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Symbolic Derivation of High-Order Rayleigh-Schriédinger Perturbation
Energies Using Computer Algebra: Application to Vibrational-Rotational
Analysis of Diatomic Molecules

by

John M. Herbert

ABSTRACT

Rayleigh-Schridinger perturbation theory is an effective and popular tool for describing low-lying
vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for
computation of electronic potential energy surfaces, can be used to calculate first-principles molecular
vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities,
however, such perturbation calculations are rarely extended beyond the second order of approximation,
although recent work by Herbert has provided a formula for the nth-order energy correction. This report
extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh-
Schrodinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The
commercial computer algebra software Mathematica is employed to perform the prohibitively tedious
symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal
constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator
tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this
Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future
analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can

successfully be applied with the aid of commercially available computer algebra software.

I. INTRODUCTION

Molecular vibrational-rotational (or vibro-rotational) energy levels are obtained from
theory by solving (in some approximate fashion) the quantum-mechanical Schrédinger equation
representing the internal nuclear motion of the molecule. These energies—which are eigenvalues
of the quantum-mechanical Hamiltonian operator associated with internal nuclear motion—and
their corresponding eigenfunctions are of key interest because numerous molecular properties
such as equilibrium geometric structure, bond lengths and polarities, dissociation energies and
other thermodynamic quantities, moments of inertia, and stability of transition states are linked to
internal nuclear motion [1, 2]. While most of these properties are obtainable via experimental

spectroscopy, theoretical calculation and analysis of vibrational-rotational spectra are vital to the




study of molecules not readily amenable to experimental investigation; these include unstable

species, weakly bound complexes, and highly toxic corhpounds [2].

To approximate solutions to the nuclear Schrodinger equation, most researchers enlist
either variational methods or perturbation theory [3]. While variational procedures are somewhat
more accurate than perturbation methods, the difference is small for low-lying energy levels and
is inevitably overshadowed by error introduced during calculation of ab initio potential energy
surfaces [4]. Typically, perturbation theory provides vibrational and rotational data that are as
accurate as any currently available ab initio potential energy surface will allow {5]. In addition,
perturbation theory holds an advantage over variation in that the form of the wave functions is
necessarily shaped by the nature of the perturbation [6], whereas with variation the choice of trial
function is essentially arbitrary [7]. As a result, perturbation theory remains the method of choice
for describing the low-lying vibrational and rotational states of polyatomic molecules [8]'.

Perturbation procedures furnish successively higher-order correction terms to eigenvalues
and eigenfunctions; with suitable convergence this method can, in principle, be extended to
arbitrary order, until the correction terms become negligibly small. In practice, however, the
calculation of high-order corrections to vibrational-rotational energies and wave functions is
limited by the accuracy of the potential energy surface and by the inherent complexity of the
perturbation formulae themselves [9].

Fortunately, advances in high-speed computing over the past two decades have somewhat
assuaged the former problem and have made feasible [4, 10] the calculation of accurate ab initio
potential energy surfaces for small molecules [11-14]. Once nuclear and electronic motions are
separated via the Born-Oppenheimer approximation [15], the electronic Schrédinger equation is
solved for a number of nuclear configurations; this data is then fit to an analytic function—a
potential energy surface—that provides electronic energy as a function of nuclear configuration
[16]. This energy function is subsequently used as the potential energy operator in the
Schrodinger equation for nuclear motion [3).

The second problem with high-order perturbation theory, and one that has yet to be
satisfactorily resolved, is that even relatively low-order perturbation calculations involve
prohibitively massive algebraic expressions. Because of this complexity, analytic perturbation

theory is seldom applied beyond second order [3, 17], and instead variation-perturbation methods

! For highly excited states, the convergence behavior of perturbation procedures is poor, and variational methods are
significantly more accurate {4].




[18] or numerical solution of the perturbed Schrédinger equation [8] is employed to calculate
high-order correction terms. However, whereas derivation of an analytic formula for each
perturbation correction requires no a priori knowledge of molecular data and therefore provides a
general expression that can be applied to any system (upon substitution of the appropriate
molecular constants), numerical techniques require that molecular parameters be inserted into
equations before these equations are solved. Thus, the numerical procedure must be repeated for
each change in parameters.

Although manual computation of explicit algebraic correction formulae to arbitrary order
is not feasible, the growing availability of algebraic software capable of large-scale symbolic
manipulations offers the possibility of obtaining the desired expressions via computer. To this
end, high-order perturbation theory has been successfully applied to some simple systems using
computer algebra [19-23]; these applications, however, are limited in scope to a single system [20,
22, 23] or a small group of similar systems [19, 21], and in all cases the systems are composed of
atoms and not molecules. Furthermore, these authors take advantage of the Hellmann-Feynman
and Hypervirial theorems [3, 6] in order to circumvent explicit computation of wave functions.
Calculation of a vibrational-rotational wave function, however, allows one to compute
expectation values and molecular properties other than energy [2].

First attempts at a more general computer algebra-based approach to a perturbation
problem were presented in a series of papers by Bouanich?® in which the author uses commercial
algebra software to derive symbolic algebraic formulae for integrals arising in a perturbation
treatment of the vibration and rotation of diatomic molecules. Due to the nature of the potential
energy function employed, however, Bouanich [25] is unable to extend these results to arbitrary
order of correction. More recently, Dudas et al. [9] have developed a computer program (suitable
for implementation in the commercial algebraic software package Mathematica) that can derive
vibrational-rotational integrals to arbitrary order of correction, although these authors provide no
details concerning application of their algorithm to a vibrational-rotational analysis problem.

This report presents a perturbation-theoretical analysis of the vibration and rotation of
diatomic molecules. Using a modified form of the general perturbation energy formula
developed by Herbert [26] and incorporating the Mathematica code described above, explicit
algebraic formulae for energy and wave function correction terms are derived in the Mathematica

environment. These expressions incorporate universal and molecular constants strictly in

2Fora summary with appropriate citations, see [24] or [25].
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symbolic form, so that the solution is not specific to a single m¢ * .cule. Thus, after an initial time
investment to derive these formulae, it is a simple matter to subs itute appropriate constants and
thereby calculate vibro-rotational energies to arbitrary order of correction for any diatomic
molecule to which the theory applies. Furthermore, use of the Rayleigh-Schrédinger form of
perturbation theory facilitates explicit calculation of vibrational-rotational wave functions, and
from these equations of state numerous molecular properties may be calculated [2].

Although perturbation theory is neither the fastest nor the most accurate procedure for
vibrational-rotational analysis of diatomic molecules [8], this work is nonetheless significant
because for the first time perturbation corrections can be calculated accurately, efficiently, and
systematically for any order of correction. These results stand primarily as a pedagogical
precursor meant to furnish important insight and provide a framework for future studies of the
vibration and rotation of polyatomic molecules, where perturbation theory is the most common

method of analysis [8].

II. THE NUCLEAR SCHRODINGER EQUATION
In considering vibrational and rotational energies, one is concerned only with motion
internal to a molecule, so translational motion is discounted. When written exclusively for the
internal nuclear motion of a diatomic molecule, the time-independent Schrodinger equation

governing rotation and vibration is

B .
[—EV%U(R)JWN =Ey, , (1)

where FE is the system’s internal energy (i.e., the total energy less translational and electronic
contributions), U(R) is the molecular potential energy function, and yy is the stationary-state
wave function for nuclear motion in a reference frame that translates with the molecule. The
constants ¢ and 7 in (1) are, respectively, the system’s reduced mass and Dirac’s constant
(which is equal to Planck’s constant divided by 2r). The first bracketed term in (1) is the kinetic
energy operator for a diatomic molecule; its explicit form will not be required.

For a diatomic molecule, the potential energy U depends exclusively on the internuclear

separation R. Thus, the diatomic potential is spherically symmetric [17], so the eigenfunctions in

(1) have the form

v, =FR) Y} (6.¢), )




where Y}/ (0,9) is the well-known spherical harmonic function [3] and J and M are angular
momentum quantum numbers. The unknown radial factor F(R) is some function that depends
solely on the internuclear separation; this function can be shown [3] to obey the so-called radial
differential equation:

K? 2 J(J + DA
—— | F"(R)+—F(R) | +————FR)+ URFRy=EFRR) . 3
Zu(()R()) 2/uR2 (R)+ U(R)E(R) (R) 3)

III. THE HARMONIC OSCILLATOR AND RIGID-ROTATOR MODELS
To fully specify the solutions (2) to the nuclear Schrédinger equation (1), one must solve
(3) to obtain an expression for the radial factor F(r). While this procedure is well established and
can be found in many quantum chemistry textbooks, some elaboration concerning solution of (3)
is necessary to elucidate how vibrational and rotational energies will be successively
approximated.

Upon application of the change of variable G(R)= RF(R), (3) becomes [17, 27]

h? J(J +DH?
- G"(R)+[—(~—T)—+U(R)—E]G(R)=O , 4
UR
which cannot be solved without explicit knowledge of how U varies with R [28]. One way to
overcome this obstacle is to expand U(R) as a Taylor series about R,, the equilibrium internuclear

separation:

U”RYXR-R)Y U”R)YR-R)
(R, X( ) N (R, ) 4o

UR) =U(R,)+ U’ (R, R-R,)+ o 5

o)

By definition, the potential energy has a global minimum at R,, so U’(R,)=0. Furthermore, the
reference point for potential energy is always arbitrary, and it is convenient to choose U(R,)=0.

Under these conditions, Equation (5) becomes

14 _ 2 U/”R R—R 3
U(Re)(zl‘e RY , (e);‘ ) L

Ury= * (6)

and the energy E is now relative to U(R,)=0.
' For low-lying vibrational levels R= R, and all terms in (6) save the first are small [17].
Neglecting these terms affords

UR) = 5k,0°, (7

where k, = U”(R,) and




Q=R-R, ®)
is the so-called normal coordinate. Equation (7), which is an approximate potential energy
function for a diatomic molecule, is also a Hooke’s law potential from classical mechanics. The
constant k,, called the equilibrium molecular force constant, is a measure of the “stiffness” of the
diatomic bond and is completely analogous to the spring constant of classical physics [29].

In the approximation that a diatomic molecule vibrates like a one-dimensional harmonic
oscillator, exact equality holds in (7). Under this assumption [and using Definition (8)], one may
recast the differential equation (4) as

H + 1A’
T [22((; +)Q)2

where the change of variable W(Q)= G(R) was made [17] in order to convert to a coordinate

+%keQ2]‘P<Q) =EY©Q),

system based on Q. The first bracketed term in (9) is the potential energy of rotation [27, 29] and
is a result of the molecule’s rotational angular momentum and concomitant centrifugal force field
[28]; the second term in brackets is the potential energy of harmonic vibration. Equation (9) is
merely the time-independent Schrédinger equation for a diatomic molecule undergoing real
rotation and harmonic vibration.

One final simplifying assumption is necessary in order to solve (9). The molecule is
conceptualized to undergo rigid rotation at a fixed internuclear separation R,. In this “rigid-
rotator” approximation, the radial Schrédinger equation (9) becomes

2 2
—2% ¥ +3k QW)= [E?— ﬂ;—%ﬁ—] ¥

The rigid-rotator approximation is perhaps unsettling because this model precludes
change in internuclear separation, yet the molecule has already been assumed to undergo
harmonic vibration. Such philosophical difficulties are averted by expanding the centrifugal
potential term in (9) as a Maclaurin series in Q/R,. The base point for this expansion is
Q/R, =0, which corresponds by (8) to R =R,. The explicit form of the series expansion is [17,
27]

J(J+hnr*  JJ+DR’ 1
2U(R +QF  2uR  (1+Q/R)

2
_Ju+vr [ Q0
21

€




where
I,=pR (12)
is the equilibrium moment of inertia for a two-particle system. Note that the Taylor series (11)

converges 30, 31] when

Q

R

€

<1, (13)

which by (8) is equivalent to R < 2 R,. If R is within this radius of convergence, the magnitude of
the terms in (11) must become successively smaller; neglecting all but the first term is equivalent
to the rigid-rotator approximation discussed above.

Equation (10) does not contain a rotational potential energy term but in fact resembles the
Schrédinger equation for a one-dimensional harmonic oscillator whose total energy has been
diminished by a rotational term. Analysis [17, 27] of the boundary conditions of ¥(Q) shows that

when R = R, (the assumption permeating this treatment), ' may be represented by a

(normalized) harmonic oscillator wave function,

(zjz H,(oVa) 4, (14)

Y,(Q)=

o) \m

where =0, 1, 2, ... is the vibrational quantum number, H, is the vth Hermite polynomial, and
o=—. (15)

The harmonic oscillator (14) vibrates sinusoidally about R, with a classical frequency v, given by

1 |k
v,=—/[T. : 16
=2\ (16)

The function W,(Q) may be related back to the radial function® F(R) and substituted into
(2) to yield [17] an approximate diatomic vibro-rotational wave function:

¥.(@
win =05 g Y7 6:9). (17)

The subscript N from (2) has been dropped in favor of the three quantum numbers on which y
depends. Furthermore, a superscript zero has been added to y in anticipation of a perturbation-

theoretical analysis of vibration and rotation; the wave function (17) for a harmonic

oscillator/rigid-rotator provides a zeroth-order approximation to the true wave function for

? Recall the changes in variables made in Equations (4) and (9).
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internal nuclear motion.

IV. ANHARMONICITY, COUPLING, AND CENTRIFUGAL DISTORTION
Most molecules have a 'Y ground electronic state,* so at room temperature virtually all
such molecules are in the 'Y electron configuration. In this case, one may neglect electronic
excitations, and vibro-rotational energy in the harmonic oscillator/rigid-rotator approximation is
[17,29]
EY)=(v+3)w,+J(J+1B,, (18)

where w, =2nhv,, B, is the equilibrium rotational constant,
B =—, (19)

and the superscript zero in (18) is analogous to the one in (17). Experimental values of B, and o,
have been calculated (from spectroscopic data) and tabulated [32] for most diatomic molecules.
The energy expression (18) is strictly valid only for a diatomic molecule whose potential
energy is given by U =3k Q”, which is the equation of a parabola. In reality, the potential
energy curve for a diatomic molecule is not parabolic. Figure 1, for example, depicts accurate
potential energy data for 'H, [33] obtained by solving the electronic Schrédinger equation; the
harmonic oscillator potential is also plotted.® The most pronounced anharmonicity in U(Q)
appears when R is much larger than R, (that is, when Q is much greater than zero), for while the
quantum-mechanical harmonic oscillator has an infinite number of vibrational levels, the
potential energy curve for a real dinuclear molecule asymptotically approaches the molecular
dissociation energy as Q increases, creating significant anharmonicity at large values of Q.
Because of anharmonicity in the potential energy curve, the average internuclear
separation for a real diatomic molecule increases slightly with increasing v; this in turn increases

the molecule’s effective moment of inertia and therefore decreases its rotational energy [34]. The

* Molecules in the 'Z state have zero net electronic orbital angular momentum and zero net electron spin. A few
diatomic molecules do not have this ground state; these include O,, which has a 3y, ground state, and all molecules
possessing an odd number of electrons (e.g., NO, NO,, and ClO,) [28].

> Note that there is no rotational potential energy in the rigid-rotator approximation, so the zeroth-order potential
energy curve for a diatomic molecule is simply that of an harmonic oscillator.
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energy expression (18), however, fails to account for this coupling between vibration and -

rotation.®

Potential Energy Curves for Molecular Hydrogen

Energy [hartree]

0.06+

0.04F

0.02F

1 1 1 1 1 1 L 1
-1 -0.5 0 0.5 1 1.5 2 25 3 3.5 4 4.5
Normal Coordinate [boht}

FIGURE 1. Real and harmonic potentials for X 'E*, 'H,. The “real” potential represents
accurate data obtained [33] by solving the electronic Schrédinger equation using
a 54-term variational wave function with relativistic corrections. The requisite
harmonic force constant £, was calculated by means of Equation (16) and the
experimentally determined harmonic frequency v, given in {32].

Lastly, as a molecule’s rotational energy increases, so too does its rate of rotation and
hence its angular momentum. Since centrifugal force is proportional to angular momentum, an
increase in rotational energy effectively stretches the molecule’s bond against its restoring force
[28], and as a result some energy is consumed in the form of work [34]. This phenomenon is

known as centrifugal stretching or centrifugal distortion.

® As shown by Levine [17], vibrational-rotational coupling does not entirely disappear even in the limit of a perfectly

parabolic potential well due to the increase in average moment of inertia that accompanies increasing v and tends to
decrease rotational energy.




V. PERTURBATION THEORY FOR A DIATOMIC MOLECULE
The harmonic oscillator/rigid-rotator wave functions (17) are exact solutions’ to the

approximate Schrédinger equation (10). Equation (10) is an approximation to the true
Schrodinger equation because it incorporates a truncated potential operator, VHO:
Vio =3k.0", (20)

the potential operator for an harmonic oscillator. Within the radii of convergence of the series

(6) and (11), the full potential energy operator Vis represented by VHO plus all of the terms in

(6) and (11) that were neglected in the course of the harmonic oscillator and rigid-rotator

treatments.? Thus,

Ql + i+2 Qi+2

A (-D)'G+DJ+1)JB, . Kk
R, (i+2)! ’

where Definition (19) was used and where the jth-order force constant %; is defined as
k;=UP(R,) 22)

for all j > 2. Some authors (e.g., Sprandel and Kern [8]) choose to incorporate the factorial terms
from (21) into the force constants; however, Definition (22) provides a better analogy to the
unperturbed case, since k, is merely a special case of (22) withj=e = 2.

Successively higher-order corrections for anharmonicity, centrifugal distortion, and
vibrational-rotational coupling are made by incorporating additional terms of the potential energy
operator (21) into the approximate Schrodinger equation (10); these new terms manifest as

perturbations to the harmonic oscillator/rigid-rotator Hamiltonian [17]. The addition of all terms

in (21) provides the full Hamiltonian operator F{ for internal nuclear motion:

R h2 R oo
H =+ 1k, 0
20 +7k,Q '*'Z,[

VDI +DIB, ks Q"“] ,
R (i+2)!
which again is exact only within the radii of convergence of series (6) and (11).
It is known [8] that the sequence of energy correction terms from perturbation theory is
most likely to converge when the Hamiltonian is expanded as a power series with infinitely many
separate perturbations. With this motivation, the Hamiltonian operator (23) is rewritten in the

form

" To within the negligible difference in boundary conditions discussed in Section IIL
8 Note that the first term in series an, JJ + l)h2 / 21,, does not appear as part of V or VHO because it is constant
and is therefore subsumed into the system’s eigenenergy [see Equation (10)].
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H=HO+> H, (24)

i=1
where
- —h .
}[«»E—Zu Vi +1k,0° (25)

is the unperturbed Hamiltonian operator (corresponding to the harmonic oscillator/rigid-rotator

system) and each (' is a perturbation.
The summations in (23) and (24) must be equal, yet there are numerous conceivable ways
of constructing the perturbed Hamiltonian operators. When perturbation theory is applied
through second order, the perturbations are traditionally written [27] as follows:
2J(J+1)B, 3J(J+1)B,
R R;

e

W= 1r,0° - 0, HP = >k, 0+ Q. (26)

Here the first-order perturbation " comprises both the first-order vibrational correction [that
is, the cubic anharmonicity correction or the second term in series (6)] and the first-order

rotational correction [the second term in series (11)]. Likewise, the second-order perturbation

~

F{® incorporates second-order potential energy corrections for both vibration and rotation.
Extending this rationale to arbitrary order provides a convenient form for the perturbed
Hamiltonian operators:

i K (-1D)'G+ DI +1DJB, .

= i+2 i+2+ . , 27
(i+2)!Q R Q @7)
or, equivalently,
f k. CDGEDE(QY
(l)= - i+2 Q1+2 +( ) (l ) 2 , (28)
(i+2)! 21, R,

since the angular momentum L of a rotating diatomic molecule has a magnitude L given by

L=hJJ(J+1). (29)

The form of the perturbations in (28) parallels that used in second- [35] and fourth-order [36, 37]
perturbation treatments of polyatomic molecules, in which each perturbed Hamiltonian is the
sum of an anharmonicity correction and a rotational term containing momenta divided by
moments or products of inertia.

The first term in each perturbation (27) comes from (6), and these terms correct for

anharmonicity in the potential energy curve. The second part of (27) is a rotational perturbation,

11




corresponding to a term in series (11). Rotational perturbations adjust the system’s rotational

angular momentum so as to account for centrifugal stretching effects [6]. Corrections for the

coupling of vibration and rotation arise from integrals involving #”; when these integrals are
evaluated (see Section VI), the result is a function of v multiplied by a constant involving J, the
rotational quantum number. This results in coupled energy terms that depend on both the
vibrational and rotational quantum numbers.

Using the general power series expansion (24) of the Hamiltonian operator, one may

show [9, 26, 38] that there exists an energy correction term Ef)‘ > and perturbed wave function

y , associated with each perturbation F®. These entities are related by the perturbation

equations [26, 381, the nth of which is

k]

(HO-EQ) 0, = 3 (EO - )yl . 30)

i=

When n = 0, the system is unperturbed and Equation (30) reduces to the familiar Schrédinger

equation for an unperturbed system:

0 5 (0 (0, () )
‘7-[ ll/v,J,M - Ev,l WU,J,M . (31)

The system’s total energy E, , and true wave function v, , ,, are the sums of their

respective correction terms:

— {0 (&)
Ev,! - Ev,! +2E
i=l

v,J ?

()} (€3]
Youm =Worm +ZWU,J,M .
i=1

VI. EVALUATION OF MATRIX ELEMENTS

To calculate energy corrections E., and perturbed wave functions y”, ,,, one must

evaluate numerous integrals of the form
HE, = [y H P yPdr, (34)
where the integral is taken over all configuration space 7 and the ordered triple &, = (v,., J.M i)

specifies the system’s quantum state. The matrix element notation 7 5(12)5 introduced in (34) is




somewhat nonstandard in that %, 5(1",)52 involves zeroth-order wave functions rather than true wave

functions, and the Hamiltonian operator is a perturbation.
Integrals such as (34) can, in general, be evaluated numerically; however, for the case of
internal nuclear motion there exists [17] a simple procedure whereby an analytic solution may be

obtained. Note that in spherical polar coordinates, the infinitesimal volume element

dt=R*sin0dR d@ d¢, where @ and ¢ are the standard spherical polar angles [30]. Hence, in

this coordinate system, the arbitrary Hamiltonian matrix element #, é’l) ¢, becomes

}[é]’)é—‘l'.”y,w)*%(:) 0)R251n9d¢d6dR
RO ¢

(35)
=[[[ ¥, @H ¥, @Y (6.0)Y,"(6.¢) sind dp do dR,
RO ¢

where the R*term disappears as a result of (8) and (17). Since ¥; and F? both depend only on
O [Equations (14) and (27), respectively] and Q is a function of R only [Equation (8)], these

terms may be factored out of the ¢ and 0 integrals:

H, = j ¥, HOW, de j YY" sin6 dg d6

(36)

O'—':S

= [(®, A E, dR) 8, .84, u, -

where the Kronecker delta function ¢ arises from the orthonormality of the spherical harmonic

functions [3].

As a final step, one uses Definitions (8) and (27) plus the linearity of H to obtain

i kt+2 T i+ ( 1),(l+1)(‘] +1)JBe r i
b = Gl ¥, 0", 40+ % £ ¥, 0¥, d0 |8, ;. 8y, u,
(37)
=[rie),... +12@), . 18 1B
where the normal coordinate matrix elements are defined [cf. Equation (34)] as
(07),,.=[®,0¥, do. (38)

13




To a good approximation, the limits of integration in (37) and (38) may be interchanged; see [17]

or [27] for discussion. The vibrational potential energy constants ', and rotational potential

vib

energy constants ¥

rot

in (37) are simply the constant coefficients from (27):

L o _ (CD'G+1)(J +1)JB,
e (i+2)! ’ rot ™ R;’ .

(39)

Because of the orthogonality of the spherical harmonic functions, the matrix element (37)

iszeroif J,#J, or M, # M,. Thus, the only nontrivial Hamiltonian matrix elements are those

of the form #H , or P  inless cumbersome notation. Note that the matrix
(vy,J1, My ) (0,01, M) V),V

element 7-[,()]’ ?vz contains an implicit dependence on the rotational quantum number J insofar as
1) depends upon J. Elimination of J, and M, reduces ™ from a sixth- to a second-rank tensor,

which is simply a standard, two-dimensional matrix® whose elements are given by
() _ A, (D i+2 () i
HE =ral@™), +ra), - (40)
The functions ¥, and ¥, in (38) are harmonic oscillator wave functions [see Equation
(14)]. Working in the Heisenberg Lie algebra,'® it is.possible to show [39] that the normal
coordinate integrals (38) form a vector space; moreover, using matrix multiplication, one can

readily derive expressions for these integrals as functions of the quantum numbers v and v” and
the exponent z. However, an alternative approach yields better insight concerning the physical
system.

The harmonic oscillator wave functions (14) incorporate the Hermite polynomials, which

are related by the well-known recursive formula [6]

an(x)=an_1(x)+%Hn+l(x) ; “n

setting x = Q«/—o‘t and n = v, this equation becomes
Qa*H,(0a?)=vH, (0a*)+1H,, (0a?) . (42)
By rearranging (14), one may express the Hermite polynomial Hv(Qa%) in terms of a harmonic

oscillator wave function:

1
4

H,(0o*)="¥,(0) [ﬂ (2°0)f

o Operator matrices such as /™ obey the same rules as matrices of numbers [17].

1 The harmonic oscillator Hamiltonian is an element of the associative covering algebra for the Heisenberg Lie
algebra [39].
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similar expressions can be obtained for H,,, and H,,, in terms of ¥, and ¥,,,, respectively.
Substituting these expressions for the Hermite polynomials in (42) leads to a great deal of

cancellation and affords [17] the relatively simple expression

v T v+1T
W= — | W ||, . 44
Q v [2&} v~-1 [za} v+1 ( )

Finally, one multiplies Equation (44) by ¥, and integrates to obtain

(Q), .= (%)T_[ V¥, dT+ (%3;—;)?]' v, dr

)] g v+1%
=—\8., +|—10, . ..,
[Za] v, u-1 [ Za } v ,0+1

where the orthonormality of the harmonic oscillator wave functions was applied. The physical

(45)

insight is this: because the net overlap of distinct harmonic oscillator wave functions is zero, the
allowed electric dipole transitions for ¥, must be Av==*1 [29]. Real molecules, however, are
not confined exclusively to these harmonic oscillator transitions, but exhibit additional
transitions for Av==%2, £4, ... [34]. As expected, these selectionA rules arise mathematically
from the perturbations H® .

From Equation (37), the perturbed Hamiltonian matrix elements are, in general, functions
of some power of the normal coordinate matrix, but Equation (45) deals only with @'. To obtain

formulae for integrals analogous to (45) but involving higher powers of @, one employs matrix

multiplication [17]; for example, the matrix @ is simply the (matrix) product of two @ matrices, "

(0),,=2(0), (9, (46)

j
where j is a dummy index variable that is eliminated during the course of the computation.

Explicit formulae for the normal coordinate matrix elements up to (Q“)u .- are provided by

Wilson et al. [1].

i By including only their nonzero elements, these matrices can always be made square and of the same dimension.
Thus, the matrix multiplication (46) is always defined.
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VII. RAYLEIGH-SCHRODINGER EXPANSIONS
For vibrational-rotational analysis problems, it is convenient to use the Rayleigh-

Schrédinger form of pérturbation theory, which is based on the assumption that the set of all

unperturbed wave functions {1/15(0)} is a basis for the Hilbert space containing the true wave

(n)

functions y/, [26]. Thus, each perturbed wave function y;"’ may be expressed as a linear

combination of the wave functions in (17):
(n) (7, (0)
ch Ve >
(n)

where c;?’ is the nth-order expansion coefficient associated with quantum state £’. The

summation in (47) runs over all possible values of the three quantum numbers v, J, and M.

Three useful results will greatly expedite calculation of the linear combination

coefficients in (47). First, it is known [3, 40] that the expansion coefficient c{") ,, does not affect

(n) (n)

the perturbation energy E;’;, so one may set ¢, ,, =0 in the Rayleigh-Schrédinger expansion

of y.") ,, . If this is done, the expansion (47) simplifies to

v
(n) (n)y,,(0)
=2 vy
&2
Second, observe that

J’W(m)*g_[(i) wéf)dr — 2[ (m) Zc(n)JW(O)*}[(z) I/I(O)d’t']
§'#& §"#6

= Z{cé’,") ch?y{fg}g,,] :

2T N v S

where the Rayleigh-Schrodinger expansion (48) was used. Similarly,

J‘ V/(m)*l//(:>d’£'= z (m) 2 Cén) J’ (O O dr}

§’¢¢1_ §"#&,

=2 | 2625’5:',4'
£ N2




The second equality in (50) follows from the fact that the zeroth-order wave functions are
orthonormal.!
If either of m or n is zero in (49) or (50), then one or both of the wave functions does not

need to be expanded. These formulae are still valid, however, provided one defines
=6, (51)
where £ is the quantum state whose wave function is to be expanded and &’ is the index variable
of the Rayleigh-Schrodinger expansion (48). Definition (51) simply means that a zeroth-order
wave function is a linear combination of a single wave function, namely, itself.
Using the results obtained above, one can derive a general formula for the Rayleigh-

Schrédinger expansion coefficients from the perturbation equations. Applying (48) and the

notation introduced in this section, one obtains for the nth perturbation equation (30)
Zcm(ﬂ“’) EQ )y = Z(Ef,f}—}[(“)wg" N (52)

Since the coefficients for n = 0 are known [from (51)], let n be greater than zero. Pre-multiplying

(52) by the complex conjugate y{>" of an arbitrary state function and integrating over all space,
Y p gate y;. ary g g P

one obtains
e e (OB yar= J v (E-ALO)yg s, Y

which can be simplified by using the unperturbed Schrédinger equation (31) to perform the

operation H ¥y :

D) B o I I A
§7#&

As & is arbitrary, choose £ such that £ # &. Under this condition, the wave functions

0)

Ye

(n—i)

and Ve are not necessarily orthogonal [26]; however, in the case where i = n, these two

functions are orthogonal, so (54) reduces to

(")(E,(,O), _El()O} ( (z)J‘W(O)* (n- ')d'c) ZJ‘Wm)* D (n “Dir | (55)

Applying (50-52), Equation (55) becomes

"2 These wave functions are (or can be chosen to be) orthogonal because they are eigenfunctions of a Hermitian
. . "~(0), . . I . ..
operator, in this case A @ , the normalization condition is trivial.
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n-1
(B, - E)= g B =3 T I )
i=1 i=1 §7#&
for all n > 0, which is nearly the desired general formula. However, if £ and &” are degenerate

quantum states with the same energy in the harmonic oscillator/rigid-rotator approximation, then

the left side of (56) is zero, and no information regarding the expansion coefficients can be

obtained from this formulation. Hence, assume for the moment that E.,. # E. ).

Solving (56) for ¢ (’" and substituting this expression into (48) affords the expansion
1 n-1
() _ (n ~OEW (n=i) g (D) (0)
Ve = Z O _ O E, Z Z% Hezr : (57)
&'#E v, J’ v,J \_i=l i=1 &"#€
Recall from the preceding section that the only nontrivial Hamiltonian matrix elements ;..
are those for which J'=J” and M’ = M”. Furthermore, observe from (56) with n = 1 that each
first-order expansion coefficient cg is simply a Hamiltonian matrix element divided by an
energy difference. By induction on n, one may show that every set of nth-order expansion

coefficients { é”)} is nothing more than a sum of such terms, some of which are multiplied by an

energy correction E,. Thus, the entire right side of (57) is zero whenever J’# J” or

M’ # M”, so the summations over §"# & and £” # & in (56) and (57) reduce to summations

over v # v and v” # v, respectively. Applying this simplification and making use of (51), one

may also write Equation (56) as

n-1
Cé")(El(,?,)J' _E(o)) (n) +Zc(n x)E(l) z zc(ﬁ—i)}[l()i,)u” ] (58)

i=1 v"#v
In obtaining Equations (57) and (58), it was assumed that E,. # E’). In general, the
difference in zeroth-order energies between states £”and € is
EQ,. -EQ =(v-v)o,+(J -J)J' +J+1)B, (59)
from (18). However, the outer summation in the final Rayleigh-Schrédinger expansion (57) runs

over only quantum numbers v’ # v and therefore J=J’ and M = M’. Under these conditions,

the energy difference (59) reduces to

ED,. -EQ =(v'-v)a.,. (60)
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Hence, the zeroth-order energy differences are independent of the rotational quantum number.
Moreover, since (58) need contain no summations over J or M, the rotational quantum number J
appears in this equation only as a multiplicative constant [recall Definition (39) of the ith-order

rotational potential energy constant]; the quantum number M does not appear in (58) at all.

Because of this, the Rayleigh-Schrédinger expansion coefficients céf') in (58) will be denoted

instead by ¢'?’, where an implicit parametric dependence on J (analogous to that of 7] f,’ ) is

v’

assumed.

Equation (60) is significant because it implies that E&,. — E$) #0 if v"# v. Since
Equation (58) relates to the Rayleigh-Schrédinger expansion
N Ay (0
Yorm = ch"l Yorm > (61)
v'#v
this condition is met, so the assumption that E,. # E{’, is justified. The final expression for

the Rayleigh-Schrédinger coefficients is obtained from (58):

1 n-1 ) ) n-1 _' )
(n} _ (n) (n—i) 5 (i) (n-i) (i)
c” H v,v,—z ¢y VE,, + Z 2 Cor VH e | (62)
i=1 E

Y (- vk, i=1 v"%v
where (60) was used.
Equation (62) provides an important recursive relation whereby each new set of
expansion coefficients {cf}')} is determined by all of the coefficients of order less than n.
Reference to molecular vibrations and rotations was made only in the context of obtaining a

value for E3,, — E.")

.7 » SO the remainder of the derivation is valid for any Rayleigh-Schrédinger

perturbation problem involving a power series expansion of the Hamiltonian.

VIII. ENERGY CORRECTIONS

Equations (61) and (62) are necessary in order to expand the perturbed wave function
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(i)

v, in terms of the known functions in the set {y/(o)} 13 Such perturbed wave functions appear

in the equation for the nth-order energy correction [26],

x-1

E = 22[(2 5n21)< (j- 1)|}[<nu+1> <:>>]+ < (z)lﬂ(n 2:)' (,)>

j=li=j i=0

x-1

_22[(2 5n2,)E(” i~ 1+1)< (- 1>| (:)>]_. Ef,f','”’( (:)I (,)>

j=2i=j i=1

+H{we [0 lwg) - B i )= 0,08 e

where Dirac bra-ket notation has been introduced; that is

<‘I/5(;) I w(;)) J’ l/,5(1.-)*1/15(21') dr

<l//§(1') Ij[u) ‘/fézj)> = J’v,g)* o ydr.
The parameter xin (63) is defined as
x=lzn],
the greatest integer less than or equal to 37. Mathematically, only the wave function terms
© () (x)

Ve We', ... Y, are necessary to express the nth-order energy correction E( [40].

Using Equations (48-50) to expand the wave functions in (63) provides

'3 A nagging problem throughout this discussion is whether to include as subscripts the quantum numbers J and M.
The results of Section VI justify omission of M as a subscript for ¢ because Hamiltonian matrix elements do not
depend on M, nor is M a necessary summation variable in the Rayleigh-Schrodinger expansion (61). Likewise, J is
not a necessary summation variable, although it does appear in Hamiltonian matrix elements as part of the rotational
potential energy constants of (39). A subscript J is not included on Hamiltonian matrix elements, however, in order
to emphasize that £ is a (two-dimensional) matrix whose indices are vibrational quantum numbers, whereas J
appears only in the aforementioned rotational potential energy constants. In keeping with this convention, the J
subscript of the expansion coefficients is suppressed. Whenever a wave function explicitly appears in a formula,
however, all three quantum numbers v, J, and M will be retained (often as the single subscript £) until an integration
or other operation is performed that formally removes dependence on J and M. Furthermore, the energy corrections

E® will retain both v and J as subscripts in order to emphasize the presence of both vibrational and rotational energy
levels.
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r= 35 -s) 0 Tetocs ||« S 5[0 3 o

j=li=j v'#£D v'£V i=0 v'#v v"#V
K X
_ (n-i-j+1) (-1 z ()
- 22 (2 5,,,2,.)Ev, ] ¢, Cyr O o
j=2i=j V=Y v #Y

(67)

-1
_ (n=2i) (i) ')
E); (cv, E Cy 51),,”,,)
i=1 v’ £V [P

| B[ B - 0-am T Tt o

v'#ED v7#D v’ £ v”2V

Hamiltonian matrix elements in (67) may be converted to normal coordinate matrix elements by

using Equation (40), and Kronecker delta functions of the form &, . simplify some of the nested

summations in (67), leaving

£ S {E 3 -0 g See ), )

Jj=1 i=j V£V V7%V
x=2

Shslezee,. ]

v'2Y VED (68)
K KX x—1
- 28 \E-i-ith G=D) o) ECD 0 Zil
;;[( ",21) >’ v’#v( ’ )] z=l|: v'¢v(cv )
g Seten),, )-0-0,0m S o)
The outermost index variable ¥ in (68) assumes only two values, O or 2, with
v =7, 75 =Y - (69)

This amounts to evaluating Equation (68) once for rotational perturbations and once for
vibrational perturbations.

Expressed in terms of normal coordinate matrix elements, the Rayleigh-Schrédinger
coefficients in (68) have the form

1 n-—1
= ;on [m[ﬁ)(@'”%v' 2 cy ')E(') + Z 7(1) 2 Cyr” 1)< '+Z> j:i ’ (70)
z=2 y |

i=1 v7#Y

where (40), (62), and (69) were used.

Evaluation of summations over quantum states such as those in (68) and (70) has
traditionally been one of the foremost difficulties encountered in any application of perturbation
theory [17, 40]; however, in this context such is not the case, for the summations over v’ # v, etc.,

in (68) and (70) are not infinite sums. Rather, because there are only a finite number of allowed
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transitions and since normal coordinate matrix elements must vanish for forbidden transitions,

(Q"')” turns out to be zero whenever i # j—z, j—z+2, ..., j+z—2, j+z. Thus, this matrix

element consists of no more than z+1 nonzero terms. This result is one reason that Rayleigh-
Schrédinger perturbation theory is so often used in vibrational-rotational analysis.
The above selection rules for the elements of the matrix Q¢ arise from the fact that the

harmonic oscillator wave function ¥, has a definite parity [3] corresponding to the parity of the

vibrational quantum number v. Furthermore, Q¢ in <QZ> ; has the same parity' as the integer z,

so the parity of ¥, Q* Y, is the same as that of the integer z+ i +j. As the integral of an odd
function over all space is zero, (Qz>i ;= 0 whenever z+ i +j is odd, or in other words when

i#j—2z,j—z+2, ... ,j+2-2,j+2z

IX. IMPLEMENTATION USING MATHEMATICA

An existing Mathematica code [9] can evaluate the matrices Q° for any positive integer z
and return analytic functions of the vibrational quantum number analogous to (45); the selection
rules for these matrices (as discussed above) are Av=x%£1, £3, *5, ..., £z whenzis odd and
Av=0, £2, 4, ..., £z whenziseven. This Mathematica code, along with Equations (68)
and (70), could in principle be used by Mathematica to derive arbitrary-order correction terms.
However, Mathematica itself is capable of performing the algebra necessary to transform the
general energy expression (63) into Equation (68). Hence, in the interest of maximum versatility,
the general expressions (63) for the energy corrections and (58) for the Rayleigh-Schrédinger
coefficients were used instead of (68) and (70). The advantage of this approach is that the
perturbed Hamiltonian operators and zeroth-order energy differences are defined by means of
short, readily alterable functions that are separate from the main Mathematica code. As such,
these definitions can be changed quickly should one wish to employ the Rayleigh-Schrodinger
perturbation framework to solve a quantum-mechanical problem other than the one discussed
herein.

Appendices A and B provide the complete Mathematica code necessary to derive analytic

expressions for EJ, E?), ... in terms of molecular constants, universal constants, and

4 Recall that Q is the variable of integration in (QZ > 5 and not simply some number. Therefore, in this context Q¢
i
is a function with definite parity.
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quantum numbers. Appendix A defines a Mathematica package called RSPERTURB that contains |
a slightly modified version of the code of Dudas et al. [9] plus Equations (48-50), (58), and (63),
along with a few other assorted rules for manipulating quantum-mechanical matrix elements.
The code in this package pertains to Rayleigh-Schrodinger perturbation theory in general.

Appendix B, on the other hand, defines the package DIATOMICVIBROT, which consists of
Definition (60) of EY,. — E{’} and Definition (27) of F{; the purpose of this Mathematica

package is to apply the functions in RSPERTURB to the vibrational-rotational analysis of diatomic
molecules.

In deriving energy formulae using RSPERTURB and DIATOMICVIBROT, the quantum number
v was not incorporated symbolically, but instead separate energy expressions were derived for
each value of v. There are several reasons why this was done. First and foremost, when v is
known explicitly, the summations over quantum numbers v’ # v, etc., may be quickly evaluated,
so it is enormously simpler (and much more efficient) to derive formulae in this manner.
Moreover, the perturbation analysis described here is accurate only when R = R, (that is, when v
is small), so there are relatively few vibrational states for which this analysis is applicable (and
hence for which energy formulae need be derived).

The only reason one might desire a general energy expression in terms of both v and J is

that such an expression could subsequently be factored into a polynomial in powers of J(J +1)

and (v + '5) whose coefficients could be related to the important spectroscopic constants, as

shown by Dunham [41]. When only first- and second-order energy corrections are included, such
a procedure has been utilized [17] to derive ab initio formulae for the spectroscopic constants in
terms of universal constants, molecular constants, and the quantum numbers » and J. In general,
however, perturbation calculations do not yield energies that can be factored exactly (i.e.,

analytically) into powers of J(J +1) and (v ++) [42]. Furthermore, few of the Dunhani

coefficients have been attributed any physical or spectroscopic meaning [28, 43], and indeed the

Dunham expansion in (v + %)i[.l (J+ 1)]j is most often used as a numerical fitting equation. In

light of this, the most efficient way to obtain theoretical values for spectroscopic constants is to
calculate vibrational and rotational energy levels from first principles, then numerically fit these
values to an appropriate power series in much the same way that ab initio electronic energies are

fit to an analytic potential energy function.
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Using the external packages RSPERTURB and DIATOMICVIBROT, Mathematica® derived
analytic formulae for the energy correction terms E™ through E and for vibrational states v =0
through v = 10. The odd-order perturbation energies were found to be zero, owing to the fact

that perturbed Hamiltonian matrix elements 7£;”, have a definite parity due to Definition (27)

and the parity of (Q° (as discussed in the preceding section). Using intrinsic Mathematica
P U, 2

functions for algebraic simplification,' one can express each correction formula as a linear
combination of small terms; the linear combination coefficients are integers whose values depend
upon the vibrational state. By taking advantage of linear combination notation and intrinsic
patterns in the correction formulae, one can reduce these expressions from literally hundreds of
pages of algebra into relatively compact forms. These compact expressions for the energy
corrections E®, E®, and E® are given in Appendices C-E.

Each energy correction formula consists of purely vibrational terms, purely rotational
terms, and coupling terms arising from the interaction of vibration and rotation. Terms
containing rotational dependence of some description are easily identified by the presence of the
quantum number J, while purely vibrational contributions are conspicuous by the absence of this
factor. Coupling terms are distinguishable from purely rotational contributions on the basis of
their integer coefficients: the coefficients for a purely rotational contribution to the energy will
not change with v, and such terms can therefore be grouped together into a single term for pure
rotation (see Appendix C).

The procedure used to derive E®, E®, and E® is completely general and works for
arbitrarily high orders of correction; the maximum order of correction is potentially limited only
by time constraints. Previously, researchers using Mathematica to solve problems in quantum
chemistry have reported [44] that this software is perhaps too slow to be of practical use. For the
perturbation calculations presented in this report, however, such is not the case.

Figure 2 presents the CPU time required for initial derivation of successive orders of
perturbation formulae in their crudest forms, while Figure 3 shows the time required to simplify
these crude formulae into the compact forms listed in Appendices C-E. Combining the timing

data from Figures 2 and 3, one sees that the amount of CPU time required to derive and simplify

'> All Mathematica computations were performed on a Sun SPARC 5 workstation using Mathematica version 2.2 for
Unix.

¥ Manipulating Mathematica output into a desired form is something of an art. The proper sequence of commands .
was found to be Simp1li £y, which places all terms over a common denominator, followed by Expand, which
separates this massive fraction into a sum of small terms and makes cancellations where appropriate.
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1 .
a given formula is in all cases on the order of 10*" seconds. Furthermore, for a given value of n,

CPU time scales linearly with v.

CPU Time Required for Derivation of Crude Correction Formulae
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FIGURE 2. CPU time required by Mathematica to derive symbolic energy correction formulae.
All computations were performed on a Sun SPARC 5 workstation using Mathematica
version 2.2 for Unix. Results are shown for the first eleven vibrational states, ranging

fromv=0to v=10.

Although CPU time does scale exponentially, two facts make this problem somewhat
more tractable. First, because of the v dependence of CPU time, the correction formulae for very
low-lying vibrational states require significantly less time to derive and simplify than those for
higher vibrational states (since negative values of v are not allowed, summations over v’ # v are
considerably less involved for small v). Because Rayleigh-Schrédinger perturbation theory is
applicable only to low-lying vibrational states, those formulae that are of primary interest are also
those that require the least time to obtain.

Furthermore, it is worth noting that RSPERTURB is not the most efficient pdssible
algorithm for deriving energy correction formulae because RSPERTURB recalculates the expansion

coefficients ¢’ from the general formula (58) each time they are needed. It would be

enormously more efficient to first calculate as many Rayleigh-Schrédinger coefficients as are
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required,” then store these expressions so that Mathematica may reference them during the
course of a computation. In the case of diatomic molecules, however, the entire algorithm is
wholly pedagogical in nature—the point is simply to demonstrate that arbitrary-order
perturbation formulae can in fact be derived using computer algebra. In future work with
polyatomic molecules (where emphasis shall be placed on obtaining actual numerical values for

vibrational-rotational energies), a more efficient algorithm will be employed.

CPU Time Required for Algebraic Simplification of Crude Formulae
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FIGURE 3. CPU time required by Mathematica to manipulate crude energy formulae into
their simplest forms. Results are shown for the first eleven vibrational states.

X. NUMERICAL RESULTS AND ANALYSIS
Numerical values for perturbation energies through the sixth order of correction for
various molecules of interest are quickly obtained by using Equation (18) for the zeroth-order
energy and the formulae listed in Appendices C-E for corrections to this energy. In a thorough
ab initio treatment, the force constants and equilibrium internuclear separation R, would be

determined by means of electronic energy calculations [4, 12-14]. For 'H,, this was accomplished

@ C(K)

"7 To apply nth-order perturbation theory, one needs all nonzero Rayleigh-Schrédinger coefficients ¢,,”, ..., ¢, ',

where n and x are related by Equation (66).
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by fitting existing ab initio electronic energy data [33] to an eighth-degree Taylor polynomial;
from Equations (6) and (22), each molecular force constant is just a coefficient of this
polynomial divided by a factorial term. Notice from (27) that the ith perturbed Hamiltonian
operator contains force constants through k;,,, so the Taylor polynomial fit must be of at least
eighth degree in order to apply sixth-order perturbation theory.

'Using these Taylor force constants, vibrational-rotational energy levels for 'H, were
calculated to the sixth order of Rayleigh-Schrddinger perturbation theory [RSPT(6)]. Because the
Taylor polynomial approximation to the potential energy curve has some finite radius of
convergence, the theoretical data obtained from this potential energy expansion become
nonsensical beyond a certain value of v. (In this application it was found that beyond v =4 the
calculated energy levels actually begin to decrease as the quantum numbers increase. Thus,
theoretical calculations using this particular polynomial potential function cannot under any
circumstances be extended beyond v=4.)

In Figure 4, RSPT(6) energies for each vibrational state v = O through v = 4 are plotted as
a function of the rotational state J and compared with experimental values [32]. The Taylor
polynomial provides an excellent fit for v=0and v=1; moreover,r the difference between
theoretical and experimental energies increases rapidly with v but only slowly with J.

As noted in the preceding section, calculation of useful theoretical data concerning
diatomic molecules is not the purpose of this report; rather, the objective of this work is to
demonstrate that perturbation calculations can be carried out systematically to any order using
computer algebra, as well as to explore the behavior of perturbation energy calculations for some
test molecules. As such, only a few numerical results will be presented in order to verify that the
energy correction formulae are indeed legitimate. Furthermore, force constants obtained from
numerical fits of ab initio potential energy data will not be used, but instead an empirical
function for the potential energy curve will be employed. The reason for this choice is that there
exist [2, 34, 45] several well-known analytic functions that can accurately represent potential
energy curves for most diatomic molecules. Such functions cannot be employed in truly ab initio
work, since their forms depend parametrically upon experimentally measured spectroscopic
constants. However, for the purpose of testing the energy formulae of Appendices C-E, such
accurate potential energy functions are extremely valuable and convenient.

The simplest (and, not inconsequentially, the most popular [34]) analytic function for the

potential energy of a diatomic molecule is the Morse function [46]:
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U =D[1-e*°f, (71)
where D is the molecular dissociation energy and f3 is the so-called Morse parameter, whose
value is given [17, 47] by

()

P=3r JED

Sprandel and Kern [8] have tabulated D and f3 for several diatomic molecules.

RSPT(6) Versus Experiment for Molecular Hydrogen (8th Degree Taylor Polynomial Potential)

Energy [waves/cm]

Rotational Quantum Number, J Vibrational Quantum Number, v

FIGURE 4. Energy calculations through sixth order for X '=*, 'H,, using force constants
obtained from a Taylor polynomial fit of theoretical potential energy data [33].
Each solid line shows the theoretical energy of a particular vibrational state as a
function of the rotational quantum number, and dashed lines represent
corresponding experimental values [32].

Although Morse’s function remains popular by virtue of its simplicity, the most accurate
general-purpose empirical function for diatomic potentials is typically found [34, 45] to be the
Hulburt-Hirschfelder function [47]. This function contains the parameters D and B from the

Morse potential plus additional parameters b and c:

Uy=D|(1-e72) + cf Qe 21+ bp0)| .




Like S, the Hulburt-Hirschfelder parameters b and ¢ can be written in terms of spectroscopic
constants, but these formulae are quite complicated and have been omitted here. For the explicit
forms of b and ¢, as well as tabulated values of these parameters for many diatomic molecules,
see Hulburt and Hirschfelder [47].

When an analytic potential energy function is used, symbolic expressions for the
molecular force constants can be obtained by analytic differentiation of U. Because dR = dQ by
(8), these derivatives may be taken either with respect to R or with respect to O, then evaluated at
either R = R, or Q = 0. For the Morse potential function (71), there exists [8] a simple closed-
form expression for these derivatives:

k,.={2ﬁ2D.’ Hize } (74)
-B)y2' -2)D, ifi=3 '
For the Hulburt-Hirschfelder potential function (73), no such closed-form expression exists;
however, Mathematica can easily perform the requisite symbolic differentiation. For
convenience, formulae for the Hulburt-Hirschfelder force constants (through k,,) obtained in this
manner are listed in Appendix F. 7

For comparative purposes, RSPT(6) vibrational-rotational energies for 'H, were calculated
by using first Morse and then Hulburt-Hirschfelder force constants. In Figures 5 and 6, RSPT(6)
energies for each vibrational state v = 0 through v = 10 are plotted as functions of the rotational
state J and compared with experimental values [32]. For the lowest vibrational levels (i.e.,

v < 4), theoretical energies obtained from Hulburt-Hirschfelder force constants are essentially
indistinguishable from experimental values. As v increases, so too does the discrepancy between
theory and experiment; this rift also increases (to a lesser extent) with increasing J. Similar

behavior was observed in the Taylor polynomial potential energy curve (Figure 4), and is

attributable to the fact that for low-lying states the rotational term in #® is much smaller than
the vibrational term [27].

Although force constants from the Morse potential appear to provide a better fit for v =7
through v = 10, the decision was made to use the Hulburt-Hirschfelder potential function for all
calculations, since Rayleigh-Schrédinger perturbation theory is most applicable to the lowest
vibrational levels. This last point cannot be overemphasized, and in performing such theoretical
calculations it is imperative that one understand precisely how many vibrational and rotational

energy levels can accurately be described using the given theory and all its intrinsic

approximations and assumptions.
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RSPT(6) Versus Experiment for Molecular Hydrogen (Morse Potential)
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FIGURES5. Energy calculations through sixth order for X 'X*, 'H,, using force constants
obtained from the Morse potential. Each solid line shows the theoretical energy
for a particular vibrational state as a function of the rotational quantum number,
and dashed lines represent experimental values [32]. Morse parameters were
obtained from [8)].

The maximum vibro-rotational energy that can be calculated to a given level of accuracy
depends upon the potential energy surface, the order of perturbation theory, and the molecule
itself. In what follows, a paradigmatic analysis of the accuracy of RSPT(6) calculations to 'H, is
provided, beginning with a look at the sequence of energy corrections for this molecule.

Table 1 lists the individual correction terms for several different vibro-rotational states of
'H,. Several important trends in perturbation energy corrections, which are true for nearly all
diatomic molecules, are exemplified by this data. First, note that corrections to the zeroth-order
energy are significantly smaller for v = 0 than for v = 1. This difference in the relative

magnitudes of correction terms is even more pronounced at larger values of v and is illustrative

of a general trend: each order of perturbation correction becomes larger (in an absolute sense) as

vincreases. This is not surprising, given that the harmonic oscillator model becomes
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increasingly less accurate for higher and higher vibrational energy levels; for highly excited

vibrational states, significant correction to this idealized model is required.

RSPT(6) Versus Experiment for Molecular Hydrogen (Hulburt-Hirschfelder Potential)

Energy [waves/cm)

Rotational Quantum Number, J Vibrational Quantum Number, v

FIGURE 6. Energy calculations through sixth order for X 'X*, 'H,, using force constants
obtained from the Hulburt-Hirschfelder potential. Each solid line shows the
theoretical energy of a particular vibrational state as a function of the rotational
quantum number, and dashed lines represent experimental values [32]. Hulburt-
Hirschfelder parameters were obtained from [47].

TABLE 1. Energy correction terms for six vibrational-rotational states of 'H,. The tilde
over the energy correction indicates division by Planck’s constant times the
speed of light in order to convert standard SI energy units into waves per
centimeter (or wavenumbers), the standard units of molecular spectroscopy.

Correction | Vibro-Rotational Energy Contributions, Vibro-Rotational Energy Contributions,
Term E,E'} [waves/cm] EIE')j [waves/cm]
v=0,J=0]| v=0,J=1]v=0,J=2]v=LJ)J=0] v=2,J=0| v=3,J=0
E@ 2202.42 2324.14 2567.58 6607.27 11012.12 15416.97
E® -23.34 -26.59 -34.21 -274.04 -775.45 -1527.56
E® -0.52 -0.49 -0.42 1.99 4591 101.48
E® 0.02 0.02 0.02 -0.51 -5.05 -20.57
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Table 1 also demonstrates, however, that energy increases relatively slowly with J.
Although this is illustrated in Table 1 only for the ground vibrational state, it is in fact a general
trend for low-lying vibrational and rotational states: within a given vibrational state, energy
increases slowly with J, but within a given rotational state, energy increases quite rapidly with
»."®¥ This, in fact, is the trend illustrated in Figures 5 and 6, and is due to the fact [27] that the
vibrational potential energy series (6) is term by term much larger than the rotational potential

energy series (11).

TABLE 2. Complete results of RSPT(6) vibro-rotational energy calculations for X 'E*, 'H, (tabulated
in waves per centimeter); the lower entry in each cell is an experimental value [32].
Theoretical calculations were performed using Hulburt-Hirschfelder force constants,
where the Hulburt-Hirschfelder parameters were obtained from [47].

J=0 J=1 J=2 J=3 J=4 J=5 J=6 J=17 J=8 J=9 J=10
2178.59 | 2297.08 | 2532.96 | 2884.09 | 3347.34 | 3918.67 | 4593.28 | 5365.67 | 6229.81 | 7179.21 | 8206.94
2179.30 | 2297.78 | 2533.57 } 2884.42 | 3346.94 | 3916.59 | 4587.71 | 5353.51 | 6206.08 | 7136.36 | 8134.16

6334.71 | 6447.26 | 6671.22 | 7004.58 | 7444.28 | 7986.38 | 8626.23 | 9358.52 | 10177.4 | 11076.6 | 12049.5
6340.49 | 6453.15 | 6677.32 | 7010.73 | 7449.96 | 7990.47 | 8626.60 | 9351.52 | 10157.3 | 11035.0 | 11974.2

10246.7 | 10353.4 | 10565.6 | 10881.3 | 11297.6 | 11810.7 | 124159 | 13108.2 | 13881.8 | 14730.6 | 15648.2
10266.3 | 10373.9 | 10588.0 | 10906.2 | 11325.1 | 11840.3 | 12445.9 | 131353 | 13900.4 | 147323 | 15620.6

13914.8 | 14015.4 | 14215.8 | 14513.8 | 14906.4 | 15390.1 | 15960.3 | 16611.9 | 17339.2 | 18136.6 | 189974
13961.7 | 14065.2 | 14271.0 | 14576.8 | 14979.3 | 15473.9 | 16054.8 | 16715.4 | 17447.6 | 18242.3 | 19089.4

17335.4 | 17430.0 | 17618.2 | 17897.9 | 18266.4 | 18719.8 | 19253.8 | 19863.2 | 20542.7 | 21286.4 | 22087.9
17431.4 | 17531.7 | 17731.1 | 18027.4 | 18417.0 | 18895.6 | 19457.3 | 20095.5 | 20802.1 | 21568.0 | 22383.2

20501.9 | 20590.1 | 20765.6 | 21026.3 | 21369.4 | 21791.2 | 22287.2 | 22852.5 | 23481.5 | 24168.4 | 24907.0
20680.4 | 20778.1 | 20972.4 | 21260.9 | 21640.2 | 22105.9 | 22652.2 | 23272.4 | 23958.5 | 24701.5 | 25491.1

23403.8 | 23485.3 | 23647.4 | 23888.0 | 24204.3 | 24592.5 | 25048.2 | 25566.3 | 26141.4 | 26767.7 | 27438.7
23713.6 | 23808.8 | 23998.0 | 24279.1 | 24648.5 | 25101.8 | 25633.3 | 26236.2 | 26902.7 | 27623.5 | 28388.7

26027.3 | 26101.7 | 26249.4 | 26468.5 | 26756.0 | 27108.2 | 27520.5 | 27988.0 | 28505.0 | 29065.5 | 29663.3
26535.8 | 26627.8 | 26810.7 | 27082.2 | 27439.0 | 27876.5 | 28389.1 | 28970.0 | 25611.4 | 30304.2 | 31381.2

28355.2 | 28421.9 | 28554.1 | 28749.9 | 29006.3 | 29319.5 | 29684.8 | 30097.2 | 30551.0 | 31040.0 | 31557.7
29151.9 | 29239.0 | 29412.3 | 29669.0 | 30006.3 | 30419.5 | 30903.0 | 31450.1 | 32052.9 | 32702.3 | 33388.3

30366.7 | 30424.9 | 30540.3 | 30710.8 | 30933.3 | 31204.0 | 31518.1 | 31870.4 | 32254.9 | 32665.5 | 330954
31566.8 | 31646.1 | 31803.4 | 32036.7 | 32342.7 | 32716.7 | 33153.4 | 33645.9 | 34186.4 | 34765.8 { 35374.2

32037.5 | 32086.5 | 32183.5 | 32326.3 | 32511.8 | 327359 | 32993.8 | 33280.1 | 33588.7 | 33913.1 | 34246.3
33785.4 | 33852.3 | 33984.9 | 34181.2 | 34437.9 | 34750.4 | 35113.4 | 35519.9 | 35962.4 | 36431.7 | 36917.8

'® For highly excited vibrational and rotational states, this simple qualitative model breaks down, since vibrational
and rotational level spacings exhibit opposite trends: vibrational level spacing decreases as v increases, while
rotational level spacing increases as J increases [17, 34]. However, for the low-lying vibrational-rotational states to
which Rayleigh-Schrddinger perturbation theory is applicable, the vibrational corrections will indeed be much larger
than the rotational ones.
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Table 2 shows the complete results of RSPT(6) calculations for 'H,, along with
experimental vibro-rotational energies obtained from spectroscopic data [32]; for convenience,
the relative differences between theoretical and experimental energies are tabulated in Table 3.
The data in Table 3 indicate excellent agreement between theory and experiment for low-lying
vibrational states (for instance, when v < 3 the difference between theoretical and experimental
energies is less than one percent for all eleven rotational levels considered); moreover, the
relative differences in Table 3 are not altogether large even for higher vibrational states.
However, it should be noted that when v > 3 the absolute difference between theoretical and
experimental energies is often on the order of several hundred wavenumbers. Thus, it appears
that for v > 3 one might wish to resort to eighth- or higher-order perturbation corrections.

Much of the discrepancy between theoretical and experimental energies in Table 2 is
obviously due to the fact that Rayleigh-Schrédinger perturbation theory works well only near the
equilibrium geometry; as v and J increase, the two nuclei of the diatqnlic molecule spend more
and more of their time separated by large values of R and hence away from the minimum-energy
configuration.” However, some portion of the discrepancy in Table 2 can be attributed to the

experimental values themselves.

TABLE 3. Relative (percent) difference between the theoretical and experimental energies in Table 2.
Negative values indicate theoretical energies that lie below experimental ones.

J=0 J=1 J=2 J=3 J=4 J=5 J=6 J=7 J=8 J=9 | J=10
v=0 -0.03 -0.03 -0.02 -0.01 0.01 0.05 0.12 0.23 0.38 0.60 0.89
v=1 -0.09 -0.09 -0.09 -0.09 -0.08 -0.05 0.00 0.07 0.20 0.38 0.63
v=2 -0.19 -0.20 -0.21 -0.23 -0.24 -0.25 -0.24 -0.21 -0.13 -0.01 0.18
v=3 -0.34 -0.35 -0.39 -0.43 -0.49 -0.54 -0.59 -0.62 -0.62 -0.58 -0.48
v=4 -0.55 -0.58 -0.64 -0.72 -0.82 -0.93 -1.05 -1.16 -1.25 -1.31 -1.32
v="5 -0.86 -0.90 -0.99 -1.10 -1.25 -142 -1.61 -1.80 -1.99 -2.16 -2.29
v=6 -1.31 -1.36 -1.46 -1.61 -1.80 -2.03 -2.28 -2.55 -2.83 -3.10 -3.35
v=7 -1.92 -1.98 -2.09 -2.27 -2.49 -2.76 -3.06 -3.39 -3.74 -4.09 -5.47
v=8 -2.73 -2.79 -2.92 -3.10 -3.33 -3.62 -3.94 -4.30 -4.69 -5.08 -5.48
v=9 -3.80 -3.86 -3.97 -4.14 -4.36 -4.62 -4.93 -5.28 -5.65 -6.04 -6.44
v=10 -5.17 -5.22 -5.30 -5.43 -5.59 -5.80 -6.04 -6:31 -6.60 -6.91 -7.24

' It is easy to visualize how an increase in vibrational energy stretches a diatomic molecule away from its
equilibrium geometry. However, an increase in rotational energy has the same effect due to centrifugal stretching, as
discussed in Section I'V.
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Virtually all tabulated experimental vibro-rotational energy data (including those listed in
Table 2) come from energy formulae that are power series in (v +-;—) and J(J +1), and whose
coefficients are the important spectroscopic constants. These formulae have the form
E,, =A (v+1)+BJ(J+1)+D,J2(J+1)*+Y,, , (75)

where tildes indicate units of waves per centimeter. While ?00 is simply a constant with no

dependence on v or J, eachof A, B,, and D, is a power series® in (v +%):

BECRACES )RR | 70

(v+D)+B+3) +7.(0+4) + -, (77)

~ ~ ~ —~ 2
D,=D,+8(v+i)+&(v+1) + - . (78)
A, is an anharmonicity series whose first terms corresponds to @, from (18) and whose

remaining constant coefficients @,x,, @,y,, etc., are known as anharmonicity constants. These

terms correct for the non-parabolic nature of the potential energy curve and tend to decrease

~

vibrational level spacing as v increases [17]. The series ]~3,, (whose constant coefficients 078, B,

etc., are known as coupling constants) defines an effective rotational constant for vibrational

level v that takes into account vibrational-rotational coupling; the first term in this series
corresponds to B, in (18). Finally, the centrifugal distortion series ﬁv (whose coefficients are

the so-called centrifugal distortion constants) accounts for centrifugal stretching effects [48].

Truncated versions of the power series (76-78) are obtained from numerical fits of
experimental vibro-rotational energy data; the number of terms that are included in the final
experimental energy equation (75) depends upon the accuracy of available experimental data and
therefore varies from molecule to molecule. It must be stressed, however, that the experimental
energy formula (75) is an approximation [48] and is not valid for all values of v and J. In the case
of the 'H, data in Table 2, the fit is valid only for v <3 [32], which is one of the worst
experimental energy fits of any listed in [32]. (Dunham [41] predicts that this should, in fact, be
the worst fit, since 'H, is the lightest of all molecules). Not coincidentally, the relative

differences (Table 3) between experimental and theoretical energies are largest when v > 3.

20 . . . . . . ~ ~ =, .
Most texts on experimental spectroscopy include explicit negative signs for @,x,, ¢&,, and D,; however, in

€

deference to mathematical generality the forms in (76-78) will be used in this report, and appropriate signs will be
incorporated into numerical values of spectroscopic constants.
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Because of this breakdown in the Dunham energy series approximation, the theoretical energies
for v > 3 in Table 2 may, in fact, be more accurate than existing experimental values might lead
one to believe.

The small relative differences in Table 3 can also be somewhat misleading, for it is
known that the Taylor series (6) and (11) fail to converge for all values of v and J listed in this
table. An estimate of the maximum values of v and J for which convergence is guaranteed can
be obtained by examining the radii of convergence of the potential energy series (6) and (11). In
Section III it was easily shown that series (11) converges whenever Q < R,. The radius of
convergence for (6) is known [9] to be approximately the same; although this radius is difficult to
determine exactly.

Figure 7 depicts a plot of the Hulburt-Hirschfelder potential energy curve for 'H, obtained
by using the Hulburt-Hirschfelder parameters listed in [47]; overlaid onto this plot are the
RSPT(6) vibrational energy levels for the ground rotational state and the J = 10 rotational state.
The vertical line in Figure 7 is located at the radius of convergence, Q = R,. Although the
quantum-mechanical harmonic oscillator may tunnel out of the potential well of Figure 7, the
wave function falls off very rapidly for values of Q outside this well [17,27]. Hence, to a good
approximation one may restrict the ﬁormal coordinate to values within the potential energy well.

Note that for vibrational levels above v = 5 (in the ground rotational state) and above
v = 3 (in the J = 10 rotational state), the normal coordinate may drift beyohd R, yet still be within
the potential well. For these energy levels, the perturbation series (32) and (33) cannot be
assumed to converge for all values of @, so the perturbation treatment presented herein is not
applicable. Since J = 10 and J = 0 are, respectively, the highest and lowest rotational levels
examined for 'H,, Figure 7 establishes boundary conditions for convergence of the perturbation
series for this molecule. For the rotational levels 0 < J < 10, one anticipates convergent
perturbation series up to ar least the v = 3 vibrational level but no higher than the v=75
vibrational level.

One last comment concerning the accuracy of molecular hydrogen calculations is in
order. This molecule (and, in particular, the diprotium isotope examined here) is something of a
worst-case scenario. Because it is the lightest molecule, high-order energy corrections for H,
should be the most significant of any diatomic molecule [41]. Furthermore, the breakdown of the

Born-Oppenheimer approximation is known [49] to be more significant for isotopomers of H,
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than for other diatomic molecules. Thus, H, represents something of a lower limit to the accuracy

of perturbation calculations.

x10* RSPT(6) Energy Levels for Molecular Hydrogen
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FIGURE7. Hulburt-Hirschfelder potential energy curve and vibro-rotational energy levels for
the ground rotational state (solid lines) and the J = 10 rotational state (dashed
lines) of X 'E*, 'H,. These energies were obtained from RSPT(6) calculations by
using Hulburt-Hirschfelder force constants, where the Hulburt-Hirschfelder
parameters b and ¢ were taken from [47). The dotted vertical line is located at
Q=R..

TABLE 4. Experimental and RSPT(6) vibrational-rotational energies for X 'X*, N, in units of waves per
centimeter. Experimental values were taken from [32], while theoretical calculations used the
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47].

E J=0 J=1 J=2 J=3 J=4

¥N, RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp.
v=0 1176.69 | 117570 | 1180.69 | 1179.68 | 1188.68 | 1187.64 | 1200.68 1199.58 1216.67 1215.49
v=1 3507.55 | 3505.62 | 3511.51 | 3509.56 | 3519.43 ] 3517.45 | 3531.32 3529.28 3547.16 3545.06
v=2 5808.20 | 5806.89 | 5812.12 | 5810.77 | 5819.97 | 5818.58 | 5831.74 5830.31 5847.43 5845.95
v=3
v=4

8077.78 | 8079.39 | 8081.65 | 8083.27 | 8089.42 | 8091.02 | 8101.08 8102.64 8116.62 8118.14
103154 | 10323.2 | 10319.2 | 10327.0 | 10326.9 | 10334.7 | 10338.5 10334.7 10353.8 10361.6




Tables 4 through 7 present experimental and RSPT(6) energies for several other
representative diatomic molecules, while Tables 8 and 9 list the relative differences between
theory and experiment for each set of calculations. Notice that this difference is much smaller
for heavier molecules (**N, and '*C'*0) than for lighter ones ("H"F and 'H?H). This behavior
affirms Dunham’s result [41] for dinuclear vibrational-rotational energies: the accuracy of low-

order perturbation calculations increases with the molecular reduced mass.

TABLES. Experimental and RSPT(6) vibrational-rotational energies for X '* ?C'%Q in units of waves per
centimeter. Experimental values were taken from [32], while theoretical calculations used the
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47].

Eu,] J=0 J=1 J=2 J=3 J=4

2C%0 | RSPT(6) | Exp. | RSPT(6) | Exp. | RSPT(6) | Exp. | RSPT(6) | Exp. RSPT(6) | Exp.
v=0 | 1081.07 | 1081.59 | 1084.92 | 1085.31 | 1092.60 | 1093.12 | 1104.14 | 1104.66 1119.51 | 1120.03
3223.08 | 3224.86 | 3226.89 | 3228.67 | 323451 | 323629 | 3245.94 | 3247.72 | 3261.17 | 3262.96

v=1
v=2 5338.70 | 5341.65 | 5342.47 | 5345.42 | 5350.02 | 5352.97 | 5361.34 5364.30 5376.44 5379.40
v=3 | 742771 | 7432.03 | 7431.44 | 7435.77 | 7438.92 | 744325 | 7450.14 7454.46 7465.09 7469.42
v=4 | 9489.88 | 9496.06 | 9493.59 | 9499.76 | 9500.99 | 9507.17 | 9512.10 9518.28 9526.91 9533.10
TABLE 6. Experimental and RSPT(6) vibrational-rotational energies for X 'Z* 'HF in units of waves per
centimeter. Experimental values were taken from [32], while theoretical calculations used the
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47].
EUJ J=0 J=1 J=2 J=3 J=4
HYF | RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp. RSPT(6) Exp.

v=0 | 2054.70 | 2046.80 | 2095.73 | 2087.94 | 2177.79 | 2170.34 | 2300.75 2294.2 2464.47 2460.02
6018.60 | 6008.23 | 6057.99 | 6048.05 | 6136.73 | 6129.21 | 6254.72 6254.73 6411.81 6429.14
0813.65 | 9797.62 | 9851.46 | 9836.40 | 9927.04 | 9918.26 | 10040.3 10051.8 10191.1 10249.9
13445.2 | 1341.97 | 13481.5 | 13457.7 | 13554.0 | 13542.2 | 13662.7 13690.1 13807.5 13926.8
16916.0 | 16878.6 | 16950.8 | 16916.1 | 17020.3 | 17005.2 | 17124.6 17173.8 17263.4 17464.2

cic e |
"
B =

The RSPT(6) calculations in Tables 4-7 are all based upon the Hulburt-Hirschfelder force
constants listed in Appendix F. The values of b and ¢ used in these equations were taken from
those explicitly tabulated in [47], while the spectroscopic constants necessary to obtain § were
taken from more recent experimental data [32). The spectroscopic constants listed in [32],
however, differ from the ones that Hulburt and Hirschfelder [47] used to calculate b and ¢, so
these Hulburt-Hirschfelder parameters were also calculated from the spectroscopic constants

listed in [32] (using the formulae in [47]). When force constants obtained in this manner were
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utilized in RSPT(6) calculations, the theoretical energies obtained for '"H”F and 'H?H fell several

wavenumbers closer to experimental values, thus demonstrating the importance of possessing an

accurate potential energy function.

TABLE7. Experimental and RSPT(6) vibrational-rotational energies for X '=*, "H’H in units of waves per

centimeter. Experimental values were taken from [32], while theoretical calculations used the
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47].

J=0

J=1

J=2

J=3

J=4

RSPT(6)

Exp.

RSPT(6)

Exp.

RSPT(6)

Exp.

RSPT(6)

Exp.

RSPT(6)

Exp.

1890.33

1883.75

1979.58

1972.96

2157.47

2150.74

2422.78

2415.85

2773.71

2766.42

5519.06

5515.90

5604.42

5601.02

5774.54

5770.64

6028.23

6023.50

6363.74

6357.73

8962.80

8971.00

9044.32

9051.95

9206.76

9213.23

9448.96

9453.58

9769.20

9771.13

12222.6

12253.2

12300.2

12329.9

12455.0

12482.7

12685.7

1271.04 .

12990.6

13011.0

15297.5

15366.7

15371.2

15439.2

15518.2

15583.5

15737.2

15798.4

16026.7

16081.9

TABLE 8. Relative (percent) difference between theoretical and experimental energies for the heavy

molecules *N, and C'%0. Negative values indicate theoretical energies that lie below
experimental ones.

J=0

J=1

J=2

J=3

J=4

N,

CO

N;

CO

N>

CO N,

CO

N, CO

0.08

0.06

0.02

-0.02

-0.08

TABLE9.

Relative (percent) difference between theoretical and experimental energies for the light

molecules 'H”F and '"H’H (HD). Negative values indicate theoretical energies that lie
below experimental ones.

J=0

J=1

J=2

J=3

J=4

HF

HD

HF

HD

HF

HD

HF

HD

HF HD

One last interesting numerical result is presented. Theoretical values for spectroscopic

constants of 'H, were obtained by fitting RSPT(6) energy data for 'H, to polynomials in v and J
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corresponding to truncated versions of (76-79). Thus, for example, the value of ¢, in (76) is the

coefficient of the J(J + 1)(1) + %) term in such a polynomial. Mathematica’s intrinsic function

NonlinearRegress® was used to perform the numerical fitting procedure, and the 'H, energy
data from Table 2 for 0 £ v < 3 and 0 £ J < 10 were used as input (these energies, one will recall,
differed from experiment by less than one percent). The theoretical spectroscopic constants
obtained in this manner are listed in Table 10 alongside their experimental counterparts, which

were taken from [32]. The numerical fit of the theoretical data has an estimated standard

deviation of 1.24 waves per centimeter.

TABLE 10. Theoretical and experimental spectroscopic constants for 'H,.
Theoretical values were calculated by Mathematica to six
significant digits, while experimental values were obtained

from [32].
Spectroscopic | Theoretical Valne | Experimental Value
Constant [waves/centimeter] [waves/centimeter]
o 4400.33 4401.213
[:4 .
a’)'exe -122.135 -121.336
E 60.616 60.8530
[4
&e -3.0655 -3.0622
5 -0.0399509 -0.0471
-4
¥ 10.2031 8.93
00

Formula (57) provides a general expression for the Rayleigh-Schrédinger expansion of
perturbed wave functions when a power series expansion of the molecular Hamiltonian is
employed. This formula is valid in any application of Rayleigh-Schrédinger perturbation theory
and complements the general perturbation energy formula obtained by Herbert [26]. In fact, these
two formulas may be combined to yield the energy correction formula (67), which also holds for
any application of Rayleigh-Schrodinger perturbation theory. In the context of vibrational-

rotational analysis, however, Equation (67) may be simplified by writing the perturbed

XI. CONCLUSION

Hamiltonian matrices in terms of powers of the normal coordinate matrix.

2! This function is contained in the package Statistics NonlinearFit".
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In this report, such an analysis was presented for diatomic molecules. First, an
appropriate Hamiltonian operator, exact within a certain radius of convergence, was derived

[Equation (23)] and then written in perturbation-theoretical form as a power series whose

individual terms are given by (25) and (27). Next, it was shown how an arbitrary element #/;,

of the ith perturbed Hamiltonian matrix could be expressed in terms of normal coordinate matrix
elements [Equation (40)]. Finally, Equation (40) was substituted into general formulas for
Rayleigh-Schrédinger perturbation energies and expansion coefficients to yield equations
specific to this application [(68) and (70), respectively]. Alternatively, one may forego
derivation of (68) and (70) and proceed directly to implementation on Mathematica using
Equations (58) and (63).

Using the packages RSPERTURB and DIATOMICVIBROT, Mathematica derived symbolic
perturbation energy formulae which were then evaluated numerically for several test molecules.
A procedure was given whereby the accuracy of such theoretical calculations may be estimated.
However, the numerical results are not the significant accomplishment of this report; rather, these
results serve only to demonstrate that computer algebra can successfully be used to implement
high-order perturbation calculations that are much too laborious to be accomplished manually. In
this regard, the most significant parts of this report are the RSPERTURB and DIATOMICVIBROT
programs, for they allow anyone—quantum chemist or experimentalist—to take advantage of
arbitrary-order perturbation theory (RSPERTURB) to solve diatomic vibrational-rotational analysis
problems (DIATOMICVIBROT) using Mathematica.

Although derivation of symbolic high-order perturbation formulae requires a significant
amount of computation time due to the nature of the Mathematica software package, significant
improvements in algorithm efficiency (as discussed in Section IX) will be made before this
analysis is applied to polyatomic molecules. Even so, the methods presented herein may already
be more efficient than numerical procedures, for the calculations performed by Mathematica
result in symbolic formulae that express energy corrections in terms of arbitrary universal and
molecular constants. Once the RSPT(6) formulae in Appendices C-E were derived, for example,
energy corrections through sixth order were rapidly calculated for all of the molecules in
Section X simply by substitution of appropriate constants. Because of their symbolic nature,
once published the formulae in Appendices C-E need never be derived again.

Computer algebra has proven to be an effective tool in the application of perturbation

theory to problems in quantum mechanics. In future work, the procedures presented here will be
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applied to vibrational-rotational analysis problems involving polyatomic molecules. Many of the
results presented in this report and in [26] are quite general and can readily be extended to
polyatomic molecules. The major difficulties in such an application are derivation of an
appropriate Hamiltonian, segmentation of that Hamiltonian into a power series consisting of
separate perturbation terms, and derivation of explicit forms for the polyatomic vibrational-
rotational wave functions. Once these obstacles are overcome, however, the remainder of the

treatment should be analogous to that presented in this report
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APPENDIX A
THE MATHEMATICA PACKAGE RSPERTURB

Note that the function Qdelta in this package is a slightly modified version of the code
authored by Dudas et al. [9].

BeginPackage [ “*Rsperturb ]

(* Two variables must be specified at the beginning of each session:
HighestState is the numerical value of the highest quantum state for which
formulae are to be derived, while HighestOrder is the highest order of
correction for which formulae will be derived. Specifying larger values of
these variables than are necessary will not adversely affect the output,
although the derivations may require more CPU time than would otherwise be
necessary. *)

Energy::usage =
“Energy|[n,v] derives the nth-order energy correction formula for gquantum
state v using the most general form of the perturbation energy formula (as
derived by Herbert [26]).”"

Egy::usage =
“Egyl[i,v] is the ith-order energy correction for gquantum state v as
referenced by the function Energyl[n,v]. This notation allows a recursive
formula for Energy[n,v] to be generated without explicit evaluation of the
lower-order energies on which it depends.” ’

KDelta: :usage = “The Kronecker delta function.”

SumStates: :usage = '
“SumStates[expr, {v,v’,vmax}] sums expr over the guantum numbers from v to
vmax, skipping v = v’."

Qdelta: :usage =
“Qdelta[n] derives expressions for the elements of the matrices
o', 0%, ..., Q*. This is a slightly modified version of the function
published in [9]; this version incorporates Kronecker delta functions.”

GenerateCoefficients: :usage =
“GenerateCoefficients[n,v] returns a matrix containing all of the Rayleigh-
Schrédinger expansion coefficients necessary to expand the nth perturbed
wave function for quantum state v. This function is useful for obtaining
the explicit form of the wave function as a linear combination of the
zeroth-order wave functions.”

RSCoefficientsl::usage =
“"RSCoefficientslin, j, {v}] generates the nth-order Rayleigh-Schrédinger
expansion coefficient associated with quantum state j such that the
summation excludes 7 = v. This function is intended to be called by other
functions.”

RSCoefficients2: :usage =
“Usage is the same as the function RSCoefficientsl; both functions are
necessary for matrix elements that require two different expansion
coefficients.”

Psi::usage =
“Psi[n,v] is the nth-order perturbed wave function for quantum state v.”
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H::usage =
“H[n] is the nth-order perturbed Hamiltonian operator.”

k::usage =
"k[i] is the symbolic representation of the ith molecular force constant.”

Int::usage =
“Int[Psi{nl,vl], HIx], Psiin2,v2]] is a quantum-mechanical integral
involving a perturbed Hamiltonian operator. If nlI = 0 and n2 = 0, then
this function is a Hamiltonian matrix element as defined in Equation (34)."

Int::usage =
“Int[Psil[nl,vl], Psiln2,v2]] 1s an overlap integral.”

(* Other symbols appearing in the symbolic output are:

a, which represents the constant o in (15);

ke, the equilibrium molecular force constant;

ve, the harmonic frequency as defined in (16);

h, Planck’s constant;

Be, the equilibrium rotational constant (19); and
Re, the equilibrium internuclear separation. *)

Highest = HighestState + 3 + Sum[index, {index, 3, HighestOrder + 1}];
AA = Array[A, Highest];

BB = Array[B, Highest];

Unprotect [Part];

Attributes[KDeltaf = {Orderless};
KDeltafa_, b_] := Which{a == b, 1, a !=b, 0] /; a == || a 1= b
SumStates([expr__, {var_, hole_, max_}] :=

Sum[expr, {var, -max, hole - 1}] + Suml[expr, {var, hole + 1, max}]

(* Expansion of perturbed wave functions in Hamiltonian matrix elements using
Equation (49) *)
Int /: Int[Psi[nl_Integer, v1_], h:_H, Psi[n2_Integer, v2_]] :=
Block{{pdt},
pdt = SumStates[RSCoefficientsl[n2, i, {v2}I*
Int{Psi[0, 3], h, Psi[0, 111, {i, v2, Highest}];
SumStates [RSCoefficients2[nl, 3j, {vl1l}] pdt, {j, vl, Highest}]
1 /; (nl > 0) && (n2 > 0)
Int /: Int[Psi[nl_Integer, vl1_], h:_H, Psi[n2_Integer, v2_]1 :=
SumStates [RSCoefficientsl[nl, j, {vl1l}] Int[Psi[0, jl, h, Psi[n2, v21],
{j, v1, Highest}] /; (n2 == 0) && (nl > 0)
Int /: Int[Psi[nl_Integer, vl1_], h:_H, Psi[n2_Integer, v2_]] :=
SumStates [RSCoefficients2{n2, j, {v2}] Int[Psiinl, v1}], h, PsifO, Jl1,
{3, v2, Highest}} /; (nl == 0) && (n2 > 0)

(* Expansion of perturbed wave functions in overlap integrals using Equation
(50) *)
Int /: Int{Psilnl_Integer, v_], Psi[n2_Integer, v_1] :=
SumStates [RSCoefficientslinl, j, {v}l*
RSCoefficients2[n2, 3, {v}], {j, v, Highest}] /; (nl > 0) || (n2 > 0)

(* Hermitian property of guantum-mechanical integrals *)
Int /: Int[Psilnl_, v1_], h:_H, Psi[n2_, v2_1] :=

Int{Psi[n2, v2], h, Psi[nl, vl1ll] /; Order[Psi{nl, v1], Psi[n2, v2]] == -1
Int /: Int[Psiinl_, vl1_], Psi[n2_, v2_]] :=

Int{Psi[n2, v2], Psi[nl, vl1l]] /; Order{Psi[nl, v1], Psi[n2, v2]] == -1

(* Orthogonality of zeroth-order wave functions *)
Int /: Int[Psi[0, v1_], Psi{0, v2_]] := KDeltalvl, v2]

Energyn_, V_] :=
Block[{terml, term2, term3, term4, term5, span, ii, jj},
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If[EvenQ[n] == True, span = n/2, span = (n - 1)/2};
terml = Sum[(2 - KDeltal[n, 2 ii]) Int[Psil[jj - 1, V],
H[n - ii - jj + 1}, Psilii, V]}, {jj, 1, span}, {ii, jj, span}l;
term?2 = Sum[Int[Psil[ii, VI, H[n - 2 ii], Psilii, V11,
{ii, 0, span - 1}1;
term3 = Sum[(2 - KDeltal[n, 2 ii]) Egyln ~ ii - jj + 1, VI
Int({Psi[jj - 1, V], Psil[ii, V)1, {jj, 2, span}, {ii, jj, span}};
term4 = Sum[Egy[n - 2 ii, V]*
Int[Psi[ii, VI, Psi[ii, V1], (ii, 1, span - 1}};
term5 = KDeltaln, 2 span + 1] (Int[Psi[span, V], H[1l], Psi[span, VI] -
Egy[l, V] Int[Psi[span, V], Psilspan, V]] (1 - KDheltall, nl)):
terml + term2 - term3 - term4 + termb
]} /7:in>20

Qdelta[n_Integer] :=
Block[{zz, u, vy, gg, dr, vy, zed, ii, jj, ym},
ss = Arrayl[s, {16, Highest}};

ss[[1,1]1] = ((gnum + 1)/{(2 a))~(1/2});:

ss[[1,2]] = (gnum/(2 a})*{(1/2});

u = 2;

Whilefu <n + 1, yv =u - 1;
ss{[u,11] = (ssllyy.,1]1] /. gnum -> gnum + 1) ss[{1,1]1];
zed = 2;

gg = u + 1;
While[zed < gg, zz = zed - 1;
ss{[u,zedl] = (ss[lyy,zz]] /. gnum -> gnum - 1) ssi[1,2]] +
{(ss[lyy,zed]] /. gqnum -> gnum + 1) ss[1,11];
zed++];
ym = u + 1;
ss[{u,ym}l] = (ssllyy,ull /. gnum -> ¢gnum - 1) ss[{1,2]1];
u++] ;
dr = Highest - 1 - n;
Droplss([[nl], -drl;
gdel = Arxray{qgd, nl;
Do{gdel([ii]] = Sumiss([[ii, jj]]
KDeltalgp, gnum + ii - 2 (33 -~ 1)1, {jj, ii + 1}1, {ii, n}l;
gdel{[n]]]

GenerateCoefficients[ord _Integer, state_Integer] :=
Block[{counter, indexl, index2, temp, count2},
temp = Arrayl[t, ord];
coefficients = Arraylcec, {ord, ord + 3}1;
Dolterml = - Int[Psi[0, ml, Hlcounter], Psi[0, state]ll/
(h ve {m - state)};
term2 = 1/(h ve (m - state)) Sum[Egylcounter - indexl, statel=*
temp[[index1]], {indexl, counter - 1}];
term3 = -1/(h ve (m - state)) Sum[Sum{ (temp[[indexll] /. {m ->
index2}) Int([Psi[0, m], H[counter - indexl]}, Psi[0, index2]],
{index2, state - counter + indexl - 3, state -~ 1, 2}] +
Sum[ (temp[{index1]] /. {m -> index2}) Int[Psi{0, m],

H[counter - indexl], Psi[0, index2]]l, {index2, state + counter -
indexl + 3, state + 1, -2}1, {indexl, counter - 11}1;
temp{[counter]] = terml + term2 + term3;
Do[coefficients[ {counter, count2]] = temp[[counter]] /. m ->

(-2 + state - counter + 2*(count2 - 1)),
{count2, Floor|{ (counter + 3)/2]}];
Dolcoefficients[[counter, count2]}] = temp[[counter}l /. m ->
(-2 + state - counter + 2* (count2 - 1)),
{count2, Ceiling[(counter + 3)/2] + 1, counter + 3}];
If[EvenQ{counter] == True,
coefficients[[counter, Celling{ (counter + 3)/2]1111],
{counter, ord}]:;
coefficients




RSCoefficientsl{n_Integer, index_, {not_}] :=
Block[{m, vv, coeffs, cc, counter, terml, term2, term3},
coeffs = Arraylcc, Highest];
coeffs[[1]1] = -(Int[Psi[0, m], H[1l], Psi[0, wvv]]/DeltaE[m, vv]);
counter = 2;
Whilel[counter <= n,
terml = -(Int[Psi[0, m}, Hl[counterl]l, Psi([0, wvv]]/DeltaE[m, vv}]);
term2 = Sum{Egyl[counter - AA[[2*counter - 1]], wvv]
coeffs[[AA[[2*counter - 11111,
{AA[[2*counter - 11], 1, counter - 1}]/DeltaE[m, wvvl;

term3 = - (Sum[SumStates[Int[Psi[0, m], H{counter - AA[[2*counter -
1111, Psi[0, AA[[2*counter]]]] (coeffs[[AA[[2*counter - 17111 /.
m -> AA[[2*counter]]), {AA[[2*counter]], vv, Highest}],
{AA[[2*counter - 111, 1, counter-1}1/DeltaE[m, vvl);
coeffs[{counter]] = terml + term2 + term3;
counter++] ;

coeffs{[nl]] /. {m -> index, vv -> not}]
RSCoefficients2[n_Integer, index_, {not_3}] :=
Block[{m, vv, coeffs, cc, counter, terml, term2, term3},
coeffs = Arraylcc, Highest];
coeffs[[1]] = -(Int[Psi[0, m], H[1], Psi[0, vv]]l/DeltaE[m, vv]);
counter = 2;
While[counter <= n,
terml = -(Int{Psil0, ml, Hl[counterl], Psi(0, wvv]]l/DeltaE[m, vv]);
term2 = Sum{Egyl[counter - BB[[2*counter - 1]], vv]
coeffs[[BB[[2*counter - 1]11]], {BB[[2*counter - 1]], 1,
counter - 1}]/DeltaE[m, vv];
term3 = - (Sum[SumStates[Int([Psi[0, m], Hl[counter - BB{[2*counter -
11311, Psi[0, BB{[2*counter]]]] (coeffs[[BB[[2*counter - 11111 /.
m -> BB[[2*counterl]), {BB[[2*counter]], vv, Highest}],
{BB[[2*counter - 1]], 1, counter-1}]/DeltaE[m, vvl);
coeffs[[counter]] = terml + term2 + term3;
counter++] ;
coeffs{[n]] /. {m -> index, vv -> not}]

EndPackage{ 1]
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APPENDIX B
THE MATHEMATICA PACKAGE DIATOMICVIBROT

BeginPackage[“DiatomicVibRot" "]

DeltaE: :usage =
“DeltaE[j, v] gives the difference in zeroth-order energies between quantum
states j and v.”

DeltaE[j_, v_] := h ve (j - v)

(* Define the zeroth-order energy *)
Energy[0, v_] := h ve (v + (1/2)) + J (J + 1) Be

(* Define perturbed Hamiltonian matrix elements *)

Int /: Int({Psi{0, vl_], H[x_Integer}, Psil[0, v2_]1]1 :=
(kix + 2] Int[Psi[0, v1], Q*(x + 2), Psi{0, v2]11)/(x+2)}! + ({(-1)"x (x + 1)*
J (J + 1) Be Int[Psi[0, v1], Q*x, Psi[0, v2]1)/Re"x
Int /: Int[Psi[0, vi_], Q™x_., Psil0, v2_]] :=

Qdeltafx] /. {gp -> vl, gnum -> v2}

EndPackage[ ]
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APPENDIX C
SECOND-ORDER CORRECTION FORMULAE

For each vibrationél state, E®is a linear combination of the purely vibrational terms,
purely rotational terms, and vibration-rotation coupling terms listed below.
VIBRATIONAL TERMs: A", BLY
ROTATIONAL TERMs: A", B
CoupLING TErMms:  A{"™, B
Using lower-case letters to represent the integer coefficients of a linear combination, one can
write the complete second-order energy correction as

EP =al Ay +b"By +aP A" + b B +al™ A + by VBT

(79)
=a® AL +bPBY +al" ALY +bIOBIY 4 R,

where the coefficients depend upon the vibrational state v. Values of the linear combination

coefficients for the first eleven vibrational states are listed in Table -C-1.

TABLE C-1. Linear combination coefficients for E®.

) a(ZV) bgv) a(zv-r) bg‘/-r)
0 11 1 3 1
1 71 5 9 3
2 191 13 15 5
3 371 25 21 7
4 611 41 27 9
5 911 61 33 11
6 1271 85 39 13
7 1691 113 45 15
8 2171 145 51 17
9 2711 181 57 19
10 3311 221 63 21
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R, in (79) is the second-order constant of pure rotation and is defined as the sum of the
two purely rotational terms listed above (since these terms are independent of the vibrational
state, the coefficients a'” and b{"” will be the same for each value of v and can thus be
incorporated into a single constant R, which is independent of vibrational state). Capital letters

in the energy formula (79) represent collections of universal and molecular constants, which have

the form

JO(J+1) 2 BBk ks
Qa'sR' (hv,)"

(80)

where Q, £,, £,, ..., £, are integers whose values are listed in Table C-2 for all vibrational and
coupling terms. Lastly, the second-order constant of pure rotation is

—2J*(J +1)’B’

R, =
2 aR’hv,

TABLE C-2. Symbolic term factors (80) for E,

G b | G| Lo £s £6 £ ] £y




APPENDIX D
FOURTH-ORDER CORRECTION FORMULAE

Using the notation developed in Appendix C, one can express the fourth-order energy
correction formulae for all vibrational and rotational states in the form of a linear combination of

symbolic constants:

@) _ (MDA . ™) (v (v-r) 4 (v-r) (v-1) ~y(v-r)
E,=a, A"+ - +e, E; +a, AT+ +0, 70,7 +R, . (82)

The fourth-order constant of pure rotation in Equation (82) is
127°(J+1’B} 4J°(J +1)Bk,
=T z P 3
oRHhv,) o*R(hv,)

(372 -2J +3). (83)

. Notice that the final term in R, cannot be factored into integer powers of J or J+1, as predicted
by Darling and Dennison [42]. Values for the coefficients in (82) are given in Tables

D-1 and D-2.

TABLE D-1. Linear combination coefficients for E®.

) agv) bf,”) Civ) dgv) egv)_ agv-r) biv-r) cgv-r) dgv-r) eiv-r)
0 155 19 70 13 1 15 57 57 9 9

1 1875 207 550 123 7 75 171 171 27 27
2 7825 845 2050 485 25 195 285 285 45 45
3 20825 2233 5250 1267 63 375 399 399 63 63
4 43695 4671 10830 2637 129 615 513 513 81 81
5 79255 8459 19470 4763 | 231 915 627 627 99 99
6 130325 | 13897 | 31850 7813 | 377 | 1275 | 741 741 117 117
7 199725 | 21285 | 48650 11955 | 575 | 1695 855 855 135 135
8 290275 | 30923 | 70550 17357 | 833 | 2175 969 969 153 153
9 | 404795 | 43111 98230 | 24187 | 1159 | 2715 | 1083 | 1083 | 171 171
10 | 546105 | 58149 | 132370 | 32613 | 1561 | 3315 | 1197 | 1197 | 189 189
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TABLE D-2. Linear combination coefficients for E¥,

D ER PR SRl R E PR U I P B
0 i1 3 3 11 1 1 1 3 31 1
1 71 9 9 71 7 3 3 15 187 5
2 191 15 15 191 191 5 5 39 499 13
3 371 21 21 371 371 7 7 75 967 25
4 611 27 27 611 611 9 9 123 1591 41
5 911 33 33 911 911 11 11 183 2371 61
6 1271 39 39 1271 | 1271 13 13 255 3307 85
7 1691 45 45 1691 | 1691 15 15 339 4399 | 113
8 2171 51 51 2171 | 2171 17 17 435 5647 | 145
9 2711 57 57 2711 | 2711 19 19 543 7051 181
10 | 3311 63 63 3311 | 3311 21 21 663 8611 | 221

The fourth-order symbolic constants have the form
TS +1)% BO kS kS koK
Qo R (hv,)™

; (84)

the values of Q" and ¢/ through ¢, for eleven vibrational states are listed in Tables D-3 and

D-4.

TABLED-3. Symbolic term factors (84) for E®,

A KA A FARA A N A A N
av [ofoJolaloloJofe]o] 3| -1384
BV |00 o |zt |o]o|5]o0] 2] 76s
cololololof2]ofol4alo]1 -1536
polofofofr[oftrjol4]o]1 -1152
Ev|ofofofofoloj1i]|3]ofo 384
AV 1 1 1 ojJo]Joijo 2 | 4 0 4
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TABLE D-4. Symbolic term factors (84) for E®.

A A RA FA AR A F AN I
BiV—r) 2 1 2 0 0 0 0 2 4 1 -4
qv»r) 3 1 2 0 0 0 0 2 4 1 -4
D;V-') 2 1 2 1 0 0 0 3 3 2 -2
o3tz folofol3]3]2 2
E;(H) 1 1 1 1 0 0 0 3 3 1 6
Gi"-f) 2 1 2 2 0 0 0 4 2 3 -4
H‘g"") 3 1 2 2 0 0 0 4 2 3 -4
Iiv") 1 1 1 2 0 0 0 4 2 2 24
Ji"'” 1 1 1 3 0 0 0 5 1 3 72
Kiv") 2 1 2 0 1 0 0 3 2 2 2
0L 3 1 2 0 1 0 0 3 2 2 2
M 1 1 1 0. 1 0 0 3 2 1 -16
N;"") 1 1 11 1 1 ofo 4 1 2 -144
oﬁvﬂ 1 1 1 0 0 1 0 3 1 1 16
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APPENDIX E
SIXTH-ORDER CORRECTION FORMULAE

The sixth-order correction formulae are given by the linear combination

E® =a’ A + - +kOKY +al A8 + - +1110VLLLY + R, . (85)

The sixth-order constant of pure rotation R is
2B +1)'k, 104BIJ*(J+1)" 24B!A(J+1)'k, 2BIIA(I+1)'K
° 3a’R? (mv,)’ R (hv,) o*R3(hv,)’ R (hv,)

while each sixth-order symbolic constant has the form
T +1)" Bk ke ok ks &
Q”af’l’oRf’,’l(hve)(lz .

The coefficients of the linear combination (85) are given in Tables E-1-through E-6, while the

symbolic term factors (87) are listed in Tables E-7 through E-9.

TABLE E-1. Linear combination coefficients for E©,

(v) (82] (82] : (v) ) (v) (v)
by Csg ds s £ ds hg

11827 37 4517 237 449 323
435 77207 3472 5769 4745
2231 456947 19602 31529 26621
1612457 67947 107969 92015
4246817 | 177487 | 280449 240023
386862 | 609449 522773
744372 | 1170569 | 1005425
1307977 | 2054529 | 1766171
3367169 | 2896235
5229449 | 4499873
7777449 | 6694373

™)
g

39709 15169
827539 289039 198565
5181319 1767379 1170721
18657289 6311389 4125655 7425
49589809 16712869 10859407 19017
109091359 | 36694219 | 23766697 | 41007 9297467
211052539 | 70908439 ([ 45840925 | 78395 17936207
372142069 | 124939129 | 80674171 | 137181 | 31569197
611806789 | 205300489 | 132457195 | 224365 | 51836957 | 2145297
952271659 | 319437319 | 205979437 | 347947 | 80614367 | 3333612
1418539759 | 475725019 | 306629017 | 516927 | 120010667 { 4959862

Ol oo N ] ] K] W] N

—_
<




TABLE E-2. Linear combination coefficients for £©.

) iéV) j(GV) kéV) aé"'\‘) béV-l') CéV-l‘) déV-T) eév-f) fG(V-f) géV-l')

0 2 5 1 105 699 1398 699 179 179 279

1 21 61 9 735 2097 4194 2097 959 959 837

2 103 317 41 2625 3495 6990 3495 2519 2519 1395

3 336 1061 129 6615 4893 9786 4893 4859 4859 1953

4 852 2725 321 13545 6291 12582 6291 7979 7979 2511

5 1827 5885 681 24255 7689 15378 7689 11879 11879 3069

6 3481 11261 1289 39585 9087 18174 9087 16559 16559 3627

7 6078 19717 2241 60375 10485 20970 10485 22019 22019 4185

8 9926 32261 3649 87465 11883 23766 11883 28259 28259 4743

9 15377 | 50045 5641 121695 13281 26562 13281 35279 35279 5301

10 | 22827 | 74365 8361 163905 14679 29358 14679 43079 43079 5859

TABLEE-3. Linear combination coefficients for E.

v h(6"‘r) i(6V'l') jé"-l‘) k(6V-r) 1(6\/-1') m(6V'l‘). n(GV-I') Oé‘/-l’) p(sv-l') q(6V~1') ré(V’f)
0 558 279 287 287 65 63 126 63 121 121 95
1 1674 837 1787 1787 615 189 378 189 781 781 1035
2 2790 1395 4787 4787 2425 315 630 315 2101 2101 4225
3 3906 1953 9287 9287 6335 441 882 441 4081 4081 11165
4 5022 2511 15287 15287 13185 567 1134 567 6721 6721 23355
5 6138 3069 22787 22787 23815 693 1386 693 10021 10021 42295
6 7254 3627 31787 | 31787 39065 819 1638 819 13981 13981 69485
7 8370 4185 42287 | 42287 59775 945 1890 945 18601 18601 106425
8 9486 4743 54287 54287 86785 1071 2142 1071 23881 23881 154615
9 10602 5301 67787 67787 120935 1197 2394 1197 | 29821 29821 215555
10 | 11718 5859 82787 82787 163065 1323 2646 1323 36421 36421 290745
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TaBLE E-3. Linear combination coefficients for E©®.

vl gl el g v wl x{0 ygi” zg™ | aal™ | bb{™ | ccl | aali”
0 7 14 7 11 11 155 11 11 155 155 15 30
1 21 42 21 71 71 1875 71 71 1875 1875 45 90
2 35 70 35 191 191 7825 191 191 7825 7825 75 150
3 49 98 49 371 371 20825 371 371 20825 20825 105 210
4 63 126 63 611 611 43695 611 611 43695 43695 135 270
5 77 154 77 911 911 79255 911 911 79255 79255 165 330
6 91 182 91 1271 | 1271 | 130325 | 1271 1271 130325 | 130325 195 390
7 105 210 105 1691 | 1691 | 199725 | 1691 1691 199725 | 199725 225 450
8 119 238 119 2171 | 2171 | 290275 | 2171 2171 290275 | 290275 255 510
9 133 266 133 2711 | 2711 | 404795 | 2711 2711 404795 | 404795 285 570
10 147 294 147 3311 | 3311 | 546105 | 3311 3311 546105 | 546105 315 630

TABLEE-4. Linear combination coefficients for E©,

vl eel™ | ££,7] gg¢™”| hh ™| 1i¢™7| 33877 | kk¢] 1177 mmg™ | nng™”| oog ™
0 15 151 151 35 11 22 11 31 31 19 53

1 45 883 883 275 33 66 33 187 187 207 329

2 75 2347 2347 1025 55 110 55 499 499 845 881

3 105 4543 | 4543 2625 77 154 77 967 967 2233 1709
4 135 7471 7471 5415 99 198 99 1591 1591 4671 2813
5 165 11131 } 11131 | 9735 121 242 121 2371 2371 8459 4193
6 195 15523 | 15523 | 15925 143 286 143 3307 3307 13897 | 5849
7 225 20647 | 20647 | 24325 165 330 165 4399 4399 | 21285 | 7781
8 255 26503 | 26503 | 35275 187 374 187 5647 5647 30923 | 9989
9 285 33091 | 33091 | 49115 209 418 209 7051 7051 43111 | 12473
10 315 40411 | 40411 | 66185 231 462 231 8611 8611 58149 | 15233
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TABLE E-5. Linear combination coefficients for £,

v ppd?l g™ rrl™ | ssi Pl el ] uwul™| v i | wwl | xx{ P vyl 2287 aaal™
0 53 133 1817 31 31 35 187 1 2 1 3 3
1 329 1449 20541 187 187 275 1931 3 6 3 15 15
2 881 5915 84535 499 499 1025 7785 5 10 5 39 39
3 1709 15631 223979 967 967 2625 20489 7 14 7 75 75
4 2813 32697 469053 1591 1591 5415 42783 9 18 9 123 123
5 .1 4193 59213 849937 2371 2371 9735 77407 11 22 11 183 183
6 5849 97279 1396811 3307 3307 15925 | 127101 13 26 13 255 255
7 7781 148995 | 2139855 | 4399 4399 24325 | 194605 15 30 15 339 339
8 9989 | 216461 | 3109249 | 5647 5647 35275 | 282659 17 34 17 435 435
9 12473 | 301777 | 4335173 | 7051 7051 49115 | 394003 19 38 19 543 543
10 | 15233 | 407043 | 5847807 8611 8611 66185 | 531377 21 42 21 663 663
TABLE E-6. -Linear combination coefficients for E®,
v | bbby ™| cccd™| addy”| eeed™| £££7 | ggg{ ™| hhh{ ™| 11107 333077 kkk?| 11250
0 13 49 49 65 61 47 1 3 35 1
1 123 277 277 615 618 411 5 5 21 309 7
2 485 733 733 2425 2480 1585 13 13 75 1195 25
3 1267 1417 1417 6335 6517 4109 25 25 189 -3101 63
4 2637 2329 2329 13185 13599 8523 41 41 387 6435 129
5 4763 3469 3469 23815 24596 15367 61 61 693 11605 231
6 7813 4837 4837 39065 40378 25181 85 85 1131 19019 377
7 11955 6433 6433 59775 61815 38505 113 113 1725 29085 575
8 17357 8257 8257 86785 89777 55879 145 145 2499 42211 833
9 24187 10309 10309 120935 125134 77843 181 181 3477 58805 1159
10 32613 12589 12589 163065 168756 104937 221 221 4683 79275 1561
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TABLEE-7. Symbolic term factors (87) for E©.

’” ” r” ” I3 ’” ’” ” 27 ”
E 3 £ 4 '6 5 '€ 6 Z 7 f 8 ¢ 9 Z 10 11 Q

-5971968

663552

-663552

24576

-414720

23040

-460800

82944

-1536

-4608

6144

8

4




TABLEE-8. Symbolic term factors (87) for E®,

A EAAAARA A A A RAATA N

pon 2 1 2 2 0 0 0 0 0 5 4 3 -8
6
év-r) 3 1 2 2 0 0 0 0 0 5 4 3 -8
(v-1

R ) 1 1 1 2 0 0 0 0 0 5 4 2 32

Sv-n 3 1 3 3 0 0 0 0 0 6 3 5 4
6

T 4 1 3 3 0 0 0 0 0 6 3 5 4
6

U 5 1 3 3 0 0 0 0 0 6 3 5 4
6

vy 2 1 2 3 0Oj0¢t0 0 0 6 3 4 -3
6

W 3 1 2 3 0 010 0 0 6 3 4 -3
6

x4 1 1 1 3 0 0 0 0 0 6 3 3 144
6

Y6(v—r) 2 1 2 4 6olo|oflO¢}O 7 2 5 -18

Zon 3 1 2 4 0|0} O0 0 0 7 2 5 -18
6 .

AAé”) 1 1 1 4 10 010 0 017 2 4 512

oo |11t ][s|olofofofo|8]1]|5]| 1536

ccév-ﬂ 3 1 3 0 1 0 0 0 0 4 4 3 -2
DDy | 4 1 3 0 1 0 0 0 0 4 4 3 -2
EEéV'” 5 1 3 0 1 0 0 0 0 4 4 3 -2
FFeo 21 ]l2fo]1fofofo]of4]4]2 24
GGéV") 3 1 2 0 1 0,0 0]0]) 4 4 2 24
pE¢” 1111 jJof1]ojoloJo]a]a]1 -32
Hé"") 3 1 3 1 1 0 0 0 0 5 3 4 -6
Jjé"") 4 1 3 1 1 0 0 0 0 5 3 4 -6
kk¢opsfpi|3jtftr]ojojofo]s][3]4 -6
LL(G‘”) 2 1 2 1 1 0 0 0 0 5 3 3 8

MM |3 1 2 1 1 0 0 0 0 5 3 3 8

NN év‘” 1 1 1 1 1 0 0 0 0 5 3 2 -16
OOé”) 2 1 2 2 1 0 0 0 0 6 2 4 48
ppro (311|221 fojoflofo]e]|2]4 48
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TABLEE-9. Symbolic term factors (87) for E®.

7” ’” 77 ’” ” ” ” ” ”
’e 2 '€3 £4 £5 E 6 ’e 7 €8 '€9 ’e 10

o]0k
RR{"™

SS&

{v-r)
TT;

vy

(vr)
VvV,

“;“/(V-r)
6

(v-1)
XX

YY‘S(v-r)
ZZév-r)

AAAC™
BBB{"™

cccy

DDD{™™

EEE{"™

FFES™

GGG

HHH{"™

e

JIIED

KKK

LLI™




APPENDIX F
HULBURT-HIRSCHFELDER FORCE CONSTANTS

k,=2Df’

k,=6DB(c-1)

k,=2Df*(12bc — 24c +7)

k, = 30D’ (~8bc +8c—1)

ko =2DfB°(720bc — 480c +31)

k, = 42DB’ (~160bc + 80c ~ 3)

kg = 2D (13440bc — 5376¢ +127)
k, = 6DB’(~16128bc + 5376¢ — 85)

k,, =2DB'"°(161280bc — 46080c +511)
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