

Results of the DWPF Melter Drain Canister, S00209

by

M. K. Andrews

Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808

C. A. Cicero-Herman

D. T. Herman

DOE Contract No. DE-AC09-96SR18500

This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Distribution:

M. K. Andrews, 773-A
N. E. Bibler, 773-A
D. F. Bickford, 773-43A
C. A. Cicero-Herman, 773-41A
D. A. Crowley, 773-43A
H. H. Elder, 704-S
R. E. Edwards, 704-25S
C. R. Goetzman, 773-A
J. R. Harbour, 773-43A
D. T. Herman, 773-41A
E. W. Holtzscheiter, 773-A
L. F. Landon, 704-1T
S. L. Marra, 704-25S
J. F. Ortaldo, 704-S
C. T. Randall, 704-T
J. W. Ray, 704-35S
STI, 703-43A

July 23, 1998

RESULTS OF THE DWPF MELTER DRAIN CANISTER, S00209 (U)

M. K. Andrews, C.A. Cicero-Herman, and D. T. Herman
Westinghouse Savannah River Company

INTRODUCTION AND SUMMARY

The Savannah River Technology Center (SRTC) was requested by the Engineering Section of the Defense Waste Processing Facility (DWPF) to characterize the drain canister filled during the DWPF Proficiency Runs. Testing of this canister, along with testing of the glass samples taken from the canister, was performed as part of a continuing effort to demonstrate compliance with the Waste Acceptance Product Specifications (WAPS)¹ as outlined in the Waste Form Qualification Coordinating Plan (QCP).²

This report is a summary of the results of the canister filled with glass from the melter drain valve during the DWPF Proficiency Runs. This summary includes the results necessary for Waste Qualification, as well as results and observations from other SRTC tests. The following results and observations were noted during characterization of the drain canister, S00209:

- No significant changes in canister dimensions were detected after glass filling of the drain canister S00209. (WAPS 3.11¹ and QCP objective 2.9.3²)
- No significant differences in chemical composition were seen between the glass from the drain canister and the glass from the melter pour spout.
- The Product Consistency Test (PCT) results for all of the glass samples were at least two standard deviations below the mean PCT results of the Environmental Assessment (EA) glass. This demonstrates that all glass produced meets the WAPS 1.3 criterion.¹ (QCP objective 2.3.6²)
- Several glass samples from canister S00209 were analyzed for crystalline content. The maximum crystalline content detected in this canister was 0.7 volume percent trevorite, which did not affect the glass durability. (WAPS 1.1¹ and QCP objective 2.2.4²)
- Ruthenium was detected in the glass by Scanning Electron Microscopy. No other noble metals were detected.

DIMENSIONAL MEASUREMENTS

The dimensions of the drain canister both prior to and after glass filling were obtained during the DWPF Proficiency Runs. The purpose of these measurements was to demonstrate that the canister dimensions do not significantly change as a result of glass filling. The dimensions of the drain canister were independently measured by Bechtel Layout (transit measurements) and by SRS Quality (micrometer measurements).³ The dimensional measurements prior to and after filling of canister S00209 are shown in Appendix 1.

The measurements of canister S00209 prior to glass filling were compared to the procurement specifications listed below.

Height:	117.94 to 118.06 inches 2.9957 to 2.9987 m
Diameter:	23.88 to 24.12 inches 60.66 to 61.26 cm
Perpendicularity:	0.050 inches 0.127 cm

The canister height and diameter were within the specifications, but several perpendicularities values were outside of the specification by a few mils. However, in all cases the canister met the WAPS specifications.

The minimum and maximum measurements and the maximum change in dimensions after filling, based on the Bechtel Layout measurements, are summarized in Table 1. This table also includes the acceptance requirement per the QCP² (WAPS 2.4) for the canister dimensions after glass filling.

Table 1 - Summary of Dimensional Measurements of Canister S00209

Measurement	Acceptance Requirement ² (in)	Maximum Measured Value (in)	Minimum Measured Value (in)	Maximum Delta (in)
Length	118.110 (+0.197, -0.79)	118.049	118.040	0.009
Diameter	24.0157 (+0.591, -0.39)	24.017	23.934	0.018
Perpendicularity	**	+0.058	-0.073	0.032

** Overall dimensions: Canister must fit within a right circular cylinder, 64.0 cm in diameter and 3.01 m in length.

The changes shown are considered insignificant relative to the requirements of the WAPS. Thus, filling of the canister with glass did not significantly affect the dimensions of the canister.

CANISTER SECTIONING

The drain canister was prepared for glass sampling by sectioning using the Building 673-T Tannevitz bandsaw. Sectioning allowed the entire cross section of the canister to be sampled, from the center to the wall. Two cross sectional cuts were made on Canister S00209: one at an

approximate height of 34 inches from the bottom and one at roughly 50 inches from the bottom. A third cut was made that bisected the lower cross-section, allowing glass samples to be removed from the bottom of the canister.

Each cut took approximately ten hours to complete. The cut time is dependent upon the quality of the blade and the amount of pressure applied. One bandsaw blade is required per cut assuming that the blade does not break. A cooling fluid was used during the cuts causing a wetting of the glass. The fluid also permeated through the cracks inherent in the glass causing a large portion of the section to be wetted. Prior to receipt of the DWPF canisters, tests were performed to ensure that the glass was not affected by the bandsaw.⁴

GLASS SAMPLING

A total of fourteen glass samples were removed from the drain canister. Four samples were removed from the 50 inch cross section and five samples were removed from each of the bisected sections of the 34 inch cut. No glass discoloration or anomalies were observed in the drain canister glass.

For ease in the identification of the glass samples, the location of the glass sample and the canister number were used as part of the sample name, along with the prefix "SECT" since the drain canister was sectioned. After the canister number, which followed the prefix, the distance in inches between the sample location and the canister bottom, followed by an "H" (for height), was added. Then, the distance between the canister wall and the sample location, measured in inches, followed by an "R" (for radial), was included. An additional SRTC number was assigned to each sample. This SRTC sample identification is given in Table 2 along with the associated height and radial measurement for the sample location.

Table 2 - Sample location for Canister S00209

SRTC#	Height (in)	Radial (in)
406	30.0	10.0
407	19.5	10.3
408	16.0	3.9
409	14.0	10.0
410	4.5	10.5
411	31.0	10.3
412	25.0	9.3
413	17.5	3.6
414	10.5	9.8
415	4.0	10.3
416	47.5	4.5
417	48.0	3.5
418	47.5	11.5
419	47.0	3.5

CHEMICAL COMPOSITION OF THE GLASS

All of the glass samples were analyzed to determine the chemical composition. Each sample was dissolved by two separate dissolution methods: microwave dissolution and Na_2O_2 dissolution with an HCl digestion. The resulting dissolutions were analyzed by Atomic Absorption (AA) spectrometry and Inductively Coupled Plasma Emission Spectroscopy (ICP-ES) to determine the cation composition. A Batch-1 Corning glass standard was included with the samples as a control.

The chemical compositions of the fourteen glasses are given in Appendix 2. The results were averaged and then normalized to allow for a direct comparison to the glass poured from the melter pour spout (canisters S00144 and S00134). This comparison of the chemical compositions is shown in Table 3. There are no significant differences in composition between the glass poured from the melter drain and the glass poured from the melter pour spout.

Table 3 - Normalized Chemical Composition Comparison of the Drain Canister (S00209) and the Melter Pour Spout Canisters (S00144 and S00134)

Oxide	Drain Can Normalized Average	S00144 Normalized Average	S00134 Normalized Average
Al_2O_3	4.679	4.835	4.753
B_2O_3	7.601	7.346	7.599
CaO	0.923	0.923	0.923
Cr_2O_3	0.338	0.337	0.355
CuO	0.398	0.461	0.379
Fe_2O_3	10.883	10.877	11.013
K_2O	2.321	2.883	2.529
Li_2O	3.960	4.008	4.033
MgO	1.566	1.508	1.522
MnO	2.194	2.304	2.286
Na_2O	10.199	10.133	10.203
NiO	0.750	0.796	0.735
PbO	0.061	0.129	0.039
SiO_2	52.927	52.143	52.407
TiO_2	0.303	0.319	0.309
ZrO_2	0.896	0.998	0.916

PRODUCT CONSISTENCY TEST (PCT)

The PCT⁵ was performed on all of the glass samples. Each sample was tested in triplicate with the appropriate blanks and standards. The results of the standards and blanks indicated that the PCT results were acceptable. The average PCT releases for several elements were measured. These values were used along with the composition of the glass to calculate the average normalized release for boron, sodium, and lithium. The leachate pH was measured as part of the PCT protocol and provides a secondary indication of glass durability.

The normalized elemental releases for each of the glass samples are reported in Table 4. The results indicate that the DWPF met the acceptance criteria as defined in the QCP² for the effectiveness of the Glass Product Control Program,⁶ which states that the glass produced must be at least two standard deviations better than the Environmental Assessment (EA) glass.⁷ The measured leachate pH for each glass sample is also provided in Table 4.

Table 4 - PCT results (in g/L) of drain can

SRTC#	B	Na	Li	pH
406	0.61 ± 0.11	0.61 ± 0.37	0.66 ± 0.09	10.42
407	0.59 ± 0.33	0.58 ± 1.01	0.63 ± 0.63	10.58
408	0.61 ± 0.07	0.60 ± 0.23	0.65 ± 0.06	10.44
409	0.61 ± 0.15	0.60 ± 0.27	0.66 ± 0.10	10.47
410	0.60 ± 0.24	0.59 ± 0.69	0.64 ± 0.20	10.45
411	0.59 ± 0.07	0.61 ± 0.24	0.64 ± 0.09	10.41
412	0.60 ± 0.11	0.60 ± 0.32	0.64 ± 0.10	10.42
413	0.63 ± 0.06	0.63 ± 0.22	0.67 ± 0.05	10.47
414	0.61 ± 0.19	0.62 ± 0.65	0.66 ± 0.18	10.51
415	0.58 ± 0.24	0.60 ± 0.74	0.64 ± 0.24	10.47
416	0.60 ± 0.45	0.61 ± 1.41	0.66 ± 0.39	10.52
417	0.62 ± 0.10	0.60 ± 0.30	0.67 ± 0.08	10.52
418	0.59 ± 0.25	0.60 ± 0.77	0.66 ± 0.25	10.50
419	0.60 ± 0.29	0.60 ± 0.94	0.65 ± 0.28	10.51
EA ⁸	16.7	13.3	9.6	11.85

CRYSTALLINE CONTENT

X-Ray Diffraction (XRD) was used to identify the crystalline phases present in several of the glass samples. XRD samples were prepared by adding 10 wt% silicon to <200 mesh powder of each glass. The major peaks present in each sample were identified and the ratio of the integrated intensity of the reflection from the peak to the integrated intensity of the Si₁₁₁ reflection calculated. This method is known as the "internal standard" technique.⁹ Scanning Electron Microscopy (SEM) was performed on the same samples to confirm the XRD results and to determine the chemical composition of any crystalline phases present. Table 5 summarizes the XRD and SEM results on the selected samples.

Table 5 - XRD and SEM Results for the Drain Canister

SRTC#	Sample Height (inches)	XRD Results (vol% trevorite)	SEM Results
406	30	0.6	Trevorite, Ru
409	14	0.4	Trevorite, Ru
412	25	0.5	Trevorite, Ru
415	4	0.3	Trevorite, Ru
418	47.5	0.7	Trevorite, Ru

The highest detected crystallization was in sample #418, which was taken at a height of 47.5 inches from the bottom and close to the center of the canister. The crystals could have formed in the bottom of the melter and drained into the canister, or they could have formed in the canister upon cooling. Regardless of how the crystals were formed, the crystalline content found in this canister did not affect the measured durability. Previous studies¹⁰ have shown that small amounts of trevorite do not significantly affect the durability of the glass.

SEM results confirmed the presence of trevorite consisting of nickel-iron oxide with some manganese substitution. SEM also indicated the presence of ruthenium, generally as a separate entity near the crystal formation. Significant quantities of ruthenium were not detected in the chemical analysis of the glass.

ACKNOWLEDGMENTS

The authors would like to thank all of the personnel involved with this study. The efforts and outstanding skills of P. J. Workman and I. A. Reamer were essential to the success of this study, as were the efforts of all ADS personnel.

REFERENCES

1. Office of Environmental Restoration and Waste Management, **Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms**, USDOE Document EM-343, (1996).
2. S. L. Marra, **Waste Form Qualification Coordinating Plan**, WSRC-RP-93-1556, Rev. 2 (1995).
3. J. R. Harbour, **R/D Task Plan: Measurement of Canister Dimensions Prior to and After Glass Filling on Canistered Waste Forms Produced during the DWPF Startup Test Program**, WSRC-RP-92-1385, Rev. 2, (1995).
4. M. K. Andrews, **Durability of Glass Samples from the Canister Surface (U)**, SRT-GTC-94-0042, (1994).
5. ASTM C1285-94, **Standard Test Methods for Determining Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT)**, (1994).
6. S. L. Marra, M.J. Plodinec, J.W. Ray, **DWPF Glass Product Control Program**, WSRC-IM-91-116-6, (1997).
7. U.S. Department of Energy, **Environmental Assessment Waste Form Selection for SRP High-Level Waste**, USDOE Report DOE-EA-0179, (1982).
8. C. M. Jantzen, N. E. Bibler, D. C. Beam, C. L. Crawford, and M. A. Pickett, **Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material (U)**, WSRC-TR-92-346, Rev. 1, (1993).
9. B. D. Cullity, **Elements of X-ray Diffraction**, Addison-Wesley Publishing, Inc. (1967)
10. C. A. Cicero, S. L. Marra and M. K. Andrews, **Phase Stability Determinations of DWPF Waste Glasses (U)**, WSRC-TR-93-227, Rev. 0, (1993).

Technical Reviewers

John R Harbour
J.R Harbour

S. L. Marra
S. L. Marra

Appendix 1
Measured Dimensions of Canister S00209

Bechtel Layout performed the transit measurements as the primary measurement and SRS Quality performed micrometer measurements as a verification

LENGTH	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
0°	118.040	118.047	-0.007			
90°	118.040	118.045	-0.005			
180°	118.040	118.045	-0.005			
270°	118.040	118.049	-0.009			

DIAMETER AT 0°

Height	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
103.5	23.953	23.949	0.004	23.956	23.952	-0.004
91.0	23.946	23.946	0.000	23.961	23.965	-0.004
78.5	23.949	23.946	0.003	24.006	24.010	-0.004
66.0	23.936	23.934	0.002	24.01	24.018	-0.008
53.5	23.951	23.950	-0.009	24.005	24.023	-0.018
41.0	23.947	23.958	-0.011	23.998	24.017	-0.019
28.5	23.951	23.952	-0.011	23.989	24.010	-0.021
16.0	23.954	23.972	-0.018	23.96	23.976	-0.016
3.5	23.957	23.982	-0.015	23.972	23.978	-0.006

DIAMETER AT 90°

Height	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
103.5	23.959	23.947	0.012	23.950	23.949	0.001
91.0	23.963	23.959	0.004	23.942	23.940	0.002
78.5	24.006	24.001	0.005	23.940	23.940	0.000
66.0	24.008	24.009	-0.001	23.929	23.922	0.007
53.5	24.006	24.017	-0.011	23.945	23.949	-0.004
41.0	24.000	24.012	-0.012	23.941	23.946	-0.005
28.5	23.990	24.007	-0.017	23.946	23.953	-0.007
16.0	23.964	23.975	-0.011	23.950	23.964	-0.014
3.5	23.967	23.976	-0.009	23.966	23.970	-0.004

DIAMETER AT 90°

Height	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
103.5	0.058	0.026	0.032	0.006	0.026	0.000
91.0	0.032	0.006	0.026	0.013	0.013	0.000
78.5	0.025	-0.001	0.026	0.014	0.014	0.000
66.0	0.015	-0.008	0.023	0.008	0.015	0.000
53.5	0.006	-0.009	0.015	0.007	0.014	0.000
41.0	-0.001	-0.010	0.009	0.007	0.010	0.000
28.5	-0.003	-0.010	0.007	0.001	0.010	0.000
16.0	-0.005	-0.007	0.002	0.000	0.009	0.000
3.5	0.000	0.000	0.000	0.000	0.000	0.000

DIAMETER AT 135°

Height	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
103.5	23.947	23.949	-0.002	23.949	23.949	0.000
91.0	23.942	23.940	0.021	23.940	23.940	0.019
78.5	24.004	23.942	-0.062	23.940	23.944	-0.004
66.0	24.001	23.946	-0.055	23.929	23.922	0.079
53.5	24.009	24.011	-0.002	23.945	23.949	-0.004
41.0	24.012	23.941	-0.071	23.946	23.946	0.000
28.5	24.007	23.946	-0.061	23.953	23.953	0.000
16.0	23.950	23.950	0.000	23.964	23.964	0.011
3.5	23.966	23.970	-0.004	23.970	23.970	0.006

PERPENDICULARITY AT 0°

Height	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
103.5	-0.024	-0.044	0.020	0.015	0.015	0.000
91.0	-0.051	-0.064	0.013	0.013	0.046	0.047
78.5	-0.015	-0.029	0.014	0.026	0.053	0.054
66.0	-0.007	-0.015	0.008	0.015	0.047	0.048
53.5	-0.007	-0.014	0.007	0.015	0.045	0.055
41.0	0.000	-0.004	0.004	0.009	0.032	0.040
28.5	0.001	-0.001	0.002	0.007	0.023	0.030
16.0	-0.002	0.001	-0.003	0.007	0.022	0.030
3.5	0.000	0.000	0.000	0.000	0.000	0.000

PERPENDICULARITY AT 180°

Height	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
103.5	23.948	23.948	0.000	23.948	23.948	0.000
91.0	23.943	23.943	0.000	23.943	23.943	0.000
78.5	24.004	23.942	-0.062	23.940	23.944	-0.004
66.0	24.001	23.946	-0.055	23.929	23.922	0.079
53.5	24.009	24.011	-0.002	23.945	23.949	-0.004
41.0	24.012	23.941	-0.071	23.946	23.946	0.000
28.5	24.007	23.946	-0.061	23.953	23.953	0.000
16.0	23.950	23.950	0.000	23.964	23.964	0.011
3.5	23.966	23.970	-0.004	23.970	23.970	0.006

PERPENDICULARITY AT 270°

Height	Bechtel Layout			SRS Quality		
	Before Fill	After Fill	Delta	Before Fill	After Fill	Delta
103.5	23.948	23.948	0.000	23.948	23.948	0.000
91.0	23.943	23.943	0.000	23.943	23.943	0.000
78.5	24.004	23.942	-0.062	23.940	23.944	-0.004
66.0	24.001	23.946	-0.055	23.929	23.922	0.079
53.5	24.009	24.011	-0.002	23.945	23.949	-0.004
41.0	24.012	23.941	-0.071	23.946	23.946	0.000
28.5	24.007	23.946	-0.061	23.953	23.953	0.000
16.0	23.950	23.950	0.000	23.964	23.964	0.011
3.5	23.966	23.970	-0.004	23.970	23.970	0.006

Appendix 2
Measured Chemical Compositions of Glass Removed from Canister S00209

	406	407	408	409	410	411	412	413	414	415	416	417	418	419
Al ₂ O ₃	4.926	4.741	4.750	4.631	4.686	4.614	4.667	4.497	4.595	5.085	5.181	4.622	5.134	4.909
B ₂ O ₃	7.902	7.751	7.767	7.693	7.725	7.661	7.696	7.599	7.657	7.934	7.986	7.738	7.921	7.883
BaO	0.070	0.066	0.065	0.063	0.064	0.063	0.063	0.058	0.061	0.077	0.079	0.063	0.078	0.070
CaO	1.043	0.956	0.958	0.956	0.960	0.911	0.944	0.935	0.921	0.940	0.933	0.953	0.957	0.960
Cr ₂ O ₃	0.316	0.330	0.387	0.311	0.370	0.311	0.333	0.322	0.339	0.367	0.393	0.346	0.361	0.352
CuO	0.381	0.419	0.389	0.391	0.393	0.372	0.383	0.378	0.419	0.424	0.421	0.437	0.437	0.436
Fe ₂ O ₃	11.123	11.039	11.316	10.899	11.126	10.929	11.020	10.924	11.026	11.333	11.525	11.030	11.339	11.305
K ₂ O	2.475	2.408	2.165	2.466	2.325	2.291	2.229	2.360	2.470	2.502	2.411	2.452	2.423	2.285
Li ₂ O	4.105	4.053	4.077	4.051	4.053	4.032	4.047	4.029	4.036	4.068	4.073	4.004	4.051	4.062
MgO	1.620	1.585	1.594	1.580	1.585	1.580	1.587	1.572	1.585	1.643	1.653	1.589	1.642	1.628
MnO	2.280	2.239	2.252	2.222	2.235	2.217	2.226	2.204	2.211	2.287	2.302	2.213	2.285	2.267
Na ₂ O	10.195	10.452	10.491	10.500	10.504	10.001	10.320	10.212	10.304	10.478	10.409	10.653	10.682	10.687
NiO	0.858	0.757	0.756	0.755	0.770	0.678	0.708	0.742	0.795	0.804	0.775	0.797	0.825	0.816
PbO	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.137	0.117	0.132	0.143	0.145
SiO ₂	55.006	54.039	54.351	53.823	53.891	53.656	53.771	53.435	53.746	54.813	55.070	53.367	54.734	54.661
TiO ₂	0.320	0.309	0.305	0.292	0.299	0.292	0.295	0.284	0.292	0.340	0.350	0.299	0.345	0.324
ZnO	0.062	0.071	0.062	0.065	0.065	0.061	0.062	0.061	0.061	0.070	0.068	0.073	0.073	0.071
ZrO ₂	0.955	0.916	0.902	0.900	0.902	0.851	0.878	0.863	0.969	0.952	0.933	0.955	0.954	0.950
	103.637	102.131	102.588	101.595	101.952	100.519	101.230	100.476	101.632	104.236	104.696	101.733	104.386	103.803