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ABSTRACT 

An analytical study was carried out to determine the effects of the 

degree of eccentricity of the two circles of an annulus on both local and 

average heat transfer coefficients for turbulent flow of liquid metals. 

The study was based on the conditions of (a) heat transfer to or from the 

inner wall  only, (b) uniform heat flux, and (c) fully developed temperature 

and velocity profiles. The scope of the investigation is indicated by the 

following ranges of parameters studied: 

4 6 
Reynolds number, 5 X 10 to 10 

Peclet nui~bcr ,  360 to 0000 

Ratio of outer to inner radius, 1.0 to 4.0 

Eccentricity, up to 7w0 of maximum displacement 

The results showed that eccentricity can have very great effects 

on both the local and average heat transfer coefficients and consequently 

on the circumferential temperature variations around the annulus walls. 

At a radius ratio of 1.5 and a Peclet number of 1700, for example, the 

average coefficient was found to decrease 63 and 93%, when the eccen- 

tricity was increased from 0.0 to 0.30 and from 0.0 to 0.70, respectively. 

Under these conditions, the ratios of total circumferential temperature 

difference to the difference between the average inner wall  temperature 



. . 

and the stream bulk temperature were found to be 3.20 and 3.55 respec- 

tively. 

r he results of t'he study make it possible to predict, with some 

certainty, local and average heat transfer coefficients for liquid metals 

flowing turbulently through eccentric annuli under the above boundary 

conditions. 



1. Introduction 

The purpose of the present paper is to present the results of an 

' 

analytical study on heat transfer rates to liquid metals flowing in eccen- 

tric annuli. The paper is the eighth thus far in a published ser ies  [1,2, 

3,4,5,6,7], originating at the ~ r o o k h a v e i  National Laboratory, on the 

general subject of heat transfer to  liquid metals flowing through annuli. 

The scope of the study is indicated by the following conditions and 

ranges of variables which were covered: 

a. Prandtl number, 0.00735 

b. Peclel I I U I I J ~ ~ . ,  308 lo 8000 

4 
c. Reynolds number, 5 X 10 to 10 

6 

d. Ratio of outer to inner .radius, R, 1.0 to 4.0 

e. Eccentricity, e; 0 to 0.70 

f.  ' Heat transfer from inner wall only 

g. Uniform heat flux 

h. Fully developed velocity and temperature profiles 

The following assumptions were made: 

a. Physical properties of liquid metal were independent of 

transverse temperature variation. 

b. Axial conduction of heat .was negligible. 



c. Effects from secondary flow patterns were negligible. 

These three assumptions a r e  standard in analytical heat transfer 

studies for turbulent flow of liquid metals, particularly for the heat 

transfer conditions- listed above. The results of the present study -are 

summarized in the form of local normalized coefficients, h/ c, expressed 

as a function of 0 ,  e, qPe, and R; and average Nusselt numbers expressed 

as afunction of e, q ~ e ,  and R. 

The calculations were all carried out for a single Prandtl number, 

which is that for sodium at 400°F; but since Prandtl number is not an im- 

portant variable for liquid metals, it can be safely assumed that the re-  

sults a re  applicable for any Prandtl number in the range 0.005 to 0.03, 

when they a r e  presented in the form of Nusselt numbers as functions of 

Peclet number. 

It is well known that, for heat transfer to liquid metals in turbulent, 

channel flow, the Nusselt number can be adequately expressed as  a func- 

tion of the product FPe. Therefore, in the present study, was always 

taken as unity, but the results a re  expressed in terms of q ~ e ,  which was 

therefore always numerically equal to the Peclet number. 

Geometrical asymmetry has been known to have a deleterious ef- 

fect on average heat transfer rates to o r  from liquid metals flowing in 



- 
certain types of channels. The reason this effect is more pronounced 

for liquid metals than for ordinary fluids, is that, in the former, the 

temperature drop from wall- to channel center (in the case of heating) 

is not restricted to the region very close to the wall, as in the latter. 

In the present case, local coefficients in the region of lesser  clearance 

a re  depressed more than those in the region of greater clearance a r e  

increased, the result being that the average heat transfer coefficient 

always. falls below that for the concentric case. 

The first investigators to observe the effect of asymmetry on 

liquid-metal heat transfer in annuli were Hall and Jenkins [8,9]. In 

their experimental study of countercursent sodium flow in double annuli, 

they found that there were appreciable variations in temperature around 

the circumference of the separating pipe, and they attributed this to slight 

eccentricity of the annuli. 

Later, Jenkins and McKee [lo], in measuring heat transfer rates 

between NaK streams flowing through adjacent annuli formed by three 

pipes, the first inside the second and the second inside the third, found 

that for an eccentricity of 0.16, the average coefficient for heat transfer 

from the outer wall of inner annulus was about 25% below that for the 

concentric case. 



In 1960, Subbotin et al. [II], in reporting on a study of heat trans- 

fer from the outer wall of an annulus to. turbulently flowing mercury, 

' 

stated that a slight departure from concentricity markedly lowered the 

average heat transfer coefficient. 

Prior to the present study, there were two studies carried out at 

 roo-khaven which shed light on the effects of geometrical asymmetry on 

liquid-metal heat transfer. In 1961, Friedland et al. [12] reported that, 

in an experimental study of heat transfer to turbulent flow of mercury 

through an unbaffled rod bundle, bowing of the rods were thought to  be 

responsible for reductions as high a s  50% in the average heat transfer 

coefficient. And in 1963' Snyder [4] analyzed slug-flow liquid-metal heat 

transfer in an eccentric annulus under the following conditions: heat trans- 

fer from the inner wall only, no circumferential variation of inner wall 

temperature, no axial variation in heat flux, and fully-established tern- 

' perature profiles. For an R ratio of 1.94, he found the average Nusselt 

number to decrease by about 11 and 24% as the eccentricity increased 

from 0 to 0.20, and from 0 to 0.40, respectively. 

2. Calculation Methods and Procedures - 

In order to calculate-either-.-local or  average heat transfer coeffi- 

cients in noncircular channels, one must f i r s t  obtain velocity and 



temperature grids, The first step in calculating the former is to deter- 

mine'the friction factor, and then the fully-developed pressure gradient 

,along the channel axis, 

Friction Factor and Pressure Drop 

For concentric annuli, the friction factor, 5, was computed from f 
2 

values given by Rothfus, Walker, and Whan [13]. These authors  have^ 

presented the results of a very thorough and comprehensive experimental 

and analytical study on pressure drop and velocity profiles for turbulent 

flow in concentric annuli. 

For eccentric annuli, the friction factor, f, is not only a function of 

the Reynolds number, but also of the degree of eccentricity, and possibly 

of the radius ratio, R. Regarding the last factor, there a r e  insufficient 

data available to determine i ts  influence, but it is believed to be very 

slight. The present authors assumed, therefore, as Diskind [14] did 

earlier, that the ratio f/f  is independent of both Reynolds nuiber and 
0 

radius ratio. Figure 1 shows a plot of f/f vs. e, based upon the theoreti- 
0 

cal correlation of Diskind and the .single experimental result of Diskind 
/ 

and Stein [15] for an R value of 1.5. The curve in this figure was used 

to determine all values of f in the present study, 

The pressure drop in an eccentric annuluseis given by the well known 

Poiseulle equation 

-5 - 



Velocity Distribution 

The velocity distribution in an eccentric annulus was determined 

by an iterative semigraphical method similar to that used by Deissler 

and Taylor [16]. However, the present method differed in two important 

respects: (a) the local velocities were determined along the actual (curved) 

velocity gradient lines, and (b) the method of determining the local veloci- 

ties was based upon a velocity-profile correlation [13] for annuli. 

The velocity-profile correlations of Rothfus, Walker, and Wh& [I31 

+ + 
were used, but they were first converted to  u vs. y curves. These 

curves depend upon Reynolds number, radius ratio, and whether the local 

velocity is being determined on the inside o r  outside of the radius of maxi- 

+ + 
.mum velocity. A large number of u vs. y curves were therefore neces- 

sary, typical sets of which a re  shown in Figures 2 and 3. 

The following procedure was used to determine the velocity distri- 

bution in the flow channel of an eccentric annulus. Conditions of symme- 

t ry  made it ncccssary to conoidcr only onc half thc total flow area, 

1. The semicircumference of the inner wall is divided into eight 

equal lengths. These a r e  numbered from 1 to 8, starting from the point 



of maximum separation of the two walls (see Figure 4). Radial lines a r e  

then drawn from the center of the inner circle to the circumference of the 

- outer circle, dividing the flow channel into 8 sections. 

2. The location of the intersection of the maximum-velocity line 

and the middle radial dividing line of each section is then determined 

from the equation 

where 

r' = radial distance from center of inner circle to maximum - 
m 

velocity line, . 

r = radius of inner circle, and 
1 

r" = radial distance from center  of inner circle to circumfer - 
2 

ence of outer circle. 

This equation is analogous to the equation for laminar flow in a 

concentric annulus and is also a close approximation for turbulent flow. 

From the eight points so  determined, the location of the maximum 

velocity line is tentatively located. 

3. The next step is to draw tentative velocity gradient lines bound- 

ing the eight flow sections. They a r e  meant to be perpendicular to lines 



of constant velocity and therefore a re  perpendicular to  the annulus walls 

and tangent to the maximum velocity line. These lines intersect the inner 

and outer circles at the points where the seven radial dividing lines cross  

the walls (see Figure 4), 

4, We are  now ready to calculate constant-velocity lines, the first 

step of which is to compute the shear s t ress  at  each wall for each of the 

eight sections, There are, of course, no shear s t resses  along the velocity 

gradient lines. Section 2 will be used for illustrative purposes and is 

represented in Figure 5. In this section, the shear stess along the inner 

wall is 

and along the outer wall 

In t'he figure, s and s a r e  the circumferential boundary lines for 
291 292 

Section 2 at the inner and outer walls, respectively; A is the cross- 
29.1 

sectional flow a rea  in Section 2 inside the maximum-velocity line; A 
292 

is the cross-sectional flow area outside the maximum-velocity line. 

In Section 2, dashed constant-velocity gradient lines a r e  drawn from 

the midpoints of s and s dividing the two subsections in half. These 
2,l . 2,2 



dashed lines meet at a common point on the maximum -velocity line. 

+ + 
Then, using u vs. y plots such as those shown in Figure 2, the distance 

y2, 1 
along the dotted line from the inner wall, for an arbitrarily chosen 

linear velocity, is determined. Other y values for other velocities 
291 

a re  then determined. A similar procedure is followed in getting y 
2, 2 

values for'arbitrarily chosen velocities in the outer portion of Section 2. 

+ 
In using the modified Rothfus u vs. y+ plots, it was decided to use 

three different R values for each of the eight sections, R for the region 
1 

near the inner wall, R for the region near the outer wall, and R for 
2 a 

the middle region. These a re  given by the equations 

where r' and r' a re  defined from the equations 
1 2 



In the last two equations, Ay and Ay a re  the actual lengths of the curved 
1 2 

velocity-gradient lines drawn through the middle of the sections, and 

mentioned above. 

By connecting up the points, for a given local velocity, in all eight 

sections, a set  of constant velocity lines is obtained. With.these, a second 

set of velocity-gradient lines is drawn, perpendicular, to these constant 

velocity lines. The process is then repeated and a new set  of constant- 

velocity lines is determined. This time, the maximum-velocity line is 

relocated, i f  necessary, to be consistent with constant velocity lines. A 

third set  of velocity-gradient lines is then drawn, and i f  they a r e  suff i -  

ciently different from the second set, the whole process is repeated again, 

but this  was often found unnecessary. In general, i t  was found that the 

greater the eccentricity and the radius ratio, the greater the number of 

iterations needed. 

.A typical veloc.ity grid j.s shnwn in Figure 6. The average linear 

velocity calculated from the local velocity lines was found to agree with 

the original average velocity to within * 2%. 
Eddy Conductivities 

In order to calculate the temperature distribution in a flow channel, 

it is necessary to know how the total effective conductivity, k the sum eff' 



oE the molecular and eddy conductivities, varies throughout the cross - 

sectional area. The latter is calculated from the equation 

which is based upon the condition that the eddy diffusivities of heat and 

momentum transfer a re  equal. 

The eddy viscosity, p , in the present study was calculated f som e 

the standard equation 

where v is the local velocity a t  distance y from the wall, along the middle, 

curved, velocity-gradient line in each of the eight sections. The shear 

stress,  7, at the same point is calculated from the equation 

where s is the width of the section, taken perpendicular to the middle 
7 

velocity-gradient line, at the point where T is evaluated. The slopes, 

dv/dy, in Eq. (11) were determined graphically to within a demonstrated 

precision of * 3%. 

Values of k were determined in both the inner and outer portions eff 

of each section for arbitrarily chosen values of y along the middle velocity- 



gradient lines. From these values, lines of constant k were then 
eff 

drawn. A typical k grid is shown in Figure 7 where it is seen that 
eff 

there are  two maximum-k lines, one in the inner and one in the 
eff 

outer portion of the annulus. 

Temperature Distribution 

In the .present study, temperature distributions, including peripheral 

wall temperature variation, were calculated by two different methods. 

In the first, the ene rgy-balance equation 

was numerically integrated and solved by a relaxation method with the 

aid of an IBM 7094 digital computer. The boundary conditions are: (a) the 

normal temperature derivatives a re  constant along the inner wall and 

equal to q/k, and (b) the normal temperature derivatives a re  zero along 

the outer wall. The difference equations were set up in polar coordinates 

' and the relaxation was performed for one radius at a time. 

A computer program was worked out to solve Eq. (13); however, 

it required about 10 hours of computer time for each case, and the cost 

was therefore prohibitive. Consequently, only one case was solved by 

this method. All the others were solved by a method which was partly 



graphical, and which required only a very small fraction of the computer 

time required by the numerical method. 

In the second method, the procedure was as follows: 

1. The circumference of the inner semicircle was' divided into eight 

equal segments as before; and then, from these, by an iteration process, 

the total flow area was divided into eight sections such that, for each, the 

following equation was obeyed: 

The lines separating the various sections a re  heat-flow lines and, as such, 

must be perpendicular to  the inner wall and tangent to the outer wall (see 

Figure 8). Since the shape of the velocity profiles a re  practically inde- 

pendent of Reynolds number, the heat flow lines in this figure a re  inde- 

pendent of flow rate, and therefore Peclet number. Starting at the mid- 

points of the inner wall segments, eight additional heat flow lines were 

drawn through the middle of each section. These are  shown as dashed 

lines in the figure. In Eq. (14), v is the local velocity and s is the width 

of the section (drawn pependicular toythe middle heat flow line), both at 

the distance y from the inner wall, measured along the middle, curved 

heat flow line. 



'Eq, (14) is a consequenCe of the condition of uniform heat flux, 

i.e., since the heat transferred from each of the eight inner-wall sub- 

areas is the same, then the heat transported away by the liquid metal 

in each of the eight associated cross-sectional sub-areas must also be 

the same. 

2. The next step is to determine the temperature variation along 

each of the eight middle heat-flow lines. For this, a heat flux of 100,000 

2 Btu/(hr)(ft) was arbitrarily chosen, and the temperature at point a - in 

Figure 8 was arbitrarily taken as 400°F. 

Conside~ing Section 1, the temperature drop between point a - and 

some other point a t  a distance y from a - along the middle heat -flow line 

is given by the identity 

where the temperature gradient at y, 8t/8y, is obtained from the heat 

balance 

a t  ' 

1 
-k eff s-=C$$- a y  vsdy 

The left side of this equation represents the heat transferred across 



the line s at y, and the right side represents the heat transported away 

by the fluid flowing in the cross-sectional area beyond the line s. Sub- 

stituting Eq. (16) in (15), finally gives / 

Using this equation, values of At a re  then calculated for various values 

of y. The results a re  smoothed by drawing At vs. y curves. The process 

is then repeated for the other seven sections. 

3. The 400°F isotherm is then drawn &om point a, - perpendicular 

to the heat flow lines, as shown in Figure 8. With this as a "bench mark," 

and using the A t  VS. y plots mentioned above, a family of isotherm lines 

is then drawn throughout the whole half -annulus cross section. These 

isotherms a re  tangent to the inner wall and perpendicular to the outer 

wall. From them, the bulk temperature in Section 1 is obtained by the 

equation 



and similarly for the other seven sections. The over-all bulk tempera- 

ture for the annulus is then given by 

Finally, the local heat transfer coefficient, h, for Section 1 is given by 

and similarly for the other seven sections. And the average heat transfer 

coefficient, K, for  the whole annulus is given by 

3. Results 

Surface Temperature Variation 

It was found that eccentricity produced a surprisingly large amount 

of temperature variation around the circumferences of both walls. The 

variation around the inner wall is of greater practical interest, and the 

results for this a re  shown in Figure 9, where the variations a re  expressed 

( w]1800 - tWloo)/ (& - t b )  This ratio is independent of the a s  the ratio t 

heat flux, as long as it is uniform. The lower the radius ratio, and the 



greater the eccentricity, the greater will be the relative temperature 

variation around the wall surface. This relative variation, as expressed 

by the above ratio, is essentially independent of Peclet number. It is 

seen that under certain'circumstances the circumferential temperature 

variation can far exceed the difference between the average surface tem- 

perature and bulk temperature. The reason for the relatively large tem- 

perature variation is quickly apparent from inspection of Figure 8, where , 

it is seen that the heat from that portion of the inner wall nearest the 

outer wall is transferred over a much longer cross-sectional a rea  (Sec- 
I 

tion 8), than of heat transferred from that portion of the inner wall farther 

from the outer wall (Section 1). The effect of eccentricity on temperature 

variation around the inner wall, for the worst case studied, is shown 

graphically in Figure 10. 

Local Coefficients 

Since eccentricity causes considerable circumferential variation in 

the temperature of the inner wall, it follows that there will also be a con- 

' 

comitant variation in the local heat transfer coefficient. At low values of 

R, the. variation can be so great as to give negative coefficients in the 

region of widest separation between the two walls. This is simply be- 

cause the surface temperatures in that region a re  below the over-all 



bulk temperature of the metal flowing through the annulus. Figure 11 

shows some.typica1 profiles for this case. The local coefficients a re  

normalized by dividing them by the average coefficient. The reader is 
m 

reminded that, since h 2 I/ "hd6 but. is given by EP. (21), the algebraic 
. a 0 

sum of the areas  between h/K = 1 and the curves does not approach zero. 

The .curves shown in Figure 11 should be, for all practical. purposes, 

independent of the Peclet number. The spread in the data points, which 

of course worsens as the angle of infinite coefficient is approached, is 

simply due to  limitations in calculational precision. The angle of infinite 

coefficient is obviously the point on the inner wall where the temperature 

is equal to the bulk temperature of the metal flowing through the annulus 

at that same axial location. 

Figure 1 2  shows a set  of coefficient profiles .for two different values 

of R and two different eccentricities, where the local coefficients a re  al- 

ways positive. Here, as in the pr'evious figure, the areas between. the 

curves'and the ordinate line of unity should not add to zero. 

Tables I and I1 summarize, in normalized form, all the local heat 

transfer coefficient results obtained uridejr the study. Theuretlcally, 

Peclet number should have a negligibly small effect on the normalized 

coefficients. The differences shown in the tables simply reflect the 



degree of precision for the long and involved method of calculation. 

Average Coefficients and Nusselt Numbers 

The average heat transfer coefficients and Nusselt numbers ob- 

tained under the study a r e  shown in Table ITI. The values for zero ec- 

centricity given there were calculated . . from the recent correlation of 

Dwyer [I73 

whe re 

This correlation is also based upon the velocity-profile correlation of 

Rothfus et  al. and upon E profile shape a shown in Figure 17. It should, M - 

therefore, give Nusselt values consistent with those calculated in the 

present study for eccentric annuli. 

Many of the average Nusselt results a re  also shown graphically in 

Figures 13-16. From the curves in each of these figures, we see that, 

other things being equal, increase in eccentricity .always decreases the . 

Nusselt number. In Figure 14 we see that, at low eccentricities, the 



greater the radius ratio, the less the effect of eccentricity; while at high 

eccentricities, the greater the radius ratio, the greater the effect of ec- 

'centricity.. In Figures 15 and 16 we see that the effect of eccentricity is 

independent of Peclet number. Finally, .in all four figures we see that 

the effect of eccentricity on the-Nusselt number i f  great  indeed, at prac- 

tically all values of R and Peclet number. 

4. Discussion of Results 

The first question to be asked is: how precise a r e  the calculated 

results? 'An estimate of this can be obtained from the fact that for the 

case of R = 1.5, e = 0.70, and Fpe = 368, the average heat transfer coeffi- 

cient was obtained by the two methods described in Section 2.   he all- 

2 machine solution of Eq. (13) gave a value of 677 ~tu / (hr ) ( f t )  (OF), while 

the combination graphical-machine method gave 656, a.difference of 

about a. Another estimate of the precision is given by the scatter of 

the calculated points on the various graphs; which indicates a precision . 

of within * 5%. 

The next question to be asked is: how accurate a re  the calculated . 

results? This is more difficult to answer. For one thing, there a re  no 

experimental results available for comparison. It is well to remember 

that the,boundary conditions for this study, i.e., uniform heat flux from 



the inner wall of an eccentric annulus, cannot be fully obtained in prac- 

tice, The conditions can only be met when either the thickness of the 

wall approaches zero, o r  the thermal conductivity of the wall approaches 

zero, or.both. In any real cake, the circumferential temperature varia- 

tion caused by the eccentricity produces circumferential heat flow in the 

wall, causing departure from the condition of uniform, flux and thereby 

mitigating the effect of eccentricity on the variation of wall temperature, 

the variation of the local heat transfer coefiicient, and the value of the 

average heat transfer coefficient. 

The boundary conditions chosen in the present study therefore 

represent upper limits to the effects of eccentricity on wall temperature, 

the local coefficient, and the average coefficient, which under certain 

conditions may be approached but never attained. The next step is to con- 
4 

sider the effects of the thickness and conductivity of the wall on the ther- 

mal  behavior of eccentric annuli. However, all of the general conclusions 

reached in the present study a re  equally applicable to the case where there 

is circumferential heat flow in the inner wall. 
/ 

In their analytical study for air, Deissler and Taylor [16] predicted 

a 7w0 decrease in the average Nusselt number as the eccentricity was 



increased from 0 to 8% in an annulus having an R value of 3,5 and heat 

transfer from the inner.wa11 only, By inspection of Figure 14, the pre- 

' 

dicted decrease in the Nusselt number for liquid metals under the same 

conditions is about 78%. The present authors would agree that the de- 

crease should be greater for'liquid metals, but feel that these two pre- 

dictions, i f  anything, a re  a bit too close. 

In calculating E from E one is never completely certain of the 
H M ' 

shape of the E profile in the region of maximum velocity. In the pres- 
M 

ent study, the E profile curves had the shape a in Figure 17. There is M - 

good reason to. believe that they should have the general shape by with - 

the curve crossing the radius of maximum velocity at an E value about 
M 

75% of its maximum [6,7]. For heat transfer in pipes, the shape of the E 
M 

curve has an insignificant effect on the coefficient; but for  annuli, the ef - 
2 3 fect has been estimated to be about 1% at Tpe = 10 , 5% at F P ~  = 10 , 

4 and 10% a t  $ ~ e  = 10 [18]. The reason the effect is much greater for 

annuli (with heat transfer from the inner wall  only) is that there is an 

appreciable radiah temperature gradient in the transverse region of maxi- 

mum velocity. It is logical to assume that the shape of the E profile 
M 

curves would have a comparable effect in the case of eccentric annuli. 

Therefore, it is recommended that the Nusselt numbers given in this 



paper be increased, in accordance with the above percentages, i f  they 

are to be used in design calculations. 

In using the results given in this paper to estimate heat transfer 

coefficients,one needs t'o evaluate the $ ~ e  product, and therefore q. There 

a re  a number of correlations.available for estimating q, but the present 

authors recommend that recently proposed by Dwyer [19], for simplicity 

and adequate accuracy. 

; . ; . .  
. .  . . . .  ..I.'. The authors,gratefully acknowledge the invaluable assistance of the 

following Brookhaven people: John R. Cannon, David A. Beaucage, and 

Nec hemiah Reiss of the Applied Mathematics Department for developing 
C 

the computer program for the all-machine calculational method; Irene 

Nicodemus of the same department for her assistance with the computer 

programming for the semigraphical method; and Peter Hlavac, Donald 
. . 
>'..1 

Siefkes, Stephen Gordon, and P. S. Tu of the Nuclear Engineering De- 

partment for their assistance with the calculations at various times. 
. . 



6. Nomencliiture 

A. = Cross-sectional flow area in Section 2 inside the maximum- 
291 

velocity line, ft 
2 

A = Cross-sectional flow area in Section 2 outside the maximum- 
292 

2 
velocity line, ft 

C = Specific heat, ~tu/(lb-mass)(OF) 
P 

D = Equivalent diameter of the annulus 
e 

4(cross-sectional flow area) - - ft 
wetted perimeter , 

= Distance between the centers of the two'circles forming the 

annulus, f t  

= Eccentricity = d/(r2-rl), dimensionless 

= Fanning friction factor for an eccentric annulus, dimensionless 

= Fanning friction factor for the outer portion of a concentric 

annulus (between the m&rnum velocity line and the outer 

wall), dimensionless 

f = Fanning friction factor for a concentric annulus, dimensionless 
0 

= Conversion factor, (lb-mass)(ft)/(lb-force)(hr) 2 
go 

h 
2 

= Local heat transfer coefficient, Btu/(hr)(ft) (OF) 

hl = Local heat transfer coefficient for Section 1, ~tu / (hr ) ( f t )~( 'F)  

- 
h = Average heat transfer coefficient for the whole annulus, 



k = Molecular thermal conductivity, ~tu/(hr)(ft)(OF) 

k .  = Eddy thermal conductivity, ~tu/(hr)(ft)("F) 
.e 

kett .. 
= k + k = Effective thermal conductivity, Btu/(hr)(ft)('F) e 

L = Length of a n u l a r  channel, f 

Nu = (h.De)/k = Nusselt number, dimensionless 

Nu = Nusselt number for a concentric annulus, dimensionless 
0 

= .1,2,. . .,8 = Section number, dimensionless 

= Pressure drop over distance 'L, lb-force/ft 
2 

= D v pC /k = Peclet number, dimensionless 
. e a  P 

= C p/k = Prandtl number, dimensionless 
P 

= Heat flux, Btu/(hr)(ft) 
2 

= r /r = Radius ratio, dimensionless 
2 1 

= r'Z/ri = Radius ratio, dimensionless 

= rZ/r; = Radius ratio, dimensionless 

= %R + R ) = Average radius ratio, dimensionless 
1 2  

Re ' ' = D v P/p = Reynolds number, dimensionless 
e a 

r 
1 

= Inner radius of ari annulus, ft 

r a = Outer radius of an annulus, ft 

r ' 
1 

= Fictive inner radius of an annulus, defined by Eq. (8), ft 

r ' 
2 = Fictive outer radius of an annulus, defined by Eq. (9), ft 



= Radial distance from center of inner circle to circumference 

. of outer circle, ft 

= Radius of maximum fluid velocity in a concentric annulus, ft 

= Radial d i s t b c e  from center of inner circle to maximum- 

I 
i 

= Radius of maximum fluid velocity, defined by Eq. (9), ft 

= Radius of maximum fluid velocity, defined by Eq. (8), ft 

= Circumferential boundary line for Section 2 at the outer 

wall, ft 

= Circumferential boundary line for Section 2 at the inner 

s = Width of the section, taken perpendicular to the middle 

. . velocity-gradient line and/or the'middle heat flow line, 

at the curved distance y from the wall, f t  

s = s a t  the point where T is evaluated, ft 
7 

t = Temperature of the fluid at  y, or  at (x,y,z), O F  

= Bulk temperature of the fluid, OF 

tbl,tb tb8 = Fluid bulk temperature ofsection 1, 2, ..., and 8, O F  . 

, t ~ l  = h e r  wall surface tempesa.t.11re of Section 1, OF 

- 
t = Average inner wall surface temperature of an annulus, OF 
W .. 



tw] = Inner wall surface temperature.at an angle e of an annulus, OF 

At = Temperature drop from the inner wall to y of the fluid in an 

annulus, OF 

+ 
u = Velocity parameter, dimensionless 

= Velocity parameter for the inner portion of an annulus, 

dim ensionless 

+ 
u 

2 
= Velocity parameter for the outer portion of an annulus, 

dimensionless 

v = Linear velocity of fluid at y o r  at (x,y, z), ft/sec 

v = Average linear velocity of the fluid, ft/sec 
a 

X 9 Y 4  = Cartesian coordinates, defined only for Eq. (13) 

Y = Normal curved distance from the wall, o r  vertical Cartesian 

coordinate, ft 

Y+ = Normal distance parameter, dimensionless 

Ym 
= Value of y a t  the maximum velocity, ft 

Yn .. = Value of y from the inner wall to the outer wall of Section n, f t  

= Value of y for n = 1, ft 
Y1 n 

= Normal curved distance along the middle velocity gradient Y2,l 

line from the inner wall of Sec t i~n  2, f t  

y2, 2 
= Normal curved distance along the middle velocity gradient 

line from the outer wall of Section 2, ft 



4 = Wall distance parameter for the inner portion of an annulus, 

dim ensionless 

y+2 
= Wall distance parameter for the outer portion of an annulus, 

dimensionless 

*y1 
= Length of the middle, curved velocity-gradient line from the 

inner wall to the maximum velocity line, ft 

*y2 
= Length of the middle, curved velocity-gradient line from the 

outer wall to the maximum velocity line, ft 

z = Axial distance along the annulus, or Cartesian coordinate, ft 

Greek Letters 

%P,Y = Constants defined by Eq. (22), dimensionless 

E 
2 

H = ke/pCp = Eddy diffusivity of heat transfer, ft /hr 

E 
2 

M = pe/p = ~ d d ~ : d i f f u s i v i t ~  of momentum transfer, ft /h r  

8 = Clockwise angle made with the. center of inner circle, radian 

IJ . = Fluid dynamic viscosity, (lb-mass)/(ft)(hr) 

'e = Fluid eddy viscosity, (lb-mass)/(ft) (hr) 

' = Fluid density, (lb-mass)/ft 3 
P 

T = Shear s t ress  in the fluid at  a distance y from the wall, 

(lb -force)/f't 2 

T = Shear s t ress  pertaining to the inner wall of Section 2, 
291 

(lb -force)/ft 
2 



T = Shear stress pertaining tothe outer wall of Section 2, 
292 

2 (lb -force)/ft 
- 

= Average effective value of $ (= E / r  ), dimensionless 
' 

H M 
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Table I 

Circumferential Variation of Normalized Heat Transfer Coefficient Around Inner Wall for R = 1.5 

- - - 
$Pe = 368 - JlPe = 1700 JlPe = 8000 



Table II 

Circum'ferential Variation of Normalized - Heat Transfer 
Coefficient Around Inner Wall for q ~ e  = 1700 



Table III 

Calculated Average'Heat Transfer Coefficients and Average 
Nusselt Numbers for Heat Transfer to Liquid Metals 

Flowing Through Eccentric Annuli 



Figure Captions - 

Figure 1 Effect of degree of eccentricity on friction factor for flow 

in eccentric annuli. Curve is based on the analytical pre- 

diction of Diskind [I41 and on the single experimental mea- 

surement of Diskind &d Stein [15] for an annulus having an 

R value of 1.5. ' 

Figure 2 Modified Rothfus velocity distributions for the inner portion 

of an annulus, R = 1.5, symbols represented calculated values. 

Figure 3 Modified Rothfus velocity distributions for the outer portion 

of an annulus, R = 1.5, symbols represented calculated values. 

Figure 4 Cross section of eccentric annulus, showing division into 

sections, and location of tentative maximum-velocity line 

and tentative velocity -gradient lines. Numbers refer to 

sections. 

Figure 5 Schematic drawing of a typical section of an eccentric an- 

nulus showing meaning of symbols. Section 2 is taken as 

\ ati example, 

Figure 6 Velocity distribution for an eccentric annulus. e = 0.30; 

5 
Re = 2.3 X 10 ; R =  2.5; v = 16.38..ft/sec. Numbers on a 

graph represent constant velocity lines, expressed in ft/sec. 



Figure 7 

Figure 8 

Figure 9 

Figure 10 

Figure 11 

Figure 12 

Figure 13 

Figure 14 

Effective thermal conductivity distribution for sodium flow - 

ing in an eccentric annulus under fully-developed flow and 
, . 

5 
thermal condition. e = 0.30; Re = 2.3 x 10 ; P r  = 0.00735; 

R = 2.5. 'Numbers on graph represent constant k eff lines, 

expressed in ~tu/(hr)(ft)(OF). 

Graph showing heat flow lines and 400°F isotherm for an 

eccentric annulus with uniform heat flu from inner wall, 

e = 0.30 and R = 1.5. 

Relative circumferential temperature variation around 

inner wall, Pr = 0.00735. 
I 

Relative variation of inner wall surface temperature for 

uniform heat flux through inner wall. Fpe = 368 and R = 1.5. 

Circumferential variation of normalized heat transfer co- 

efficient around inner wall. 

Circumferential variation of normalized heat transfer co - 

efficient around inner wall. 

Average Nusselt number vs. eccentricity, wi#-radius ratio 

as the parameter. Inner wall heated only; $ ~ e  = 1700. 

Ratio of average Nusselt number to concentric Nusselt 

number vs. eccentricity, 



Figure 15 Average Nusselt number vs. Peclet number, with eccen- 

tricity as the parameter. h e r  wall heated only; R = 1,5. 

Figure 16 Average Nusselt number vs, concentric Nusselt number 

for R = 1.5 and for different values of e. 

Figure 17 Typical E* and temperature profiles for heat transfer to 

a liquid metal flowing in an annulus. Curves a and b repre- 

sent different types of E~ profile curves. rl, r2, and r m 

represent inner radius, outer radius, and radius of maxi- 

mum velocity, respectively. 
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