydrogen atom solutions. The results look promising for a purely
numerical approach to certain electron quantum mechanical problems.




I. Introduction

The potential of the new massively-parallel-processor computers to perform
“bare-knuckle” numerical solutions of difficult full-dimensional problems prompted
us to investigate some modern finite-difference methods for solution of partial
differential equations of interest, among these the time-dependent Schrodinger
equation (TDSE). There are several choice methods for integration of the TDSE.!
One of the more interesting is the exponentiated split operator procedure (ESOP), 1,2
based on the use of the fast Fourier transform (FFT), which has been successfully used
for vibration-rotation spectral analysis and simple scattering situations.l>3:4 In fact
the ESOP with FFT is widely used in both optical and quantum physics for wave
propagation. These previous successes suggest an investigation of the ESOP and FFT
for novel atomic physics situations.

Electronic processes such as charge transfer, excitation, and ionization involve
the Coulomb interaction which makes the numerical representation of the wave
function more difficult than in the molecular dynamics studies.2,34 We have found
that the ESOP tends to be very sensitive to the integration step size in Coulombic
problems: the solutions become inaccurate very abruptly as the time increment is
increased. Overall, one would prefer a method with the inherent stability of implicit
numerical procedures which, although inaccurate for large step sizes, remain stable
and acceptable in overall character. In this introduction we review the ESOP and
introduce a novel numerical method, the implicit split operator procedure (ISOP),
which is reminiscent of the Crank-Nicolson (CN) and alternating-direction implicit
(ADI) methods? for integrating the TDSE or diffusion equation. It is hoped that this
new finite difference algorithm for solving the TDSE and related problems will make
the massively-parallel-processor computers more useful for problems in atomic and
molecular physics.

The TDSE is written as

V=—igVy (1)

in Hartree atomic units (denoted au), which will be used throughout this report. The
Hamiltonian is:




H=T+V,
= _1y2
T= 2V.

@)

The potential ¥V is a function of position and possibly time. The ESOP formulates the
numerical integration as the repeated application of the factored (split) incremental
propagator:

Yoa = exp(—%det) exp(—iV dt) exp(—%det) ¥, . 3)

The reasoning for this numerical form has been discussed!>2 previously. Basically,
by using the speed of the FFT to convert from the space to momentum representation
and back, one can always apply diagonal operators to the wave function. We should
add here that the ESOP conserves norm but not energy due to the lack of commutation
of the incremental propagator with the Hamiltonian. The procedure is correct through
order (dr)2and the truncation error is proportional to commutators of 7 and ¥
operating on the initial wave function. This immediately suggests that the ESOP is to
be preferred for situations where the potential is smooth compared to the wave
function. In these cases the truncation error should remain small even for large time
steps.

In certain atomic physics applications we found that the truncation error in the
ESOP grew faster than we could tolerate with time steps that would have appeared to

be adequate for a second-order-accurate method. The energy <WiMT> / <‘~PI‘P> was

an immediate symptom of the error growth. These were applications with a Coulomb
potential and a hydrogen 1s orbital as a part of the wave function. In order to improve
upon the solution to such a problem, we recalled that the implicit CN method would
be a good start for a one-space-dimensional problem. Generalizations to two space
dimensions in the form of the ADI method are practical, but three space dimensional
solutions are tentative at best.> We begin by writing down the second-order-accurate,
time-symmetric form of the finite difference advance in the TDSE, analogous to the
CN procedure:

¥, . +%int‘I’t+dt =V, —%int‘P,. 4)




A direct numerical solution of Eq.(4) is impractical due to the difficulties in resolving
the implicit part of the operator, even with the use of ADI techniques. The truncation

error in Eq.(4) is O(dt)3 , which is precisely the same as in the ESOP in Eq.(3). What
is desired is a use of the fast Fourier transform (FFT) methods for resolving Eq.(4) by
splitting the space and momentum parts of the Hamiltonian. One way to do this is to
rewrite Eq.(4):

1.
l—ilHdt

_— 5
1+%int ©)

\Pt+dt =

and to factor the propagator quotient approximately, all the while maintaining

accuracy through O(dt)2 precisely as in Eq.(3):
1-4iTdt\(1-Livar\(1-LiTar
Vrar = 1. 1. 1. ¥, (6)
1+;iTdt 1+51th 1+Z’Tdt
The advantage of this factorization or splitting is that the operator is now a
product of momentum and coordinate dependencies which allows the FFT procedure
to be applied as in the ESOP. We refer to the form in Eq.(6) as the implicit split
operator procedure (ISOP). Other factorizations may be better - we do not have any
prescription at the moment for choosing a unique form of the factored propagator. If

one is willing to drop the requirement of second-order accuracy, fully implicit
factorizations are feasible which may be more suitable for certain other applications.6

I1. Numerical Study of Stationary State

‘ Our numerical study compares calculations on the hydrogen atom with the two
methods, ESOP and ISOP. First we explore stability of the stationary, time-
independent 1s state with the propagators. In Table I for the ESOP we tabulate the
results for a set of spatial volumes, given as the cube of the box side, and a set of time
step increments. The FFT was chosen to be a (64)3 grid. The time solution went
from zero to 200 au. The grid was centered symmetrically about the Coulomb
singularity. An investigation of a non-centered grid with a cutoff ( » = max{r,0.13au])
imposed on V=-1/r gave similar results (see Appendix). In all cases the space points
were element centered and quadratures were performed by the trapezoidal rule.



L3 (au3) dt (au) H(0) (au) H(200) (au) .  comments

(10)3 0.02 -0.49462 -0.48241

« 0.05 « +4.97 bad
(20)3 0.05 -0.47931 -0.47941

« 0.1 « +2.58 bad (Fig.1 & 2)
(40)3 0.05 -0.43196 -0.43200

“ 0.1 « -0.43209

“ 0.2 « -0.43245

« 0.5 “ +4.97 bad

Table 1. ESOP study of the isolated H atom propagated over 200 au in time for
differing box sizes and time steps. The FFT grid is 64 points in each of X, y, and z.
H(0) and H(200) denote the energy at the beginning and end of the computation.

In Table I we note the appearance of a “Courant-like” condition in the fact that
a larger space increment allows stable integration with a larger time step. Of course
the error is not good for the use of a grid much sparser than the (64)3 grid in a (40
au)3 box about the H 1s orbital where the resultant space increment is about 0.6 au.
Fig. 1 shows the dramatic growth of the error in energy as a function of time. The
error is in the kinetic energy, as may be seen in the noisy part of the wave function
that is growing in the large-r region outside the main 1s orbital in Fig. 2. This error
tends to be rapidly varying in space and thus it dominates the kinetic energy term of
the Hamiltonian.

An analogous set of calculations on H using the ISOP gave the results in Table
II. We note that larger step sizes may now be used with reasonable resulting energies.




L3 (aud) dt (au) H(0) (au) H(200) (au) comments

(10)3 0.05 -0.49462 -0.49339

“ 0.1 « -0.48441

“ 0.2 “ -0.46591

“ 0.5 “ -0.45502 smooth error
(20)3 0.05 -0.47931 -0.47945

« 0.1 « -0.47931

« 0.2 “ -0.47493

“ 0.5 “ -0.45490 (Fig. 3 & 4)
(40)3 0.05 -0.43196 -0.43198

“« 0.1 “ -0.43203

“« 0.2 « -0.43216

« 0.5 « -0.42691

Table II. ISOP study of the H atom propagated over 200 au in time for differing box
sizes and time steps. The FFT grid is 64 points in each of x, y, and z. H(0) and
H(200) denote the energy at the beginning and end of the computation.

The error that develops in the ISOP is different - it tends to remain smooth and
thus has a small effect on the kinetic energy. In Fig. 3 we show the time dependence
of the ISOP quantities for one of the runs of Table II. The variations in kinetic and
potential energy tend to be somewhat larger than the total energy, but one must
remember that the time step is fen times as large as the largest stable time step found
for the ESOP method for the cases in Table I. The ISOP error is evident as smooth
undulations in the extreme wings of the wave function plotted in Fig. 4.

ITI1. Numerical Study of Time-Evolving State

Here we wish to examine the evolution of a time-dependent problem with some
dynamic content. We again pick the H atom but now with a “kicked” or impulsively
excited state at time zero. The initial wave function is



‘P=¢1Sexp(ikoz)=~—\/17e"re 0% 7

where we have chosen k, = 0.25 for these numerical solutions. We have also selected
the L = 20 au box and the (64)3 grid with time integration form 0 to 200 au. Because
the impulsively excited state has a significant amplitude in the H atom continuum, we
must allow for electron probability to be lost from our numerical “boxed” system.
We do this by Kulander’s procedure’ of covering the interior of the box with an
imaginary optical potential which is several grid points in thickness. We found that a
value of the optical potential (¥ , in reciprocal time units) of 0.2 performed quite well.

In Figs. 5 and 6 we show the results of ISOP with a time increment of 0.025 au.
An analogous ESOP run gives nearly identical results. At the end of the run, the
electron mean positions agree to within 4%, the lost probability is 0.042 for both runs,
and the energies are both -0.4732 au. These results are believed to be accurate
solutions for the given box and absorptive optical potential. In Figs.7 and 8 we show
the ESOP results for a time step of 0.2 au. The energy is bad and the wave function is
being lost much too rapidly from the box because of the amplitude of the noisy part of
the wave function in the region of the optical potential. In Table I we found that an
ESOP step of 0.1 was inadequate for the stationary H atom in this box and grid. For
the time-dependent problem here, though, a step of 0.1 is only marginally bad because
the optical potential acts to damp the erroneous, noisy part of the amplitude. This
gives a fortuitous cancellation of errors and makes the ESOP run look better than it
should. An examination of the wave function for this case in Fig. 8 reveals a
persistent component of the noisy amplitude in the continuum like that seen in Fig. 2.

In Fig. 9 we demonstrate the ISOP performance with a larger time step of 0.5
au. The final wave function is shown in Fig. 10. The probability decrease is 0.058,
‘which is large, but the norm is nearly constant as to be contrasted with the ESOP
solution. The major error is the oscillation in position which grows out of phase as
may be seen by comparing to the converged runs in Fig. 5. Again we have
demonstrated stable performance of the ISOP with a time step which is an order of
magnitude larger than the ESOP.

In computations that are not shown here, we have done limited charge

exchange calculations of protons on H at lab energies of 1, 4, and 100 keV at impact
parameters of 1, 3, and 5 au. Qualitatively, the results look as they should for this
multichannel rearrangement scattering problem.




IV. Discussion and Conclusion

Within the scope of this study the stability of the ISOP is clearly superior to the
ESOP for Coulombic problems. The main feature is a maintenance of stability in the
energy conservation as the time increment is increased. This allows the ISOP to
perform reasonably with time steps which are an order of magnitude larger than those
of the conventional method.

A fundamental question is why the ISOP has any advantage at all over the
ESOP. Neither method is energy conservative and both are second-order accurate.
We feel that the advantage in the ISOP is due to be Cayley transform representationd
of the factors in the incremental split propagator. The Cayley transform on a variable
X, for example,

1.

1——2‘1X
1:y >

1+51X

(7

Prsop =

as present in the factors of the ISOP propagator, should be compared to the
exponentiated equivalent in the ESOP,

Pgsop = exp(-i X). (8)

Both the forms in Eq.(7) and (8) are of modulus unity, but the sizes of the gradients or
derivatives are quite different. Consider X to be the Coulomb potential, X = -1/r.
Examine a component of the gradient, say the x component, operating on the above
transforms. The modulus of dPjgop/dx is bounded as r approaches zero whereas the
modulus of dPESop/dx diverges. Because the errors in the propagators are
proportional to commutators of 7 and ¥, which contain derivatives, we feel that this is
a rationalization of the advantages of the ISOP.

To conclude, we feel that the improved stability and energy conservation of the
ISOP affords direct numerical approaches to the solution of certain quantum
mechanical problems. Some of these problems are: strong-field excitation and
ionization, charge exchange, multichannel reactive scattering, and wave packet
dynamics. The new massively parallel computers can make such approaches

practical.




Appendix

A uniformly spaced cartesian grid with points centered about the Coulomb
singularity defines its own cutoff of the potential. However one can see that an
arbitrarily positioned gridwork can create a large error in the numerical representation
of the potential operator if a grid point lies too near the singular point. We make the
following argument for the modification of the Coulomb field when used with the
FFT grids. Consider the integral over a spherical volume of radius R centered about
the singular point of the potential:

R
[d*r1/r =4z [r?dr1/r=22R" (AD)
0

If we equate the spherical volume to the volume of a rectilinear cartesian volume
element assuming that the increments are similar in x, y, and z, we find:

4 3 3
27 R = (dx)’,
’ ( )1/3 ( )
R=dx(3/4x)"".

If we now equate the integral over the singularity in Eq. (A1) to the trapezoidal value
of that integral with a cutoff of r, imposed in the Coulomb potential , we have

27R? = (1/r,) (dx)3, (A3)
from which we can now solve for r, using the value of R from Eq.(A2):
r. =(2/97)3 dx ~ 0414dx. (A4)

The Coulomb potential is simply evaluated with » = max[r,7,]) . The value of dx in
Eq.(A4) is the spatial grid increment, of course. One notes that ry is less than half of
the space increment so that the cutoff is immaterial for grids centered symmetrically

about the singularity.
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Figure Captions

Figure 1. ESOP on isolated (unperturbed) H 1s orbital with a box of L3 = (20 au)3, a
FFT grid of (64)3, time integration from 0 to 200 au, and a time step of 0.1 au. The
top pane shows the kinetic (dotted), the potential (dashed), and the total energy (solid),
all in au. The center pane shows the expectations of the positions, all of which are
zero in this case. The lower pane shows the normalization of the wave function as a
function of time in au. To be noted is the lack of energy conservation driven by
numerical error in the kinetic energy term of the Hamiltonian. These results
correspond to the noted case in Table L.

Figure 2. View of the wave function at the end of the computation shown in Fig. 1.
The modulus of a two dimensional (x and z) slice of the orbital with y= 0 is plotted.
The numerical noise in the wave function is apparent. These results correspond to the
noted case in Table I.

Figure 3. ISOP on isolated (unperturbed) H 1s orbital with a box of L3 = (20 au)3, a
FFT grid of (64)3, time integration from 0 to 200 au, and a time step of 0.5 au. The
plotted quantities are the same as described in Fig. 1. To be noted is the conservation
of total energy as compared to Fig. 1, even with a time step that is five times larger.
The errors in the individual kinetic and potential energies are more obvious here due
to the plot scale. Such ringing errors are a result of the initial orbital not being a
precise solution of the finite difference Hamiltonian. These results correspond to the
noted case in Table II.

Figure 4. View of the wave function at the end of the computation shown in Fig. 3.
The modulus of a two dimensional (x and z) slice of the orbital with y~ 0 is plotted.
A careful examination of the figure reveals the smooth type of error present in the
ISOP. These results correspond to the noted case in Table II.

Figure 5. ISOP on perturbed H 1s orbital with a box of L3 =(20 au)3, a FFT grid of
(64)3, time integration from 0 to 200 au, a wavenumber kick of k, = 0.25, and a time
step of 0.025 au. The top pane shows the kinetic energy (dotted), the potential energy
(dashed), and the total (solid), all in au. The center pane shows the expectations of the

positions, with the only non-zero one being <lI"IZ!LP> / <‘I’[‘P> . The lower pane shows

the normalization of the wave function as a function of the time. This is a standard

12



run for comparison with the following figures. Either ISOP or ESOP would give
these results to graphical accuracy. To be noted is the loss of normalization
(ionization out of kicked state), and apparent stabilization after 100 au of integration
time. .

Figure 6. View of the wave function at the end of the computation shown in Fig. 5.
The modulus of a two dimensional (x and z) slice of the orbital with y~ 0 is plotted.

Figure 7. ESOP on perturbed H 1s orbital with a box of L3 = (20 au)3, a FFT grid of
(64)3, time integration from 0 to 200 au, a wavenumber kick of £, = 0.25, and a time
step of 0.2 au. The plotted quantities are the same as described in Fig. 1. This is an
example of an unacceptable numerical solution, which would require ESOP to be run
at time steps of 0.1 au or less in order to obtain a useful solution.

Figure 8. View of the wave function at the end of the computation shown in Fig. 7.
The modulus of a two dimensional (x and z) slice of the orbital with y = 0 is plotted.
The noise in the wave function is of the same high frequency type as seen in Fig. 2.

Figure 9. Same conditions as Fig. 5 (the standard) except that the ISOP time step has
been increased to 0.5 au. Plotted quantities are the same as described in Fig. 1. The
ISOP error shows as inaccuracy in phase and amplitude of the electron oscillation.

Figure 10. View of the wave function at the end of the computation shown in Fig. 9.
The modulus of a two dimensional (x and z) slice of the orbital with y~ 0 is plotted..
The wave function is quite acceptable even at this large time step.

13
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