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Abstract

A brief review of the Zlib development is given. Emphasized is the Zlib nerve
system which uses the One-Step Index Pointers (OSIP’s) for efficient compu-
tation and flexible use of the Truncated Power Series Algebra (TPSA). Also
emphasized is the treatment of parameterized maps with an object-oriented
language {e.g. C++). A parameterized map can be a Vector Power Series
{Vps) or a Lie generator represented by an exponent of a Truncated Power
Series {Tps) of which each coefficient is an object of truncated power series.

Introduction

Zlib Fortran version was developed in 1990 [1]. Its development was originated at
fast computational speed for nonlinear analyses of high-order power-series maps of
the Superconducting Super Collider (SSC) lattices. Since Supercomputers, such as
Cray computers, were used, the algorithms used for manipulating truncated power
series and Lie algebras were optimized for scalar, vector, and parallel computing. Of
the most important part in achieving such optimization was the Zlib nerve system
consisted of One-Step Index Pointers for optimized computation of TPSA routines
such as multiplication, concatenation, partial derivative, Taylor map tracking, etc.
Memories for the One-Step Index Pointers and necessary internal auxiliary arrays
were dynamically allocated at the minimum required level per user’s input for the
maximum order and number of variables. By the time of the CAP93 Conference,
there were more than 200 dynamically usable subroutines in Zlib Fortran version
for TPSA and Lie algebraic mapping analysis [2].

In late 1993, upon termination of the SSC, about 20% of the Zlib Fortran subrou-
tines were faithfully translated into C++ codes that form two fundamental classes
of the TPSA [3]. These two classes were named ZSeries and ZMap which handles
the algebra of truncated power series and Vector truncated power series respectively
and have been included in Malitsky’s Unified Library [4]. Recently at SLAC, aiming
at further development for mapping analysis, the two classes ZSeries and ZMap have
been rewritten and named as Tps and Vps and added or to be added upon them are
many other classes for treating Lie algebras. Many of these classes are translated
or to be translated from Zlib Fortran version developed in early 90’s.

Truncated Power Series - Tps

Tps is an abbreviated name for the Truncated Power Series. A Tps truncated at
an order of ) can be mathematically written as [1] [5]
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where, assuming n variables, 7 represents the variables labeled as 21, z29,...2n, k

. Q
represents the power indices (ki, kg, ...k5) and so Z* represents z{“’ zé‘?..zf;‘, and ¥

o=0
means summation over all possible monomials labeled by % with order given by
0 = ki + kg + ... + k, that is less than or equal to 2. For an n-variable, Q-order
Tps, there are a total of m(n,) = (n + Q)!/(n!Q!) monomials. In an optimized
computation for the TPSA, the first step is to allocate minimum possible memory
for storing the Tps coeflicients. To achieve this goal, Zlib uses an integer sequence
j’s that starts from 0 to m(n, Q) —1 (or from 1 to m(n, Q) for the Fortran version) to
label the the Tps coefficients, that is, there is a one-to-one correspondence between
j’s and %’s. Such labeling is the same for all Tps’s except that there may be order
differences and so the label sequence starts with the lowest order (the Oth order)
and then go on to the next order and so on. For example, for a 3-variable case,
the corresponding labels between j’s and %’s up to third order are: 0 = (0,0,0),
1 = (1,0,0), 2 = (0,1,0), 3 = (0,0,1), 4 = (2,0,0), 5 = (1,1,0), 6 = (1,0,1),
7 = (0,2,0), 8 = (0,1,1), 9 = (0,0,2), 10 = (3,0,0), 11 = (2,1,0), 12 = (2,0,1),
13=(1,2,0), 14 = (1,1,1), 15 = (1,0,2), 16 = (0,3,0), 17 = (0,2,1), 18 = (0,1, 2),
19 = (0,0,3). In Zlib, the relation between j’s and E’s is governed by a simple
formula which is only used to generate One-Step Index Pointers.

The Tps class in Zlib C++ version is designed to manipulate Tps represented
by the above-described coefficients.

Vector truncated Power Series - Vps

Vps is an abbreviated name for the Vector truncated Power Series. A Vps trun-
cated at an order of Q can be mathematically written as [1] [5]

Q -
0(z) = Y a(h)7, (1)
0=0
that is, each component of the Vps is a Tps represented by coefficients described in
the last section. For example, the i** component would be represented by

Q2 -
Ui(2) = 3 ui(k)7*,
0=0
The Vps class in Zlib C++ version is designed to manipulate Vps described
above.

One-Step Index Pointers

For optimized computation of the TPSA, besides efficient memory mangement,
one would also like to achieve efficient calculation for each of the related algebras such
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as Tps multiplication, Vps concatenation, and Taylor map tracking, etc. The key is
to have One-Step Index Pointers prepared only once for repeated use such that for
any coefficient involved in a given calculation, it can be identified with a minimum
index path. For example, let A and B be two Tps’s (may be with different orders),
such that Tps C = A * B. The task is to obtain all of the coefficients of C to a specified
order derived from the orders of A and B and the preset cap order. Assuming
the minimum and the maxmum orders for C derived are minimumOrderOfC and
maximumOrderOfC, to obtain C, the code in Zlib would look like as follows.

for (order = minimumOrderOfC; order <= maximumOrderOfC; +-+order) {
lowOrder = MaximumOrderOf (order-maximumOrderOfB, minimumOrderOfA);
highOrder = MinimumOrderOf (maximumOrderOfA, order-miniMumOrderOfB);
for (j = monomialBeginforder]; j < monomial[order]; ++j) {
for (i = ipBegin[j]{lowOrder]; i < ipEnd[j]J[highOrder]; ++i) {
C[j] += AJaOSIP[i]] * B[bOSIPIi]};
}

}

where except A, B, C (assumed cleared), all other variables are integers and are
assumed to have been declared. Note that except lowOrder and highOder (obtained
with negligible computer time), all other indices are obtained by assignment only
(minimum index path) through One-Step Index Pointers (OSIP’s). Note that, if
a supercomputer is used, then the innest (i-) loop is vectorized through automatic
gather while the j-loop is parallelized. This original Zlib One-Step Index Pointers
scheme for Tps multiplication may be categorized as a “backward” scheme. Re-
cently, Dragt seems to be interested in exploring a similar scheme which may be
categorized as a “forward” scheme [6].

As another example of the OSIP’s, let V be a Vps with a dimension of n (an
n-dimensional Tps) reresenting a one-turn Taylor map, and z be a vector respenting
the phase-space coordinates of a particle. Assuming no parameters, that is, in phase
space, z has the same dimension as V, then a one-turn Taylor map tracking is to
update the phase-space coordinates represented by z through evaluation of the Vps
given by Eq. 1. The code in Zlib would look like as follows.

for (j = 1; j < monomialforderOfV]; ++j) xx[j] = 2[iOSIP{j]|*xx[jOSIP(j]];
for (i = 0; i < n; ++i) 2[i} = VIi][0];
for i = 0;i < n; ++i)
for (j = 1; j < monomialforderOfV]; ++j) z[i] += V[i]{jI*xx[j};
}

where again iOSIP and jOSIP are One-Step Index Pointers and in the double loop,
the inner one is vectorized while the outer one is parallelized. It was this fast




computational process that allowed the fast Taylor-map tracking for the SSC to
high orders (11- or 12-th order) with a computational speed two orders of magnitude
faster than the conventional element-by-element tracking [5].

Action-angle variable truncated Power Series - Aps

Aps is an abbreviated name for the truncated power series in action-angle variable
space. A class named Aps in Zlib C++ version is nearly completed. Some of the
important member functions in this class are the nPB tracking and the extraction of
the normalized resonance basis coefficients which was coded before in Fortran and
have been used intensively for PEP-II lattice studies [7].

Lie Classes

Application of TPSA to nonlinear single-particle dynamics usually goes with
the Lie algebraic analysis. Therefore, majority of the Zlib classes are to be for
Lie algebras such as single Lie generators, Dragt-Finn factorizations [8], nonlinear
normal forms [9], kick factorizations [10], integrable polynomial factorization [11],
etc.

Parameterized maps - the Tps of Tps

In mapping analysis of a beam line lattice, in addition to the canonical phase-
space variables, we often would like to have parameter variables which are constant
but not specified with a value. Their values are either to be determined after the
analysis or are dynamical (time dependent) to allow additional studies such as for
synchrotron oscillation, power supply ripple, and ground motion at lower compu-
tational price. Treatment of such parameterized map in Fortran is tedious and
usually uses semi-parameterization methods. Although some fully parameterized
(coefficients of the power series in canonical space are treated as power series in
parameter space) algorithms were written for treating both linear (but nonlinear
in parameter space) and nonlinear cases [12], there were no implementation of such
fully parameterized methods in the Zlib Fortran version. However, with the capabil-
ity of the object orientation, it is easier to code such fully parameterized algorithms
since one can consider each of the coefficients in the canonical space as an object of
Tps in stead of a double. These fully parameterized mapping methods are currently
under active development in Zlib C++ version.

Zlib Future Direction

While Zlib Fortran version will still be kept for optional use, there will be no more
development. The future direction is to develop a more complete C++ version
for Zlib. Currently, there are more than 30 classes in Zlib that are under active
improvement and/or development.
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