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m e  Hartree-Fock method i s  of course based on the requirement that  
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expectation energy shal l  be stationary With respect t o  variations of 

the one-electron orbital  functions of which the trial function is composed. 

The t r i a l  function is made antisgmmetric t o  t.b interchange of the spd.ce 

spin variables of each pair  of electrons in order t o  correspond t o  
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::;the physical, solutions of 'the nonrelativietic Schrodinger e&ation. The 
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:;present discussion w i l l  be l imited t o  cases where the t r i a l  function i s  .i .?I 
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0 ;)of a definite symmetry, i.e., i s  .an eigenfunction of L ~ ,  Lz, $, S,, and 
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&+.?IFI~ ;)parity. This implies that one makes stationary the expectat.ion energy of 
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6 a FI '2 energy requiremetrt seems appropriare fc)r excited s ta tes  as qelX. as  for  
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p a 3 . G  ,:;!ground aiates since the exact wave  unctions af exc~ted  states have the 
m al .a ' j  a d  . ,~ .  ~~5 . ;]statiomry-enefgy property. 
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SIince s ta tes  6f &if ferexit symrpetries. Are ~orthqg?bal, the wall-knorn 
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energy minimum ptinciple guarantees that the Hartree-Fock energy for a 

a dtate of a given sgmmetry l i e s  above the exact energy uf the lowest s ta te  
h 
1 

& of th is  synnnetry. Thus i n  dealing with the lowest-lying multiplet of a 
L .  

given type, the etatiouary-energy requiteent .  is equivalent t o  the require- 

. ment.that.the expectation energy be the beat possible approximation t o  
I 
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. , 
the exact ewigy for a t r i a l .  function of the ge&etai Urtree-Fock form. 

-S~ i l a r~conc lus to t i s  would apply t o  higher-lying sfatee bf a given 
. . 

sgmmeta+ if the . t r i a i  *tion :were:'(rmstra- to .be oe.bg-i tg  the ' 11 
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exact wave functions of lower-.lying s t a t e s  of the  same symmetry, but t h i s  

is not r e a l l y  very helpful  s ince  the  exact wavefunctions a r e  not known. 

The pr inc ipa l  purpose of t h i s  paper is  t o  point out t ha t  t he  energy- 

minimum pr inc ip le  of equation 1 appl ies  t o  Hartree-Fock calcula t ions  of . 

a large  number of op t i ca l  s t a t e s  without the  necess i ty  of requiring t he  

t r i a l  function t o  be orthogonal t o  the  exadt wave functions of lower 

s t a t e s  of the  same symmetry. This property follows from the s ta t iona iy-  

energy requirement of the  Hartree-Fock method, a s  may be shown by applying 

a theorem of MacDonald and Hylleraas and Undheim t o  an expansion-type 

Hartree-Fock calcula t ion.  

The one-electron r ad i a l  functions of'which a Hartree-Fock function 

is  b u i l t  can be formally expanded i n  a countable, complete s e t  of ba s i s  

functions, a s  shown i n  equation 2 .  Any va r i a t i on  of y ( r )  can then be 

expressed a s  a va r i a t i on  of the expansion coef f ic ien t s  Ca,j . The 

requirement t ha t  expectation energy be s ta t ionary  with respect t o  

va r i a t i on  of % ( r )  can thus be expressed as the  usual  Hartree-Fock 

integrodif  f e r e n t i a l  equations i n  the  function % (r) or ,  a l t e rna t ive ly ,  

a s  an in f in i t e -order  secu la r  equation. In ac tua l  expansion-type (or 

ana ly t ic )  Hartree-Fock calcula t ions  the bas i s  s e t  is, of course, f i n i t e .  

We make the  highly plausible  assumption t ha t  arr N + -  the  roots  of a 

f in i t e -order  secular  equation approach the  solut ions  of t he  equation which 

is formally equivalent t o  the  infinite-ordel: secu la r  equation. 

Now i n  many cases,  an op t i ca l  s t a t e  which is not the  lowest of a 

given symmetry, a r i s e s  from a configuration which d i f f e r s  from those of 

lower s t a t e s  uf the  same symmetry only by the  p r inc ipa l  quantum number 

of a s ingle ,  series e l e o t ~ o n .  I n  may such caaeg, the  Hartree-Fock wave 
, 



function is  l inear  i n  the expansion coefficients of the radial  function 

of t h i s  electron, i . e . ,  'we have equation 3, and the Power-lying s t a t e s  

of t h i s  symmetry frequently have a one-to-one correspondence t o  the 

lower-lying roots of the secular equation for  t h i s  electron. A s  a simple 

example we consider - lithium 1 ~ ~ 3 ~  'f , , fo r  which we would have, fo r  

example, equation 4. Now equation 3 i s  a"special case of a more general . 

form of expansion of the Rayleigh-Ritz type, a s  given i n  equation 5. 1 

' I 

.From a theorem of MacDoxrald and Hylleraas and Undheim it i s  knowq 

that  equations: 6 atid 7 hold. That i s  (,6) the k t h  lowest root of the secular 

equation for  an expansion of length N l i e s  above (or equals) the kth 

lowest raot associated with an expansion obtained by adding one o r  more 

terms t o  the or iginal  N, and (D) the kth lowest root of the secular equation 
I 

l i e s  above the exact energy of the kth lowest s t a t e  which is not orthogonal 

to. the t r i a l  futict,ion by symmetry. The energy minimum principle,  equation 

1, for  an expansion-type Hartree-Fock calculation, follows d i rec t ly  from 

MacDonald's theorem f o r  the type o f ' s t a t e  considered. I f  it is assumed 
I .  

tha t  t he  resu l t s  of an expansion-type calculations approach solutions of 

the corresponding integrodifferent ial  equations as  N S -  it follows tha t  

.the principle also holds for  the numerical Hartree-Fock method. 

The specif ic  conditiond fo r  appl icabi l i ty  ,of the principle a re  

shown on the next s l ide.  , Condition (a) is fair ly .  r e s t r i c t ive .  Condition 

(b) rules out a few .states where three o r  more electrons outside closed 

she l l s  couple different ly,  i .e . ,  cases of .d i f fe rent  parentage. Condition 

(c) could always be met by use of an."open-configuration" scheme, but is 

not very res t r ic t ive ,  anyway, since multipl'e ~ccupancy of the outer she l l  

is usually' associated wlth violat ion of condition (a). 



A .  . 

Clearly o rb i t a l  orthogonality constraints which do not a f fec t  the 

rad ia l  function of the se r i e s  electron have no ef fec t  on the previous 

arguments. It can be shown that  an orthogonality constraint on the 

ser ies  electron has the e f fec t  of reducing by uni ty the order of a , 

\ 

f i n i t e  basis s e t  .in which t h i s  function is  expanded. The argument leading 

! ..to equation 1 them goes through except insofar as  the one-to-one corre- 

' 1  
spondence of 'physical s t a t e s  t o  the roots of the secular equation may be 

upset. In a case such as  He 182s 's, a requirement of orthogonality 

.between the radial  function of the ser ies  electron and tha t  of a lower- 

1 lying she l l  of the same cannot be consistently imposed i n  t reat ing 

lower s t a t e s  of the same symmetry. Thus the lowest-lying solution, of 

the Hartree-Fock equations with such an orthogonality constraint imposed 

gives an upper l i m i t  (probably-poor) to  the ground-state energy, ra ther  

4 than an approximation t o  the 182s 'S s t a t e  as might have been hoped. We 

,have investigated t.he amount .by ,which. the' energy :of the one-radial-node 

B +I 
.solution is shif ted when o rb i t a l  orthagonality is  .required and find it is ' 

. .  . 
eubstantial  and resu l t s  i n  'a value below the. experimental 182s ' S  energy. 

The method employed t o  .parantee  ,orb i ta l  orthogonality is  shown on 

the l a s t  slide.. It is very. simple to  apply and is  essent ial ly  equivalent 

t o  a more complex scheme suggested by Huzinaga. The idea .is that  

1 orthogonality a t  each s t a t e  af i t e ra t ion  i n  an expansion-type method 
I 

merely resu l t s  i n  a single l inear  condition on the expansion coefficients 

o f t h e o r b i t a l b e i n g v a r i e d .  It is  a a s i l y s h o w n t h a t t h i s  is anecessary , 

but not suff ic ient  .condition tha t  the energy be stationary with respect 

t o  var iat ion of a l l  expansion coeff ic ients  except for  a single constraint 

of mutual orthogonality. Thus the self-consistent solution obtained depends 

on the fm of.  the t r i a l  l e  o rb i t a l  used t o  s t a r t  the solution. 





Conditions f o r  a p p l i c a b i l i t  of energy 
minimum pr inc ip le  < E > 2 E Zxact , 

(a) S t a t e  must be formed from conf igura t ion 
which d i f f e r s  from those of lower-lying 
s t a t e s  of t h e  same symmetry only by t h e  
e x c i t a t i o n  of a  s i n g l e  e l e c t r o n  i n t o  a 
higher s h e l l  of same A .  

(b) Vector coupling must be t h e  same a s  f o r  
lower s t a t e s  of t h e  same symmetry. 

(c) HF wave funct ion of exci ted  s t a t e  must be 
l i n e a r  i n  t h e  r a d i a l  function of t h e  
exci ted  e lec f r sn .  

(d) 0 r b i t a l . o r t h o g o n a l i t y  c o n s t r a i n t s  must be 
l imi ted  t o  those which can be c o n s i s t e n t l y  
applied i n  t r e a t i n g  lower s t a t e s  of t h e  
same 8-try. 



* L Aj where 
j- 1 

(16) 

Aj =.Sul (r) 

Variation of % (r) subject to (16) i s  
equivalent to variation of 

N- 1 

1' ua' (r) = Gj d,j (r),  where 
1-1 




