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ABSTRACT
A novel feed forward neural network is used to classify hyperspectral data from the AVIRIS sensor. The network
applies an alternating direction singular value decomposition technique to achieve rapid training times (few seconds
per class). Very few samples (10-12) are required for training. 100% accurate classification is obtained using test
data sets. The methodology combines this rapid training neural network together with data reduction and maximal
feature separation techniques such as principal component analysis and simultaneous diagonalization of covariance

matrices, for rapid and accurate classification of large hyperspectral images. The results are compared to those of
standard statistical classifiers.
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1. INTRODUCTION

An important issue associated with classifying hyperspectral images is the large size of data produced by: current
hyperspectral imaging systems. While sensors like LANDSAT’s TM produce data cubes with only 7 bands per
pixel, more recent sensors record the spectra of individual pixels with increasing spectral resolution. Sensors like
AVIRIS, HYDICE and the TRW Hyperspectral Imager (HSI) measure pixel spectra in 224, 210 and 348 bands
respectively. Ultraspectral sensors based on Fourier transform spectrometers, perform measurements at even higher
resolution. Using such high resolution data for image classification increases the dimensionality of the problem,
and hence the complexity and computation time, significantly.

The advantages of neural network (NN) based approaches for classifying hyperspectral images have been
recognized for a while.'¢ NNs are considered to be powerful classification tools because of their nonlinear
properties and the fact that they make no assumptions about the distribution of the data. This feature is useful in
cases where no simple phenomenological model exists to accurately describe the underlying physical process that
determines the data distribution. Yet the use of NN for hyperspectral image classification has been limited primarily
due to the inordinately long time required to train NN. During training, feed forward networks use a gradient
descent method_for least squares error back propagation.’” Recently, radically different approaches to error
minimization have been considered that employ a Householder transform combined with QR factorization or other
iterative schemes.3-!* The-NN used in this work is a feed forward type of network that builds on the least squares
paradigm. However, it introduces solutions involving a sequence of alternating directions singular value
decompositions (ADSVD) for error minimization, which drastically reduces the error convergence time.'? As a
result, rapid training of the NN on large hyperspectral data sets is now possible.
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In addition to the rapid convergence property of the ADSVD NN, training time is significantly decreases by using
data reduction schemes. Techniques like principal component analysis and simuitaneous diagomalization of
covariance matrices decrease the training time by reducing the problem dimension (by factor of 20 to 50). They also
improve classification accuracy by enhancing the separation between classes. A substantial reduction in the training
time of feed forward networks is also attained by utilizing the concept of sub-networks. The idea here is to train a
single network to identify one particular class only instead of using a one network to identify all classes. Taken
together, the data reduction and sub-network schemes not only reduces the training time drastically but also improve
the classification accuracy.” This combined methodology of the ADSVD NN together with data reduction/feature
separation and using the sub-network concept yielded excellent results. For a limited test set selected from the
Moffett Field image acquired by the AVIRIS sensor (224 bands), we achieved extremely rapid training times (few
seconds per class) and 100% classification accuracy, using no more than a dozen pixels/class for training. All
computations were performed on a PC platform (200 MHz Pentium Pro with 64 Mbytes RAM).

The next section discusses the transformation techniques employed in this work. Following that, we present the
ADSVD NN classification results of the Moffett field data cube acquired using the AVIRIS sensor. Our results are
then compared with those of conventional classifiers available in remote sensing software tools like ENVI.

2. ANALYSIS

Principal component analysis (PCA) is a linear coordinate transformation technique to represent a data set in a
reference frame where the variables (spectral bands in our case) are no longer correlated.'*t¢ The process of
determining the new coordinate axes involves diagonalizing the covariance matrix of the data. Since the off
diagonal elements of this matrix measure the correlations between bands, we compute a coordinate transformation
in which these terms are zero; i.e. a transformation that diagonalizes the covariance matrix. From linear algebra,
there exists an orthonormal transformation capable of diagonalizing the covariance matrix as it is symmetric.7'®

The new axes (or principal components) are organized so as to indicate the directions of decreasing variance in the
data. Hence by retaining only the first few principal axes (corresponding to directions of maximum variance) to
represent the data and discarding the rest, we obtain not only maximal feature separation but also a substantial
reduction in the dimensionality of the data set. Physically, the reduced dimensionality means that in order to identify

K distinct classes of objects with spectra in N bands (where N >> K), we require at the most K distinct coordinate
axes, and often fewer than K. PCA computes these axes.

With data classification as the final goal, the covariance matrix is computed using all the pixels from the selected
regions of interest (ROIs) for each class. Note that each pixel represents an N dimensional vector x (N = # bands =
224 for the AVIRIS sensor). Let K be the number of classes, M; be the number of pixels in class £ and M be the total

number of pixels where M = 2,1;1 M. The mean vector of this set, m is denoted by

m =E(x)=4 L, xi M

where E(x) is the expectation of x. The covariance matrix of the data set (ROIs), Z,, is given by

T, = E{(x— m)(x—m)T} = % 2oty (xi — m)(x; —m)T @

Diagonalizing this covariance matrix gives the required transformation matrix, G. The eigenvectors (columns of G)
corresponding to the largest few eigenvalues correspond to the axes of maximal variance. The data show very little
variance (i.e. no useful separation amongst classes) along the remaining principal directions (eigenvectors). Hence

data along these axes are mot useful for classification. The transformed data may therefore be computed after
zeroing all but the first few eigenvectors:

y=GT(L)x ?3)




where L is the number of eigenvectors retained in the transformation. Hence the dimension of a transformed pixel,
¥, Is L and the data reduction factor is N/L.

An important point to note about PCA is that while it computes the axes of maximum overall variance, there is no
guarantee that it will actually increase the separation between a particular pair of classes. It only guarantees to
maximize the overall variance given by O %= GZx G”. In order to ensure maximum separation between classes,
the function to be maximized must be sensitive to the class structure. Hence a suitable function would be one that

not only maximizes the variance amongst classes but also simultaneously minimizes the variances within all the
classes. One such a function is given by 141920

o=

SIS

o}
Ef-_-l O'i (4)

Oa and oy are the amongst class and within class variances respectively and o, is the variance of class k. These
terms are related to their corresponding covariance matrices £, and Iy, by

65=GZ4GT and oW=GZwGT (5)

where G is the transformation matrix that diagonalizes both Z, and Zy. The detailed expressions for the I’s are

T4 = E{(mx—mo)(mi — mo)T} = (%) L1 (mk — mo)(me — mo) 6)

Tw= {Eiil(Mk" 1) Zi/M}  where _
Sk = E{(x - ma)ck - m) Ty = (3 ) T (e - miye — mi)T ;'

my is the overall means of all the pixels, m, is the mean of class & and x/, is the i* pixel belonging to class k. The
expression in equation (4) is maximized by setting

%%?;=0 = Cu-0rIw)G=0 (7

This is a generalized eigenvalue (GEV) equation where o ? are the eigenvalues and the matrix G contains the
eigenvectors of the transformation. The constraint GZwGT=Inw {NxN identity matrix) renders the distribution
of all the classes spherical. This process also known as ‘whitening’ is only useful when the distributions of various
classes deviate significantly from a Gaussian. If for example the members of each class are affected by random
gaussian noise only, they will have a spherical distribution to start with. Hence in this case, a GEV transformation
will not separate the classes better than the PCA. Lastly, for X classes we obtain K-/ non zero eigenvalues from the

GEV and hence K-/ distinct axes (provided N > K). The eigenvectors corresponding to the remaining N-K zero
eigenvalues belong to a degenerate orthogonal subspace.!™*

3. RESULTS

3.1 Maximum Feature Separation

Figure 1 shows an image of the Moffett field data cube recorded using the AVIRIS sensor in 224 bands (0.4 um to
2.4 um spectral range). This data are 12 bit digital numbers without any atmospheric corrections for absorption and
scattering. Eight regions of interest (ROIs) are marked in the image for classification (table 1) Five of these regions
(1, 4, 5, 6, 7) are different water bodies ranging from clear water (1) to an evaporation pond (7). The water bodies in
between have different levels of clarity (due to different amounts of particle suspension). Region 3 corresponds to
concrete structures. Regions 2 and 8 are dense and sparse vegetation. Figure 2 shows the average spectrum of each
of the ROIs marked in figure 1. The spectra of some of the ROIs, for example regions (2, 8), (4, 7) and (5, 6) look
very similar. The entire image is classified to identify pixels belonging to these 8 regions (classes). Similar classes
of pixels have deliberately selected to make the classification problem difficult. Since the average spectra of the




pixels from these classes look very similar, any classification in the spectral domain will most likely produces
significant errors. Classification is therefore performed in the PCA and GEV transformed domains.

Figure 3 illustrates the advantage of classifying the image in the PCA or GEV transformed feature space, where we
show the average ‘transformed spectra’ of the 8§ ROIs in these domains. Only 8 bands are retained in the PCA case
and 7 for the GEV. The choice of 8 bands for the PCA transform is motivated by the fact that there are only 8
classes while for the GEV we retain only 7 bands because there are only 7 (K-/ bands where K = 8) non-zero
eigenvalues arising from the simultaneous diagonalization process. We obtain a data reduction factor of about 30
from these transformations. For classification, we need only the first 4-5 bands where the classes are separated. The

last few bands have been retained to illustrate the fact that the variance amongst classes is negligible along these
axes.

Both the PCA and the GEV transforms enhance the separation between classes as compared with the 224 band
spectral space (figure 2), but the interclass separations are clearly greater using the GEV transformation (figure
3(b)). This is confirmed by calculating the average interclass separations for the spectral, PCA and GEV spaces
using the angular distance and Fisher discriminant distance as measures (table 2). The columns labeled 1-8 indicate
the average distance between class [ and all other classes. The angular separation between classes increases
dramatically from the spectral to the GEV domain where the pixels are nearly collinear in the former and highly
separated in the later (90° separation is orthogonality condition). The Fisher distance is given by the ratio 7‘——:37—

ot+0]
where d; is the Euclidean distance between classes i and j and the o”s are their respective variances, all calculated in
the appropriate domain. The Fisher distances for all classes but 2 and 3 are greater for the GEV than the PCA. The
overall average (last column) also clearly indicates that the GEV transformation affords greater class separation than

the PCA. A direct outcome of this is the improved classification results by the NN obtained after trammg ‘on the
GEYV transformed data than on the PCA transformed set.

3.2 Image Classification by ADSVD Neural Network

The implementation details of the ADSVD NN are discussed elsewhere.!? For the present it suffices to state that it
has as many input nodes as the number of bands of the input data (8 for PCA and 7 for GEV), one hidden layer and
a single output node. The approach we adopt is to compute the PCA and GEV transformation matrices using the
ROI pixels. The entire data cube is then transformed using the appropriate transformation. NN classification is then
performed using the PCA and GEV transformed data cube. We also employ 8 sub-networks for training and
classification. Each of which is trained to identify one particular class only and reject the rest.

Without independent ground truth to validate the NN classification resuits, a small fraction of the ROI pixels were
used to train the networks. The remaining pixels from the ROIs were then used to test the classification performance
of the NN. Specifically, 8-12 randomly selected pixels from each class were used to train the NNs. As a result, a
reasonable number of pixels were left in the ROIs to test the network classification accuracy.

Table 3 shows the results of testing the NN classifier on the ROIs in the PCA and GEV domains. The classification
threshold is set at 0.5 (middle range of NN’s logistical activation function). A single pixel is processed by each
network and a ‘winner take all’ scheme is employed to assign a pixel to a particular class. A pixel is ‘correctly’
classified if it’s network activation level is the highest of all networks and exceeds the threshold. A “miss’ occurs
when a pixel gets incorrectly classified. Lastly, a pixel is ‘unclassified’ if it’s NN has the highest output level of all
networks but it is still less than the threshold. The sum of the correct, missed and unclassified columns equals the

total number of pixels per class. A missed pixel in one class appears as a falsely classified pixel elsewhere. Hence
the sum of the ‘missed’ column equals that of the ‘falsely’ classified one.

The PCA transformed data are correctly classified for all but classes 2, 5 and 6. There are a few misses in classes 2.
However, most pixels in class 6 are unclassified and a large number of pixels from class 6 are incorrectly classified
into 5. On the other hand, the NN classifies the GEV transformed data with 100% accuracy. This is not surprising

that the different classes are very well separated in the GEV transformed feature space as is depicted in figure 3(b)
and table 2.




Table 4 show the results of the entire Moffett Field image classified by the NN in the PCA and GEV transformed
domains using a threshold level of 0.5. The classified images are not included as they are not useful for viewing
without full color representation.?* While the overall spatial structure of the image is reconstructed in both the PCA
and the GEV classified images, table 4 -indicates that the NN identifies more pixels in each class with the GEV
transformed cube than with the PCA transformed one. The NN barely detects any pixels in class 6 from the PCA
cube while in the GEV cube, it assigns over 6% of the pixels to this class. From figure 1, it is apparent that there is
a considerable number of pixels belonging to class 6 in the image. The poor NN result for class 6 on the PCA
transformed cube is consistent with the previous result obtained while verifying NN performance on the PCA
transformed ROI’s, where also the NN failed to detect class 6. Overall, the NN classifies about 50% of the GEV
transformed pixels whereas it classifies only 30% of the pixels in the PCA case. The unclassified pixels are

concentrated in the central portion of the image in both cases indicating the need to add more training classes from
to this region.

Lastly, we note that the total computation time for the PCA/GEV transformation on the entire cube is about 10
minutes. The NN takes about 1 minute per class to process the entire cube. Training times is insignificant.

3.3 Supervised ENVI Classification

ENVI classifiers like the parallelepiped (PP), minimum distance (Min-D) and spectral angle mapper (SAM) are
applied to the AVIRIS cube in the PCA transformed domain, using the same ROI’s for training as before. In order
to compare the ENVI results with those from the NN, the ENVI classification thresholds are adjusted till
approximately 50% of the total number of pixels are classified (which is the number of pixels classificd by the NN
using the GEV transformed cube). The lack of ground truth makes it difficult to make absolute performance
comparisons but some of obvious problems of each method can nevertheless be identified.

Table 5 summarizes the results of the ENVI classifiers. The PP and Min-D methods assign about 30% of the pixels
to class 1. However, a large number of pixels assigned to this class are from the central region of the cube where no
ROIs were selected. In contrast, the NN classifications of the PCA and GEV cubes for class 1 take a middle ground
with 6% and 14% respectively. Further, the NNs leave the central regions of the image as ‘unclassified’. The SAM

assigns a negligible number of pixels to class 1, which is clearly incorrect. In class 2, the results from all classifiers
are more or less in agreement. In class 3 (concrete), the Min-D classifier detects very few pixels whereas it is clear
from the image that a large number of pixels belong to this class. The other statistical classifiers tend to agree with
the NN assignments in this case. With classes 4 and 5, all the classifiers (NN and ENVI) assign more pixels to 4
than to 5 although the ratio of pixels assigned to the two classes varies. The SAM violates this trend and assigns
over 3 times as many pixels to class 5 (20%) than to class 4 (6%). With class 6, the ENVI classifier more or less
agree with the NN results from the GEV cube. The NN fails to detect class 6 in the PCA transformed cube. Min-D

identifies very few elements belonging to classes 7 and 8 in the image while PP and SAM identify larger numbers.
The latter’s results are consistent with those of the NN.?!

ENVI takes about 1-2 minutes to classify the image in the PCA domain. The PCA transformed cube (8 bands) was

created externally before feeding it ENVI. Classification in the spectral domain takes 10-15 minutes depending on
the distance measure. S :

4. SUMMARY

In this paper we have demonstrated the advantage of the GEV technique for class separation and its effect on
classification accuracy. The ADSVD NN which has a very rapid error convergence rate facilitates extremely fast
training of hyperspectral data sets. This NN is also highly robust in that it requires very few samples (10-12) to
encode the features of a particular class. Training the NN in the GEV transformed space not only speeds up training
by reducing the data dimension (by a factor of 30-50) but also improves classification accuracy by maximizing class
separation. The use of sub-networks also contributes to improved classifcaton accuracy and reduced training time.

All the above techniques lead to a methodology that makes the NN a very fast, robust and practical tool for
supervised hyperspectral image classification.




Finally, more work needs to be done in terms of validation and comparison of the various techniques. While
absolute comparison of ADSVD NN with statistical classifiers is only possible with ground truth, we have
qualitatively identified some obvious cases where the statistical classifiers produce erroneous results. Previous

studies using synthetic hyperspectral data also verified-that the ADSVD NN outperformed the statistical
classifiers. 132 '
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Class # | Pixels/ | Material
Class

1 318 | clear water

2 221 | dense vegetation

3 24 concrete

4 149 | waterwith .
suspended solid
material -

5 179 water (not as clear

. asl) ”

6 183 water with .
suspended . solid
material (not as
much as 4)

7 212 evaporation pond

8 107 sparse vegetation

Table 1: ROIs for classification.

Figure 1: Moffett field data cube recorded by AVIRIS sensor in 224 spectral bands covering the range 0.4 um to

2.4 um. The RGB composite was created using bands 45, 31 an 18 respectively. The patches alongside the numbers
are the 8 regions of interest.
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Figure 2: Average spectrum of each class created using ROI pixels.
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Figure 3(a): Principal component representation of average ROI spectra.

Gen Eigenvalue Transformed Spectra

Means of 8 Classes

wa Class 1
@ Class 2
« Class 3
a Class 4
@ Class 5
& Class 6
@ Class 7
# Class 8 -

Arbitrary Units

Figure 3(b): Generalized eigenvalue transform representation of average ROI spectra. Interclass separation is better
than with PCA and all classes look distinct.




Class # 1 ‘ 2 3 4 E] [ 7.00 8.00 Overali Avg
Average Angular Distance (degrees)

SPECTRAL 19.70 31.92 18.33 21.24 21.82 16.56 2053 - —23.60 2.7
PCA 32.75 33.25 67.89 37.32 33.02 33.93 56.18 30.74 40.64
GEV 57.79 55.67 75.09 68.43 §5.22 57.31 71.26 §2.35 61.64
Average Fisher Distance (dimensionless)

SPECTRAL 86.98 154.83 83.41 78.99 80.03 60.80 99.84 80.06 90.62
PCA 122.10 203.19 126.01 104.56 105.35 75.99 136.78 102.80 122.10
GEV 162.65 198.15 56.55 165.26 140.00 128.41 210.36 11169 146.63

Table 2: Class separation of the average ROI spectra measured using the angular separation and Fisher discriminant

distance measures in the spectral, PCA and GEV domains. The separations increase as we go from spectral to GEV
domains.

Classification]| Class# [Total # Pixel§ Correct Missed UnClassified False Alarms]
Domain Per Class
PCA 1 169 169 0 V) 4
2 370 366 4 0 0
3 24 24 0 0 0
4 149 149 0 0 0
5 179 177 1 1 97 :
[ 183 2 100 81 0
7 212 212 0 0 0
8 107 107 -0 0 4
GEV 1 169 169 0 0 4]
2 370 370 0 0 0
3 24 24 0 0 0
4 148 148 0 1] o
5 179 179 1] 0 0
6 183 183 0 0 0
7 212 212 0 Q 0
8 107 107 0 0 0

Table 3: ADSVD neural network classification of the ROI pixels in the PCA and GEV domains.




‘PCA Classified NN GEV Classified NN
Class # # Pixels Classified % # Pixels Classified %
1 — 19,936 6.3 44718 14.3
2 4,046 1.3 6,338 2
3 8,678 2.7 16,390 52
4 12,065 38 33,979 109
5 5,701 1.8 7,963 2.5
6 30 ~0 20,799 ) 6.6
7 2,436 0.8 5,801 1.8
8 41,867 13.3 18,383 58
Total 94,732 30.1 154,371 49.1
Classified
Unclassified 219,709 69.9 159,997 50.9

Table 4: NN classification of the entire PCA and GEV transformed images at 0.5 threshold. The NN classifies
nearly 50% of the pixels in the GEV cube and only 30% in the PCA case.

PCA Domain
Min-D PP SAM -
Class # % Classified % % ?*
1 348 3338 ~0 *
2 22 1 23
3 0.2 6.1 6.3
4 36 2.2 6.1
5 3 1.1 20.8
6 39 5.1 9.4
7 0.2 0.7 0.6
8 0.2 0.5 1.4
Total 48.1 50.5 46.9
Classified
Unclassified 519 49.5 53.1

Table 5: ENVI classified result in the PCA domain. Different thresholding parameters were used in each case so as
to make the total number of classified pixels approximately equal to 50% (same as NN classified resuits of GEV
cube). The following threshold parameters were used: (Min-D (o= 4.0), PP (o=4.0), SAM (8 =0.27 radians).




