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Abstract

1980 data from up to 149 metropolitan areas were used to define cross-sectional associations
between community air pollution and "excess” human mortality. The regression model proposed
by Ozkaynak and Thurston (1987), which accounted for age, race, education, poverty, and
population density, was evaluated and several new models were developed. The new models also
accounted for population change, drinking water hardness, and smoking, and included a more
detailed description of race. Cause-of-death categories analyzed include all causes, all "non-
external” causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases
(COPD). Both annual mortality rates and their logarithms were analyzed. Air quality data were
obtained from the EPA AIRS database (TSP, SO4~, and Mn) and from the inhalable particulate
network (PM;5, PMj 5 and S04, for 63 locations). The data on particulates were averaged
across all monitoring stations available for each SMSA and the TSP data were restricted to the
year 1980. The associations between mortality and air pollution were found to be dependent on
the socioeconomic factors included in the models, the specific locations included in the data set,
and the type of statistical model used. Statistically significant associations were found between
TSP and mortality due to non-external causes with log-linear models, but not with a linear
model, and between TSP and COPD mortality for both linear and log-linear models. When the
sulfate contribution to TSP was subtracted, the relationship with COPD mortality was
strengthened. Scatter plots and quintile analyses suggested a TSP threshold for COPD mortality
at around 65 ug/m° (annual average). SO4 , Mn, PM|5, and PMy 5 were not significantly
associated with mortality using the new models. The report identifies a number of important
uncertainties in the analysis, including possible effects due to the 1980 heat wave.
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Executive Summary

Data from up to 149 metropolitan areas were analyzed in a study of the relationships between
community air pollution and "excess” human mortality for the year 1980. Several socioeconomic
models, including the model proposed by Ozkaynak and Thurston (1987), were used in cross-
sectional multiple regression analyses to account for non-pollution effects such as age, race,
education, poverty, population change and smoking. Cause-of-death categories analyzed include
all causes, all causes except accidents-suicide-homicide (i.e., "non-external” causes), major
cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). The patterns for
the first three groupings were quite similar but differed markedly from the patterns of COPD
mortality. Regressions were performed for these cause-of-death groupings as annual mortality
rates ("linear" models) and as their logarithms ("log-linear” models).

Two different sources of particulate air quality data were utilized: data from the EPA AIRS
database (TSP, SO4~, and Mn) and data from the inhalable particulate network; the latter data
(PM;5, PM3 5 and SO4- from the IP filters) were only available for 63 locations. The data
were averaged across all monitoring stations available for each SMSA and the TSP data were
restricted to the year 1980. The associations between mortality and air pollution were found to
be dependent on the socioeconomic factors included in the models, the specific locations
included in the data set, and the type of statistical model used.

For each mortality variable, a "parsimonious” model was developed that had statistically
significant coefficients for the non-pollution variables; most of these coefficients also agreed
with exogenous estimates of the "correct” magnitude. Using these models, statistically
significant associations were found between TSP and mortality due to non-external causes with
the log-linear models evaluated, but not with a linear model. Sulfates, manganese, inhalable
particles (PM15), and fine particles (PMy 5) were not significantly (P < 0.05) associated with
mortality with any of parsimonious models.

Significant associations were found between TSP and COPD mortality for both linear and log-
linear models. When the sulfate contribution to TSP was subtracted, the relationship with
COPD mortality was strengthened. Scatter plots and quintile analyses suggested that a TSP
threshold might be present for COPD mortality, at around 65 ug/m~ (annual average).

Additional major uncertainties remaining in this analysis include the type of regression model to
be used, relationships among those cities which have not been included in the analysis, and the
effects of weather, differences in life-style, indoor air quality and the use of air conditioning,
and differences in the age distributions among those 65 and over. Expanding the analysis to be
more inclusive might result in different conclusions regarding which types of models fit best,
the significance of air pollution, and the levels of air quality thresholds present (if any). In
addition, examination of additional causes of death might provide insight into the plausibility of
causal relationships. Finally, since 1980 was an anomalous year in several ways (drought, heat
waves, and a major volcanic eruption), extension of these findings to a more general case must
be considered problematic pending resolution of these uncertainties and testing of the models
against data from other years.
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INTRODUCTION

Contro! of air pollution in the United States is intended primarily to protect public health. This
goal has been supported repeatedly by public surveys and is reflected in the language of the
Clean Air Act, which mandates the achievement of health-related ambient air quality standards
without regard to costs of the pollution controls required to do so. In the 1970s, the costs of air
pollution control in the United States were estimated at $500 million per year (Eisenbud, 1970).
The annual cost is now estimated to be about $33 billion; when the 1990 Amendments to the
Clean Air Act are fully implemented, this figure may rise to over $60 billion (Portney, 1990;
O’Neal, 1991). The total costs of health care, however, reached $620 billion in 1989, or more
than 11% of the gross national product (Ginzburg, 1990); it is thus important to estimate the ex-
tent to which air pollution may contribute to ill health. This report uses annual mortality rates
as a measure of public health and attempts to derive statistical associations between their spatial
patterns and the spatial patterns of air pollution. If reliable "dose-response” relationships could
thus be defined, they could be useful for estimating the external costs of the various sources
(anthropogenic and natural) that produce air pollution.

Objectives of the Analysis

The purpose of this report is explore the sensitivity of statistical mortality/pollution relation-
ships to analysis technique, geographic scale, functional forms, and confounding variables, based
on cross-sectional analysis of SMSAs for the year 1980. It is not intended to try to establish
"right” and "wrong" results or to attempt to establish causality (which can never be done with
statistics alone). The general technique is that of defining regression models which explain the
spatial variability of mortality rates by incorporating variables for the known effects of demog-
raphy and socioeconomic factors, and testing for effects of environmental factors. The success
of such models is judged by the statistical significance of the independent variables, the
plausibility of the implied associations, and the robustness to variations in model specification
and data input. ’

Previous Studies of Air Pollution and Mortality

The literature on this topic extends back to the 1950s and earlier, beginning with accounts of
the major air pollution disasters (Lipfert, in press). These events remain the best evidence that
air pollution can hasten mortality at levels then found in community air. Much of the literature
deals with the period before the 1970 Clean Air Act was fully implemented, and thus it is not
clear whether these findings apply to the cleaner urban atmospheres currently enjoyed in the
United States. Some of the more recent studies dealing with air quality, ca. 1980, are discussed
briefly below. '

Time-Series Studies. Studies examining short-term (daily or weekly) mortality variations are
similar to those analyzing air pollution disasters in that both types of studies deal with the
timing of death. Table 1 summarizes time-series studies that have been published in recent
years for U.S. cities; note that all of the criteria pollutants except lead have been associated with
short-term fluctuations in mortality and that most of the studies include some measure of par-
ticulate air pollution. In contrast to cross-sectional studies (discussed below), no time-series
study has found a significant association with the sulfate fraction of suspended particulate mat-
ter (hereafter referred to as "sulfates” or SO4=), in part because of the limited data available.

Lipfert and Wyzga (1992) examined long-term temporal variability of mortality and air pollution
in New York City, Steubenville, Ohio, and Los Angeles, using a variety of methods to attempt
to control for exogenous trends. They concluded that the relationships deduced from long-term
trend analysis were consistent with those being reported from time-series and cross-sectional
studies, but that many important uncertainties remained.
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- i i . Cross-sectional studies examine patterns in the places of
death. Ozkaynak and Thurston (1987) found associations between mortality and various forms
of particulate air pollution in up to 98 U.S. metropolitan areas (SMSAs). They found that the
associations were more statistically significant for sulfates and fine particles than for the coarser
particles and concluded that this difference was consistent with causal respiratory mechanisms.
The authors (O&T) expressed cautions as to the limitations of their data base and the sensitivity
of the mortality/pollution relationship to model specification and the selection of locations.
Nevertheless, their results have been a candidate for the basis of calculations estimating the ex-
ternal costs of fossil fuel use. However, the O&T study has been criticized (Lipfert and Morris,
1991, 1992) on grounds that the statistical model used was not well established and that the
results did not clearly establish that the relationship for sulfates could be distinguished with
confidence from the relationships with other pollutants.

Lipfert et al. (1988) studied pollution, demographic and mortality data at the city level for over
900 cities for the 1980 time period. Their study included data on several additional
socioeconomic variables, drinking water hardness, and cigarette consumption data at the state
level. Unfortunately, none of the air pollution variables they used was ideally suited to the
task. In an attempt to circumvent problems with some of the ca. 1980 measurements, notably
sulfates, they used data from a long-range transport model (Shannon, 1981) to estimate city-
wide averages for SO4=, S0,, and NO,. While these variables displayed statistically significant
relationships with city mortality, subsequent analysis employing more recent air quality
measurements, including some from research campaigns, shows that the computed air quality
variables may have been influenced by regional bias (the relationships between computed and
measured SO4= varied by region), which makes these regression results difficult to interpret.

Comparison of Time-Series and Cross-Sectional Study Results. It is difficult for time-series
studies to test for the degree of prematurity of death; it is possible that death may have been
advanced by only a few weeks or months, because of the general poor state of health of the
decedent at the time. Since cross-sectional studies deal with annual rates, they must include the
annual (net) sum of short-term variations, by definition. If a cross-sectional study finds a
weaker relationship than found by the corresponding time-series study, it may indicate that the
short-term responses were premature by less than one year. If it finds a stronger relationship, it
may indicate the presence of chronic effects which relate to pollution from earlier years. Of
course, in either case, such comparisons between studies may also be affected by flaws in the
various studies. Unfortunately, neither of the "1980" cross-sectional studies used pollution data
specific to the year 1980, so that it has not been possible to make such comparisons with con-
fidence.

Organization of the Report

Introductory material continues with discussions of epidemiological methods, statistical models,
and measures of risk. The variables used in the study are discussed next, with emphasis on the
air quality data and the difficulties entailed in deriving representative exposure values for 1980.
The regression analysis begins with relatively simple models, including that used by Ozkaynak
and Thurston for sulfates and various particulate measures, and then proceeds to more compli-
cated models and additional pollutants. The findings are then summarized in a concluding dis-
cussion and recommendations are offered to address the remaining uncertainties. Similar
analyses for ozone air pollution are presented in a companion report (Lipfert, 1992a).




TABLE1 SUMMARY OF SELECTED TIME-SERIES STUDIES OF DAILY MORTALITY AND AIR POLLUTION

Authors (ref.) Location time period control variables species coefficlent olasticity lag
+/- std erv .
Schwartz Detroit 1973-82 weather time,yr dummies TSP* 0.546+/-0.145# 0.048 1 day
(1991) (city) weather time,yr dummies SO2 0.330+/-0.12 0.010 1 day
Schwartz&Dockery Steubenville,OH 1974-84 weathertime,yr dummies TSP 0.381+/-0.082 0.043 1 day
(1992a) (SMSA) weathertime,yr dummies S02 0.40+/-0.16 0.029 1 day
Wyzga (1977) Philadelphia 1957-66 season, flu epidemics TSP 0.17+/-0.092 0.028 1 day+
{city) winters daily temperature $02 0.035+/-0.037  0.009
COH 0.35+/-0.12 0.046
NO 0.28+/-0.09 0.022
NO2 0.20+/-0.16 0.013
HC 0.031+/-0.014 0.046
CcO 0.0024 +/-0.001  0.021
Schwartz&Dockery Phitadelphia 1973-80 weather time,yr dummies TSP 0.661 +/-0.131 0.051 0-1 day avg
(1992b) {city) weather,time,yr dummies $S02 0.50+/-0.1% 0.028 O-1 day avg
Dockery&Schwartz St. Louis 9-1-85 to weather, season dummies, PM-10  1.50+/-0.69 0.041 1,2 days
(torthcoming) (SMSA) 8-31-86 Interactions PM-2.5 1.71+/-0.96 0.030
SO4 6.08+/-5.77 0.049
E. Tennessee 9-1-85 to weather, season dummies, PM-10  1.60+/-1.49 0.048 1,2 days
{11 counties) 8-31-86 Interactions PM-25 2.28+/-1.86 0.048
S04 8.0+/-12 0.070
Fairley San Jose, CA 1980-86 weather.time,yr dummies COH 0.48+/-0.17 0.027 1-2 days
{1990) {Santa Clara Co.) (winters)
Pope et al. Provo, UT 1985-89 weather time,yr dummies PM10 1.47+/-0.31 0.069 S-day avg
(1992) {Utah Co.) ‘
Kinney and Los Angeles 1970-79 weather, day-of-week, ozone 0.040 1 day
Ozkaynak {county) long-term cycles, years NO2 {combined) none
(1991) smoke none
Shumway et al. Los Angeles 1970-79 weather coO 0.068 weekly
(county) HC 0.064 data
smoke 0.052

*TSP was estimated from daily airport visibility
#coefficients and std errors are given for relative risk per mg/m3




METHODS, VARIABLES, AND DATA
Epidemiological Methods (after Lipfert, in press)

Epidemiology differs from clinical medicine or biomedical research by virtue of its study of
populations rather than individual cases or specimens. In many cases, this emphasis stems from
a fundamental objective of epidemiology: to improve public heaith (Kieinbaum et al., 1982.)
However, the study of the effects of air pollution usually involves relatively subtle effects (i.e.,
weak associations) that can only be observed in large populations, for which consideration of
individual cases is clearly impractical.

For example, the daily mortality rate in a typical U.S. city of one million people is about 20
deaths per day. If this rate were to double for a few days due to an air pollution disaster, only
about 0.005% of the population would have been affected. Since we cannot identify those in-
dividuals most at risk a priori, a very large number of people would have to be monitored in
order to determine the individual air pollution exposures of the decedents.

Population Considerations and the Ecological Fallacy. Studies of population health responses to
air pollution are thus necessarily observational, i.e., involving naturally occurring rather than
manipulated environmental conditions (Kleinbaum er al., 1982). Since the characterization of
individual environmental exposures is clearly impractical, such an epidemiological study is
likely to be ecological as well as observational, i.e., involving the study of groups rather than of
individuals (Piantidosi et al., 1988). According to Kleinbaum ez al. (1982), the primary feature
of an ecologic study is the lack of knowledge of the joint distribution of the study factor (i.e.,
exposure to air pollution) and the disease within each group. The primary objections to
ecologic studies relate to the lack of specificity of the affected individuals and the exposed in-
dividuals, because groups are used in the regression analysis. This objection is most valid when
the pollutant is very localized (such as emissions from a toxic waste dump) or when the disease
is relatively rare (such as leukemia). However, this objection diminishes for regional pollutants,
such as fine particles or sulfates, and for mortality from all causes or from very common causes
(such as heart disease).

Time-Series Studies. For a time-series analysis, the group is the single city or other geographic
entity whose temporal responses are being studied and the "within-group® variation is temporal.
Since each day a different subgroup is likely to respond (die, be admitted to hospital, etc.), the
ecological hypothesis is that the same set of air monitoring locations faithfully represents the ac-
tual exposures of these different subgroups, on all days. The term "ecological fallacy" refers to
a situation where this hypothesis is not supported. The likelihood of such support depends
strongly on the size of the area being studied and the spatial coverage of the air monitoring net-
work. Time-series studies vary substantially in the numbers of air monitors used to estimate
exposure; errors in exposure can affect the magnitudes and statistical significance of the regres-
sion coefficients derived.

Cross-Sectional Studies. For cross-sectional analyses, the within-group spatial variance is at
issue with respect to the ecological fallacy. We desire that each of the cities or locations we are
studying have the same within-city spatial distribution of air pollution exposure (assuming that
adequate monitoring networks are not always available) and also the same within-city distribu-
tions of potential confounding variables such as age, race, poverty neighborhoods, etc. This is
not likely to be true in general, but these considerations favor the use of the smallest possible
units for geographic analysis. As larger geographic units are used for analysis, for example,
Standard Metropolitan Statistical Areas (SMSAs), which are groups of counties surrounding a
central city of 50,000 or more, the representativeness of air monitoring is likely to diminish,
especially when only one station is used, as many previous studies have done. Also, many of
the individuals who succumb in a given year are likely to have been hospitalized during the
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year or to have been otherwise limited in outdoor activities, such that their primary exposure to
air pollution may have been from indoor air pollution sources.

There can be important regional biases in the spatial distributions within SMSAs or counties.
The large urban centers of the Northeast and West Coast often contain contiguous SMSAs, and
they may be more homogeneous than the isolated SMSAs often found in other parts of the
country. These characteristics are not independent of air pollution, which varies both regionally
(more sulfur in the East, more ozone in Southern California) and according to the economic ac-
tivities of the area. Industrial SMSAs may have centrally located poor neighborhoods, while in
the South, poverty pockets are often found in the outskirts of cities. Some pollutants are higher
in central cities (CO, particulates) while some may be higher in the suburbs (ozone, aerosol
acidity). Use of successively larger geographic units of analysis surrounding an air monitoring
station can create a bias since the population characteristics are averaged over the entire area,
but the air pollution data used in the analysis usually remain unchanged, as larger areas are
considered. Thus, the nature of the central city with respect to its suburbs is an important
parameter to consider when selecting the geographic unit of analysis. However, Cohen (1990)
argues that there is safety in numbers, i.e., that using large numbers of observations in a
geographic study reduces the chance for serious ecological bias.

Interactions Between Air Pollution and the Size of Geographic Unit. The accuracy of estimat-
ing exposure to air pollution will also vary with the nature of the pollutant. Some primary pol-
lutants, such as TSP, CO, and SO+, tend to be distributed very locally, and concentrations may
vary substantially within a few city blocks, in addition to varying between indoors and out-
doors. Secondary pollutants, such as N02, oxidants, and sulfate particles, may exhibit less spa-
tial variability, although ozone can be strongly attenuated locally by the presence of NO,
sources. Most cross-sectional studies have had to work with data from a few air pollutxon
monitors and have made arbitrary assumptions about the size of the area that each monitor is
assumed to represent. The lack of true representation of the air pollution exposure of the
population constitutes an important source of error in the independent variables for ecological
studies.

This source of error is also associated with the choice of the type of political subdivision for the
observational unit, since the larger its area, the larger the chances for errors in estimating true
population exposures (assuming a fixed number of monitors and that local pollution sources are
present). For example, assume that there is a true relationship between particle concentration
and mortality (this need not be a causal relationship, since there may be other aspects of the
pollution source to consider, such as occupational factors). Often there have been available two
measures of particle concentration: total suspended particulate matter (TSP), which tends to be
somewhat local because the measurement may include particles up to 50 um in diameter; and
the sulfate portion of the particulate catch, which is usually distributed regionally since the par-
ticles are much smaller and tend to travel further. Recently, particulate monitoring in the
United States has separated fine and coarse particles, initially by collecting particles with a
median diameter of 15 um (PM 5) and currently with a2 median diameter of 10 um (PM, ).
When relatively small areas (such as cities or portions of cities) are used as the observanonal
units, TSP exposures may be reasonably well-represented. On the other hand, if larger units are
used with the same monitoring network, such as entire counties or metropolitan conurbations,
any "true" TSP effect on mortality is likely to be masked by the exposure error, since many of
the people "assigned" to the TSP monitor live so far away that they are not actually exposed to
the pollution measured there. Now, if at the same time there is a regional trend towards higher
mortality in the region of high sulfates (or any other regionally-distributed pollutant), the
regional pollutant will become the significant variable. This result may appear to be a health-
based causal finding, since small particles can penetrate deeper into the lung, but, in this case,
the result appeared as a statistical artifact because a regionally-distributed pollutant was
matched with a regionally-distributed mortality trend. An analysis based on large geographic
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units is unlikely to capture local pollution effects, only regional ones, but a city-based analysis
should be able to detect either type. This distinction is similar to separating the high-frequency
(short-term) effects from the seasonal effects in a time-series analysis. Richardson et al. (1987)
recommends checking the stability of results from ecological analyses in relation to geographic
scale.

However, mortality rates may be statistically unstable if the population base is too small. One
solution to this problem is to use small geographic areas (i.e., central cities) with data pooled
over several years, which will improve the stability of estimates of both mortality and air pollu-
tion exposure. If the analysis is intended for comparison with time-series findings, it is impor-
tant to maintain the matching between pollution and mortality data by year.

Confounding. The term confounding refers to the incorrect assignment of an effect to an agent
when in fact a third variable (the confounder) is responsible. Such a situation requires that the
confounder have an effect on the outcome variable and be correlated with the first agent. In
other words, a confounder must have the property of different distributions for exposed and
nonexposed subjects (Miettinen and Cook, 1981). A hypothetical example might be a situation
in which smokers are more likely to be exposed to air pollution because they work outdoors.
According to Stellman (1987), confounding is the "cause of great angst among epidemiologists."
In ecological case-control studies of environmental factors, in which a single exposed city is
compared to an unexposed city, the opportunity for confounding is very large since there are
many other ways in which two such population groups may differ. As the number of locations
or time periods increases and multiple regression methods come into play, the opportunities for
serious confounding are diminished.

Population migration patterns can cause errors in estimated pollution exposures, as well as con-
founding of regression results. Confounding results from either selective migration of sick
people or of the more economically advantaged. For example, Bultena (1969) reports that
retirees moving from thé Midwest to Florida and Arizona tended to be better educated and had
higher status occupations than the average; in such cases, the population left behind may be in
worse health, on average, than the populations of the destination cities (for reasons that have
nothing to do with air pollution). Although there may be anecdotal reports of people with
respiratory ailments moving to the Southwest to seek improvements, we are aware of no analyses
of the actual extent of such migration. In either case, current (local) air quality may not repre-
sent the true long-term exposures of current residents; thus it may be unreasonable to try to in-
terpret the findings of cross-sectional regressions based on same-year air quality as representing
long-term effects. Polissar (1980) gives some examples where migration biases the estimation of
cancer risk based on geographic comparisons. However, Cohen (1992) recently estimated, based
on a telephone survey, that as a national average, people spend over 70% of their lives within 25
miles of the location of death. These percentages are higher in the Northeast Jup to 90%) and
lower in Florida, California, and Arizona (ca. 50% in these high population change states).

Other problems can arise when unadjusted total mortality data are used (all causes, ages, races;
both sexes). Often, for smaller geographic subdivisions, only this type of data is available. Age
adjustment is the most important correction to make, since the probability of dying in a given
year increases exponentially with age above about age 35. If mortality rates are available for
detailed age groups, they can be combined into one age-adjusted total rate by reference to the
age distribution of a standard population. If, on the other hand, only total deaths are available
but details are available on the population’s age distribution, then the expected total number of
deaths may be computed on the same basis. In many cross-sectional studies, neither procedure
was followed, but surrogate age adjustments were attempted by using a population age descrip-
tor as an independent variable in the multiple regression or "model.” "Percentage of population
aged 65 and over" is a common choice, for example. If all populations have similar age dis-
tributions, such a choice may be acceptable, but simple algebra shows that the regression coef-
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ficient for "Percentage of population aged 65 and over" should be numerically equal to the mor-
tality rate for this age group minus the rate for the under-65 group (Lipfert et al., 1988).
Many studies do not meet this simple test, which suggests that the "Percentage of population
aged 65 and over" variable may have captured some other effects. Similar considerations apply
to other explanatory variables employing percentages of the population, such as "percent non-
white" or "percent poverty". Such checks are tantamount to comparing the ecological regression
results with studies on individuals,

Statistical Models

Some studies of air pollution health effects have been content to identify the existence of as-
sociations, primarily by means of calculating correlation coefficients. In general, bivariate cor-
relations are not only inadequate to define the relationships which are ultimately of interest,
they can be misleading because of confounding variables (Lipfert and Hammerstrom, in press).
Furthermore, at this stage in our knowledge of air pollution health effects, in many cases the
existence of associations is no longer an important issue. This report is thus largely concerned
with establishing consistency or coherence and in estimating the relative magnitudes of the im-
portant relationships.

When temporal variability is at issue, both confounding variables (such as weather patterns) and
intervening variables (such as seasonal or day-of-week effects) must be taken into account in
order to derive the true associations with air pollution. Meteorological factors can confound be-
cause they can affect both health status and air quality. For example, breathing cold air can
precipitate respiratory distress and viral infections are more common in winter; lower outside
temperatures call for increased space heating and pollutant emissions. Cold weather may also
cause some people (especially those in poor health) to remain indoors, where some fraction of
them may be exposed to indoor air pollution sources or to contagious disease. Similar confound-
ing can occur in the summer with heat wave distress and increased ozone. Seasonal and day-
of -week effects can exert independent influences on health (viral outbreaks) and on the report-
ing of health-based events (availability of clinics and physicians). When air pollution patterns
correspond to these exogenous temporal patterns, spurious correlations result.

For spatial or cross-sectional analysis, there are more opportunities for confounding, since the
same sources that create more air pollution in a given location can have many other effects on
the population. Industrial neighborhoods are generally less desirable for residential purposes;
hence their populations may be less economically advantaged or educated. Many other life-style
differences accompany such socioeconomic gradients, including smoking, alcohol consumption,
diet, access to medical care, etc. On the other hand, industrial workers per se are often heal-
thier than the general population, because of self-selection. It should thus be evident that
analysis of air pollution health effects by means of spatial gradients must include many factors
in addition to the obvious demographic adjustments for age, sex, and race.

There can also be interactions between temporal and spatial factors. Those cities with older,
poorer, and more highly-stressed populations (including a higher percentage of smokers) would
be expected to exhibit stronger temporal effects of air pollution. Similarly, when comparing
across cities for a specific year, short-term phenomena such as flu epidemics or heat waves,
which do not occur everywhere in a given year, could confound the spatial air pollution
relationships. For example, Mt. St. Helens erupted in May, 1980, and the resulting ash may
have been responsible for some of the high TSP levels recorded in the West for that year.

The ways in which a researcher chooses to deal with the need for multivariate analysis con-
stitutes his/her statistical model. The literature varies greatly with regard to these methods and
models, and some data sets have been subjected to several different types of analysis. One of
the first decisions to be made is whether to pre-adjust for a potentially confounding variable
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(this may be thought of as two-stage analysis) or to perform a multivariate analysis which al-
lows the confounding variable to interact with the air pollution variables. This dichotomy oc-
curs most often with time-series analyses and the need to account for simultaneous weather ef -
fects. If the data are pre-adjusted without recourse to exogenous data to define the adjust-
ments, there is a risk that some portion of the pollution effect may have been assigned to the
weather effect. We may have more confidence in such procedures if the weather "adjustments”
are consistent with known physiological responses.

For cross-sectional data, we must distinguish between the process of trying to define a model
and that of estimating its coefficients. These two processes have often been combined unwit-
tingly, and it should be obvious that two independent data sets are required to do justice to
both tasks. This is one of the motivations for quantitative comparisons of independent data
analyses. Since we have no basis for a "true” model of the spatial variability of health indices
(especially for mortality) and the data available for analysis are always limited, we must resort
to empirical "specifications” of the important terms. It follows that there can be any number of
such models, and the prudent researcher will investigate whether his/her findings of effects due
to air pollution are robust to plausible variations in these models. Further, he/she may wish to
test the distributions of residuals to determine whether similar models result in statistically sig-
nificant differences in their assignments of pollutant effects (Lipfert et al., 1988).

Researchers also differ in the types of multivariate analyses conducted. Two-way contingency
tables were used to display the interactions of wvariables in some of the earlier studies
(Winkelstein et al., 1967), but multiple regressions seem to be the current method of choice.
Some researchers use stepwise variable selection methods; some of these are sensitive to the or-
der of variable entry. Others have pre-defined their models and used "forced" variable entry.
In cross-sectional studies, models with up to ten variables are not uncommon and collinearity
can be very important as the last few variables enter. Suffice it to say that the burden of proof
remains with the researcher to show that his findings vis-a-vis air pollution and health are
robust to changes in model specifications and data set.

Regional vs. Local Relationships

Time-series studies often go to great lengths to separate long-term (such as seasonal) variability
from short-term variability, reasoning that most seasonal trends are caused by factors other than
air pollution, and that sharp (daily) mortality increases and decreases in phase with air pollution
perturbations are more likely to be causally related. Similar problems exist with respect to the
spatial patterns of interest to the cross-sectional analyst; regional trends are analogous to
seasonal patterns and local variability to daily perturbations.

Figures 1 and 2 show regional patterns in heart and respiratory disease mortality, for example.
Heart disease is highest in the East and Midwest, and respiratory disease is highest in the West.
We also know from air monitoring data that sulfur oxides tend to be higher in the East and
suspended particulate matter in the West (much of it from fugitive dust). These regional trends
will prevail in a cross-sectional regression unless compensating factors interfere on the local
level, such as smoking, education, income, population change, for example. For this reason,
models which have not accounted for all of the local factors will tend to associate all-cause and
heart disease deaths with 804= and COPD with particulates. The challenge to the analyst is to
know when his model is "complete” and not "over-specified." The approach taken in this report
is to try all reasonably conceivable variables (for which data are available) and then to trim
down to that set of variables that are significant or nearly so. These trimmed-down models
have been called "parsimonious” (Mendelsohn and Orcutt, 1979). This analysis is concerned with
spatial variations; a similar approach was used by Schwartz and his colleagues to account for
seasonal trends and weather variables in time-series analyses.
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Figure la. Observed/expected white male deaths due to acute myocardial infarction, 1979-85.
Data source: National Longitudinal Mortality Study.
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1979-85. Data source: National Longitudinal Mortality Study.
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Measures of Risk

Risk can be guantified as the probability of an event occurring within a given time. If ten
members of a group of one thousand die within a year, the observed annual mortality rate is 10
per thousand population, which is a statement that each person in that group had a 1% chance
of dying in that year. Of course, we also know that the individual risk increases exponentially
with age, above about age 35. The annual risk to those aged 65 and over is about 6%, for ex-
ample (Lipfert, 1978). In this report, we are primarily interested in how exposure to air pollu-
tion might also increase the risk within such a group.

For contributory factors like air pollution, we are interested in the incremental or "excess" risk
associated with given levels of ambient air concentrations. The fundamentals of excess risk
must be developed from various statistical measures of association, such as correlation or regres-
sion coefficients. The classical linear regression equation is given by

y=a,+ Zbixii»u M
1

where the bi are the regression coefficients for the independent variables x: and u is the
residual error. For a linear dose-response model such as Eq. 1, which is the simplest form, the
excess risk (b;x; (where i refers to air pollution variables) may be expressed per unit of air con-
centration regardless of concentration level. For example, some time series analyses have
derivgd daily risk factors for smoke exposure (b mo e) of about 4% excess deaths per 100
ug/m> of smoke (Table 1). Thus, if the normal rissk og( dying is 6% per year (0.0164% per day),
in a population of 125,000 persons aged 65 and over, the expected death rate of this group is
about 20 per day. On a day with a smoke concentration of 125 ug/m~, this risk would be in-
creased by 5%, so that one "excess" death would be expected on that day. This analysis
methodology presumes that the agents and exposures of concern have been identified (in this
case, smoke).

Since the regression coefficients in Eq. 1 must be expressed in units consistent with the depend-
ent and independent variables, it is often difficult to assess their practical importance based on
numerical values. A useful concept is that of the elasticity (at the mean), a term taken from
economics defining a nondimensional regression coefficient as

e = byx;/y @

Elasticities are often expressed in percent and offer another measure of attributable risk, based
on the mean values of the x;. Elasticities for nonlinear models are discussed below, The elas-
ticity concept based on mean values breaks down when independent variables are subjected to
certain transformations which alter their mean values. For example, adding (or subtracting) a
constant changes the means but not the standard deviations. The regression coefficients will not
change correspondingly (as they would due to a change in scale factors), so that the elasticities
are also changed as a result of the transformation. One must thus be careful in the application
of the elasticity concept.

The absolute excess risk in the above example is seen to be 1:125,000, but this figure depends
on the baseline level since the fundamental dose-response relationship was expressed as a per-
centage increase. Obviously the absolute risk from air pollution is much less for a group of
healthy teen-agers than for a group of senior citizens.
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Comparison of Models

According to the exacerbation model of air pollution effects on health, air pollution seldom, if
ever, is the only factor contributing to the prevalence of a heaith effect. In the multiple
regression mode! given above

y-ao+z b;x; +u 1
i
air pollution variables will account for only some of the X

If we desire to evaluate Eq. 1 for alternative pollutant species which are highly correlated, such
as smoke versus 802, the only practical method is to evaluate the model for each species
separately, which may give rise to models which may differ very little from one another. There
is always a temptation to declare the model with the highest adjusted correlation coefficient (R)
value or the highest t statistic for the pollution variable as "best," however close its competitors
might be. This practice ignores the fact that a given data set represents only one realization
from the universe of possible data sets, and that its regression statistics thus all carry confidence
limits. When alternative models are independent, the conventional confidence limits for R may
be used as as a guide towards defining statistically significant differences between models.
However, in the cases of interest here, models generally only differ in the pollution variables
chosen and thus are not independent, and special techniques are required in order to test the
differences for statistical significance (Lipfert et al., 1988).

Dose-Response Functions

When quantitative estimates of the effect of an independent variable are required, the regression
equation or some portion thereof becomes in effect a dose-response function (drf). The mathe-
matical form of such a function can be very important, especially when extrapolatmg beyond
the range of the original data (which is always dangerous).

For a simple linear regression model, there are two parameters, the slope and the intercept. If
the x-intercept is positive (negative y-intercept), the function is said to have a threshold,
which, in the case of ambient air pollution, is a basis for air quality standards. Such a function
has a constant slope, but the elasticity is usually defined at the mean. Obviously, the function

=Q!X
dxy

takes on different values along the curve of y = mx + b if b is not zero. Thus two different
drfs having the same slope may have very different elasticities if the ranges of the x values are
greatly different.

Some investigators have found that logarithmic transforms provide a better fit to their data.
For the model

.

In(y) = m In(x) 3)

the elasticity is simply e = m =_dy x = d[in(y)]
dx v d[in(x)]

and is constant along the entire length of the drf. Obviously, the slope of Eq. 3 increases near
the origin (in cartesian coordinates). A model which fits this definition provides the same per-
centage response regardless of the absolute value of x and implies increased toxicity per unit of
dose at low doses, which seems physiologically implausible. However, when dealing with
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heterogeneous populations, applications of the concepts of toxicology derived from relatively
uniform populations may not be immediately obvious.

The final model paradigm considered here is the log-linear model
log y =2, + D bx;+u,ory=expa,+ Zbixi +u) @)
i i

in which only the dependent variable has been transformed to logarithms. The elasticity of this
model is given by

e; = Byx; . (5)

when natural logarithms are used, and B:x:./In.(e) when base a is used; the logarithmic models
employed in this report use base 10 logarithms. The log-linear model postulates an exponen-
tially increasing effect per unit of increased dose, which is consistent with an increasingly sen-
sitive fraction of the total population, as concentration levels increase.

For data sets of limited range in x and small values of e, these three types of models may be es-
sentially equivalent. For data sets with substantial variability, plots of the regression residuals
may be required to establish the best form of model.

The Air Quality Data Base

As discussed above, cross-sectional studies have usually been intended to study long-term dif-
ferences among locations. For this reason, it has not generally been regarded as particularly im-
portant to use environmental data taken exclusively during the nominal year of study (1980, in
this case), although clearly this would be desirable from the standpoint of uniformity and in or-
der to deal with specific attributes of that year, including the heat wave that occurred in the
central and eastern portions of the nation (Bair, 1992). Missing or incomplete air quality data
are a common problem with observational epidemiological studies; for example, Mendelsohn and
Orcutt (1979) used 1974 air quality data in their study of 1970 mortality patterns, arguing that
the geographic patterns were stable in time and that the later measurements were more com-
plete. Others have averaged over several years in order to obtain more reliable long-term
averages (Lipfert, 1978; Lipfert et al., 1988).

Sulfate Aerosol Data. 1980 was an especially problematic year for particulate pollution
measurements. Size-classified measurements were being explored but the PM,, network had
not yet been established; PM,.: data were being acquired on a research basis (Watson et al.,
1981). The glass fiber filters used in the routinely operated high volume samplers for total
suspended particulates (TSP) and their chemical constituents (SO,~, NO;~, etc.) were found to
be unusually alkaline for the years 1979-81 (U.S. EPA, 1984). One of the well-known charac-
teristics of such filters is their tendency to convert SO, (gas) in the ambient air being sampled
to SO,~ particles on the filter (Stevens, 1981); this problem was thought to be especially acute
during 1979-81. The outcome would be values reported for TSP and 804= that would be biased
high in locations with appreciable ambient SO, levels.

For the present study, all the sites assigned to a given SMSA, as defined by the 1980 Census,
were combined to provide SMSA-wide estimates. These data were retrieved from the EPA
AIRS data base (Link, 1991); AIRS is the successor to SAROAD. At each site, annual median
SO4= values, which tend to run 10-20% lower than annual mean values, were used because of
the typically skewed frequency distributions and the relatively sparse frequency of measurement
found in most locations. Data were assembled separately by year for the purpose of com-
parison. The following summary statistics were derived:
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Year No, of SMSAs Mean SO,"(ug/m>)

1978 111 8.95
1979 97 9.20
1980 95 9.80
1981 100 9.86
1982 38 9.17

However, the differences by year were more pronounced when compared for the 33 SMSAs that
had adequate data in each year, especially when the reduction in nationwide SO2 emissions is
taken into account. Figure 3 plots the ratio of average median SO,~ concentration divided by
annual SO, emissions in million tons (U.S. EPA, 1986). 1980 and 1981 stand out as higher than
the other three years, by about 10%. Since the suspect high-volume sampler filters were also
used in 1979, it is difficult to assign all the blame to the filters. An alternative explanation is
the low rainfall that occurred in the summers of 1980 and 1981, since precipitation tends to
remove both SO, and SO,~ from the atmosphere. If meteorological factors were the main
reason for the high sulfates recorded in 1980 and 1981, then the data should be regarded as
valid for those particular years (but not necessarily representative of the long term).

Since one interpretation of a long-term cross-sectional study is that of the sum of short-term
effects (Evans et al., 1984a), differences among years were explored further by regressing 1980
(crude) mortality against each of the five years, in turn. The slopes and correlations were
higher for the years 1979, 1980, and 1981, with the highest values occurring in 1981. The dif-
ference in slope between 1982 and 1981 was not quite statistically significant. Thus no special
relationship was apparent for the 1980 measurements, leading to the hypothesis that artifacts
formed on the filters used in 1979-81 resulted in the improved correlation, rather than coin-
cidence in time.

The sulfate data used for multiple regressions in the present study (149 locations) were then ob-
tained by averaging all the observations available for the period 1978-82. Missing locations
(Chicago, Savannah, Eugene, OR, Chico, CA, Richmond, YA, Green Bay, WI, Jackson, MI, At-
lantic City, NJ, Augusta, GA, Macon, GA, Beloit, WI, Rockford, IL, Wheeling, WV) were es-
timated either from nearby locations or from alternate time periods. Figure 4 plots the final
data set against the 1980 measurements. There is appreciable scatter but appears to be little
bias.
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Figure 3. National average ambient 504= per million tons of SO, emitted (33 SMSAs with
AIRS data in all years). Data source: U.S. Environmental Protection Agency.
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Figure 4. Comparison of SO = data used in the regression analysis with the available
SO4 data for 1980. Data source: U.S. Environmental Protection Agency.
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Other sources of sulfate air quality data include measurements from the PM, 5 (also referred to

as "IP", for inhalable particulate), and estimates made with computer models The IP data were
obtamed with unreactive (Teflon) filters and are thought to be more reliable than data obtained
with high volume samplers using glass fiber filters; the correlation between the two measures
was 0.63 (Lipfert et al., 1988). The two SO,~ measures were related by

AIRS [TSP] SO4~ = 3.5 + (1.18 +/- 0.23) * [IP] SO~ (two-sigma CLs). 6)

Thus, the slope was not significantly different from unity, which implies that a single unit of
sulfatg had the same meaning in both measurement systems.* However, the AIRS data were 3.5
ug/m> higher than the IP data, on average, presumably because of the filter artifacts. Equation
(6) mgpl:es that. both measures should derive the same regression coefficient, and that the 3.5
ug/m” intercept should not play a role in the effects attributed to AIRS sulfate. Thus, the in-
tercept should be subtracted from the AIRS mean value when estimating elasticities and previ-
ous estimates of air pollution effects based on SO, obtamed from hi-vol filters should be
reduced accordingly. The overall levels of the [IP] gO values were in better agreement with
SO4~ values obtained from various air quality research efforts carried out during this period
(such as that reported by Mueller and Hidy [1983]) than the SAROAD values.

Given the apparent superiority of the [IP] SO4 measurements, the regression given by Eq. 6
could also be used to estimate the variance due to measurement error associated with the ['gSP]
SO4 data.  The standard error of estimate from Eq. 6 prov:des such an estimate (2.28 ug/m
According to Snedecor and Cochran (1967, p. 135), a regression coefficient based on an mde-

51 gt variable measured with error variance se~ Will be biased low by an amount given by 1+

/s . Although the formula given by Snedecor and Cochran is not strictly applicable to mul-

nple regresswns, it suggests that sulfate regression coefficients based on the [TSP] SO4
measurements are likely to be biased low by as much as a factor of 1.4.

In their study of 1980 mortality and air pollution in U.S. cities, Lipfert et al. (1988) extensively
used modeled ambient air quality values derived from a long-range transport computer model
(Shannon, 1981). Modeled SO , and NOx were all found to be important predictors of
excess mortality in that study o% about 900 locations. However, as mentioned above, subsequent
evaluations of these modeled air quality estimates cast some doubt on their validity. Scatter
plots against the IP data and against data from the SURE (Mueller and Hidy, 1983) show good
agreement within some regions but differences between regions. The correlation between com-
puted SO4 and [IP] SO4 was 0.70. Since the long-range transport model is essentially a trans-
fer function between source emissions and ambient air, averaged over grid cells of about 120
km on each side, a correlation between health and computed air quality may also represent a
correlation with industrial activity and the various accompanying socioeconomic factors. The
computed SO,~ values are based only on combustion and smelter emissions, and thus do not in-
clude sulfates from natural sources or particles such as CaSO,. The grid-averaged values are
mcapable of reflectmg local phenomena that might affect SOZ oxidation rates or local primary
emissions of SO4

Total Suspended Particulate Data. Lipfert etz al. (1988) made only a few cursory regressions
employing TSP. That data base consisted of 1978 and/or 1982 values for each city, with no at-
tempt to derive city-wide averages. A similar approach was used by dzkaynak and Thurston
(1987), in that a single monitoring site was used to represent each SMSA.

* A similar relationship was found by comparing SO4 data from TSP filters with SO4 data
obtained from PM 10 filters in New York State, on a temporal basis.

- s - ——
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In an effort to improve. the estimation of actual exposures to particulates within each SMSA,
data from the EPA AIRS database were used to construct spatial averages for 1980. All TSP
monitors with at least 11 observations for 1980 were used; the annual means were averaged
(without weighting) to provide an SMSA-wide estimate. There were a few cases of source-
oriented networks in the data base (Granite City, IL [St. Louis SMSA] and networks surrounding
some of the TVA power plants). These subsets were averaged separately and then entered into
the dataset for the SMSA in question as a single observation, in order to preclude undue weight-
ing because of the large number of monitors representing a limited geographic area. Separate
files were constructed for the {nain central citigs of each SMSA and the surrounding area; the
overall means were 72.5 ug/m~ and 64.4 ug/m” for 112 SMSAs. City and SMSA averages are
compared in Figure 5. The standard deviation of the 112 SMSA averages was 14.9 ug/m”; this
compares with the average within-SMSA standard deviation of 13.9 ug/m3, which suggests that
there is typically almost as much variation within SMSAs as between SMSAs.

The overall mean for 149 SMSAs was 68.4 ug/m3. A total of 1581 monitoring stations wgs used
in this effort. The maximum annual mean value for an individual gronitor was 280 ug/m- (East
Chicago, IN, near a car wash); the minimum value was _22 ug/m> (near Portland, OR). The
maximum SI\gSA average was in Spokane, WA (142 ug/m~); the minimum was in Atlantic City,
NJ (41 ug/m>).

Year-by-year TSP comparisons were made on the basis of the maximum annual means recorded
in each SMSA fog the years 1978-82. The averages for 112 SMSAs decreased from 90 ug/m~ in
1978 to 69 ug/m” in 1982. However, when compared to the national estimates of particulate
emissions (U.S. EPA, 1986), it appears that the ambient data for 1980 and 1981 were about 5%
higher than expected. As was the case with sulfates, this could have resulted from either sulfate
artifacts on the filters or from the low rainfall that occurred in those years (U.S. EPA, 1986).

Comparison with the Air Quality Data of Ozkavnak and Thurston (O&T). Ozkaynak and
Thurston (1987) did not tabulate the air quality values they used for individual SMSAs in their

paper, but their plots of mortality rates vs. TSP and SO4= (their Figures 1 and 2) provide this
information, albeit indirectly. Data were obtained from these plots and compared to the inde-
pendent estimates used in this re-analysis (Figures 6 and 7). The major outliers (deviations
from the diagonal 1:1 line) were examined on a case-by-case basis.

For SO4=, major differences between O&T and the five-year average SAROAD data were
found for Gary, IN, Wilmington, DE, Houston, Baltimore, Richmond, VA, and Toledo. Most
of these could be explained by O&T’s use of incomplete seasonal data; sulfate has a strong
seasonal cycle and if either winter or summer data are missing, a biased estimate of the annual
mean will result. The high value that O&T used for Houston was not found among the 29
measuring stations listed in the AIRS data base for Harris County, TX, and thus could not be
explained.

For TSP, major differences between O&T’s data and the SMSA-wide averages were found for
Cleveland, Denver, Portland, OR (O&T values were high) and for Houston (O&T value was
low). The value they used for Houston was the lowest of the 44 stations that reported data in
that SMSA for 1980. The plots indicate that large differences can result from selecting in-
dividual monitoring stations to represent an entire SMSA, as opposed to averaging them all.

In assembling their air quality data base for U.S. cities, Lipfert et al. (1988) limited the high
volume sampler-based SO,™ data (which they labeled "SAROAD,") to the years 1978 and 1982.
By individual city, these data retrievals ranged from single monitors with as few as five obser-
vations to Houston, TX, where 30 monitors recorded over 5000 observations during this period.
The mean values for 1978 and/or 1982 for each sampler were then averaged by site, and the
median of these means was used to obtain an estimate of the city-wide average.
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U.S. Environmental Protection Agency.
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Particle data from the dichotomous sampler (IP or PIXIIS) network (1979-83): Total mass and
fine particle mass, total sulfate, fine lead (Pb) (ug/m~); samples taken every 3 or every 6 days.
IP data for SMSAs with more than one IP monitoring site were averaged over all the sites in
that SMSA. The size-fractionated particulate (IP) data, described by Watson ez al. (1981), were
based on Teflon filters and show systematically lower sulfate values; these values are generally
regarded as the "true” sulfate measures. The differences between the two sulfate measures are
not consistent and presumably depend on a number of site-specific environmental factors.
These measurements were replaced by PMIO’ which began with a few sites in 1983, too late to
be used with the 1980 census and mortality data.

Manganese (ug/m3): based on analysis of high-volume sampler filters. Data were estimated
from previous years for several SMSAs.

Other Variables Used in the Study

Mortality Data (dependent variables). Mortality counts were taken from Vital Statistics, 1980,
Part B (Table 8-6), for which the SMSA boundaries were based on the 1981 definitions, which
is consistent with the State and Metropolitan Area Data Book, from which population data were
taken. (In New England, death counts are given only for New England County Metropolitan
Areas (NECMAs), which are comprised of whole counties. We therefore based our demographic
data for New England on NECMAs. New England SMSAs are comprised of cities and towns,
which are sometimes only parts of counties.)

Four different groupings of causes of death were analyzed. Rates were computed by dividing
the numbers of deaths in each group for the calendar year 1980 (all ages, races, both sexes) by
the population estimated by the U.S. Census as of April 1, 1980. Thus, small errors would be
entailed by any population changes which took place during the year; an independent variable
for percentage population change was included in the regressions, in part for this reason.
Deaths were assigned to locations on the basis of usual residence rather than on the basis of the
location at which the death actually occurred. In this report, the term "mortality"” should be in-
terpreted as the crude (unadjusted) figure, unless otherwise specified.

The causes of death analyzed and their mean values and standard deviations (deaths per
thousand population) are listed below, based on 149 SMSAs. ICD9 codes refer to the Ninth
Revisions of the International Classification of Diseases.  These selections were made to
eliminate causes of death which are unlikely to have resulted from air pollution (external causes)
and to specifically examine those major causes which have previously been linked with air pol-
lution (heart and lung disease). No distinctions were made by age, race, or sex.

Non-external Causes: all causes less accidents, homicides, and suicides (ICD9 1-800).
Mean = 7.82, standard deviation = 1.48.

Major Cardiovascular Diseases: includes acute heart attacks, chronic heart disease, hy-
pertension, and stroke (ICD9 390-448). Mean = 4.19, standard deviation = 0.95.

Chronic_Obstructive Pulmonary Disease (COPD): Includes bronchitis, emphysema, and
chronic airways obstruction, but not acute respiratory disease, pneumonia, influenza, or
occupational pneumoconiosis (ICD9 490-496). Mean = 0.251, standard deviation = 0.075.

All Causes: included primarily to facilitate comparison with other studies which did not
remove external causes of death. Mean = 8.50, standard deviation = |.48.
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In terms of the coefficients of variation, COPD was the most variable grouping and all-cause
mortality was the least variable.

Demographic/Socioeconomic Variables. Population descriptive data were obtained for 149 US
SMSAs from the 1982 State and Metropolitan Area Data Book (SMADB), as follows. A brief

rationale for each variable is also given. Variable names, as used below, are given in bold in
parentheses.

1. Percent of population 65 years of age or more (65+). Above about age 35, mortality
rates are exponentially related to age, but this variable is the only useful age statistic
available from SMADB. "Median age" was used by Ozkaynak and Thurston but tends to
be collinear with "percent > 65." Median age statistics add little new information where
it is most needed: the age distribution within the 65-and-older group.

2. Racial and ethnic distribution: percent black (BLACK), percent other nonwhite
(OTHERNW: Asian, American Indian, etc.), and percent Hispanic (HISP). Each of these
groups tends to have mortality rates different from whites and thus cities with higher
than average percentages of these groups would be expected to have correspondingly
different mortality rates for the total population. Race was self-defined in the 1980
census, which leads to a certain amount of confusion, mainly in heavily Hispanic cities
in the Southwest. We consider three groupings: whites, blacks, and others; they sum to
100%. "Hispanics" are a separate grouping not defined by race. In most cities, the frac-
tion of "other” is small, but in El Paso, TX, it is about 38%, apparently because many
Latinos do not consider themselves white. However, the classification of deaths by race
uses a different criterion, since the 1980 deaths for El Paso were listed as 97% white.
This means that death rates cannot be computed accurately by race for these locations.
Ozkaynak and Thurston used the combined nonwhite population percentage (NW),

3. Percent of individuals below poverty level (POOR). We feel this is a better income
variable than, say, median income, since if there is an effect of income on mortality, it
would be expected to be most obvious at the low end of the scale.

4. percent with four or more years of college (COLLEGE). Education may be a better
socioeconomic variable than income since some persons may have low income because
they have poor health, not vice versa. Educational attainment, as a socioeconomic in-
dicator, will not be changed by subsequent illness.

5. Percent population change since 1970 (CHNG70). This variables is intended to
characterize population stability and migration, which can be important for several
reasons. First, cities with high rates of inmigration may attract healthy people looking
for better economic opportunities. A contrary effect would result if ill health were a
factor in the decision to migrate to a more favorable climate (or to return home where
family support may be available). Finally, long term exposure to air pollution would be
affected by migration.

6. Average annual heating degree days (HDD). This is essentially a climate variable
reflecting long-term rather than current weather conditions.

7. Population density (logarithm, LPD). Before the conquest of infectious diseases,
population density was an important determinant of mortality (Farr, 1885; Lipfert, in
press). When applied to county units or larger, this statistic is now of limited use due to
the heterogeneity of land use typically found in larger areas, and tends not to capture
the average density at which people actually live. However, it is capable of distinguish-
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ing the 100% urban SMSAs (such as Jersey City) from most of the others, which are
usually mixed urban/suburban.

Drinking Water Quality Data. Previous studies(Lacey, 1981; Lipfert, 1984) have implicated
soft water as a contributing factor in heart disease, primarily for males. Data on drinking
water hardness in ppm (HARDNESS) were obtained from a data base compiled by the National
Institutes of Health (Feinleib et al., 1979). These data were for the ca. 1970 time period and
earlier, but it was felt that drinking water supply data would be reasonably stable over time.
The NIH data base was for cities rather than SMSAs; the value for the main city of each SMSA
was selected; no attempt was made to average over all the component cities of an SMSA. Data
were available for 144 SMSAs out of the above set of 149; the other five values were obtained
by telephone from the respective water supply authorities.

Data on Smoking Habits. Cigarette consumption data have been estimated from state sales tax
data for three time periods: 1955, 1969, and 1980 (Lipfert, 1978; Lipfert et al., 1988) The es-
timates are based on regression analysis on state level sales data (annual packs per capita for
the population aged 18 and over), using various economic and demographic variables as pre-
dictors. The presence of lower sales taxes in adjoining states was found to be an important
factor in explaining cigarette sales differences. These regression results were then used to pre-
dict cigarette consumption in each state. It was not possible to derive cigarette consumption
data at finer geographic resolution, and thus we are forced to assume uniform consumption
throughout the state with discontinuities at the borders. These errors are likely to lead to an
underprediction of the effect of smoking on mortality, particularly for interstate SMSAs.

Earlier analyses of smoking patterns typically found large urban-rural differences, and it has
long been assumed that city people smoke more. In the study of 1980 smoking data, SMSA
tobacco sales data from the 1977 Census of Retail Trade were compared to state-wide sales
data from the same source, and a consistent relationship was found, amounting to an annual
urban-statewide difference of about 5 packs per year per person (out of 185). This small (but
still statistically significant) difference suggests that regional smoking patterns are now prob-
ably more important than urban-rural differences within regions, which supports the use of
state level data in the analysis of mortality effects.

Finally, a comparison was made of our estimates of cigarette consumption with independent
state level survey data on the percentage of people who smoke (smoking prevalence). The cor-
relation coefficient relating these two measures was only about 0.5 (explaining 25% of the
variance) for the 29 states which had conducted surveys. Possible explanations for this rather
poor result include variations in amount consumed per smoker and under-reporting by those
responding to the survey. We prefer to use consumption data rather than prevalence since
heavy smokers have a much higher relative mortality risk than light smokers, and since con-
sumption may reflect the possible effects of passive (involuntary) smoking. Cigarette con-
sumption rates are analogous to air pollution emission rates, with respect to passive smoking ef-
fects.

For an analysis of chronic health effects, it is not clear whether current cigarette smoking rates
or some time integral is the appropriate metric (the same question exists for air quality as well).
For this reason, we considered two possible smoking variables: the 1980 data, as described
above, and 1969 data. Because of collinearity between the two (r=0.57), regression models are
limited to one or the other (or alternatively, the average (SMOKING78), which was used in the
regression runs reported below).

Locations Studied
This study employs Standard Metropolitan Statistical Areas (SMSAs) as the geographic unit of
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analysis. The U.S. Bureau of the Census (1983) defines an SMSA as a group of counties (except
in New England; see below) having a total population of at least 100,000 with an urbanized area
population of at least 50,000. Two counties in Montana, with populations of 77,000 (Missoula)
and 34,000 (Silver Bow County, which includes the city of Butte), which do not qualify as
SMSAs, were also added to the data set in order to take advantage of their air quality data.
Consolidated Metropolitan Areas, which combine several SMSAs, such as Los Angeles, New
York, or Chicago, were not used in this analysis.

The 112 SMSAs first studied by Lave and Seskin (1970) and later by Evans et al. (1984b) and
others comprised the primary list of locations. These were originally selected on the basis of
the availability of air monitoring data, ca. 1960, but the actual geographic definitions in terms
of the counties included have changed somewhat over the years, as defined in each decennial
Census. In general, SMSAs are comprised of whole counties but include independent cities in
Virginia and portions of counties in New England (CT, MA, ME, NH, RI, VT). For com-
parability of mortality and socioeconomic data, New England County Metropolitan Areas
(comprising whole counties) were used in these six states.

Ozkaynak and Thurston (1987) selected a subset of 98 SMSAs from this list, based on
availability of ca. 1980 air quality data and conformance with their mortality model. Com-
parisons are presented below using this model and data set. They also defined a subset of 38
SMSAs which had air quality data obtained from the Inhalable Particulate (IP) Network, which
featured size-classified particle concentration data. In this report, we use the entire IP data set,
comprising 63 locations including the two Montana counties.

Further subsets of SMSAs were defined on the basis of the availability of air quality data, as
discussed below. Mean values of all variables are given in Appendix A.

REGRESSION ANALYSIS RESULTS

Multiple regression analyses were used to deduce associations between SMSA mortality rates and
various air pollutants. These were performed using the algorithms of Quattro ®-Pro, a spread-
sheet analysis program (Borland International, 1989). All regressions were run with models
specified a priori; stepwise regression was not used. The intent was to develop mortality models
which contain only those socioeconomic terms which are statistically significant (or nearly so)
and to evaluate these models using various air pollutants. The two-sided 0.05 level was selected
as indicating statistical "significance."

Regression Results for §Q4= and TSP

The Q'zkgynak and Thurston Model (O&T). Ozkaynak and Thurston (1987) published the first
analysis of mortality gradients for the year 1980; their work has been widely cited and recom-
mended for use in cost-benefit analyses. They found sulfate to be the most important air pol-
lutant and assigned from 4-9% of U.S. total mortality to this cause. The range of regression
coefficients for SO4= was from 0.046 to 0.075 deaths per thousand population per ug/m>, with
two-sigma confidence limits of about =/- 0.03 deaths per thousand population per ug/m3 (p <
0.001). In this sense, they confirmed the findings of previous analyses dealing with air quality
from the 1960s and 1970s (Lave and Seskin, 1978; Chappie and Lave, 1982; Mendelsohn and
Orcutt, 1979). However, each of these previous studies has been found to contain serious flaws
(Lipfert, in press) and in particular, reanalysis of the Lave and Seskin work has produced much
lower (and even negative) estimates for the effects of sulfate on mortality (Evans er al., 1984;
Lipfert, 1980, 1984). For this reason, careful attention was given to the Ozkaynak/Thurston
(O&T) study.
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O&T postulated that (crude) mortality rates in U.S. SMSAs could be defined using six
socioeconomic variables: median age (MEDIAN), percentage 65 and over (65+), percentage non-
white (NW), percentage classified as below the poverty line (POOR), the log of population den-
sity (LPD), and the percentage with four or more years of college (COLLEGE). However, they
presented no regression results for these variables and the variable they labeled as "COLLEGE"
appeared to be something else, since its mean value did not correspond to either the 1970 or
1980 Census data for "percent with four or more years of college." Further, we could not be
certain as to the exact air quality data they used, since no details were given on the inhalable
particle data and the only available information on 504" and TSP had to be read from the pub-
lished graphs. However, as discussed above, we did find a few important differences in the
804= and TSP data. These uncertainties, which undoubtedly resulted from the constrictions of
journal publication space, make detailed comparisons with the present work difficult.

Table 2 presents recalculation of regressions based on this model and set of locations, using the
input data developed for this study and all-cause mortality. The coefficients for 504= and TSP
check the O&T results quite well, which gndicate that they portray mainly regional rather than
local effects. Note that O&T reported R“ values from 0.89 to 0.92; we derived slightly higher
values, suggesting that the actual "COLLEGE" and air quality variables constituted improve-
ments in fit. These differences not withstanding, Table 2 shows that we successfully replicated
the basic O&T findings, using their model and independently derived input data.

When sulfate was entered as the sole pollutant (Regression 2.1), three of the six socioeconomic
variables failed to reach significance (MEDIAN, POOR, LPD). When TSP was substituted for
SO4= (regression 2.3), MEDIAN became significant and LPD nearly so, but TSP was highly in-
significant. These results indicate an interaction between the SO4= and socioeconomic variables.

Table 2 also shows results for 149 SMSAs using this model. The SO,~ coefficient increased by
about 20% relative to the 98-SMSA case and the TSP coefficient remained insignificant, but NW
became insignificant and the 65+ coefficient decreased by 13-19%. There were important dif-
ferences in the coefficients for COLLEGE and 65+ according to which pollutant was included.

Regressions were also computed for the other three cause-of-death groupings using this model,
for both the 98 and 149 SMSA data sets (Tables 3, 4, and 5). For non-external causes, sulfate
was significant in both cases, but TSP nearly reached negative significance* for 149 SMSAs.
Wide fluctuations were seen in the socioeconomic coefficients. For cardiovascular causes, the
results were similar except that TSP was highly negatively* significant (p=0.004) for 149 SMSAs
and NW, MEDIAN, and POOR were never significant. For COPD, TSP was significant (+) in
both cases, and SO4= was negatively* significant for 149 SMSAs. There were wide variations in
the socioeconomic coefficients among the four regressions. The negative pollution coefficients
derived by the O&T model are counterintuitive and are indicative of incomplete or improper
model specification. Although the pollutant regression coefficients checked well with the values
reported by Ozkaynak and Thurston (for the 98 SMSA case), taken as a whole, these results
suggest that the O&T mortality model is not completely specified and that the selection of loca-
tions for analysis may also be important.

The "Complete” Sociceconomic Model. Since three of the six socioeconomic variables postulated
by O&T failed to reach significance, the next step in this process was t0 examine associations
between the three specific cause-of-death variables and a larger suite of (non-pollution) inde-
* negative coefficients, which imply that poliution proloungs life, if taken naively at face value,
indicate that mortality rates for that disease tend to be lower in those parts of the country
where the pollutant in question tends to be higher; these are usually regional trends and may be
indicative of incomplete model specification.
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TABLE 2

MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL

(Mortaiity from ail causes)
Regression No. 21 22 23 2.4
Varlable All Cause All Cause All Cause All Cause
% > = 65 0.554 0.480 0.533 0.433
() (©) (0) ©)
median age 0.0716 0.131 0.0977 0.169
(0.10) (0.014) (0.04) {0.002)
% nonwhite 0.0248 0.0072 0.0244 0.0067
(0.0002) (0.28) (0.0009) (0.35)
% college -0.049 0.049 -0.068 £.081
() {0.0002) 0) ()
% poor 0.0148 0.0365 0.0198 0.0371
(0.50) - (0.10) (0.41) ©0.11)
log population 0.0383 0.105 0.179 0.106
density 0.74) (0.44) {0.14) {0.43)
4 3 0.064 0.079 X X
(ug/m°) ) ()
particulates X X 0.0002 0.003
(TSP-ug/md) (0.94) (0.26)
# observations 98 149 98 149
R2 0.933 0.870 0.919 0.856
std error of 0.352 0.550 0.387 0.579

estimate

Values in this table are regression coefficlents
() indicates probability that the true value Is zero
X Indicates the variable was not included
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TABLE 3

MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL
{Mortality from Non-External Causes)

Regression No. 3.1 3.2 3.3 34
Variable Non Ext Non Ext Non Ext Non Ext
% > =65 0.564 0.503 0.534 0.445
(©) (©) () ()
median age 0.0479 0.0868 0.079 0.133
(0.26) (0.08) (0.10) (0.01)
% nonwhite 0.0153 0.0010 0.0151 0.0002
(0.017) (0.87) (0.04) (0.96)
% college -0.0418 -0.0425 -0.0663 -0.0804
(0) (0.001) ©) )
% poor ‘ 0.0133 0.0268 0.0165 0.0274
(0.53) (0.21) (0.50) (0.23)
log population 0.224 0.0895 0.391 0.328
density (0.04) (0.49) (0.0013) (0.010)
S04~ 3 0.077 0.0933 X X
(ug/m®) ©) )
particulates 3 X X -0.002 -0.005
(TSP-ug/m°) (0.43) (0.058)
# observations 98 149 98 149
R2 0.939 0.884 0.920 0.865
std error of 0.341 0.521 0.390 0.561
estimate .

Values in this table are regression coefficients
() indicates probability that the true value Is zero
X indicates the variable was not included




TABLE 4

MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL
(Major Cardiovascular Deaths)

Regression No. 4.1 42 4.3 44
Variable MCV MCV MCV MCV
%> =65 0.361 0.330 0.340 0.289
(©) (0) © ()
median age 0.011 0.0074 0.0098 0.0386
0.72) (0.83) (0.78) (0.29)
% nonwhite 0.0057 0.0022 0.0057 -0.0028
(0.22) (0.64) (0.29) (0.56)
% college 0.0397 -0.0396 0.0564 -0.065
() ) ©) (©)
% poor 0.014 -0.0084 0.0122 -0.0082
(0.36) (0.58) {0.48) (0.60)
log population 0.219 0.130 0.330 0.267
density (0.007) (0.15) (0.0001) (0.002)
S04 3 0.0514 0.0599 X X
(ug/m®) ©) ©
particulates X X -0.002 -0.005
(TSP-ug/m%) (0.36) (0.004)
# observations 98 149 : 98 149
R2 0.922 0.862 0.902 0.849
std error of 0.249 0.363 0.279 0.380
estimate

Values In this table are regression coefficlents
() indicates probability that the true value Is zero
X indicates the variable was not included
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TABLE §

MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL

(COPD Deaths)
Regression No. 5.1 5.2 53 5.4
Varlable COPD COPD COPD COPD
%> = 65 0.0028 0.0133 -0.0006 0.0170
(0.61) (0.010) (0.90) {0.0007)
medlan age 0.0147 0.0069 0.0136 0.0044
(0.006) ©0:21) {0.009) (0.42)
% nonwhite 0.0029 -0.0012 0.003 -0.0012
(0.0004) (0.075) {0.0002) (0.09)
% college -0.0001 -0 0.0012 0.0020
(0.91) (0.96) (0.29) (0.08)
% poor 0.0075 0.004 0.008 0.0041
(0.004) (0.08) (0.002) (0.07)
log population 0.022 -0.044 0.027 0.05
density (0.12) (0.002) (0.04) ©)
S04 -0.003 -0.004 X X
(ug/m ) (0.14) (0.03)
particulates X X 0.0008 0.0008
(TSP-ug/m%) (0.015) (0.003)
# observations 98 149 , a8 149
R2 0.384 0.460 0.407 0.476
std error of 0.043 0.056 0.042 0.056

estimate

Values in this table are regression coefficlents
() indicates probabiiity that the true value is zero
X indicates the variable was not included
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pendent variables. (All-cause mortality was eliminated from the analysis at this point, since ex-
ternal causes of death tend to be higher in the West and thus could confound results for any air
pollutants which also varied systematically from East to West, such as sulfates, for example.)
The independent variables were selected from those that are known a priori or suspected to in-
fluence spatial variations in mortality rates and included: 65+, POOR, COLLEGE, LPD, per-
centage black (BLACK), percentage of Hispanic origin (HISP), percentage of nonwhites other
than blacks (OTHERNW), estimated cigarette consumption (SMOKING?78), drinking water hard-
ness (HARDNESS), annual heating degree days (HDD), and percentage population change be-
tween 1970 and 1980 (CHNG?70). These variables had previously been investigated with respect
to city mortality rates (Lipfert et al., 1988). This analysis was limited to the 149 SMSA data set;
TSP and SO~ were each entered separately.

Table 6 presents these results. For non-external mortality and cardiovascular causes, neither
pollutant reached significance although for non-external deaths, 504== was close and the coeffi-
cient for TSP was similar to values which have been reported for time-series analyses (Schwartz
and Dockery, 1992a,b). TSP was highly significant for COPD deaths, with about the same
regression coefficient as found with the O&T model. Among the other independent variables,
SMOKING78 was significant for non-external deaths and nearly significant for COPD and
major cardiovascular deaths. OTHERNW, HISP, HDD, and HARDNESS were never significant,
COLLEGE and CHG70 were significant for cardiovascular and non-external deaths, and POOR
and LPD were only significant for COPD. BLACK was significant (positive) for non-external
and cardiovascular deaths, but significant (negative) for COPD. In general, we found that the
socioeconomic coefficients were not sensitive to which pollutant was entered, indicating that the
interactions seen with the O&T model had been eliminated.

These results suggest that this model may be "overspecified." For example, the Hispanic
population tends to be higher in the Southwestern portion of the country where heating degree
days are low; thus, only one of these variables should be entered. Since Hispanics have been
shown to have lower rates of heart disease (Rosenwaike, 1987), presumably because of dif-
ferences in diet, and since there is no currently operational hypothesis for an effect of space
heating, per se, on health**, HISP was selected for retention. A few additional regressions were
performed with OTHERNW substituted for HISP. Similarly, because of ambiguities in racial
definitions in the 1980 Census, Hispanics are sometimes indicated as "other" nonwhites; there-
fore, OTHERNW was dropped. The variables for education and poverty were shown to be
somewhat collinear; COLLEGE was retained since it was usually more significant and an argu-
ment could be made that education is a more robust measure of socioeconomic status since a
person’s classification would not be affected by subsequent ill health (which may not be the case
with poverty status).

Results for "Parsimonious” Models. Based on selective elimination of variables from the
"complete” model, as described above, 65+, BLACK, HISP, COLLEGE, CHG70, and
SMOKING78 were highly significant predictors of non-external mortality in 149 SMSAs;
HARDNESS was nearly significant (Table 7). All of these variables entered with the “correct”
sign. 804= was nearly significant, with a coefficient similar to that found with the "complete”
model but less than half of that found with the O&T model. TSP was not significant, but its
coefficients were similar in magnitude to those reported for time-series analyses (Schwartz and
Dockery, 1991a,b).

For cardiovascular causes (Table 8), all of the same non-pollution variables were highly sig-
nificant as for non-external mortality; smoking was slightly less significant for cardiovascular
causes. Neither TSP nor SO,~ was significant with this model; TSP tended to be negative. For
COPD, the TSP coefficient was about the same as with previous models and was relatively in-
sensitive to the inclusion of socioeconomic variables. However, the SMOKING78 coefficient
lost significance when compared to the "complete” model (Table 6).
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TABLE 6

MULTIPLE REGRESSION RESULTS FOR THE "COMPLETE" MODEL

(149 SMSAs)
Regresslon No. 6.1 62 63 6.4 65 66
Variable NonExt  NonExt MCV MCV COPD COPD
%> =65 0.557 0.552 0.327 0.322 0.0185 0.020
0) © ©) © ) )
% Hispanic 0.0043 0.00%0 0.0027 -0.0032 -0.0009 " 00014
(0.51) ©.17) (0.54) {0.49) {0.028) (0.08)
% black 0.022 0.022 0.011 0.011 0.0021 -0.0021
{0.004) (0.004) 0038 - (0.038) (0.033) {0.03)
% other nonw 0.002 0.004 0.002 -0.0030 0.0001 0.0003
(.77 {0.65) (0.69) {0.58) (0.90) .77
% college 0.037 0.042 0.037 0.042 0.0003 0.0017
(©.007) ©) (0.0002) ©) (©.81) 0.19)
% pop. change,  0.017 0020 0.012 0.013 0.0002 0.0004
1980-1970 (0.008) ©) {0.0002) © ©.71) (0.52)
drinking 000064  0.00065 -0.0004 -0.00038 3.6x10° 3.6x10°5
water hardness 0.12) {0.12) (0.19) (0.19) (0.50) (0.49)
% poor 0.0195 0.0246 0.0019 0.0028 0.0058 0.0068
{0.36) ©0.26) {0.89) (0.85) (0.03) (0.01)
cigarette sales 0.0040 0.0048 0.0019 0.0022 0.00041 0.00042
(1970-80 avg) (0.029) {0.009) 0.13) {0.084) (0.08) (0.06)
heating ax103 ax10® 4x107> ax10 210 -1x100
degree days (0.26) (0.40) (0.065) ©.11) (0.67) ©.79)
log population 0.038 0.044 0.006 0.0356 20.036 0.035
densty {©.75) ©.71) 0.59) (0.66) (0.02) {0.01)
particulates X 0.0030 X . -0.0009 X 0.00084
(TSP-ug/m°) (0.24) (061) (0.006)
S04~ 0.031 X 0.0175 X 0.0025 X
{ug/m®) (0.08) (0.16) (0.29)
# observations 149 149 149 149 149 149
R 0.920 0.920 0.907 0.906 0.488 0510
std error of 0.438 0.440 0.303 0.305 0.056 0.050

estimate

Values in this table are regression coefficients
() indicates probability that the true value Is zero
X indicates the variable was not included
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TABLE 7

MULTIPLE REGRESSION RESULTS FOR THE PARSIMONIOUS MODELS

(Non-External Mortality)
Regression No. 71 7.2 73 74 75 76
Variable NonExt  NonExt Non Ext Non Ext Non Ext Non Ext
% > = 65 0.550 0.550 0.553 0.553 0.550 0.548
(0) () ©) () © ©)
% Hispanic £0.0028 X -0.0059 0.0084 -0.0055 X
(0.59) (0.16) (0.056) (0-30)
% black 0.0201 0.020 0.0212 0.0242 0.0232 0.0228
© © () ©) ©) ©
9% other non w 0.0077 -0.0099 X X -0.0070 0.0112
(0.29) (0.09) (0.33) (0.06)
% college -0.041 -0.040 -0.042 0.045 0.044 0.044
() ©) ©) (0) () ©)
% pop. change, 0.0195 0.0196 0.0197 0.022 0.0222 0.0226
1980-1970 ©) ©) © () ©) ©)
drinking -0.00068 -0.00069 0.00067 0.00071 -0.00071 -0.00073
water hardness (0.09) {0.09) (0.10) (0.08) (0.08) {0.07)
cigarette sales 0.0035 0.0034 0.0039 0.0046 0.0042 0.0041
(1970-80 avg) (0.04) (0.046) (0.018) (0.004) (0.011) (0.014)
particulates . X X X 0.0026 0.0025 0.0018
(TSP-ug/m") (0.28) {0.30) (0.44)
S04~ 0.025 0.026 0.024 X X X
(ug/m°) (0.14) ©.11) (0.15)
# observations 149 149 149 149 149 149
R2 0.919 0.919 0.918 0.918 0.918 0.918
std error of 0.437 0.436 0.437 0.439 0.439 0.439
estimate

Values in this table are regression coefficients
() indicates probabillity that the true value Is zero
X indicates the variable was not included
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TABLE 8

PARSIMONIOUS MODEL RESULTS

{MCV and COPD Mortality)
Regression No. 8.1 82 8.3 84
Variable MCV MCV COPD COPD
% > =65 0.320 0.317 0.0177 0.0179
© ©) ©) ()
% Hispanic 0.0072 0.0074 -0.0008 -0.0011
(0.014) (0.016) 0.27) (0.01)
% black 0.0056 0.0064 -0.002 -0.002
(0.069) (0.033) - (0.01) (0.01)
% college -0.037 0.041 X X
(0) (©)
% population change -0.0155 0.017 X X
1980-1970 ©) ©
drinking water -0.00037 -0.0004 X X
hardness (-20) {0.19)
% poor X X. 0.0061 . 0.0065
(0.017) (0.011)
cigarette sales 0.0026 0.0029 * 0.00043 0.00045
{1970-80 avg) (0.026) {0.011) {0.04) (0.03)
log population X X -0.0405 -0.036
density (0.001) (0.004)
TSP X £0.0007 0.00075 X
(ug/m° (0.66) (0.013)
S04~ 3 0.0132 X X X
(ug/m") (0.26) '
TSP - 504~ X X ‘ X 0.00082
(ug/m (0.003)
# observations 149 149 149 149
R2 0.903 0.902 0.482 0.501
std error of 0.305 0.306 0.055 0.054
estimate

Values In this table are regression coefficients
() indicates probability that the true value Is zero
X indicates the variable was not included
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Results Using Log-linear Regression Models. Many of the more recent time-series analyses of
the relationships between air pollution and mortality used a Poisson regression model, in which
the logarithm of mortality is regressed against a suite of (untransformed) variables. The formal
rationale given for this choice is based on analyses where mortality is a relatively rare event
(Steubenville, Ohio, for example, with an average of 3 deaths per day [Schwartz and Dockery,
1991a]), but it has also been extended to large cities like Philadelphia (average of 48 deaths/day
{Schwartz and Dockery, 1991b]), where this refinement may not strictly be needed. The log-
linear model essentially postulates an exponentially-increasing mortality response to linearly in-
creasing air pollution levels, Lipfert (in press) has found that a log-linear model fits
mortality-air pollution relationships from eight major episodes in London from 1948-62, includ-
ing the major 1952 disaster during which over 4000 excess deaths were recorded.

The current cross-sectional analysis is based on mortality rates, which are the ratios of deaths to
population and may tend to vary excessively among the smaller geographic entities, just because
of randomness. Indeed, the highest (non-external) mortality rate was found for Silver Bow
County (Butte), MT, which had a 1980 population of about 34,000. Furthermore, the number
of annual COPD deaths per SMSA was as low as 18, which suggests that a Poisson (log-linear)
model might be appropriate. Extending the analysis to include log-linear models also provides a
comparison with previous time-series analyses and checks on model robustness. In general, we
found that use of log-linear models yielded slightly higher correlation coefficients than the cor-
responding linear models.

Use of the log-linear model for non-external mortality (Table 9) showed only minimal changes
in significance for the non-pollution variables (HARDNESS lost significance but SMOKING78
gained), but made drastic changes for the pollution variables. SO4~ became highly nonsig-
nificant and TSP became significant in two of the three cases. Table 10 shows that cardiovas-
cular causes were associated with the same (non-pollution) variables; neither TSP nor SO, was
significant; the TSP coefficients tended to be essentially zero. Drinking water hardness, which
had been associated with reduced heart disease in some previous studies (Lacey, 1981), was
highly non-significant with this model. TSP was a more significant contributor to COPD deaths
in the log-linear model than in the linear model. In general, the elasticities for the log-linear
models were higher, in addition to usually being more statistically significant. For example, for
nonexternal mortality, the TSP elasticity increased from 0.023 to 0.043; for COPD, it increased
from 0.22 to 0.25.

Regression Runs Employing Other Pollutants

Non-Sulfate TSP. TSP includes both sulfates and other types of particles, as collected (or
formed) on glass-fiber filters used in high-volume samplers. Subtracting the sulfate portion is
one way of accounting for some of the artifacts that may have been formed and of examining
the largely insoluble portion of the catch. A composition midway between ammonium sulfate
and ammonium bisulfate was assumed in making these computations; the new variable was
labeled "NET TSP." Subtracting 804= from TSP made little difference in the results; sig-
nificance declined slightly. There was httle difference between regression results for the two
TSP measures, indicating that the non-SO portion may have been the most "active" portion
This was also true for COPD deaths, except that statistical significance improved when SO4~

was subtracted. As mentioned above, the negative dependence of COPD mortality on SO4 is

-

**Neither the effects of climate or weather were considered in this analysis, owing in part to
lack of data on suitable measures describing known physiological effects. These effects may
include heat stress (notably, high temperature deviations from normal weather patterns), indoor
air pollution resulting from unvented or leaky heaters, and the indirect effects of crowding and
exposure to contagion indoors during inclement weather.
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MULTIPLE REGRESSION RESULTS FOR LOG-LINEAR MODELS

TABLE 9

(Non-External Deaths)

Regression No. 9.1 9.2 9.3 9.4 9.5 9.6
Variable Non Ext Non Ext Non Ext Non Ext Non Ext Non Ext
% > = 65 0.0298 0.0293 0.0300 0.0295 0.0296 0.0294
() ©) () () ) (0)
% Hispanic 0.00057 X 0.0007 X -0.00034 -0.0010
(0.013) (0.0015) (0.22) (0.007)
% black 0.0015 0.0013 0.0016 0.0015 0.0015 0.0013
(0) (0) ) () () )
% other nonw X -0.00115 X {.0012 -0.0010 -0.00015
(0.0003) ) (0.009) (0.59)
% college -0.0027 -0.0025 0.0026 -0.0024 0.0024 0.0025
©) ©) ) ©) ©) )
% pop. change,  -0.0014 -0.0013 0.0010 0.0015 0.0014 0.0013
1980-1970 ©) ©) ©) ©) ©) ©)
drinking 3x10°5 3x10° 3x10°8 ax10° 3x10° 3x10°
water hardness 018 (0.15) (0.14) (0.12) (0.13) (0.16)
cigarette sales 0.00035  0.00028 0.00037 0.00030 0.00032 0.00029
(1970-80 av'g) 0.0002)  (0.002) () {0.0006) (0.0004) (0.0019)
particulates X X 0.00028 0.00020 0.00026 X
(TSP-ug/m°) (0.031) (0.070) (0.037)
S04° 3 0.0006 0.0007 X X X 0.00063
(ug/m®) (0.55) (0.43) (0.49)
# observations 149 149 149 149 149 149
R2 0.923 0.926 0.925 0.928 0.928 0.926
std error of 0.0239 0.0233 0.0235 0.0230 0.0230 0.0233
estimate

Values in this table are regression coefficients
{) indicates probability that the true value is zero

X indicates the variable was not included
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TABLE 10

REGRESSION RESULTS FOR LOG-LINEAR MODELS
{Cardiovascular and COPD mortality)

Regression No. 10.1 10.2 10.3 10.4
Variable MCV MCV COPD COPD
% > =65 0.0324 0.0323 0.0282 0.0286
© © © ©
% Hispanic <0.0012 -0.0013 -0.0016 -0.0020
0) ) 0) {0.14) (0.06)
% black 0.0011 0.0011 -0.0033 -0.0031
(0.0001) (0.0003) - (0.005) {0.006)
% college -0.0042 -0.0040 X X
©) (0)
% population change -0.0020 -0.0020 X X
1980-1970 ) (©)
drinking water X 2x107° X X
hardness (0.80)
% poor X X . 0.0089 0.0094
(0.019) (0.012)
cigarette sales 0.00044 0.00045 0.00086 0.00090
(1970-80 avg) (0.0001) ) (0.006) (0.003)
log population X X -0.051 -0.043
density (0.005) (0.02)
particulates X ox10°> 0.00156 X
(TSP-ug/md) (0.57) ©)
S04 16x10° X X X
(ug/ms) 0.97)
TSP -804~ X X X 0.00176
(ug/m®) )
# observations 149 149 149 149
R2 0.902 0.916 0.534 0.542
std error of 0.0306 0.0298 0.081 0.080
estimate

Values in this table are regession coefficients
() indicates probabitity that the true value is zero
X indicates the variable was not included
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viewed as a non-causal regional artifact, and removal of this portion of TSP is tantamount to
improving the precision of measurement.

Inhglable Particles (IP). Data were available on sulfates and on two size classifications of
suspended particle concentrations, PM and PM 4, for 63 locations. Initial regression runs
showed Butte, MT, to be an outlier; it had the hnghest crude mortality rate in the data set, al-
though it was not an outlier in the context of all 149 locations. Most of the regressions for IP
pollutants were thus conducted with only 62 observations (excluding Butte), in an attempt to
derive reasonably robust results.

Using the O&T model (Table 11), SO was significant for n=62, but not when Butte was in-
cluded (Regressions 11.1 and 11.2). The coefficients tended to be slightly higher than found for
SO,  measured on high-volume sampler filters. Fine particiles (PM, <) were also significant,
for both all-cause and external mortality, with a substantially lower coefficient. PM; 15
(inhalable particles) were not significant. These results also pertained to major cardiovascular
diseases; for COPD, only PM, 5 was significant (Regression 11.13). We also note that the coeffi-
cient for "65+" appeared to be sensitive to the inclusion of the sulfate variable, which suggests
interaction between socioeconomic and pollution variables with this model and data set.

With a log-linear version of the O&T model (Table 12), no pollutant was significant for all-
cause mortality when Butte was included (Regressions 12.1 and 12.2), but sulfate was significant
in both cases for non-external mortality (elasticity about 0.05). (We expect a priori that a log-
linear model might be more tolerant of outliers than a linear model.) Fine particles had about
the same elasticity as SO, but this pollutant did not achieve statistical significance for any of
the cause of death groupings with Butte included. The coefficient and significance for COPD
and PM 15 were also reduced with Butte included (Regression 12.8).

The results for an expanded model specification and IP pollutants are given in Table 13, for
linear models. No pollutant achieved statistical significance, but PM was close for non-
external deaths (Regression 14.1, elasticity = 0.043). The elasticities for sulfate and PM,< were
0.02 and 0.027, respectively. Note that the results were considerably less significant for MCV,
whereas an improvement was expected due to consideration of a specific cause-of-death
category.

It is also interesting to compare findings for the two sulfate measures and for fine particles.
The hypothesis advanced by Ozkaynak and Thurston (1987) is that the SO4 ion is the "active"
ingredient in the particle mix. As discussed above, we expect that SAROAD sulfate consists of
a mixture of airborne sulfate and 504— particles formed on the filters, hence the substantially
higher mean values with respect to [IP] SO, = (obtained from unreactive Teflon filters). If this
were the case, we would expect to find the same regression coefficient in all three cases, ac-
cording to O&T's hypothesis that only SO4 affects mortality. However, we find that, while
both sulfate variables yield approximately the same coefficient (but not the same elasticities,
since the mean values differ), the coefficient for all fine particles (which includes S04 =), is
substantially lower, with about the same or higher elasticity. This implies that there is nothmg
special about the sulfate portion of fine particles and that all three variables should be con-
sidered as indicators of fine particles.

Similar considerations apply to the comparisons of COPD regression coefficients for TSP, PM15,
and PM For the purpose of exploring COPD relationships further, a new fine-particle vari-

able was Sef ined ("non-S PM, ") by subtracting the sulfate portion in the same manner as NET
TSP (described above). This implicitly assumes that all of the sulfate is in the fine particle
mode, which is usually the case. If only a specific fraction of particles were biologically active,
say the small particles, we would expect to see the same regressmn coefficient for all three
measures. The results are given in Table 14.
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TABLE 11

MULTIPLE REGRESSION RESULTS
FOR THE O&T MODEL WITH IP DATA

Regression No. 1119 11.2 113 114 115 116 11.7
Variable All Causes All Causes All Causes All Causes Non Ext NonExt NonExt
% > =65 0.388 0.328 0.313 0.287 0.348 0.329 0.298
() (0) ) ) ©) ) ()
% median age 0.228 0.241 0.265 0.288 0.204 0.233 0.260
{0.02) - (0.0007) (.0002) © ©) (0.0011)  (0.0004)
% nonwhite 0.0162 0.0124 0.0156 0.0210 0.0018 0.0057 0.0117
(0.26) (0.22) {0.12) (0.04) (0.85) - (0.58) ©0.27)
% college 0.0927 0.0877 0.094 0.118 0.079 -0.087 -0.114
(0.0005) () () ©) () (0) ()
% poor 0.016 -0.0008 0.0053 0.0184 <0.0016 0.0040 -0.018
.71) (0.96) (0.86) (0.57) (0.94) (0.89) (0.58)
log population -0.034 0.116 0.170 0.197 0.384 0.413 0.443
density {0.86) (0.43) (0.24) ©.19) . (0.018) (0.005)  (0.004)
1P-S04 0.0568 0.0819 X X 0.0973 X X
{ug/m°) (0.23) (0.013) (0.003)
PM-2.5 X X 0.0252 X X 0.0293 X
(ug/m®) | (0.043) . (0.02)
PM-15 3 X X X -0.0029 X X 0.0026
(ug/m") (0.60) (0.65)
# observations 63 62 62 62 62 62 62
Rsq. 0.870 0.923 0.920 0.915 0.925 0.921 0.914
std error of 0.642 0.455 0.463 0.479 0.454 0.467 0.489
estimate
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TABLE 11 (cont'd)

MULTIPLE REGRESSION RESULTS
FOR THE O&T MODEL WITH IP DATA

Regression No. 11.8 11.9 11.10 11.11 11.12 11.13
Variable MCV MCV MCV COPD COPD COPD
% > = 65 0.194 0.186 0.168 0.0160 0.0182 0.0184
©) ©) (0.0002) (0.014) (0.005) (0.003)
% median age 0.108 0.122 0.137 0.0072 0.0045 0.0050
(0.028) (0.012) (0.0055) 1(0.32) (0.54) (0.47)
% nonwhite -0.0064 0.0046 -0.0003 0.0016 -0.0020 -0.0025
(0.36) (0.52) (0.95) ©.11) (0.047) (0.01)
% college -0.066 -0.069 -0.088 0.0012 0.0026 0.0042
©) ©) ©) (0.52) (0.17) (0.011)
% poor 0.017 0.019 -0.029 0.0060 0.0067 0.0079
(0.43) (0.36) 0.17) (0.049) (0.029) (0.008)
log population 0.364 0.40 0.41 -0.040 -0.045 .0.043
density (0.0004) ©) ©) {0.006) (0.002) (0.002)
IP-S04 0.0530 X X -0.0051 X X
(ug/md) (0.02) (0.13)
PM-2.5 X 0.0177 X X -0.0004 X
(ug/m%) (0.04) (0.76)
PM-15 X X -0.0032 X X 0.0011
(ug/md) (0.40) (0.045)
# observations 62 62 62 62 62 62
Rsq. 0.901 0.907 0.901 0.648 0.633 0.658
std error of 0.329 0.319 0.329 0.046 0.047 0.045
estimate

Values in this table are regression coefficients
() indicates probability that the true value is zero
X indicates the variable was not included
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TABLE 12

MULTIPLE REGRESSION RESULTS FOR THE O&T MODEL
(log-linear) WITH IP DATA

Regression No. 12.1 122 12.3 124 125 12.6 12.7 12.8
Variable All Causes  All Causes Non Ext Non Ext Non Ext MCV MCV COPD
% > = 65 0.0196 0.0185 0.0229 0.0208 0.0216 0.0266  0.0255 0.0249
©) () © ) (0) © ©) ©
% median age 0.0115 0.0129 0.0008 0.0102 0.0117 0.0072  0.0089 0.0153
{0.027) (0.012) (0.079) (0.042) {0.036) (0.30) (0.20) (0.19)
% nonwhite 0.0013 0.0015 0.0008 0.0007 0.0011 0.0003  0.0005 0.0041
(0.08) (0.04) (0.30) (0.34) (0.036) (0.75) (0.58) {0.016)
% college 0.0052 0.0058 0.0052 -0.0050 0.0059 0.0079 - 0.0084 0.0046
(0.0002) © {0.0005) (0.0002) ©) ©) ©) {0.10)
% poor £0.0002 0.0026 0.0024 0.0018 0.0028 0.0056  -.0060 0.0107
(0.32) (0.25) {0.32) (0.39) (0.24) (0.055)  (0.04) (0.03)
log population 0.0046 0.0017 0.0087 0.014 0.0126 0.028 0.032 0.084
density (0.67) (0.87) (0.45) (0.18) 0.27) (0.046)  (022) (0.0005)
IP-S04 0.0036 X 0.0050 0.0059 X 00053 X X
{ug/mS) (0.14) (0.05) (©.011) (0.10)
PM-25, X 0.00071 X X 0.0011 X 0.0015 X
(ug/m°) (0.43) (0.24) {0.23)
PM-15 3 X X X X X X X 0.00137
(ug/m") (0.12)
# observations 63 63 63 62 6 63 63 63
Rsq. 0.864 0.860 0.870 0.886 0.864 0.857 0.853 0.662
std error of 0.0334 0.0340 0.036 0.032 0.036 0.045 0.045 0.078
estimate

Values in this table are regression coefficients
{) indicates probability that the true value Is zero
X indicates the variable was not included




TABLE 13

REGRESSION RESULTS FOR THE COMPLETE MODEL WITH IP DATA
{n = 62, Butte deieted)

Regression No. 13.1 13.2 133 134 135 136 137 13.8
Variable Non Ext NonExt  NonExt MCV MCV MCV COPD _ COPD
%> = 65 0.504 0.497 0.496 0.273 0.268 0.268 00228 0.0221
0) ©) © ) © ©) () 0)
% Hispanic 0012 0013 0.0142 00125 0.0013 0.0014 X X
(0.37) (0.32) (0.29) 017 (0.14) ©.14)
% black 0.0186 0.0165 0.0192 0.0006 0.0048 0.0014 00018  0.0026
(0.08) ©.15)  (0.075) ©0.92) 0.94) (0.85) ©.013)  (0.001)
% other non w 0.014 0.014 0.011 0.0077 0.0077 0.0071 X X
(0.59) (0.60) 0.67) 0.67) (0.67) (0.70)
% college 0.056 0.060 -0.060 0.051 0.055 0.055 00011  0.002
0.0008)  {0.0004) (0.0003) ©) ©) ) ©49)  (0.20)
% pop. change,  -0.020 0.020 0.022 0014 0014 0.015 0.0007  0.0004
1880-1970 © ©) ©) ©) © ©) ©.15)  (0.40)
drinking water -0.0011 0.0010 0.0011 -0.00035 0.0003 -0.0003 X X
hardness (0.14) (0.20) 0.14) (0.49) (0.55) (0.50)
% poor 0.0079 0.0092 0.012 -0 -0 0.0005 X 0.0051
(78) (0.76) (0.69) © (0.98) {0.98) (0.96) (0.03)
cigarette sales 0.0036 0.0038 0.0043 0.0029 0.0031 0.0033 “0 0.0012
(1970-80 avg) (0.18) 0.13) (0.079) (0.086) ©.07) (0.051) ©82)  (067)
heating 30 2exio® ax10°° 2x10°5 ix10°S 1x10°S X X
degree days (0.45) (0.60) (0.56) (0.72) 0.74) (0.72)
log population 0.15 0.15 0.17 0.22 0.22 023 -0.029 0.032
density (0.27) (0.28) 0.21) {0.020) ©0.02) (0.015) 0.058)  (0.04)
PM-2.5 0.0188 X X 0.010 X X X X
{ug/m°) 0.078) ©.18)
1P-S04 X 0.0356 X X 0.0112 X X X
(ug/m%) (0.26) ©0.61)
PM-15 X X 0.0056 X ) X 0.00148 0.00056 X
(ug/m°) 0.23) (0.65) (0.28)
Non-S X X X X X X X 0.00084
PM-2.5 (ug/m°) (0.54)
# observations 62 62 62 62 62 62 62 62
R2 0.953 0.952 0.952 0.944 0.942 0.942 0661  0.683
std error of 0378 0384 0.384 0.260 0.264 0.264 0045  0.044
estimate
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TABLE 14

SUMMARY OF REGRESSION RESULTS FOR YVARIOUS PARTICLE MEASURES

Regression No, Model Yariable Coefficient ignifi

54 O&T TSP : 0.0008 0.003
6.6 Complete TSP 0.00084 0.0006
8.4 Parsimonious TSP 0.00074 0.007
11.13 0&T PM;; 0.0011 0.045
13.7 Parsimonious PM 15 0.00056 0.28
11.12 O&T PM, -0.0004 0.76
13.8 Parsimonious  Non- g PM2 5 0.00084 0.54

We find that TSP and PM, 5 have the same coefficients, within statistical tolerances, but that
PM is different. However, removing the sulfate portion of PM, 5 {as described above)
brings the non-sulfate PM coefficient effectively into this common range of coefficient
values (0.0006-0.0011). This 1mplies that all of these particle measures exhibit the same effect
on mortality per unit of mass, and since the only particles common to all of them are the non-
sulfate fine particles, we are led to the conclusion that this may be the "biologically-active"
fraction.

This comparison would be more compelling if the particle variables other than TSP were also
statistically significant. The poor performance of these other variables may relate in part to the
smaller numbers of observations available for analysis or the fact that not all of the observations
were taken in 1980. However, if we accept the liypothesis that only the small non-sulfate par-
ticles are biologically active, then the elasticity should be compute3d by multiplying the coeffi-
cient by the mean value of the non-S PM2. variable (12.6 ug/m~), which would constitute a
major reduction in the estimated effect upon mortality. This would also apply to time series
studies. For example, Dockery et al. [in press] derived similar coefficients for PM,, and PM,

in St. LOUIS however, only the PM, value was statxstlcally significant (Table 1). llgexther SO4
nor H* came even close to stanstnca{ significance in that time-series study.

It thus appears from the above considerations that the magnitude of the indicated effects on
mortality cannot be estimated with confidence for a pollutant with many constituents (such as
TSP or total oxidants) until the biologically active components of the pollutant have been iden-
tified. The regression coefficient may still be a valid measure of relative changes, but it will
not be possible to apply this slope to contributions from specific pollution source categories
without knowledge of the "active ingredients" of the TSP mix.

Manganese. In previous studies, iron (Fe) and manganese (Mn) have been found to be sig-
nificant predictors of spatial variations in mortality (Lipfert, 1978; Lipfert, 1984; Lipfert et al.,
1988). However, these species are also markers for ferrous metal manufacturing activities,
which may have other associations with health, either directly because of occupational hazards
or indirectly because of life-style differences. For example, Brackbill et al., (1988) found that
the metal industries were among the highest in terms of percentages of smokers. Lipfert (1984)
found that Mn was only significant for males (65+), which suggests long-term occupational ef-
fects rather than community air pollution.

Table 15 presents regressions for Mn, as the sole "pollutant" and in combination with 804= and
TSP, for the maximum possible data set of 138 locations. Mn was never statistically significant,
although it was close for non-external deaths, and its regression coefficient was about 1/4 of
that found for 1980 mortality in U.S. cities (Lipfert et al., 1988). This suggests that the effects
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REGRESSION RESULTS FOR COMBINATIONS OF POLLUTANTS INCLUDING MANGANESE

TABLE 15

Regresslon No. 15.1 15.2 15.3
Variable Non Ext NonExt  NonExt
%> =65 0.522 0.632 0.535
(©) ©) ©
% Hispanic <0.0051 X X
(0.41)
% black 0.018 0.0238 0.0220
(0.016) (0) (0)
% other nonw <0.0082 X X
(0.29)
% college 0.037 0.038 0.033
(0.0003) ©) {0.0012)
% pop. change, 0.0218 <0.024 <0.0223
1980-1970 ©) ) ()
drinking water 000033 0.0010 .0.0010
hardness (0.022) (0.013) (0.016)
% poor 0.020 X X
(0.34)
cigarette sales 0.0042 0.0045 0.0041
(1970-80 av'g) (0.013) (0.004) (0.009)
heating ax10® X X
degree days {0.90)
log poputation 0.0156 €0.079 0.111
density (0.88) (0.44) (0.29)
part X X X
(ug/m
S04 X X 0.022
(ug/m®) ©.18)
manganese 2.36 253 2.06
(ug/m®) . (0.10) (0.07) (0.16)
# observations 138 138 138
R2 0.925 0.922 0.923
std error of 0.409 0.408 0.407

estimate




of Mn, whatever they may be, are experienced more in central cities than in the entire SMSAs
(which are often largely suburbs), since the measurements for metals are usually made in central
locations., Comparing Tables 15 and 7 shows only minor interactions between other pollutants
and Mn, when entered in combination.

Dose-Response Functions

Two types of models have been used in this regression analysis: linear models, which assume a
straight-line relationship between mortality and all other variables (including air pollution), and
log-linear models, which assume that mortality rates rise exponentially in response to (all of) the
independent variables. In neither case is a threshold are considered for ambient air quality; the
models assume that the type of relationship is independent of the absolute level of air pollution.

This is in contrast to the current philosophy of air pollution control, which assumes that safe
concentration levels exist for most community air pollutants, below which health effects are es-
sentially zero. These "no-effect” thresholds and an appropriate margin of safety are then used
to establish National Ambient Air Quality Standards (NAAQS), which are to be met throughout
the country by controlling the responsible air pollutant emissions. It is thus important to try to
reconcile the results of this study with this prevailing concept of NAAQS and the corresponding
no-effect thresholds. An important consideration in this regard is the extent to which a few
SMSAs with poor air quality, in violation of the NAAQS, may influence the outcomes of these
regression models. Three different types of analysis were performed towards this end; these
analyses were limited to the parsimonious log-linear models.

Scatter Plots. The first technique involved scatter plots in which an "adjusted" value of mor-
tality was computed, by accounting for all variables in the regression equation other than air
pollution. These values were then plotted against each of the pollutants in turn, in order to
display which, if any, locations might be influential with regard to the regression slopes.
Figures 8 and 9 present such plots for the log of non-external mortality. Against SAROAD sul-
fate, Figure 8, no relationship is seen, in keeping with the non-significant regression slope. The
lowest "adjusted” mortality cities (Honolulu and Tampa), have measured suifate values in the
mid-range, and the scatter of the remaining cities is spread more-or-less uniformly across the
entire range of SO,~ values. Figure 8 is in sharp contrast with Figure 1 of Ozkaynak and
Thurston, in which crude mortality was plotted against sulfate and a strong relationship was ap-
parent. The implication of this comparison is that the apparent association between mortality
and sulfate displayed by Ozkaynak and Thurston appears to have been a relationship between
sulfate and all the other socioeconomic variables that also affect longevity.

Figure 9 plots the adjusted mortality data against SMSA-averaged TSP. A weak relationship is
seen, in part because the lowest mortality SMSAs also have low TSP; however, there are also
low-TSP locations with high adjusted mortality rates, but there are no high-TSP locations with
low adjusted mortality rates. In that sense, the high TSP locations might be influential.

Additional scatter plots for non-external mortality and the various other pollutants which were
available in the data base are presented in Appendix B.

COPD mortality is considered in Figure 10; three high locations with high adjusted rates (Butte,
MT, Tucson, AZ, and Albuquerque, NM) are seen to be influential, although the bulk of the
data support a positive relationship. Explanations for the three high mortality locations include
the mining industry in Butte and the likelihood of retirees in the Southwest with existing lung
disease; deleting these three observations increased the TSP coefficient slightly. The highest
TSP point is Spokane, WA, which may have been influenced by the eruption of Mt. St. Helens;
this datum is not remarkable, given the general trend and level of scatter.
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Successive Truncation. The next technique involved dropping groups of the highest pollution
locations from the analysis, thus reducing both the range of the independent variable and the
number of observations. These results are presented in Figures 11 and 12, for non-external
mortality and one pollutant at a time.

For TSP and non-external mortality (Figure 11), the regression coefficient yemains essentially
constant for data sets with maximum TSP values from about 80 to 140 ug/m”. The cumulative
frequency distribution of TSP in this data set is given in Figure l%a; 109 of the 149 SMSASs
have average TSP levels within the former NAAQS for TSP (75 ug/m~). As seen in Figure 12b,
the standard errors of the regression coefficient increase monotonically as the number of obser-
vations decreases; this square-root relationship is as expected from statistical theory. Thus, one
may conclude that the mortality-TSP relationship is not dominated by a few high TSP cities,
and that a coefficient of about 0.0003 is the best unbiased estimate for data sets having maxi-
mum TSP locations from about 80 ug/m3 upward (SMSA averages). Below this value, this type
of analysis is indeterminate.

COPD mortality is addressed in Figure 13; as the high TSP locations are removed from the data
set, the regression coefficient increases in value (but not gtatistically significantly so, because of
the widening confidence limits) down to about 65 ug/m~, at which point it becomes negative
and the confidence limits expand greatly. This TSP level probably corresponds to the removal
(by truncation) of the lowest of the three high mortality points seen on Figure 14.

Quintile Analysis. The final technique employed a dummy variable technique similar to that
used by Schwartz and Dockery (1992a,b). New regressions were run in which the continuous
pollutant variable was replaced by n-1 dummy variables, where n=5 for the case in which the
entire data set is subdivided into quintiles based on ranked TSP values. The regression coeffi-
cient for each dummy variable represents the best unbiased estimate of the logarithm of mor-
tality for that quintile relative to the lowest TSP quintile (controlling for all other variables).
When these values are plotted against the corresponding TSP values for each quintile, a
rudimentary dose-response function results. One expects some loss of statistical significance
with such an analysis, since the effect of the continuous variable is now being indicated by four
different variables. The advantages of this approach are that linearity is not assumed a priori,
and that the entire data set is considered at once.

TSP is considered in Figure 14, for both COPD deaths and non-external deaths. Again, the
strongest rise in mortality is in the mid-range of TSP values, although the COPD relationship is
reasonably linear. The coefficients for the highest three TSP quintiles were all statistically sig-
nificant; the low coefficient and p-value {(~0.70) for the second lowest quintile suggests that a
threshold may be present (which would not be inconsistent with Figure 11.

Figure 15 presents results for sulfate, which are presented to check for data anomalies that
might have influenced the results. The dose-response functions are U-shaped, and even if only
the right-hand half were considered, the excess risk is small. Note that the maximum excess
risk for non-external deaths exceeds that for cardiovascular causes. Normally, one would expect
that a potentially causal relationship would strengthen when one considers a specific cause of
death (as in the case with TSP and COPD, for example).

It is of course possible that combinations of pollutants, at different levels, may be involved,

especially for non-external deaths, which represents the sum of all diseases. However, such an
analysis does not seem practical with only 149 observations.
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CONCLUDING DISCUSSION

This analysis has developed regression models whigp appear to offer substantial improvements
over previous studies of SMSAs (including that of Ozkaynak and Thurston {1987]), in that 92%
or more of the mortality rate variance has been "explained" and that most of the (non-pollution)
terms in the regressions were highly statistically significant. Improvements in fit were made
when external causes were removed and when specific cause-of-death groupings were analyzed
(although the regressions for COPD mortality probably suffered from the small numbers of
deaths occurring in a given year in each location). Use of log-linear models, in which the
logarithms (base 10) of mortality rates were regressed against linear combinations of independ-
ent variables, also provided improved fits to the data.

Summary of Regression Results

The preceding tables presented selected regression results in their entirety, including regression
coefficients for all the independent variables. This degree of detail is useful in comparing
model specifications and in judging the validity of the overall approach. In contrast, Tables 16
and 17 are intended to facilitate comparisons among diseases and pollutants. Regression coeffi-
cients, their standard errors, and significance levels are presented in Table 16; Table 17 presents
comparable information based on elasticities. Statistically significant results (p >= 0.05) are
shown in bold italic type; those values which failed to reach significance must be regarded as
less robust than the others and may be unreliable estimates of the true underlying relationships.
Furthermore, one must keep in mind that statistical significance alone is not sufficient evidence
that the "true underlying relationship” has indeed been identified; such a causal conclusion re-
"quires plausible physiological mechanisms as well. Evidence of this truism is seen in the statis-
tically significant megative entries in Tables 16 and 17 (implying that air pollution prolongs life,
or, more likely, that the regression model is incompletely specified).

Regression Coefficients. One use for the regression coefficients is in comparing the contribu-
tions of a given pollutant to the variations in mortality rates for different diseases, based on the
same or similar models. While rigorous comparisons can only be made among those coefficients
that are statistically significant, each of the coefficients in Table 16 represents the best linear
unbiased estimate for the data and models indicated. The numerical value of a regression coef-
ficient also depends directly on the mean values of dependent and independent variables; the
coefficients 3f the linear models have units of death rates per thousand people per unit of pol-
lution (ug/m-). For the log-linear models, the regression coefficients represent incremental ef-
fects on mortality ratios.

For the O&T model, Table 16 shows both positive and negative significant regression coeffi-
cients, which confirms the reservations expressed above -about the adequacy of the O&T
specification in controlling for non-pollution effects on mortality. Comparisons among pol-
lutants and diseases with the O&T model may thus be problematic.

The association between TSP and COPD appears to account for only a fraction (about 20%) of
the association between TSP and nonexternal deaths. It thus follows that some other disease
components of non-external deaths (excluding MCYV, for which the best estimate of the TSP
contributions are nil) might be associated with TSP. If other associations between TSP and
specific diseases could be identified, the information might be useful in assessing whether any
of the relationships shown in Table 16 might be causal or whether some portions appear to be
artifactual. Note also that artifactual relationships could also be present in the extant indicated
associations between mortality and air pollution (see "Uncertainties,” below).

With respect to the regressions for sulfate (both [TSP] SO4= and [IP} SO,), we note that the
results for [IP] SO4™ are consistently less significant than those for [TSP] Séf, even though the
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coefficients are quite similar (this was also the case when TSP SO,™ was limited to the 62 cities
having IP data). As discussed above, we expect that [IP] SO,~ is the more reliable measure-
ment, by virtue of the types of filters used, and that the [TSP] SO4= regression results may be
biased low by as much as 30% due to the measurement errors; the superiority in fit shown by
[TSP] SO,™ in Table 16 was thus unexpected and suggests that the filter artifacts characteristic
of the TSP sampling technology may somehow be contributing to the apparent relationships with
mortality (which seems counterintuitive since filter artifacts are not inhaled!). We also note that
none of the sulfate results, using either measure, reached statistical significance with the com-
plete or parsimonious models.

Elasticities. Since elasticities are dimensionless (Table 17), they may be readily compared among
pollutants, models, and diseases. For non-external mortality, there is a remarkable degree of
uniformity among the various pollutants, for the complete and parsimonious models (linear and
log-linear). Elasticities range from 0.009 to 0.051; standard errors, from 0.006 to 0.024
(eliminating manganese from this comparison would narrow the range considerably). For TSP
and PM, ¢, elasticities are higher for the log-linear models than the linear models; the opposite
holds for sulfate, PM, 5, and manganese. These tendencies probably reflect differences in the
relative contributions o't5 high and low mortality locations. The uniformity among elasticities for
different pollutants does not hold for the specific disease groups; PM, 5 shows the largest elas-
ticities for major cardiovascular diseases while TSP and (to a lesser extent) PM, s show the
largest elasticities for COPD. The standard errors of the elasticities are larger for the specific
diseases than for non-external mortality but differ much less among pollutants.

An interesting comparison may be made among the five models shown for sulfate, for non-
external and major cardiovascular deaths. As one moves down the sulfate columns in Table 17,
from the O&T model to the parsimonious model, the elasticity drops markedly, but its standard
error decreases also. Thus the loss in significance for SO, that resulted from using more com-
plete model specifications stems from the reduced values of the coefficients (which are the best
unbiased estimates in all cases), not from increases in the standard errors. Since one of the
hallmarks of multicollinearity is an increase in the standard errors (variance inflation), these
results suggest that the drop in sulfate elasticity shown by the new models is due to better fits
and not due to collinearity, per se.

We note also that the five different model results shown for COPD and TSP are all essentially
the same, showing a remarkable degree of uniformity independent of model specification.
Finally, given the large number of regressions shown in Tables 16 and 17, one wonders whether
the relatively few significant results that were found could have occurred due to chance. For
each model, there are three mortality variables and six pollutants, giving a maximum of 18
results. We would expect to find one of these to be significant at the 5% level, just due to
chance. Since there are two significant findings for the linear (parsimonious) model and four
for the log-linear model, two of which exceed the 0.001 level, we conclude that most of the
significant findings are not likely to be due to chance alone. This conclusion would be rein-
forced if manganese were not considered or if only one sulfate variable were included in the
comparison.

Th PD-TSP Relationshi

Regional Dependence. Although the association between COPD mortality and TSP appears to be
quite robust to changes in the model and data set, it is possible that the relationship is con-
founded by regional characteristics. @ For example, some western cities have been noted
(anecdotally) as retirement destinations for people already suffering from lung disease, which
may have originated in other parts of the country. Some portion of the higher TSP levels found
in the west is regional in nature, having to do with lower frequencies of precipitation and in-
creased levels of windblown dust. Thus, the association between COPD and TSP could be cir-
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cumstantial, at least in part. We note that the population change variable (CHNG70) tends to be
positive for COPD mortality, and one wonders whether the regressions are picking up the in-
dividual characteristics of cities (east and west) or simply the characteristics of the western
region as a whole. An example of such regional dependence was seen in the relationship be-
tween SO4" and all-cause mortality (as shown by Ozkaynak and Thurston, 1987), in which the
association is heavily dependent upon cities in Ohio and Appalachia.

Three additional regressions were run to explore regional confounding with respect to COPD
and TSP. First, the 149 SMSAs were coded as to location east or west of the Mississippi River
(St. Louis and Minneapolis were considered "east,” as was Honolulu; these assignments were not
critical to the outcome of the analysis). Separate regressions were run for each subset for the
logarithm of COPD mortality rate using the same model as for the entire data set. TSP was not
significant for either subset, although the regression coefficients were positive with about the
same values. For the "east” subset (n=105), the TSP coefficient was 0.00094 (p=0.15); all other
terms in the model remained significant except population density. For the "west” subset
(n=44), the TSP coefficient was 0.00064 (p=0.3), and the variables for poverty, population den-
sity, and Hispanic ethnicity lost significance. Smoking remained significant in both subsets with
about the same coefficient.

Next, a dummy variable was added to the model designating east-west location and a regression
was run for the combined data set. This variable was highly significant, reflecting the higher
COPD mortality rates in the West, but the TSP coefficient was only slightly reduced in mag-
nitude (0.0012) relative to Table 16 and remained significant (p=0.006). The conclusion follows
that the COPD-TSP relationship does not appear to be confounded by regional differences.

Additional locations would be required to study the details of the relationship in the West. In
general, COPD mortality rates are higher in the West, hence the negative association with sul-
fate. TSP levels also tend to be high in some Western locations, presumably because of fugitive
dust but also because of forest slash burning and residential wood smoke. Volcanic ash is
another possibility, of course (Mt. St. Helens erupted May 18, 1980 and Spokane, WA, had the
highest TSP levels in the data set). It is also noteworthy that COPD deaths have been rising
nationwide (presumably because of the delayed effects of smoking), while TSP levels have
generally been falling (presumably because of emissions controls). Cross-sectional analyses are
incapable of distinguishing whether an association represents a bona-fide cause and effect
relationship, or a circumstantial one: the selective migration of people with (pre-existing)
respiratory problems to locations which happen to be high in dust loading (see Figure 10 and
the ensuing discussion). While such a scenario would rule out a chronic relationship between
TSP and COPD, it could still be consistent with deaths from acute (daily) effects. This
hypothesis could be evaluated directly by performing a time-series analysis in a location with
high fugitive dust levels; such an analysis should includeg the year 1980, in order to test the ef-
fects of drought and/or volcanic dust.

Particle Size Considerations

These cross-sectional regressions find a stronger relationship for COPD mortality with coarse
particles (TSP and PM 5) than with fine particles or sulfates. This result must be considered in
the contexts of both physiological and geographical considerations. A reviewer pointed out that
filtration of particles larger than about 10 um is "virtually complete" in the airways of the head.
It is thus difficult to accept that coarse particles alone may cause sufficient breathing dif-
ficulties to precipitate premature mortality. However, the reviewer also points out that an in-
soluble particle will tend to have a longer residence time in the human airways than a soluble
particle; thus it may be that the physiological distinction between SO4= and TSP or PM,¢ is
more a matter of solubility than of particle size per se. Also, TSP includes particles of all sizes
less than about 50 um, and regressions were not performed for coarse particles per se.
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From a geographic perspective, one must realize that the association between COPD mortality
and TSP or PM, may also have a circumstantial component, in that we have no evidence that
air pollution played any role in the original etiology of the prevalence of COPD. It is important
to distinguish between those factors which lead to the regional prevalence of COPD from those
factors which affect the timing and location of death of COPD patients. The overwhelming
root cause of COPD has been identified as smoking; in addition, smoking causes impaired
respiratory clearance, which would further prolong the residence times of inhaled particles.
However, it is also reasonable to assume that COPD patients will be more sensitive to excursions
in air pollution, because of their typically impaired airflow distributions and reduced functional
reserve capacities. For this reason, the association between COPD mortality and TSP could be
reflective of the locations of the patients at most risk, rather than to the specific pollutants for
which we happen to have data.

Previous Findings by Cause of Death

Support for these cross-sectional results is also found in the literature on various mortality
studies which also considered separate cause of death groupings. In some cases, because of dif-
ferences in study design, one can only note whether the relative effects are similar, i.e., ranking
of regression coefficients or elasticities or concordance in associations of diseases and pollutants.

Cross-sectional Studies. Most of the extant cross-sectional studies suffered from incomplete or
flawed model specifications, and sometimes from problems with air quality data. Lipfert’s
(1978) study of 1970 city mortality, which also considered county and state mortality, had some
of these problems also, but selected results by cause of death are presented here for reference.
Lipfert did not consider cardiovascular causes per se, but did present results for deaths not clas-
sified as respiratory, cancer, or external, most of which were cardiovascular. On average, over
70% of deaths were in this category, and the regression coefficients were very similar to those
for all non-external causes (elasticities were higher). Typical elasticities (for TSP) were 0.054
for all non-external causes and 0.065 for the unspecified (cardiovascular) category. (Lipfert did
not include data for ozone in his 1978 analysis, but he found significant relationships between
ozone and all-cause mortality in his 1984 study of 1970 SMSA mortality.) The respiratory dis-
ease grouping used in the 1978 city study included asthma deaths and accounted for a total of
only about 1.7% of all deaths. The respiratory disease regressions were most successful at the
state level, for which the TSP elasticity was about 0.21.

Time-Series Studies. Only a few of the many time series studies which have appeared over the
years have considered separate causes of death. Schimmel and Greenburg’s (1972) study of
1963-68 mortality in New York City was one of the most thorough. They looked at nine
cause-of -death categories against SO, and smoke (regressed jointly), for lags up to seven days,
controlling for temperature. Results were presented for the entire city and for a smaller section
located around the air monitoring site. The elasticities were slightly higher for the smaller sec-
tion, as might be expected,  but mainly for SOZ; the smokeshade coefficients scaled ap-
proximately with the population. In their joint regressions on SO, and smokeshade, smokeshade
accounted for 2/3 of the excess deaths for total, respiratory and cardiovascular cause of death
groupings (for the smaller district); the split for the entire city was weighted more towards
smokeshade because of the depression of the SO, coefficients when city-wide mortality was
regressed against local SO4. Schimmel and Greenburg used linear models and presented regres-
sion results for same-day mortality and for deaths accumulated for seven days after the air pol-
lution measurement. The latter elasticities were about 0.025 for all causes, 0.031 for cardiovas-
cular causes, and 0.097 for respiratory diseases. These values are lower across-the-board than
the present cross-sectional results, but agree qualitatively.




Kinney and Ozkaynak (1991) did not find a stronger relationship for respiratory disease deaths
in their study of Los Angeles, which used linear models and lags up to one day. However, they
did not examine TSP or any other particle measures, for respiratory disease mortality. They
found relationships with ozone and NO, (regressed jointly) for total mortality and cardiovas-
cular mortality, with combined elasticities of about 0.04 and 0.05, respectively.

Time-series analyses of Philadelphia (Schwartz and Dockery, 1992a), Utah County (Pope et al.,
1992) and Santa Clara County, CA (Fairley, 1990) were all limited to some measure of particu-
lates in their investigations of specific causes of death. The elasticities found are given below:

Elasticity
Cause of death Philadelphia Utah County Santa Clara County
all (non-external) 0.051 0.072 0.030
cardiovascular 0.071 0.084 0.030
respiratory 0.14 0.17 0.13
cancer 0.028 -- 0.029

These figures indicate reasonable quantitative agreement with the present cross-sectional find-
ings; however, the disagreement with regard to associations between particulate matter and car-
diovascular mortality is noteworthy and may indicate fundamental differences in the relation-
ships. For example, it is possible that the time-series relationship for cardiovascular deaths
reflects prematurity of death less than one year, so that it is not reflected in the annual rates.

Summary of Non-Pollution Mortality Relationships

We chose to base our conclusions on the "parsimonious” models because they fit the data better
and had highly statistically significant coefficients for most of the terms. It is thus also impor-
tant to examine these results in detail, since it has been shown that the extent to which "excess"
mortality is assigned to sulfate is strongly dependent on the way in which socioeconomic and
lifestyle variables are handled. The issue of regional vs. local effects was discussed above.
Table 18 compares elasticities for these variables. We see that using elasticities as a measure,
many of the non-pollution effects account for smaller fractions of mortality than we are cur-
rently estimating for air pollution. Note also that the values for smoking may be underes-
timates, especially since official estimates tend to blame smoking for almost all of COPD deaths.
This may be an inappropriate comparison, however, since age is the overwhelming factor in
Table 18 and the effects of smoking per se are usually stated after age adjustments have been
made. Also, the smoking data used in the present analysis are "ecological” in that they are based
on entire states and are not specific to decedents for particular causes of death. The ensuing er-
rors will tend to depress the smoking regression coefficients.

We find that the factors associated with higher all-cause (non-external) mortality rates in a
given area are age, percentage of blacks, poverty and smoking. Beneficial factors include the
presence of Hispanics, of other non-whites, college education, drinking water hardness, and
in-migration. For cardiovascular diseases, the age, education, smoking, and in-migration effects
are increased; this sheds some doubt on the validity of the "soft-water" hypothesis, since it was
originally directed towards heart disease (Pocock, 1980). All the remaining trends conform
more-or-less to the "conventional wisdom." Note that poverty and education are strongly col-
linear in this data set and that independent estimates of their separate effects may be unreliable.
For COPD, the findings are somewhat problematic, since population density is a strong negative
predictor and we might have otherwise associated respiratory problems with crowded central
cites. This may indicate rural sources of respiratory problems, such as farmer’s lung, or perhaps
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that wind-blown dust is more common in low-density areas in the West. The positive coeffi-
cient for in-migration may indicate that some portion of elevated COPD mortality is due to
selective migration of persons suffering from the disease.

TABLE 18 ELASTICITIES FOR NON-POLLUTANT VARIABLES

Non-external Causes |Major Cardiovascular | COPD

variable linear log-linear |linear log-linear |linear log-linear -

% 65+ 0.74 0.73 0.81 0.79 0.75 0.69

% black 0.022 0.033 0.015 0.038 -0.09 -0.08
' % other non-white -0.004 -0.01 - - - -

% Hispanic -0.004 -0.005 -0.009 0015 | - -

% with 4yt college -0.089 -0.095 -0.15 016 - . -

log po'p. density - - - - - -0.40 -0.29

cigarette sales 0.11 0.14 0.12 0.19 0.32 0.37

drnkg water hardness -0.01 -0.007 -0.01 -0.005 | - -

% pop. change,1970-80 -0.033 -0.038 -0.049 0059 - -

% in poverty - - - - 0.27 0.23
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Table 19 presents a listing of previous (some independent) estimates of regression coefficients
for some of the variables used in this study. Agreement appears satisfactory, with the possible
exception of % > 65 and smoking. The uncertainties suggested by these discrepancies are dis-
cussed below.

Comparison with Previous Cross-Sectional Studies

Since one of the important issues in the design of cross-sectional studies is the selection of
geographic units for study, it is important to compare the present results with those of a similar
previous study based on 1980 data for cities (Lipfert et al., 1988). That study found slightly
different combinations of demographic and socioeconomic variables to be optimal, but did not
employ log-linear models and did not use city-wide averages for TSP. If the model truly repre-
sents what it purports, we should find the same regression coefficients for both cities and
SMSAs. If the variables are merely serving as surrogates, we might expect to find the same
elasticities. Table 19 indicates good agreement between regression coefficients in most cases.

Since there are no two cross-sectional studies in the literature which employed common analysis
methods and models, it is not possible to make definitive comparisons between 1970 and 1980,
i.e., to examine whether benefits in reduced mortality have accrued as a result of the Clean Air
Act. Such a comprehensive analysis should be given a high priority.

Uncertainties Remaining in the Analysis and Recommendations for Their Resolution

The regression results presented above comprise a reasonably coherent picture, after sources of
confounding and error are taken into account. However, many important uncertainties remain
and it is fair to assume that, if they were all accounted for, this picture would be likely to
change in ways that cannot now be predicted.

Linearity Of Responses. The quintile and successive truncation analyses suggested that the
dose-response functions might be non-linear, in that a TSP threshold around 60 ug/m-> might be
present. However, the bulk of the regression analysis was structured around assumed linear
dose response functions, and it is possible that the "optimum" regression models derived might
be sensitive to such a specification. At least portions of the analysis should thus be replicated
using piecewise continuous models, as was done by Lipfert (1984).

Age Distributions. In spite of the appearance of consistency in these results, many important
uncertainties remain. The lack of agreement with of the coefficient for 65+ implies that use of
this simple metric may not be handling spatial variations in age distributions properly. To the
extent that systematic regional differences in the distributions may exist within the 65 and over
age group, confounding could result. Note that use of "median age" by Ozkaynak did not seem
to help, presumably because the problem lies with the elderly, not with people around the
median age (30s). Also, there is strong collinearity between these two age variables (r=0.85),
and including median age variable changes the coefficient for 65+ so that the exogenous check
is no longer valid. Either age-specific deaths should be analyzed (which are often problematic
because of the smaller counts involved), or the age distribution in each city should be used to
compute an "expected” death rate for each location. :

Weather/Climate Effects. Recent analyses (Kalkstein et al., 1991) have identified heat wave
mortality as more important than summer air pollution in some U.S. cities. 1980 was a severe
drought and heat wave year (Bair, 1992), but not all locations were affected equally. Since
ozone also responds to sunlight, and TSP tends to be higher in the absence of precipitation,
weather variables should be added to the analysis. Evans et al. (1984b) and Mendelsohn and
Orcutt (1979) found that weather/climate variables could make significant contributions to
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Table 19 INDEPENDENT ESTIMATES OF REGRESSION COEFFICIENTS

Results from this Study Results for 1980 Cities

Est. Coeff. (SMSAs) (Lipfert et al.,1088)
Variable (Exogenous Data) Basis non-external causes all causes
% > 65 0.465 Difference in total US mor- 0.55 0.54

tality rates for %>65 - % <65

% Black 0.0276 Difference in age-adjusted 0.022 0.008-0.027
total US rates, white-black

% Other NW -0.02 Difference in 1980 age-adjusted total -0.01
US rates, white-"all other”
-0.0042* based on 1960 data
% Hispanic -0.017 Difference in age-adjusted -0.006 -0.04--0.06

total US rates, Mexican,
Puerto Rican or Cuban born,
all whites + all blacks
adjusted for poverty

Smoking 6.012** Relative risk, by amount 0.004 0.008-0.018
smoked (Surg. Gen. Rpts)

Water -0.0015 (Great Britain) --0.0007 -0.007--0.06
Hardness -0.0072 (Italy)
-0.004 (Great Britain)
% Poverty 0.11-0.17 1970, cities 0.049 0.04-0.06
0.02-0.06 1970, SMSAs
0.034 1970 expected value
% College -0.08 to 1970, cities -0.04 0 - -0.08
Graduates -0.09
-0.018 1960, individuals*

*from Kitagawa and Hauser (1973) :
**Sterling et al. (1993) claim that the attributable risk of smoking drops by about 44% when population characteristics and
confounding variables are taken into account.
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cross-sectional mortality regressions. In may be important to include departures from normal
conditions and durations of hot spells in such formulations.

Indoor Air Pollution. While Lipfert and Wyzga (1992) found that indoor and outdoor air quality
for respirable particulates tended to be highly correlated in time when averaged over a com-
munity, this will not be the general case for spatial comparisons. Some communities have more
air conditioning, which protects against heat and outdoor air pollution, and some locations use
more unvented indoor heaters and wood stoves, which are important sources of indoor air pol-
lution. Variables describing the prevalence of heating and air conditioning equipment should be
added to the analysis.

Smoking and Life-Style. The lack of agreement for the smoking variable in this study was also
disappointing and deserves further study. The raw data should be examined for outliers (New
. Hampshire is a candidate, because of the high levels of out-of-state sales). Data on smoking
prevalence from surveys should also be evaluated, along with other data on personal risk factors
such as exercise, obesity, alcohol use, etc. The "pace of life” has been shown to vary substan-
tially across the nation and may be a contributor to differences in heart disease.

Chronic_vs. Acute Effects. As discussed earlier, cross-sectional regressions may reflect either
phenomena that occurred during the year of study or the sequelae of trends that built up over a
long time. It is important to try to reconcile this uncertainty, which might be approached by
examining mortality for 1979 and 1981 (with regard to 1980 air pollution, heat waves, flu
epidemics, etc.). TSP data could also be compiled specifically for these years. There are also
uncertainties as to the correct pollution dose metric, with regard to both chronic and acute
responses. Cross-sectional analyses tend to use long-term averages; time-series studies use daily
averages or peaks. The duration of peak periods is often neglected by both types of studies.

Other Causes of Death. Etiological insights might be gained by examining both causal and
non-causal hypotheses (controls). Additional causes of interest include various cancers, in-
fluenza, and pneumonia; control causes might include diabetes or urinary disorders, for example.

Concluding Assessment

This study broke new ground in its treatment of the air quality data for SMSAs and in its ex-
ploration of log-linear regression models. Both of these developments turned out to be very
important and suggest that previous (national-level) cross-sectional studies of mortality should
be re-examined in these contexts.

The previous findings of Lipfert et al., (1988) were confirmed:

0 Mortality from all (non-external) causes may be associated with any of several pol-
lutants.

o The elasticities are around 0.05.
o It is difficult to separate the effects of different pollutant.

In addition, a specific disease-pollutant relationship was identified: COPD mortality was as-
sociated with TSP. This relationship was robust to attempts to identify confounding or artifacts,
but should be confirmed with data for additional locations and time periods and with regression
models specifically designed to quantify pollutant thresholds. The COPD-TSP relationship was
not strong enough to account for all of the association between TSP and mortality from all non-
external causes.
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Finally, the study confirmed previous findings (Evans et al., 1984; Lipfert, 1978; Lipfert, 1984;
Lipfert et al., 1988) that the association between sulfate and all-cause or cardiovascular mor-
tality is extremely dependent upon the extent to which non-pollution effects on mortality have
been controlled for. This characteristic stems from the regional nature of 504' in the North-
eastern United States. Important variables include smoking, a detailed racial breakdown, and
population change. It was shown that the results of Ozkaynak and Thurston (1987) are not
robust, in part because of lack of consideration of these variables and in part because of their
failure to average air quality data across each SMSA.
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APPENDIX A STATISTICS OF VARIABLES USED

variable name # obs mean mean stddev. max min
(149) (98) (149) (149) (149)

TSP (ug/m3) 149 68.38 67.72 1694 141.57 41.25
SO4 (ug/m3) 149 9.29 9.60 3.10 17.00 2.00
TSP-SO4  net 149 56.43 55.37 17.74 135.72 27.23
computed SO2 (ug/m3 147 16.91 17.59 10.93 46.38 0.56
computed SO4 (ug/m3 147 6.66 7.04 3.90 13.86 0.44
computed NOx (ug/m3 147 15.08 16.14 8.57 46.98 1.44
1978 ozone (ppm) 149 0.0494 00495 0.0095 0.0990 0.0130
manganese (ug/m3) 138 0.0357 0.0365 0.0265 0.1930 0.0086
PM-2.5 (ug/m3) 63 1762 - 5.96 3714 7.21
PM-15 (ug/m3) 63 3848 - 12.22 68.64 2191
IP-SO4 (ug/m3) 63 427 - 246 12.32 1.03
IP-Pb (ug/m3) 63 0.203 - 0.12 0.62 0
population count 149 928330 1091937 1289727 9120346 38092
population density 149 596 673 1174 12108 29
log pop. density 149 2.52 2.59 043 408 1.47
% white 149 84.57 83.60 10.79 98.80 33.10
% black 149 11.14 12.77 9.66 39.90 0.10
% other nonwhite 149 4.29 3.63 6.84 64.70 0.30
% nonwhite 149 15.43 16.40 10.79 66.90 1.20
median age 149 29.77 29.82 1.94 3840 25.00
% 65 and over 149 10.60 10.47 2.17 21.40 6.20
% pop. change,1970-80 149 12.83 11.62 14.96 6945 -9.30
smoking (1980) 149 186.84 186.97 24.16 32455 12521
smoking (1969) 149 191.30 191.03 27.09 303.00 115.00

smoking,avg 1969,1980 149  189.07 189.00 2270 29928 121.75
% 4yrcollege (1970) 98 1127 1127 342 2340  5.10
% 4yrcollege (1980) 149 1658 1685 443 3280  8.00

% below poverty 149 11.14 11.24 3.01 21.70 6.80
% Hispanic 149 5.30 4.55 9.11 61.90 0.30
Drnkg water hardness 149 107.05 97.46 9423 484.00 0.00
heating degree days 149 4733 4592 2083 9901 0
deaths (all causes) 149 7963 9330 - 11924 95550 487
deaths less external 149 7334 8589 11065 = 89675 425
deaths (cardiov.) 149 3912 4573 6056 50279 217
deaths (COPD) 149 218 250 277 1771 18
mort rate(all causes) 149 8.502 8.531 1486 13.704 4.907
mort rate (nonext) 149 7.826 7.850 1485 12.899 4.377
mort rate(cardiov.) 149 4.193 4.201 0.950 7.686  2.027
mort rate (COPD) 149 0.251 0.241 0.075 0.683 0.122
log mort rate (all) 149 0.923 0.925 0.076 1137 0.691

log mort rate(nonext) 149 0.886 0.888  0.083 1111 0.641
log mort rate (CV) 149 0.611 0.613 0.100 0886 0.307
log mort rate (COPD) 149 -0.616 -0.629 0.116 -0.166 -0.914
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APPENDIX B ADDITIONAL SCATTER PLOTS
FOR ADJUSTED NONEXTERNAL MORTALITY

Figures B-1 to B-9 present scatter plots of adjusted mortality rates against the additional pol-
lutant variables which were not specifically considered in these regressions. NET TSP appears
similar to TSP (Figure B-1). PM-15 (Figure B-2) has one high-value influential observation
(San Bernadino, CA); the fine particle plot shows three such points (Figure B-3). Manganese in
TSP shows a positive relationship (Figure B-4) in that ali of the Mn values above 0.05 have
have positive adjusted mortality rates, but there is no apparent effect of dose. Mn may thus be
acting as an indicator variable for ferrous metal manufacturing operations. rather than as a pol-
lutant, per se. Both 804= (Figure B-5) and Pb (Figure B-6) from the inhalable particle
samplers show scattered relationships with little trend.

Figures B-7 to B-9 present plots of these adjusted mortality rates against three variables derived
from a long-range transport model for air pollution (Shannon, 1981). Only the values intended
to represent NOx (Figure B-9) suggest any kind of trend.
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Figure B-1. Scatter plot of adjusted log non-external mortality rates vs. the TSP—SO4= dif -
ference.
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Figure B-3. Scatter plot of adjusted log non-external mortality rates vs. PM, 5.
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Figure B-4. Scatter plot of adjusted log non-external mortality rates vs. manganese in TSP.
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Figure B-5. Scatter plot of adjusted log non-external mortality rates vs. [IP] SO4=.
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Figure B-6. Scatter plot of adjusted log non-external mortality rates vs. lead in inhalable par-
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Figure B-7. Scatter plot of adjusted log non-external mortality rates vs. SO, computed from
the ASTRAP long-range transport model.
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Figure B-8. Scatter plot of adjusted log non-external mortality rates vs. SO4= computed from
the ASTRAP long-range transport model.
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Figure B-9. Scatter plot of adjusted log non-external mortality rates vs. NO, computed from
the ASTRAP long-range transport model.
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