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Towards a next-to-leading logarithmic result in B — X,y
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The calculation of the O(w,) virtual corrections to the matrix element of the in-
clusive decay b — sv is reported. These contributions drastically reduce the large
renormalization scale dependence of the leading logarithmic calculation. Com-
bining these results with the preliminary result for the Wilson coefficient C7(my)
calculated recently by Chetyrkin, Misiak, and Muinz, we estimate the branching
ratio- to be BR(B — X,v) = (3.25 £ 0.50) x 107,

1 Introduction

Rare B meson decays are particularly sensitive to physics beyond the standard
model (SM). In order to extract the effects of possible new physics, precise
experimental and theoretical work on these decays is required.

The inclusive mode B — X,v can be systematically analyzed with help
of the expansion in inverse powers of the (heavy) b-quark mass; mp. At the
leading order in such an expansion, the inclusive decay rate is given by the
perturbatively calculable free quark decay rate. As the power corrections start
at the 1/m? level only, we neglect these contributions in this talk and model the
decay rate I'(B — X,v) by the quark level decay width I'(b — sv), including
perturbative QCD corrections.

The earlier SM computations of the branching ratio for B — X, presented
e.g. inrefs. 1:2:34 are in full agreement with the CLEO measurement® BR(B —
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X,v) = (2.32 £ 0.67) x 10~*%. There are large uncertainties, however, in both
the experimental and the theoretical results. In view of the expected increase
in the experimental precision, the calculations must be refined correspondingly
in order to allow quantitative statements about new physics. So far, only the
leading logarithmic QCD corrections of the form a7 log™(m?/m2) have been
resummed completely. A systematic improvement is obviously obtained by
calculating all the next-to-leading terms of the form a, a7 log™(m2 /m2,).
Before discussing the various steps leading to a next-to-leading result, we
briefly review the theoretical framework in which the process b — sy(+g) is
evaluated. Usually one starts form the effective Hamiltonian which is obtained
by integrating out the t-quark and the W-boson. Neglecting power (m;/my,)
suppressed operators of dimension > 6, the effective Hamiltonian reads
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where the quantities C;(p) are the Wilson coeflicients evaluated at the renor-
malization scale g and the O; are following operators:

01 = (eLpy*bra) (BLavucLp)

Oz = (Era?"bre) (5rgvuces)

0: = (e/1672)5, 0o (mp(p)R + ms(p)L) bo Fuv,

Os = (g:/167%) 50 0 (my(u)R + my(u)L) (Nos/2) bs G,

As the Wilson coefficients of the penguin induced four-Fermion operators
Os,...,0¢ are very small, we do not explicitly list them here.

From the p-independence of the effective Hamiltonian, one can derive a
renormalization group equation (RGE) for the Wilson coefficients Ci(p):

ugf;cxu) =7 Gs() @

where the (8 x 8) matrix v is the anomalous dimension matrix of the operators
O;. Working to leading-logarithmic precision only, it turns out that it is suf-
ficient to do the matching (at pu = m,, ) neglecting QCD corrections; to solve
the renormalization group equation using the order o, anomalous dimension
matrix v(9); and to calculate (perturbatively) the matrix elements of the op-
erators O; at the scale u ~ m;, again neglecting QCD corrections. Athough
it is clear that the renormalization scale u should be of the order of m;, its
precise value is not fixed, of course. Following common practice, we vary u
in the range m;/2 < p < 2m;. This variation leads to a large (25%) scale
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dependence of the leading logarithmic result. Analytically, the source of the
large scale dependence is due to a term of the form ~ alog(p?/m?).

2 Steps to a next-to-leading result

In order to get the next-to-leading logarithmic result for the branching ratio,
one has to improve the Wilson coeffients at the scale p = m; and in addition
one has to work out the O{a,) corrections to the matrix elements for b — sv.
The improved Wilson coefficients are obtained in two steps: First, the match-
ing at the scale ¢ = mw has to be calculated including order o, corrections®.
Second, the RGE step down to the scale u & m; has to be done using the or-
der o2 anomalous dimension matrix 7(*). This second step is the hardest one,
because some entries of the anomalous dimension matrix (like v,7) have to be
extracted from 3-loop diagrams”! The calculation of the order o, corrections
to the matrix element b — sy involves the bremsstrahlung process b — svg
and virtual corrections to & — sy. While the bremsstrahlung corrections (to-
gether with those virtual corrections which cancel the infrared and collinear
singularities) have been worked out earlier 1> Greub, Hurth, and Wyler have
worked out the virtual corrections completely ®. Technically, the most difficult
part was the calculation of the order o, corrections to the contribution from
the operator Os; the corresponding 2-loop diagrams are shown in ref. °. Using
the Mellin-Barnes representation of certain progagator type denominators, we
could write the result M; of the 2-loop diagrams in the form

- mg i m mg
M2—-CO+§ Cam <m§> log (mzz7> s (3)
with n = 1,2,3,4,... and m = 0,1, 2,3. The coeflicients ¢¢ and ¢;,,,, are pure
numbers, i.e., independent of any parameters like my, my, ... . Note, in partic-
ular, that there is no naked log(m?/m?) term present in eq. (3). So the limit
m. — 0 of Mo exists.

3 Preliminary results for the branching ratio BR(B — X,7)

Summingup, in order to get the next-to-leading logarithmic result for BR(B —
X,7), one has to know both, the O(a,) matrix elements and the next-to-leading
order Wilson coefficients ¢ at u & my. Only the combination of these two in-
gredients is independent of the renormalization scheme. It turns out that in
the naive dimensional scheme (NDR) with MS subtraction, the correction to

%In fact, it is sufficient to know only Cr{x) to next-to-leading precision.
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Figure 1: Branching ratio for B — X« as a function of m;. The upper (lower) solid curve
is for u = my/2 (u = 2m). The dotted curves show the CLEC 1 — ¢ bounds®. The other
input parameters are taken at their central values.

Cr(my) is small”. Therefore, a good approximation for BR(B — X,7) is ob-
tained by using the leading value for C7{m;) in the numerical evaluation of the
matrix elements, as presented in°. While the u dependence was about +25%
in the leading logarithmic calculation (varying p between my/2 and 2m,), it
gets drastically reduced to +6% when taking systematically into account the
virtual corrections to the matrix elements. The term ~ aglog(m?/p?), which
caused the large scale dependence of the leading logarithmic result, is cancelled
by the O{a,) virtual corrections to the matrix element. In Fig. 1 we show the
remaining p-dependence as a function of the top quark mass m;; all the other
input parameters are taken at their central values. Combining the uncertain-
ties in m; and p (m: = (170 % 15) GeV; mp/2 < u < 2my) leads to an error
of about 9% in the branching ratio. Besides that, there are other errors to be
taken into account, stemming from the uncertainties in o (mz), the semilep-
tonic branching ratio, and the ratio m./m;. Taking a,(mz) = (0.117£0.006),
BRg = (104 £ 0.4)%, and m./my = (0.29 = 0.02), one obtains an extra
error of about £12% 2. To conclude, we end up with a preliminary predic-
tion for the branching ratio BR(B — X,v) = (3.25 & 0.30 £ 0.40) x 107%,
where the first error is due to the (g, m;) variation and the second error

due to the other input parameters. Adding the errors in quadrature, we get
BR(B — X,v) = (3.25+ 0.50) x 10~*.
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