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ENERGY MINIMDM PRINCIPLE FOR HARTREE FOCK CALCULATIONS

OF CERTAIN EXCITED ATOMIC STATES
qu J. F. Perkins, Redstone Arsenal, Alabama
Q

o The Hartree-Fock method is of course based on the requirement that
i;&kyhe expectation energy shall be statiomary with respect to variations of
the one-electron orbital functions of which the trial function is composed.
The trial function is made antisymmetric to the interchange of the spéce
jand spin variables of each pair of electrons in order to correspond to

fthe physical solutions of the nonrelativistic Schrodinger equation. The
present discussion will be limited to cases where the trial function is

of a definite symmetry, i.e., is an eigenfunction of La, Lz, Sa, S,, and
,parity. This implies that one makes stationary the expectation energy of
'a particular multiplet rather than the average energy of all multiplets

arising from a given configuration, as is sometimes done. The stationary-

‘energy requirement seems appropriate for excited states as well as for

‘ground states since the exact wave functions of excited states have the
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‘stationary-energy property.
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Since states of different symmetries are orthogonal, the well-known

1 energy minimum pfinciple guarantees that the Hartree-Fock energy for a
state of a give& symmetry lies above the exact emergy of the lowest state
of this symmetry. Thus in dealing with the lowest-lying multiplet of a
given type, the stationary-energy requirement is equivalent to the require-
ment that tbe expectation energy be the best possible approximation to

the exact energy fér a trial function of the general Hartree-Fock form.
Similar conciusions would apply to higher-lying states of a given

symmetry if the trial function were constrained to be orthogonal to the
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exact wave functions of lower-lying states of the same symmetry, but this

is not really very helpful since the exact wavefunctions are not known.

The principal purpose of this paper is to point out that the energy-

- minimum principle of equation 1 applies to Hartree-Fock calculations of

a large number of optical states without the necessity of requiring the
trial function to be orthogonal to the exact wave functions of lower
states of the same symmetry. This property follows from the stationafy‘
energy requirement of the Hartree-Fock method, as may be shown by applying
a theorem of MacDonald and Hylleraas and Undheim to an expansion-type
Hartree-Fock calculation.

The one-electron radial functions of which a Hartree-Fock function
is built can be formally expanded imn a countable, complete set of basis
functions, as.shown in equation 2. Any variation of uy (r) can then be
expressed as é variation of the expansion coefficients Cg,j. .The
requirement that expectation energy be stationary with respect to
variation of uy (r) can thus be expresseﬂ as the usual Hartree-Fock
integrodifferential equations in the function uy (r) or, alternatively,

as an infinite-order secular equation. In actual expansion-type (or

‘Qnalytic) Hartree~Fock calculations the basgis set is, of course, finite.

We ﬁake the highly plausible assumption that as N «»* the roots of a
.finite-ordet gecular equation approach the solutions of the equation which
is formally equivalent .to the infinite-order secular equation.

Now in many cases, an optical state which is not the lowest of a
given symmetry, arises from a configuration which differs from those of

lower states of the same symmetry only by the principal quantum number

of a siﬂgle, gseries electron. .In many such cases, the Hartree-Fock wave
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function is linear in the expansion coefficients of the radial function
of this electron, i.e., we have equation 3, and the lower-lying states

of this symmetry frequently have a one-to-one correspondence to the

lower-lying roots of the secular equation for this electron. As a simple

exampie we consider lithium lsa3p aPp,lfor which we would have, for
example, equatién 4. Now equation 3 1s a special case of a more general .
form of expansion of the Rayleigh-Ritz type, as given in equation 5. y
From a theoreﬁhéf MacDonald and Hylleraas and Undheim it is known
that equations:<6 and 7 hoid. That.is(§)the.kth lowest root of the secular
equation for an expansion of length N lies above (or equals) the kth
lowest root associated'with an expansion obtained by adding one or more
terms to the original N, and(’]the kth lowest root of the secular equation
lies above the exact energy of the kth lowest state which is not orthogonél
to. the trial function by symmetry. The energy minimum principle, equation
1, for an expansion-type Hartreé-Fock’calculation, follows directly from
MacDonald's theQrem‘for the type of state considered. If it is assumed
that the results of an expansion-type calculations approach solutions of
the corresponding integrodifferential equgtions as N-»=» it follows that

the principle also holds for the numerical Hartree-Fock method.

'The specific conditions for applicability of the principle are

shown on the next slide. ‘Condition (a) is fairly restrictive. Condition

(b) rules out a few states where three or more electrons outside closed

- shells couple differently, i.e., cases of different parentage. Condition

(c) could always be met by use of an "open-configuration" scheme, but is

" not very restrictive, anyway, since multipié oécupancy of the outer shell

.

1s usually associated with violation of cundition (a).
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-to equation 1 then goes through except insofar as the one-to-one corre-

Clearly orbital orthogonality constraints which do not affect the
radial function of the series electron have no effect on the previous

arguments. It can be shown that an orthogonality constraint on the

"series electron has the effect of reducing by_uﬁity the order of a

!

finite basis set in which this function is expanded. The argument leading

.. C
spondence of physical states to the roots of the secular equation may be

upset. In a case such as He 1s2s 1S, a requirement of orthogonality

.between the radial function of the series electron and that of a lower-

lying shell of the samo»ﬁ cannot be consistently imposed in treating

lower states of the same symmetry. Thus the lowest-lying solution of

~the Hartree-Fock equations with such -an orthogonality constraint imposed

glves an uppef.limit (probably poor) to the ground-state energy, rather
than an approximation to the 1s2s 'S state as might have been hoped. We

have investigated the amount by which the energy of the one-radial-node

solution is shifted when orbital orﬁhogonali;y is required and find it is

substantial and results in a value below the experimental ls2s lg energy.
The methodbemployed‘toiguaranteeborbiéal orthogonality is shown on

the last slide. It is very simple to apply and is essentially equivalent

‘ to a more complex scheme suggested by Huzinaga. The idea 1is that

orthogonality at each state of iteration in an expansion-type method
merely results in a single linear condition on the ekpansion coefficients
of the orbital being varied. It 1is easily shown that this is a necessary
but not sufficient condition that the energy be.stationary with respect
to variation of all expansion coefficients except for a single constraint

of mutual orthogonality. Thus the self-consistent solution obtained depends

‘on the form of the trial 1s orbital used to start the solution.
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Conditions for applicabilitz oftenergy
minimum principle < E > > E°Xa¢t,

(a)

(b

(c)

(d)

State must be formed from configuration
which differs from those of lower-lying
states of the same symmetry only by the
excitation of a single electron into a
higher shell of same £,

Vector coupling must be the same as for
lower states of the same symmetry.

HF wave function of excited state must be
linear in the radial function of the
excited electron.

Orbital orthogonality constraints must be
limited to those which can be consistently
applied in treating lower states of the

same symmetry.
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u (r) = z: Cii u,i (x),

u (1) = jzl Ca,j we,j (r).

S5 = jzl Aj G- 0, where

Aj = Jur (1) w3 (x) dT=iZIC1,1‘ru1 A(r) uwgj(r) dr.

Variation of ug (r) subject to (16) is

equivalent to variation of
N-1

ud (r) = jzl C3,j ud,j (r), where

A
uwdj(r) = ugy (r) - nﬁ‘u%u (r)
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