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_ ABSTRACT
An analytical study was carried out to detefmine the effects of the
degree of eccentricity of the two circles of an annulus on both local and
average heat transfer coefficients. for turbulent flow of liouid metals.
The study was based on the conditions of (a) heat transfer to or from the
inner wall only, (b) uniform heat flux, and (c) fnlly developed temperature
and velocity profiles. Tne scope of the investigation is indicated by the
following ranges of parameters studied:
Reynolds number, 5 X 104 to 106
Peclet number, 368 to 8000
Ratio of outer to inner radius, 1.0 to 4.0
‘Eccentricity, up to 70% of maximum displacement
The results showed that eccentricity can have very great effects
on both the local and average heat transfer coefficients and consequently
on the circumferential temperature variations around the annulus walls.
At a radius ratio of 1.5 and a Peclet number of 1700, for example, the
average coefficient ivas found to decrease 63 and 93%, when the eccen-
tricity was increased from 0.0 to 0.30 and from 0.0 to 0.70,' respectively.

Under these conditions, the ratios of total circumferential temperature

difference to the difference between the average inner wall temperature



and the stream bulk temperature were found to be 3.20 and 3.55 respec-
tively. |

The results of the study make it possible to predict, with some
certainty, local and average heat transfer coefficients for liquid m:etals |
flowing turbulently through eccentric annuli undef the above boundary |

conditions.



1. Introduction

The purpose of the present paper is to present the results of an
analytical study on heat transfer rates to liquid metéls flowing in eccen-
tric a.nnuli.' The paper is the eighth thus far in a published series [1,2,
3,4,5,6,7], originating at the Brookhaven Natiénal Laboratory, on tﬁe
generai subject of heat transf_er to liquid metals flgwing through annuli.

The scope of the study is indicated by the following conditions and
ranges of variables whiéh were covered:

a. Prandtl number, 0.00735
b. Peclel number, 368 Lo 8000
c. Reynolds number, 5 X 104 to 106
d. Ratio of outer to inner radius, R, 1.0 to 4.0
e. Eccentricity, e, 0 to 0.70
f. Heat transfer from inner wall oﬁly
g Uniform heat flux
h. Fully developed velocity and temperature profiles
The following assumpt’ions were made:
a. Physical properties of liquid metal were independent of

transverse temperature variation.

b. Axial conduction of heat was negligible.
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c. Effects from secondary flow patterns were negligible.

These three assumptions are standard in analytical heat transfer
studies fo_r turbulent flow of liquid metals, particularly for the heat
transfer conditions listed above. The results of the present study are
summarized in the form of local normalized coefficients, h/ }—1.,' expressed
as a function of 6, e, -zZPe, and R; and average Nusselt nsmbers expressed
as a function of e, yPe, and R.

The calculations wersall carried out for a single Prandtl number,
which is that for sodium at 400°F; but since Prandtl number is not an im-
portant variable for liquid metals, it can be sately assumed that the x;e-
sults are applicable for any Prandtl number in the range 0.005 to 0,03,
when they are‘presented in the form of Nusselt numbers as functions of
Peclet number.

It is well known that, for heat transfer to liquid metals in turbulent,
channel flow, the Nusselt number can be adequately expressed as a func-;
tion of the product z,?Pe. Therefore, in the present study, z_p-was always
taken as unity, but the results are expressed in terms of EPe, which was
therefore é,lways numerically equal to the Peclet number.

Geometrical asymmetry has been knowh to have a deleterious ef-

fect on average heat transfer rates to or from liquid metals flowing in
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certain types of channels. The reason this effect is more pronounced
for liquid metals than for ordinary fluids, is that, in the former, the
temperatufe drOp from wall to chaenel center (in the case of heating)
is not restricted to the region very close to the wall, as in the latter, |
In the present case, local coe,ffic}ients in the region of lesser clearance
are depressed more than those in the region of greater clearance are
increased, the result being that the average heat transfer coefficient
always. falls below that for the concentric case.

The first invesfigators to observe the effect of asymmetry on
liquid-metal heat transfer in annuli‘were Hall and Jenkins [8,9]. In
their experimental study of countercurrent sodium flow in double annuli,
they found that there were appreciable variations in temperature around
the circumference of the sepafating pipe, and they attributed this to slight
eccentricity of the annuli.

Latex;, Jenkins and McKee [10], in measuring heat transfer rates
between NaK streams flowing through adjaeenf annuli formed by three
pipes, the first inside the second and the second'inside the third, found
that for an eccentricity of 0.16, the average coefficient for heat transfer
from the outer wall of inner annulus was about 25% below that for the

concentric case,



In 1960, Subbotin et al. [11], in reporting on a study of heat trans-
fer.from the outer wall of an annulus tovturbulen'tly flowing mercury,
stated that a slight departure from concentricity markedly iowered the
averagé heat transfer coefficient.

Prior tovthe present study, there were two studies carried out at
Bfoo,khaven which shed light 6n the effects of geom'etrical asymmetry on
- liquid-metal heat transfer. In 1961, Friedland et al. [12] reported .that, :
in an experimenfal study of heat transfer to turbulent flow of me?cury |
through an uhbaffled 'rod bundle, bowing of the rods were théught to be
responsible for reductions as high as 50% in the average heat transfeAr
coeéficient. And in 1963, Snyder [4] analyzed slug-flow liquid-metal heat
transfer in an eccentric annulus under the following conditions: heat trans-
fer from the inner wall only, no circumferential variation of inner wall
temperature, no axial variation in heat flux, and fully-established tem-
perature profiles. For an R ratio of 1.94, he found the average Nusselt
number to decrease by about 11 and 24% as the eccentricity increased

from O to 0.20, and from 0 to 0.40, respectively.

2. Calculation Methods and Proced_ures

In order to calculate-eitherlocal or average heat transfer coeffi-

cients in noncircular channels, one must first obtain velocity and
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'temperature grids. The first step in calculating the former is to deter-
mine the friction factor, and then the fully-developed pressure gradient .
" along the channel axis.

Friction Factor and Présvsure Drop

"For concentric annuli, the friction fa‘c‘tor, fo’ was computed from fz
values given by Rothfus, Walker, and Whan [13]. These authors have
presented the results of a very thorough and coﬁlprehensive experimental
-and analytical study on pressure drop .a.nd velocity profiles for turbulent
flow in conceﬂtric anhuli. |

For eccentric annuli, the friction factor, f, is not only a functioﬁ of
the Reynolds number, but also of the degree of eccentricity, and poésibly
of the radius ratio, R. Regar&ing the last factor, there are insufficient
data available to determine its influence, but it is believed to be very
slight. The present authors assumed, therefore, as Diskind [14] did
earlier, that the ratio f/ fo is independent of both Reynolds number and
radius ratio. Figure 1 shows a plot of f/f0 vs. e, based upon the theoreti-
‘cal correlation of Diskind and the single experimental result of Diskind .
and Stein {15] for an R.valu'e of 1.5. The curve in this figure was used
to determi.ne all values of f in the present stuc'iy°

The pressuré drop in an eccentric annulus is given by the well known

Poiéeulle equation



2
AP 2'fvap

= (1)
L gD,

Velocity Distribution

| The velocity distribution in an eccehtric annulus was determined
by an iterative serhigraphica.l method similar to that used by Deissler
and Taylor [16]. However,‘ th’e present method differed in two important
-respects: (a) the local velocities were determined along the actual (curved)
velocity gradient lines, and (b) the method of determining the local veloci-
ties was based upon a velocity-prc;file correlation [13] for annuli.

The velo;:ity—profile correlations of Rothfus, Walker, and Whan [13]
were used, but they were first converted to u+ vS. y+ cufves. These
curves depend upon Reynolds number, radius ratio, and whether the local
velocity is being determined on the inside or outside of the radius of maxi-
mum velocity. A large number of u' vs. y+ curves were therefore neces-
sary, typical sets of which are shown in Figures 2 and 3.

- The following procedure was used to determine the velocity distri-
bution in the flow channel of an eccentric annulus. Conditions of symme -
try made it ncccssary to considcr only onc half thc total flow area.

1. The semicircumference of tﬁe inner wali is diyided into eight -

equal lengths. These are numbered from 1 to 8, starting from the point
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of maximum separation of the two walls (see Figure 4). Radial lines are
then drawn from the center of the inner circle to the circumference of the
outer circle, dividing the flow channel into 8 sections.

2. The location of the intersection of the maximum-velocity line
and the middle radial dividing line of each éecfion is then determined
from the equation :

(ry )2 v 2 ,
;22 2 1 .
(rm) = '» (2)
”. .
ln(r2 /r 1)
where
~r’m = radial distance from center of inner circle to maximum-
velocity line,
r, = radius of inner circle, and
rg = radial distance from center-of inner circle to circumfer-
ence of outer circle.
This equation is analogous to the equation for laminar flow in a
concentric annulus and is also a close approximation for turbulent flow.
From the eight points so determined, the location of the maximum
velocity line is tentatively locafed.

3. The next step is to draw tentative velocity gradient lines bound-

ing the eight flow sections. They are meant to be perpendicular to lines
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of constant velocity and therefore are perpendicular to the annuhlus walls
and tanéent to the maximum velocity line. These lines intersect the inner
and outer circles at the points wﬁere the seven radial dividing lines cross
the walls (see Figure 4).

4. We are now ready to calculate constant-velocity lines, the first
step of which is to compute the shear stress at each wall 'for each of the
eight sections. There are, of course, no shear .st‘resses along the velocity
gradient lines. Section 2‘ will be used for illustrative purposes and is
represented in Figure 5. In this section, the shear stess along the inner

wall is
A
2,1
| = (AP/L) === - - ®

;
2, Sa,1

and along the outer wall

Aga

= (AP/L)
52,2

9,2 (4)

In the figure, s 91 and are the circumferential boundary lines for
H .

2,2

Section 2 at the inner and outer walls, respectively; A2 1 is the cross-
. b Rl

sectional flow area in Section 2 inside the maximum-velocity line; A2 9
. ’

is the cross-sectional flow area outside the maximum-velocity line.
In Section 2, dashed constant-velocity gradient lines are drawn from

the midpoints of s 9.1 and s 9 9 dividing the two subsections in half. These
’ : ] .
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dashed lines meet at a common point on the maximum -velocity line.

Then, using u' vs. y+ plots such as those shown in Figure 2, the distance

Y9 1 along the dotted line from the inner wall, for an arbitrarily chosen
’

linear velocity, is determined. Other Vo1 values for other velocities
’ : ’
are then determined. A similar procedure is followed in getting Y9 9
. Lya -
values for arbitrarily chosen velocities in the outer portion of Section 2.

In using the modified Rothfus u vs. y+ plots, it was decided to use

three different R values for each of the eight sections, R1 for the region

near the inner wall, R_ for the region near the outer wall, and Ra for

2

the middle region. These are given by the equations

R, = ry/r,
Ry = 1y/T)

a 1 2
where r’1 and‘r’2 are defined from the equations
2 2
r. - (r")
2 2 2 1
(g = T8y = 2
’ ’
| 1n(r2/r1)
)12 2
2 g 0y -y
(r_ )" =(r+8y,) = ———
m,1 1 1 (' /1 )2
2/T1
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In the last two equations, Ay, and Ayz are the actual lengths of the curved
velécity-gradient lines drawn through the middle of the sections, and
' mentit;ned above.

By connecting up fhé points, for a given local velocity, in all eight
sections, a set of constant velocitj lines is obtained. With these, a second
set of velocity-gradient lines. is drawn, perpendicular. to these cqnstant
velocity lines. The piocess is then repeated and a new set of constant-
velocity lines is determined. This time, the maximum-velocity line ié
relocated, if necessary,‘ to be consistent with constant velocity lines. A
third set of velocity-gradient lines is then drawn, and if they are sufﬁ-
ciently different from the second set, the whole process is repeated again,
but this was often found unnecessary. In general, it was found that the
greater the eccentricity and the radius ratio, the greater the number of
iterations needed.

“A typical veloc-ity'grid is shown in Figure 6. The average linear
velocity calculated from the local velocity lines was found to agree with
the original average velocity to within + 2%.

Eddy Conductivities

In order to calculate the temperature distribution in a flow channél,

it is necéssary to know how the total effective conductivity, k the sum

eff’
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of the molecular and eddy conductivities, varies throughout the cross-

seci:ional area. The latter is calculated from the equation

k= C | A | (10)

which is based upon the condition that the eddy diffusivities of heat and

momentum transfer are equal.

The eddy viscosity, Moo in the present study was calculated from
the standard equation
. dv ‘ _
Tg, = [1 + ue]d—y , , (11)
where v is the local velocity at distance y from the wall, along the middle,

curved, velocity-gradient line in each of the eight sections. The shear

stress, 1, at the same point is calculated from the equation

ym
. 4 sdy (12)

where s is the width of the section, taken perpendicular to the middle

velocity-g’radiént line, at the point where 7 is evaluated. The slopes,
dv/dy, in Eq. (11) were determined graphically to within a demonstrated
precision of +3%.

Values of ke were determined in both the inner and outer portions

ff

of each section for arbitrarily chosen values of y along the middle velocity-
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gradient lines. From these values, lines of constant keff were then

drawn. A typical 'ke ¢ grid is shown in Figure 7 where it is seen that

f

"~ there are two maximum -ke lines, one in the inner and one in the

ff

outer portion of the annulus.

Temperature Distribution

In the present study, temperature distributions, including peripheral
wall temperature variation, were calculated by two different methods.

"In the first, the energy-balance equation

ot ot
a(kefi:' &) a(keff 53_1) —pC v at 13)
ax 8y’ P Bz

was numerically integrated and solved by a relaxation method with the
aid of an IBM 7094 digital computer. The boundary conditions are: (a) the
normal temperature derivatives are constant along the inner wall and
equal to q/k, and (b) the normal temperature derivatives are zero along
the outer wall. The difference equations were set up in polar coordinates
" and the relaxation was pefformed for one radius at a time.

A computer program was worked out to solve Eq. (13);' however,
it required about 10 hours of computer time for each case, and the cost
was therefore prohibitive. Consequently, only one case was solved by

this method. All the others were solved by a method which was partly
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g‘rai)hical, 'and which required only a very small fraction of the computer
time required by the nufnerical method.
- In the second method, the procedure was as follows:
1. The circumference of the inner semicircle was divided into eight
equal segments as before; anc_l then, from these, by an iteration process,
the total flow area 'was divided into eight sections such that, for each, the

following equation was obeyed:

Yn 2 2

va[r,” - r. "] '
/vsdy = 2 ‘ 36 1 (14)
0 .

The lines separating the various sections are heat-flow iines and, as such,
must be perpendicular to the inner wall and tangent to the outer wall (see
Figure 8). Since the shape of the velocity profiles are practically inde-
pendent of Reynolds number, the heat flow lines in this figure are inde-
pendent of flow rate, and therefore Peclet ﬁumber. Starting at the mid-
pointé of the inner wall segments, eight additional heat flow lines werev
drawn through the middle of éach section. These are shown'as dashed
lines in the figure. In>Eq. (14), v is the local velocity and s is the width
of thé section (drawn pependicular to"the middle hea£ flow line), both at -
the distance y from the inner wall, measufed along the middle, curved

heat flow line.
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:Eq. (14) is a consequence of the condition of uniform heat flux,
i.e.A, since the heat transferred from each of the eight inner-wall sub-
areés is the same, then the heat transported away by the liquid metal
in each of the eight associated cross-sectional sub-areas mhst also be
the same.

2. The next step is to determine the temperature variation along
each of the eight middle heat-flow lines. For this, a heat'fluy'c of 100,000
Btu/ (hr)(ft)2 was arbitrarily chosen, a.nd the temperature at point a in
Figure 8 was arbitrafily taken as 400°F.

Considering Section 1, the temperature drop between point a and
some other point at a distance y from a along the middle heat-flow line

is given by the identity

ot ' *
At = —/ -a?dy ' (15)
0 .

where the temperature gradient at y, 8t/9y, is obtained from the heat

balance
Y1
ot dt
K e S T Cra vsdy (16)
-y

The left side of this equation represents the heat transferred across
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the line s at y, and the right side represents the heat transported away
by the fluid flowing in the cross-sectional area beyond the line s. Sub-
stituting Eq. (16) in (15), finally gives

¥
y svdy

At = Cppg-t; _11?_5—— dy S

Using this equation, values of At are then calculated for various values
of y. The results arevsmoothed by drawing At vs. y curves. The process
is then repeated for the other seven sections.

3. The 400°F isotherm is then drawﬁ from point a, perpendicular
to the heat flow lines, as shown in Figure 8. With this as a “bench mark,”
and using the At vs. y plots mentioned above, a family of isotherm lines
is then drawn throughou‘t the whole half-annulus cross section. These
isotherms are tangentbto the inner wall andl perpendicular to the outer

wall. From them, the bulk temperature in Section 1 is obtained by the

equation

(18)
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and similarly for the other seven sections. The over-all bulk tempera-

ture for the annulus is then given by

tb +tb +...+tb
y =t 8 - (19)

Finally, the local heat transfer coefficient, h, for Section 1 is given by
h, = —— | (20)

and similarly for the other seven sections. And the average heat transfer

coefficient, 1—1, for the whole annulus is given by

h ___9 | (21)

3. Results

Surface Temperature Variation

It was found that eccentricity produged a surprisingly large amount
of temperature variation around the circumferences of both walls. The
variation around the inner wall is of greater practical interest, and the
results for this are shown in Figure 9, where the variations are .expressed

as the ratio (tw] 180° ~ tw] 00)/ (E-W - tb). This ratio is independent of the

heat flux, as long as it is uniform. The lower the radius ratio, and the
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greater the eccentricity, the greater willl be the relative temperature
vafiation around the wal'lvsurface. This relative \'rariation? as expressed
by the above fatio, is essentially independenf of Peclet number. .It is
seen that @der certain circumstances the circumferential temperature
variation can far exceed the difference between the average surface tem-
perature and bulk tempeAratur"e. The reason for the relatively large tem -
perature variation is quickly apparent from inspection cﬁ Figure 8, where
it is se-en that the heat .from that portion of the inner wall nearest the
outer wall is transferred over a much longer cross-sectional area (Sec -
tion 8), than of heat transferred from that porfion of the inner wall fértl;er
from the outer wall (Section 1). The effect of eccentricity on temperature
variation around the inner wall, for the worst case studied, is shown |
graphically in Figure 10.

Local Coefficients

Since eccentricity causes considerable circumferential variation in
the temperafure of the inner \;&rall, it follows that there will also be a con-
comitant variation in the local heat transfer coefficient. At low values of
R, tﬁe variation cé.n be so great as to give negative coefficients m the
region of widest separation between the two walls. This is simply be- ‘

cause the surface temperatures in that region are below the over-all
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bulk temperature of the metal flowi‘ng throggh the annulus. Figure 11
sho.ws some-typical profiles fof this case. The local coefficients are
normalized by dividing them by the average coefficient. The reader is
reminded that, since h # f hd6 but is given by Eq. (21) the algebra1c
sum of the areas between h/ h=1 and the curves does not approach zero.

The curves shown in Figure’ 11 should be, for all practical purposes,
indépendent of the Peciet number. The spread in the data points, which
df course worsens as the angle of infinite coefficient is approached, is
simply due to limitations in calsculational précision. The angle of infinite
coefficient is obviously the point on the inner wall whergl the'temperafure
is equal to the bulk temperature of the metal flowing through the annulus
at that same axial location.i

Figure 12 shows a set of cpefficient profiles for two different values
“of R and two different eccentricities, where the local coefficients are al-
ways positive; Here, as in the previous figure, the areas between the
curves ‘and the ordinate line of unity should not add to zero.

Tables I and I summarize, in normalized form, all the local heat
transfer coefficieﬁt results obtained unde"r the study. Theouretlcally,
Peclet number should have a negligibly small effect on the normalized

~ coefficients. The differences shown in the tables simply reflect the

-18-



degree of precision for the long and involved method of calculation.

Avérage Coefficients and Nusselt Numbers

The average heat transfer coefficients and Nusselt numbers ob-
tained under the study are shown in Table IIl. The values for zero ec-
centricity given there were calculated from the recent correlation of

Dwyer [17]

Nu0 = a+ B(aPe)y

where

a=4.58+ 0.742R

B =0.0290 - 0.00414R + OV.OOO364R2

y = 0.725R0'091

This correlation is also based upon the velocity-profile correlation of
Rothfus et al. and upon €M

therefore, give Nusselt values consistent with those calculated in the

present study for eccentric annuli.

Many of the average Nusselt results are also shown graphically in

Figures 13-16. From the curves in each of these figures, we see that,

other things being equal, increase in eccentricity always decreases the -

Nusselt number. In Figure 14 we see that, at low eccentricities, the

-19-
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gréafer the radius raﬁo, the ies_s,the effect of eccentricity; while at high
ecéentriéitiés, the greater the radius ratio, the greater tﬁe effect of ec-
'centficity.. In Figures 15 and 16 we see that the effect of eccentricity is
independent of Peciet number, Finally, ‘in’all four figures we see that

the effect of eccentricity on fhe'Nusselt number if great indeed, at prac-

tically all values of R and Peclet number.

4, Discussion of Results

The first question to be asked is: how precise are the calculated
results? ‘An estimate:of this can be obtained from the fact that for ‘t‘he
case of R = 1.5, e = 0,70, and JPe = 368, the average heat transfer _cdeffi-
cient was obtained by the two methods described in Section 2. The all-
machine solution of Eq. (13) gave a value of 677 Btu/ (hr)(ft)2(°F), while
the combination éraphical-machine method gave 656, a difference of
about 3%. Another estimate of the precision is given by the scatter of
the célculated points on the various graphs, which indicateé a precision .
of within +5%.

The next qugstion to be asked is: how accurate are the calculated -
results? This is more difficult fo answer. For one thing, there are no
experimental results available for comparison. It is well to remembef

that the boundary conditions for this study, i.e., uniform heat flux from
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the inner wall of an eccentric annulus, cannot be fully obtained in prac-
ticé. The conditions cén only be met when either the thickness of the
wall approaches zero, or the thermal conductivity of the wall approaches
zero, or both. In any real case, the circumferential temperature varia-
tion caused by the eccentricity produces circumferential heat flow in the
wall, causing depérture from the condition of uniform flux and thereby
mitigating the effect of eccentricity on the variatic;n of wall temperature,
the variation of the local heat transfer coefﬁcient, and the value of the
average heat transfer coefficient.

The boundary conditions chosen in the pres_ent study therefore |
represent upper limits to the effects of eccentricity on wall temperature,
.the ldcq.l coefficient, and the average coefficient, which under certain
conditions may be approached but never attainec'i. 'i‘he next step is to con-
sider the effects of the thickness and conductivity of the wall on the ther-
mal 5ehavior of eccentric annuli. However, all of the general conclusions
reached in the present study are .equally applicable to the case where there .
is circumferential heat flow in the inner wall. |

In their anaiytical study for air, Deissler and Taylor [16] predicted

a 73% decrease in the average Nusselt number as the eccentricity was
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increased from 0 to 80% in an annulus having an R value of 3.5 and heat
transfer from the inner wall only. By inspection of Figure 14, the pre-
dicted decrease in the Nusselt number for liquid metals under the same
conditions is about 78%;‘ The present authors would agree that the de-

crease should be greater for liquid metals, but feel that these two pre-

dictions, if anything, are a bit too close. |

In calculating € . from €\ One is never completely certain of the

H

shape of the M profilg in the region of maximum velocity. In the pres-
ent study, the €M profile curves had the shape a in Figure 17. There is’
good reason to believe that they should have the general shape b, witﬁ

the curve crossing fhe radius qf maximum veiocity at an €M value about

‘75% of its maximum [6,7]. For heat transfer in pipes, the shape of the M

curve has an insignificant effect on the coefficient; but for annuli, the ef-

fect has been estimated to be about 1% at yPe = 102, 5% at yPe = 103,

and 10% at pPe = 10°

[18]. The reason the effect is much greater for
annuli (with heat transfer from the inner Wali 6nly) is thé.t there is an
appreciable radial temperature gradient in the transvefse region of maxi-
mum velocity., It 1s logicél to assume that the shape of the M profile

curves would have a comparable effect in the case of eccentric annuli.

Therefore, it is recommended that the Nusselt numbers given in this
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paper be increased, ih accordance with the above percentages, if they
.'eu’e~ td be used in design calculations.

In using the results given in this paper to estimate heat transfer
coefficients,one needs to evaluate the z-p-Pe product, and therefore J There
are a number of correlations,aﬁailable for estimating J, but the present
~ authors recommend that recéntly proposed by Dwyer [19], éor simplicity
and ;adeqﬁate accuracy. _ |
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6. Nomenclature

A-2 1 "= Cross-sectional flow area in Section 2 inside the maximum-
t

velocity line, ft2 '

A2 9 = Cross-sectional flow area in Section 2 outside the maximum-
y ]

velocity line, ft2 ‘

Cp = Specific heat, Btd/ (Ib-mass)(F)
De | = Equivalent diameter of the annulus
_ 4(cross-sectiona} flow area) it
wetted perimeter
d = Distance between the centers of the two circles forming the
- annulus, ft
e ‘. = Eccentricity = d/ (r‘2-r1), dimensionless
f = Fanning friction factor for an eccentric annulus, dimensionless
.f2 = Fannmg friction factor for the outer portion of a cbncentric
annulus (between the m\éiximum velocity line and the outer
wall), dimensionless
fo = Fanning friction factor for a concentric annulus, dimensionless
g, = Conversion factor, (lb-mass)(ft)/ (lb-force)(hr)2
~h = Local-heat transfer coefficient, Btu/(hr)(ft)2(°F)
h1 _ = Local heat transfer 'coefficie‘nt for Section 1, Btu/-(hr)(ft)2(°F)
h = Average heat transfer coefficient for the whole annulus,

Btu/(hr)(tt)2CF)
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k = Molecular thermal condlic_tivity, Btu/(hr)(ft)(°F)

k.é ' = Eddy thermal conductivity, Btu/(hr)(ft)CF)

keff o= k+ ke = Effective thermal conductivity, Btu/ (hr)(ft)CF)
L = Length of annular channel, ft

Nu = (hDg)/k = Nusselt number, dimensionless

Nuo = Nusselt number for a concentric annulus, dimensionless
n = 1,2,. . .,8 = Section ﬁumber, dimensionless |
AP = Pressure drop over distance L, lb-force/ £t

Pe = :DevapCp/k = Peclet numi)er, dimensionless

Pr = 'Cpu/k = Prandtl numbér, dimensionless

qa = Heat flux, Btu/ (hr)(ft)2

R = r2/ r, = Radius ratio, dimensionless

R, = r’z/ r1 = Radius ratio, dimensionless

R, = rz/ r] = Radius ratio, dimensionléss

R, = %(R1 + R2) = Average radiué ratio, dimensionless

Re = = Dev;p/ i = Reynolds number, dimensionless

ry = Inner radius of an annulus, ft

Ty = Ou'ter 'radius of an annulus, ft

r’1 = Fictive inner radius of an annulus, defined by Eq. (8), ft
'ré = Fictive outer radius of an annulus, defined by Eq. (9), ft
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) = Radial distance from center of inner circle to circumference

of outer circle, ft

r, = Radius of maximum fluid velocity in a concentric annulus, ft
r’m = Radial distance from center of inner circle to maximum-

f/elocity line, ft

t

rm, 1 -—-}Radius of maxirnhlm fluid velocity, defined bysEq. (9), ft

rl'n’2 = Radius of maximum fluid velocity, defined by Eq. (8), ft

52,2 = Circumferential boundary line for Sectiog 2 at the outer
wall, ft |

82,1 = -Circumferential boundary line for Section 2 at the inner
wall, ft

] = Width of the séction, taken perpendjcular to the middle
velocity-gradient line and/or the middle heat flow line,
at the curved distance y from the wall, ft

s‘r = s at the point where 7 is evaluated, ‘ft

t = Temperature of the fluid at y, or at (x,y,z), °F

tb = Bulk temperature of the fluid, °F

tbl,tbz,...,tb8 = Fluid bulk temperature of Section 1, 2, ..., and 8, °F

tw, = Inner wall surface temperature of Section 1, °F
Fw = Average inner wall surface temperature of an annulus, °F
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tol 9 = Inner wall sgrface temperature at an angle ¢ of an annulus, °F

At = Temperature drop from the inner wall to y of the fluid in an
annulus, °F

u g . Veiocity parameter, dimensionless

u; = Velocity parameter for the inner portion of an annulus,
dimensionless | |

u; = Velocity parameter for the outer portion of an annulus,

| | dimensionless

v = Linear velocity of fluid at y or at (x,y,2), ft/sec

o = Average linear velocity of the fluid, ft/sec

X,¥,2 = Cartesian coordinates, defined only for Eq. (13)

y L= Normalv curved ‘distance from the wall, or vertical Cartesian
coordinate, ft

y+ = Nor;nal distance parameter, dimensionless |

Yo = Value of y at the maximum veiocity, ft

Y, = Value of y from the inner wall to the outer wall of Section n, ft

v, = Value of , forn=1, ft

yz,1 = Normél curved distanég along the middle velocity gradient
line from the inner wall of Section 2, ft

yz’2 = Normal curved distance along the middle velocity gradient

line from the outer wall of Section 2, ft
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¥y = Wall distance parameter for the inner portion of an annulus,
dimensionless

y; = Wall distance parameter for the outer portion of an annulus,
dimensionless

Ay1 = Length qf the middle, curved velocity-gradient line from the

ﬁmér wall fo the maximum velocity line, ft

Ay2 = Length of the middle, curved velocity-gradient line from the
outer wall to the maximum velocity line, ft

z = Axial distance along the annulus, or Cartesian coordinate, ft

Greek. Letters .

@, B,y = Constants defined by Eq. (22), dimensionless
€y = ke/pCp = Eddy diffusivity of heat transfer, ftz/hr
M = u.e/p = Eddy-diffusivity of momentum transfer, ftz/hr
6 - = Clockwise angle made with the center of inner circle, radian
- = Fluid dynamic viscosity, (lb-mass)/(ft)(hr)
M = Fluid eddy viscosity, (lb-mass)/(ft)(hr)
e _ .
p = Fluid density, (1b-mass)/ft3
T = Shear stress in the fluid at a distance y from the wall,

(lb-forc:e)/ft2
91 = Shear stress pertaining to the inner wall of Section 2,
’
(lb-force)/ft2

-928-



Ty o = Shear stress pertaining to the outer wall of Section 2,
y
(lb-force)/lit2

Y = Average effective value of ¢ (= eH/ eM), dimensionless
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Table I

_ Circumferential Variation of Normalized Heat Transfer Coefficient Around Inner Wall for R = 1.5

h/h

JPe = 368 | 7Pe = 1700 JPe = 8000

0 e=0.15 e=0.30 e=0.50 e=0.70 e=0.15 e=0.30 e=0.50 e=0.70 e=0.30 e=0.70
11.25 -2.31 -1.10 -1.54 -1.31  -2.35 -1.06 -1.79 -2.78  -1.28  -2.81
33.75 -2.69 -1.35 -1.81 -1.61  -2.94 -1.34  -2.13 -3.47  -1.97 -3.65
56.25 -200.00 -6.06 -5.28 -3.20 640.00 -3.98 -5.00 -6.42  -7.47  -6.88
875 1.21 152 179 170 1.27 219 2.67 4.02  2.00  8.93
101.25 0.69 0.65 ° 071 055 0.5 076 0.1 113  0.79  1.72
123.75 0.51  0.46 048  0.28 051 045 047 053  0.48  0.60
146.25 0.44  0.38  0.39 . 0.21  0.46  0.35  0.38 0.37  0.38  0.34
168.75 0.42  0.36 0.36 0.21  0.44 032  0.35 0.33  0.34  0.29




Table I1

Circumferential Variation of Normalizeq_ Heat Transfer

Coefficient Around Inner Wall for yPe = 1700

h/h
‘R=1.5 - R=25 R = 4.0
6  =0.30 =0.70 =0.30 =0.70 €=0.30  €=0.70
11.25 -1.06  -2.78  2.03  3.59 1.56 175
33.75 -1.3¢  -3.47 189  3.05 1.53  1.67
56.25 -3.98  -6.42  1.70 2.54 1.41  1.57
78.75  2.19 4,02  1.39 1.96 1.18  1.40
101.25  0.76 1.13  0.98 1.12 0.97  1.02
123.75 0.45  0.53  0.73 0.64 081  0.75
146.25  0.35 0.37  0.63 0.51 0.72  0.65
168.75 0.33  0.60  0.48 0.67  0.62

0.32
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Table I

Calculated Average Heat Transfer Coefficients and Average
Nusselt Numbers for Heat Transfer to Liquid Metals
Flowing Through Eccentric Annuli

R e yPe h Nu

1.5 0.00 368 8700.0  7.70
1700 13590.0  12.04
8000 29490.0  26.11

0.15 368 4070.9  3.61

1700 7131.7 6.32

0.30 368 2634.0 2.34
1700 4494.9 3.99

8000 10244.0  9.08

0.50 368 = 1207.5 1.07

1700 1794.8 1.59

0.70 368 656.5 . 0.58

1700 980.5  0.87

8000 2340.4 2.08

2.5 0.00 1700 8610.0  13.75
0.30 1700 5475.7  8.74
0.70 1700 2052.7 3.28.

4.0 0.00 1700 7920.0  15.80
0.30 1700 6524.6  13.01
0.70 1700 2848.7 5.68
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure Captions

Effect of degree of eccentricity on friction factor for flow

in eccentric annuli. Curve is based on the analytical pre-
diction of Diskind [14] and on the single experimental mea-
sufement of Diskind and Stein [15] for an annulus having an

R va;iue of 1.5. :

Modified Rothfus velocity distributions for the inner portion
of an annulus, R = 1.5, symbols represented calculated values.
Modified Rothfus velocity distributions fox; the outer portionA
of an annulus, R = 1.5, symbols fepresented calculated values.

Cross section of eccentric annulus, showing division into

-sections, and location of tentative maximum-velocity line

and téntative velocity-gradient lines. Numbers refer to
sections.
Schematic drawing of a typical section of an eccentric an-
nulus showing meaning of symbols. Section 2 is taken as
an example,
Velocity distribution for an eccentric annulus. e = 0.30;

5

Re = 2,3 X 107; R = 2.5; v, = 16.38.ft/sec. Numbers on

graph represent constant velocity lines, expressed in ft/sec.
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Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13

~ Figure 14

Effective thermal conductivity distribution for sodium flow-
ing in an eccentric annulus under fully-developed flow and
thermal condition. e = 0.30; Re = 2.3 X 10°; Pr = 0.00735;

R = 2.5. Numbers on graph represent constant keff lines,
expressed in Btu/(hr)(ft)CF).
Graph showing heat flow lines and 400°F isotherm for an

eccentric annulus with uniform heat flux from inner wall,

e=0.30and R = 1.5.

Relative circumferential témperature variation around
inner wall, Pr = 0.00735.

Relative variation of inner wail surface temperature for
uniform heat flux through inner wall. -zﬁPe = 368 and R = 1.5.
Circumferential variat'ion.o[ normalized heat transfer co-
efficient around inner wall.

Circumferential variation of normalized heat transfer co-
efficient around inner wall.

Average Nusselt number vs, eccentricity, with radius ratio

as the parameter. Inner wall heated only; -zp-Pe = 1700.

Ratio of average Nusselt number to concentric Nusselt

number vs. eccentricity.
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Figure 15

Figure 16

Figure 17

Average Nusselt number vs. Peclet number, witﬁ eccen-
tricity as the parameter. Inner wall heated only; R = 1.5.
Average Nusselt number vs. concentric Nusselt number
for R = 1.5 and for different values of e.

Typical €,, and temperature profiles for heat transfer to

M
a liquid me_tal flowing in an annulus. Curves a and b repre-

sent different types of €M profile curves. T Ty and T

represent inner radius, outer radius, and radius of maxi-

mum velocity, respectively.
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