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THE SOLAR WIND GEOMAGNETIC FIELD BOUNDARY

David B. Beard®
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Marylaand

ABSTRACT

Thevtheory of the boundary of the cavity surrounding & magnetic
dipole immersed in & steadily flowing ‘sf.rea.m of plasma is reviewed,
and the various results compared withrsatellite observations of the
termination of the geomagnetic field. The shape on the solar side
is roughly hemispherical with some theoretical uncertainty over the:?u; .

poles; the shaPe on the antisolar side 15 probably raindrop shaped

~ but depends critically on the direction and relative magnitude of

the interplanetary magnetic field and possible non-ediabatic processes

such as shock phenomena.

*on leave from University of California, Davis, for the summer |
as a National Academy of Sciences--National Research Council Senior C
Resident Research Associate (summer 1963). |
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INTRQDUCTION

The correlation between solar flares and subsequent magnetic storms

observed on the surface of the earth first led Chapman and Ferraro
(1931, 1932, 1933, 1940, and Ferraro 1952] thirty years ago, to consider
the interaction_between the geomagnetic field and a sheet of plasma
emanating from the sun. Chapman (1962, 1963] has written an exemplary
review‘of this'pioneer vork and its subsequent development. It was
immedistely recognized that the diamagﬁetic behavior of the solar plasma
would exclude the geomagnetic field by means of electric currents on the
surface of the plasma and that the geomagnetic field would be compressed
and limited to a sharply defined volume from which the solar plasma

was excluded. Later Bierman [1951] pointed out that the appearance

of comet tails could not be explained by solar light pressure as pre-

viously thought and instead required the constant presence of a steadily
streaming solar plasma. The suggestion of & constant plasma stream
emanating from the sun received valuable theoretical corroboration

from Parker [1958] who suggested the term “solar wind" and has recently

‘been -conclusively demonstrated by satellite experiments (Freeman,
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Van Allen, and Cahill 1963, and Neugebauer and Snyder 1962]./*Dungey, -
[1958] who has contributed much further insight into the problem, in
particular showed that if an electric field were present at the boun-
dary due £o charge separation resulting from the difference in momentum
between the positive ions and electrons, the boundary layer would be |
infinitesimally thin.

A calculation of the exact shape of the boundary surface remained

FHERRR ERHI R Frr e bdd Hin b Rhn digeinrd bl 14 By df dirtidH bhe HbthAgtH
of the magnetic field at thg surface. That is, the calculation of the
boundary shape required a knowledge of the magnetic field resulting from
the electric currents in the boundery surface which in turn could not be
calculated until the boundary sﬁape was determined. Recently several
independent approximate numerical calculations [Beard 1960, 1962,
Midgley and Davis 1962, and Slutz 1962] have surmounted this difficulty
and resulted in a boundary shape which is particularly well understood
on the solar side of the earth. It is in the inherent nature of the
approximations that the polar reglons are only ;oughly correct at this
time. The boundary shape on the antisoler side of the earth depends
criticaily on the theoretically not as yet well-understood effect of an
interplanetary magnetic field and the random (thermal) energy of the
particles in the solar stream. Thus the antisolar shape of the boundary

15 only qualitatively understood at the present time.
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" THE PHYSICS OF THE BOUNDARY LAYER

THE THICKNESS OF THE BOUNDARY LAYER

Fig. 1 1llustrates representative naive trajectories of charged par-
ticles incident perpendicularly on a magnetic field confined within a
cylinder whose axls is parallel to the magnetic field. The positive ioné
will penetrate more deeply than the electrons into the boundary layer
because of their greater momentum. The resulting charge separation will
create an électric field perpéndicular to the sﬁrface and directed
outwards. The electric field exists only in the boundary layer and
creates a total potential differehce equal to the kinetic energy.of
the stream of positivé ions causing it, divided by the electric charge
on the ions. As a result the incident ions are decelerated in the
electric field and reflected from the innermost boundary towards the
outer layer of negative charge. That is, thé ions are reflected pri-
marily by the electric field. On the other hand, the electrons are
accelerated by the electric field to a maximum kinetic energy equal to
the original kinetic energy of the lons in the stream and are deflected
by the magnetic field in the boundary. The velocity of the electrons
parallel to the boundary layer greatly exceeds that of the 1oﬁs, and
the electrical current in the boundary is generated by the flow of
electrons. Grad [1961]), Paskievici, Sestero, and Weitzner [1962], and

MacMahon have examined the orbits of charges in the boundary layer in

detail, but it is enough for our purposes to adapt Dungey's (1958]

and Rosenbluth's {1957] calculation of the magnetic field in the
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boundary [Beard 19607 and to show that it decreases in an infinitesimal -
The actual trajectories as computed by MacMahon (private
communication) are illustrated in Fig. 2.

Let the z axis be antipérallel to the magneticAfield interior and
parallel to the surface and the y axis of a right handed coordinate

system be in the plane of the surface, then the particle.equations of

motion will be

mx = eE(x) 4+ (e/e)By - (1)
my = - (e/c)Bx (2)
I
Noting thal Jg%dt = jﬁxe integruting Fqg. 2, snd substituting the result
inte By 1, we ovtain
¢ 1
v =v - (e/me Bdx (3)
y = oy - (o) [ ’
c e © e . egl'ar B
=< £ LN - B
X X m‘E(x)x + chVoyx ncl 2 ax Lffm dx ] X
2 2 4 ale/m) [* B + (v [o)BJax’ - (efm)® ] sex'] (1)
v,T = Ve * e/m) . _m[' + voy/c Jax- - e/mec “Ifm ]

where Vox and Voy are the initial velocity components of the plasma stream

at negatively infinite x.
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The particle density is given by
N=2aNv_/v (5)

where No is the field-free space particle density. Charge peutrality mist
occur to a high degree of approxiﬁation if the electrical potential energy
of the particles 1s not to exceed the initial kinetic energy of the lons.
Hence the X component of the ion and electron velocities must be equal.
Sinqe the initial ion and electron velocities are equal, equating Eq. 4
for the electron and ion velocities and neglecting terms of order me/mi

we obtain

[* Eax' = - (v, /o) [ pax' - (e/zme® [ [0 de'.r (6)
- oy ) e -

where the subscripts 1 and e are used for ion and electron respectively;

Eq. 6 amounts to requiring the électrons to follow the ions into the

boundary to prevent charge separation énd yields the integral over E

. (the loss in potential energy of the electrons) required for the elec-

trons' increase in kinetic energy in penetrating more deeply into the
magnetic field than they would penefrate in the absence of an electric

field.
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1 Substituting Eq. 6 into Eq. 4, one obtains the x component of the

> ion velocity which is equal to the same component of the electron veloclty

; .

: v.2=v 2_ (®/umcd) ux de']e (7)
. x o ox el =

3 The surface current and field may be related by Maxwell's equation

] : - 3Bl = '

B = = = . 47N .
¥ | curl B = Ly I (Zlvovox/vix)(e/c)vey (8)
’ in which the ion contribution to the current has been neglected since
vy << v,. Substituting Eq. 4 end 7 into Eq. 8 we cbtain

L 3B ' i’ 2 2 . 2i "X s 2 %

5 —_— = n -

& X [8 Noevox/ ¢ (vox { e'/ ey ¢ } U-code }) ]

1 ' X[v - (e/m c) r de'] : , : (9)
- oy e -®

. B (e/e) [ (e/m ¢) [* Bax'

A ~ - efe) v - m

-0 oy e .[ - . :\

' 8™ e2

i B . _° 5.0

. 2 n 2

o€

4 x/%,

B~Be - . (10)
°

3 .
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vhere x = (m,c"/8"N %) = ?/\/ITC; km, end x is negative and measured fram
the deepesfc edge of the layer of pdsitive charge. Eq. 9 may be Bolvéd
exactly, but the extremely cumbersome result is required only for
- x << Xye The :meofta.me of the result we have obtalned is that the
few ions per cc~:Ln the solar plasma will cause the 'boundary layer to be
of the order of a kilometer tlﬁck and hence of negligible thickness.

At one time it was pointed out to me by E. N. Parker that the fore-
going calculation has neglected thé céntribution made by the high electrical
conductivity along the magnetic lineé of force. The magnetic lines of
force in the boundary layer are grounded in the earth's ionospr.xere.‘
Electrons are free to xﬁove in and out of this 1nfl::.i'be reservoir cf
charge and in time will ground the boundary layer so that no electric
field will exist in a steady state problem in which no change occurs in
the pressure of the solar wind. In this case the protons, not the electrons,
will cé.use the surface current because of their larger radius of curva-
ture in the boundary layer. The thickness of the boundary layer in this
case will clearly be related to the radius of the ion cyclotron orbiﬁs
in the magnetic field of the 'bounda.ry layer. Thg magnetic fleld is éiven
by the integral of the current density over the depth of the boundary.

If the lons moved in a constant ﬁagnetic field, the ions position measured
from their point of deepest penetration is given for 0 < x < r by

x=1r (1 - cos), y =xr 8inb
where r is the ion cyclotron radius and © éls the phase of their orbit
measured from the point of deepest penetration. The current density is

given by

J = K(e/e) vy\ = No(e/c) (v/vx) vy

T R T S R T e T T I e
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where v is the stream velocity. Taking the time derivatives of x and Yy

we find
= eN (v/c)(l - x/r)/(2x/r - X /r2)

For & plane current distribution for O < x < r:

=~%? Xszx'l—-%; I;de'.= hneNo(v/cz)[(Ex/? - 32/r2)§- %] | : (11)

:..;-This crude estimate yields the result that 80% of the magnetic field due

to .the. surface current is experienced within half the ion eyeiotron radius
from the innermost edge of the boundary. Since r < 40 km for any reason-

able values of the solar wind, the surface layer is of the order of 10 km

thick, again infinitesimally thin compared with the radius of curvature of

the surface.

PRESSURE BALANCE AT THE BOUNDARY

In either case of boundary electric field or no boundary electric
field, it is easy to show that specular reflection must occur for the par-

ticles incldent on a steady state smooth surface. If the electric field

. perpendiéular to the surface and the magnetic field tangential to the

surface are symmetric about a plane perpendicular to the particle's orbit
at the point of deepest fenetration, then the exit path of the particle
from the surface must be-the mirror image of its incident‘path. Thus

the angle of incidence:of the stream velocity vector with the normal
vector to the surface is equal to the angle of reflection of the particle

emerging from the surface bdundary. The total momentum change of a particle
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reflected from the surface is thus equal to 2 mv cos Y where mv is the
particle's momentum and ¢ is the angle of incidence. (If the surface is
moving, x;is the relatiVe velocity of the particle and surface,) The
number of particles striking the surface'per second per unit area is
Nv cos ¢ where N is the density of particles in the solar wind. Thereforef_
the total pressure of the particles perpendicular to the surface is given
by
p = 2N mv® cosZ3Y C (22)

where m is thé mass of the ions since the préssure of the electrons is |
negligible. |

A conducting flﬁia moving in electric and magnetic fields‘will exper=-
ience forces expressed by familiar magnetoﬁ&drodynamic equations [Spitzer,

1956]

grad p ="J~3cm1i/c (13)
where J is the electrical current density in the fluid. Eq. 13 may be
e . .
rewritten for the magnetosphere boundary in which j, B, and grad p are
. A~ A
mutually perpendicular as
i/c = B B2 13!
:‘]‘/c‘ B x grad o/ | (13%)
Maxwell's equation,
curl B = 4m Q‘l/c : (1%)

may be substituted into Eq. 13 to obtain

grad p = (l/hﬂ)SE . gradxg - (l/8ﬂ) grad B2 |

bThe change in the magnetic field in the direction of the megnetic field

is negligible compared to the change in the field perpendicular to the

boundary in the direction of p. Therefore the first term may be neglected
: N
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and the equation integrated to yield the well-known diamagnetic approxi-
mation in magnetohydrodynamics |

- p + B%/8n = constant (15)
Letting the constant be the free space value of the stream pressure,

po = 2nmv2, p = onmve cosav, we obtain the pressure equation rélating
the particle pressure outside the boundary to the magnetic pressure

inside the boundary. This equation determines thé surface,

B = *(8"9)% = +(16mm?)? cosy = #(3ﬁPo)% cosy (351)
Since the normal component of B is contlnuous across the surface and |
must be zero outslde the surface, the magnetic field interior and close to
the surface is everywhere tangential to the surface. Therefore Eq. 15!

may be rewritten as

- L
lagxB] = - (8™ )" n - ¥ (16)

P
wherejz8 is the unit normal to the surface and‘i’is the unit vector in the
direction of the stream velocity. S:ane'és -‘i_must be negative everywhere
on the surface in order for the outside of the surface to be exposed to the
solar stream, the minus sign appears in Eq. 16. |

The surface is defined by a function F(r, 0, &) = constant. Let the
constant be zero and the function be

F(r, 6, 8) =1 - R(6, 8) =0 . S (17)

then the normal to the surfacehis written’

ar -1 8o . 22, (18)

mfs = grad F/lgred F| - 8 r sin8 3% ~-
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In a polar coordinate system where the dipole is opposite. to the-

direction of the polar axis and the velocity vector of the incoming stream

.

mekes an angle A with the magnetic equatorial plane, see Fig. 3, v is

: writfen

v = - (cosd sin) + coed sinscosi)r
AN "~

- (cosd cosb cosh - sin® sink)e | | . (19)

-~

4+ s8ind cos) &
A

Therefore -
ns eV = a[- cos$ s8ing cos\ - cos@ sin)
P ~
+ (cos® cos® cos\ - sing sinh) %.%%  (20)

- 8ind cosy —2i 3R
r 8ind 3¥d

When the wind is perpendicular to the dipole, A = O, and (20) assumes a

simpler form

1 3R sind 3R

-n_ V= a[cos§ 8ind - cosd coss = = + (20*)
MB A

r 3® 1r sing 33
(N. B. \ 1s positive during summer in the Northern hemisphere and 3 is
measured here from the subsolar line rather than from the "twilight"

line as in Beard [1960j;)




NN s B £ i

Y A AT D

- 12 -

APPROXIMATE METHODS FOR CALCULATING THE SURFACE

THE METHOD OF THE SELF-CONSISTENT FIELD

Eq. 16 {s incomplete in that we have no analytical expressioﬁ to use
for‘E: Hence the surface cannot be found from this equation until E‘is
known. Unfortunately, the magnetic field due to the surface currents
cannot be computed until the surface is known. A way out of this impasse
is to assume a reasonable value for the magnetic field in Eq. 16 [Beard
'1.960, 1962]. Calculate the surface resulting from this approximation, and
use the calculated surface to compute new values of‘gf From these new
values of‘gacalculate by & reiterative process better and better surfaces
until a surface is obtained which yields a toﬁal magnetic field outside
the surface less than or equal to the error in the numerical integration
of the magnetic fleld inside the surface due to surface currents.

A reasonable value for the first approximation magnetic field is sug-
gested by'consideration‘of the thickness of the surfage layer compared
with the radius of cuivature of the surface. The surface is very nearly
a plane as far as points local to a particular surface point ére concerned.

If the surface were a plane, the field due to the surface currents would

be equal and opposite on both sides of the surface. Since the field out-
side is zero, the plane surface current field would ﬁe equal and opposite
to the geomagnetic field outside the surface and must therefore exactly
douﬁle the tangential component of the geomagnetic field inside the surface.

The geomagnetic field is given Dby

~

B =-24 (2cos86 r + 8ind o) - (
~g 53 ~ - S

21) l
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Ferraro [1960] has suggested that the first approximation may be improved ‘
by multiplying the tangential component of the geomagnetic field by a factor
2f‘rather than 2. Only the scale;, not the shape, of the surface is affected -
by this change. Unfortuna;tely the value of f cannot be computed except
on the wvay to a higher order appro.ximation.' The- value of f has been found
to be reasonably close to 1, as expected, when the second order calculation

i

“4s made.
When Eq. 18, 20, and twice 21 are substituted into Eq. 16 a first

approximatioﬁ surface may be computed. A solution of Eq. 16 may not exist;
however, for all angles, § and &, if the correct value of}jﬁ_is' not used..

In this case, to 'obt'a.in a corrected magnetic field from a previous apptoxi-
mation surface, the surface must be arbitrarily comstructed for values of

6 and & for which no solution exists in the previous epproximation. A
further approximation which enables more of the first ap;n-oximatio.n sur-
face to be calculated than i1s possible using Eq. 16, 18 to assume that all
components other than the Q component of b X B are zero. [Davis and Beard .
1962] This a.pproxmation gives an exact expression only in the me:fidia.n

and equatorial planes and on the surface of a sphere (which fortunately

' the sunlit surface resembles). Using this approximation we construct a

unit vector P pavallel to B inside the surface.

h— ~ _ 'ldﬁ* ~
Eexign,) =-vGEID)

vhere

L g
ah

U B
ST
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Therefore

-~ 2 dR
L‘:s"}?_' 2;_ B-2 r3 sinG-a-cosercle

In the meridian plane 'g—fqi = 0, Eq. 22 1s exact, and the equation re-

sulting from substituting Egs. 20" and 22 into 16 assumes a particularly

‘ simple form

—gii—I—g[sine 4+ cosg < 2 a1 = 8ing - cosb 1dR
(8ﬁp )? d.e r de

Let .
R = (/W) C = (/emp )M

and let r be measured in units of Ro, then Eq. 23 becomes

3.
%=rmer3 1
™4+ 2
whose solution is
r=1
or
3
r, -1 r2
3 = ¢cos8b
r2 r -1
0

- where the constant ro occurring .in the integration constant-is the value of
r at 6 = 0. Eq. 26 yields a surface for which r is either zero or infinite

: ]
at the equator (© = 90 ) and with infinite slope. Eg. 25, for a circle,

yields a much more acceptable surface.

(22)

(23)

(24)

(25)

(26)
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At the pole (8 = 0), ,és . i= 0, and the field B and current j change
direction. Sinceq}ighanges direction, the right hand _eide of Eq. 224
becomes negative and of wrong sign since 1t represents the absolute value

of lés xﬁB;l . Multiplying the right hand side of Eq. 22 by - 1 and using

it in Eq. 16 ve obtain the equation for the meridian plane on the antisolar

side':
4R = » tang .Iﬁ_t_l. : (27)
de 3
r -2
whose solution is
3
kr 3 = T cose (28)
l4+r

Spreiter and Briggs [1962] have made many illuminating graphs of Egs . 25,
26, and 28.
Eq. 28 does not éo,nnect withr =1 at 8 =0 . A surface solution

does not exist in first approximation near the pole on the antisolar side.
Beard [19607 attempted a different problem beyond and near the pole by
treating the perpendicular component of the field. The resulting solution
had the advanté.ge of necessarily having the slope of thg surface vary '.
continuously. Spreiter and Briggs [1962] extended the antisolar so;ution
over to the solar side until it intersected the daylight solution at-'

8= l9.l° . This procedure leads to difficulty in higher approximation,
.a.nd the non-continuocus slopé ylelds an infinite ﬁagnetic field component
perpendicular to the surface, but it places the null point (where

ns . j“ = 0) on the solar side where it should be. A third proced.i;re
pan :
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may be based on & private cbservation of Leverett Davis that the point at
infinity in the meridian plane must be at twice the height of the null point
because of current conservation. Setting k = 2 in Eq. 28, let Eq. 28
represent the solution for 30° < 8 < 90° and interpolate by a simple

[}
power series for O « 6 <« 30 so that the solution and its derivative

match at = 0" and 30 .
= 180°
% = 160 3/2 2
o r=1+0.005356~ + 0.0002228
O0<6< 30

The various first approximation surfaces are illustrated in Fig. 4.
: % If Eqs. 20 and 22 are substituted in Eq. 16, the surface differential

equations in the meridian plane for A # O are

3 : _
g_lé = ;_3_§_in(6 + A) F sind , 5= (2, 27)
rocos(® + A) + 2cosh
w3 - o
Bopremld-Neeimd 4o (2, 27)
) r7cos(6 - A\) F 2cosh.

Wherce the upper signs are to be used on the solar side of the null
point and the lower signs on the antisolar side. Chapman [1963] has
obtained the solutions v ‘
r3cos(0 + 1) F cosd = Kr® | , (251261281

- and similarly for 24" and 27".
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Spreiter and Briggs [1962] bhave done a rather complete job of calculating
the meridian plane first approximation solution for A # O and these
solutions are illustrated in Fig. 5.

The solution in the equatorial plane may be obtained by numerically

solving Eq. 16 using Eq. 20'

. .
(z-siné) 2 d@) -2sin§cos§%g%+—%-coszé=o (29)
r

In cylindrical coordinates with the 2z a.xi's parallel to the wind veloeity

the surface equation in the equatorial plane takes ‘an especiaily simple

form

R _ 1

1

3z 3
[(r2 + 22) - l]-i

The- solution in the equatorial plene is illustrated in Fig. 6 and tabulated

in Table 1.
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For regions on the surface other than the planes of summetry Egs. 20'
and 22 (or the exact expression for 4;5 AJ:E_) may be substituted in Eq. 16
which may be solved on & machine computer by Newton's Method (finding a
value of r and its derivatives for which the equation is satisfied) as
Mead [1962] has done or the resulting differential equation in ¢ may be
solved by & series expansion in powers of ¢ on the solar side. '[Beard 1960]

The series expansion method requires successively computing a surface

assuming %%.= O, then using values of %g from the first computed surface

to deduce a second surface and so on until insignificant changes oceur
between successively computed surfaces. Using the approximation(é2)
coefficients are obtained [Beard 1960] as a function of & for tﬁe series
expansion in %

b (30)

where ¢ 1s expressed in radians. The coefficients are listed in table 2

T =14 03° + B3

and the surface is 11lustrated topographically. in Fig. 6.

Baving obtained a first order approximation surface one is now able
to integrate over the surface and obtain the correction to the mﬁgnetic
field due to the curvature of the sﬁrface which was aséumed to be a plane
in first order. The current density on the surface is given by Eq. 13',
where it will be remembered that 33.5 is in the direction of grad' p, and by

»~

Eq. 16 the current density magnitude is proportional t°4fs + v. We are

an

then able to numerically éompute the magnetic field due to the surface
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currents by Laplace's equation

~

_rdszx
B= | 2 ds (31)

where r is the vector from-the point B is evaluated at to the infinites-

imal surface element ds, This integral, which is computed for a spot

on the surface, has a surface singularity where r = 0. Since the surface
is infinitesimally thin, it matters how the singularity is treated. The
result of the integration depends on whether we are on the outside, the
inside, or at the center of the surface at the singularity (three points
essentially cdincident). Since we want only the correction to our figst
order approximation the center point.is chosen at the singularity, the
total field being had by again adding the pianor field. The intensity
of the current in terms of M and R;3 is determined by setting the planor
magnetic field at the subsolar point, 2nJo/c, equal to the geomagnetic
field at that point, M/Ro5.
Eq. 16 now becomes

A ~ ~

. A
- 3. .
]-I.}s A (.?g + gp,r.‘ + 23fsc)‘l = (87@0) Js = V.

is the planor field andAgsq'is the surface correction field.

A

where'gp&

B is necessarily perpendicular tonps and equal to %(Bnpo)%'ns

\.'.'p

magnitude because of the definition of‘Jo and Ro. Therefore

- Vv in
kR

~ ~

L\ns i,(u(v]\ag +-§sc)' = (2wo)%&s - ' (52)

N
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A more rigorous derivation of Eq. 32 is to note that BPIO outside the,
. 2 P

surface is equal but opposite to'gpl inside the surface and that the

. total B outside the surface is zero. Thus, using the value of Bp&

At

inside the surface, B outside the surface is
-

e Sl VIAD R
and Eq. 32 follows. L ‘

Letting subscripts r and 8 refer to r and € components, the meridién
plane eqpation, Eq. 23, becomes for r in units of R, (Beard 1962, Beard

& Jenkins 1962a]

.l.[sine+cose_2.§5]+3 +3B 1R
3 )+ c0%8 2 30 Pace T %

scr
r .
13R _
- 8ing 4 cosé = 39 0
R r3{l + Bggqo/84n8)] -1 '
3g = T tenmo 3 (33)
r{l - Bscr/cose] +2
The defiﬁition of Ro remains the same but the altitude of the sub-
solax point,‘which is found from equating the numerator in 33 to zero,
becomes '
_ -1/3 | :
Yoo = (1 + Bsce) . o (34)
The result of the higher order approximations is to raise the subsolar

~ ~

'point imperceptibly and to lower the neutral point wheren + v =0.

“ g ~d.

The neutral point is moved forward on the order of 20 fram the pole.

"This is very close to the value Spreiter and Briggs obtained by arbi-

trarily extending the antisolar solution to the solar side.
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The equation of a straight line parallel to the solar wind stream

velocity is
r = a sech
whose deri&ative is
ar = r tans
de

Referring back to Eq. 33 we find that the null point occurs at the angle
where the coefficient of r tan® in Eq. 33 is 1 [Beard 1962, Beard &
Jenkins 1962a], that is, where

4 = 3
Bsce csch Bscr sec6 = 3/r

At the null poin£ the planor field and the current change sign so that

the equation in the meridian plane for & less than the null point becomes

r3(B ésco - 1] -1
g ——=28 (35)

8ig
[
o

3
r [~ By, secd - 1] + 2

Another way of seeing Eq. 35 is to note that the total B in Eq. 32

~

reverses sign at the point where o, Vv = 0, and therefore we again

1L o

mltiply the right hand side of 22 by - 1 as we did in obtaining Eq. 27.

At the pole B_. and the'unit'vector_e both change direction together:

g6

80 that_B maintains the same sign; all radial components and the unit

go _
vector r maintain the same direction; the component of Bsc'iﬁ the new
. A

PR

» ) . °
direction of 9, howeve:, does change slgn. Therefore, for P = 189,

' Eq. 35 1is replaced by

3 '
r (B csch + 1] + 1
dr . r tan§ -3 5c8 . (36)
r’(B secod + 1] - 2
scr M
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While the equatorial regions are imperceptibly altered in higher order
approximation, the polar region is significantly altered. This should be
expected, for the approximation of ignoring all but local_surféce currents
in the éurface should be expected to be poor where the local surface
current is zero or where the radius of the surface curvature becomes

small. Midgley and Davis [1962] show, as described below, that for an

- isotropic plasma the polar region is only poorly described in first

aprroximation by this method. It is only in second approximation

that anything'nearly as good as their results 1s obtained. On the
other hand a two diﬁensional solar wind problem apbears more amenable
to this approximation, perhaps because the surface current is zero in
the polar region where the surface curvature is greatest. Dungey, -
[1961], Hurley, [1961], and Zhigulev and Romishevskii [1959] have solved
this problem exactly»and their result 1s compared with the first
approximation solution in Fig. 7. |

The self-consistent field method is p:esently being used to compute
the surface by means of & high-speed computer [Mead 1962]. No high-
speed computer results for the entire surface havé yet been published
using this method. - . .
THE MULTIPOLE FIELD EXPANSION bF MIDGLEY AND DAVIS

Midgley and Davis [1962] have worked with the boundary condition
that the magnetic field in the plasma region must be identically zero.

In treating the case of a uniform plasma pressure surrounding & mag-

_netic dipole they répresented the surface by a polynomial expansion
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in even powers of latitude angle «.
N

p=c[1-) e ) (37)

_ 8=l
The coefficients were then determined by requiring the mltipole moments
of the magnetic’ field resulting from such & surface to vanish in all
lower orders higher thaﬁ the dipole mowent. The vector potential at a
péintrga l
current

outside the surface is given by an integral over the surface

«‘93(3':2) = jm_‘;_ o | - (38)

75 - z

A may be'expanded in lLegendre polynomials which after integration become

© 2 t
Ac 1R P, (sinas) ‘
A = 2 )2 (o] n 2
Az,) gnzl( P T I, (39)
where
W3 = -4
(R, )7 = M(8Tp )
and ‘

n/2 -
_ n+. 2 dns 2 1 _
I, = I_ﬂ/zp l[p + <:E§.)2] P, (sina) cosa dao (ho)
Only odd numbered n are permitted from symmetry considerations. The
I, are numerically computed, and the cB are adjusted so that all In up
fo n = 15 are zero except Il’ the dipole term. The vector potential
1, =2
of a dipole is NKRO ) 12 (sinae) and therefore in order for the sur-

face current field to cancel the geomagnetic dipole at all rs >, Il =4
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and thus C is determined. The coefficients in Eq. 36 are listed in
Table 3, and the result is illustrated ianig. 8.

Midgley end Davis thus obtained an exceptionally good apprdximate
solution to the particular problem of & dipole immersed in a plasma
Qxerting uniform pressure. They tested their solution along with the
first approximation to the self-consistent field method also illustrated
in Fig. 8 by computinglthe ratio of the net field from the surface to
the dipole field along the equator and the polar axls which aré presented
in Table 4. Aé can be seen from the teble their solution is a significant
1mprqvement on the first approximation to the self-consistent field method.
This problem, however, secems to be an especially tough test for the
first approximation to the self-consistent field method in that the
surface currents at the poles are very lerge (where the radius of curva-
ture is very small).

The extension of the mltipole expansion method of Midgley and
Davis to the solar wind problem 1s very much more complicated not
only because of requiring thé vector potential to be expanded in
assoclated spherical harmonics rather than Legenare polynomials but
because the surface current is not constant in this problem. By
using & generalized Newton's method a surface has been obtained by
them for which the lower undesired moments were made zero. Their

results which will appear in the Journal of Geophysical Research are

illustrated in Fig. 9 and 10. The magnetic ratios outside the surface

are very much inferjor (that is, larger) to the simpler problem they

solved, being typically 1-10%.
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THE FREE SURFACE SOLUTION OF SLUTZ

Slutz [1962] attacked the uniform plasma pressure problem at the

same time as Midgley and Davis by a different technique. . He used a

" method developed for hydrodynamic problems by Treffitz [éé&%; 1916]

in finding a surface free to move in seeking equilibrium between pres-

sures on its two sides. He described the magnetic fileld interior to
the surface by a scalar potential
B=-@ay

If Eq. 41 1s integrated along & meridian line and the magnetic pres-

sure interior to the surface is equated to the particle pressure outside,

the result is

i 1
v = [ (8mp,)2ag = (87p )3 ¢
constant and
since B igﬂtangential to the surface. Using Green's Theorem for the

P g

potential at any interior point
Mcose 1  [123¢
joteme 1
r2 Jroe g =T an»s

where the first term 1s the dipole source term inside the surface, r

ISR
- ¥ . n <ir‘/ ds

is the distance from t to the surface point 5, and n is in the outward

normal direction to the surface. Since B is tangential to the sur-
face the first term in the integrand is zero, and by definition of the

éolid angle

S()ue-e

(41) .

(k2)

(43)
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A cusp appears over the magnetic pole and this created a diffi-

culty in integrating Eq. 43 as t is caused to approach the surface

- which was surmounted in the following way. Surround t with & sphere

of radius ¢ (which approaches zero in the limit). Separate the inte-
gral into that part of the surface outside the sphere s' and that part

of the surface S inside the sphere. As t approaches infinitesimally

_close to the surface and ¢ - O, { may be taken outside the S integral

ag 1t 1s constant in this Infinitesimal region. Therefore

¢ = Mcose rj‘.\"do-!- ﬂ’lJ."dQ

Mcose 1J‘ de-#rt’l[l‘“'JS. d()]
e

We finally obtain

M 8, 1 1 -
fgj—+ﬁjs' W)-G”s'do_o (44)

-1
If all distances are put in units of Ro' = (M/‘B‘"po) /3 Eq. 41

- and 44 become

COS 9

+1I"J yan - 1;—\?'[ . | “55

y=¢ | (46
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The surface was divided into areas subtending equal arcs at the
origin and Egs. 45 and 46 solved by averaging the potential over these
areas; If an arbitrary surface shape is assumed Eq. 46 will yield the
potential at points along the meridian which may then be substituted
into Eq. 45 as a test of how good a surface shape was assumed. The
process was made to converge to a satisfactory surface by a steepest
descent method in that the changes in Eq. 45 wgre studied as the assumed
surface points were varied. A surface was obtained which differed from
Midgley and Davis' solution by as little as 14 at the pole and only 3%
at the equator. Slutz has also applied his method to the solar winé
problem but it was necessary for him to limit the surface on the anti-
solar side by adding a small uniform plasma pressure. His present
result, which 1s less accurate than his uniform plasma pressure result,
is illustrated in Fig. 11.

THE SCALE OF THE BOUNDARY

All of the theoretical determinations of the boundary concern the
shape which is independent of the relative magnitudes of particle pres-

sure and dipole moment. The size of the magnetosphere is all in terms

of Ro = (2M/Jéﬂpo)l/3. For the plasma values measured by Mariner II

[Neugebauer and Snyder 19621 N ~ L protons/cc)v ~ 6.107 cms/sec and
M =8.06 + 10° emu, R, is 10 earth radii. Variations in the solar

wind, however, will cause the surface to Iincrease to twelve earth radii

or instead decrease to eight earth radii during a mild magnetic storm
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in which the solar wind pressure will double [Cahill 1962]. The sur-
face radius at the subsolar point will decrease to five earth radii
for an exceptional storm in which the particle pressure rises an order
of magnitude. As suggested initially by Chapman and Ferraré 19317,
commented on by Midgley and Davis [1962], and calculated by Beard and
Jenkins [1962b] in estimating the magnetic effects of magnetospheric
currents, such changes in scale of the magnetosphere would résult in
ob%erved sudden commencement enhancement of the surface geomagnetic
field,

Slutz [1962) and others have drawn attention to the increase in

scale that would be produced by ring currents of trapped radiation

belts. This effect has been calculated using & rough model by Spreiter

and Alksne [1962] who show that reasonable ring currents enhancement,
which would occur during a magnetic storm,- could increase the scale

a few earth radii.

The Explorer 10, 12, and 14 determinations of the geomagnetic field

[Heppner, Ness, Scearce and Spillman 1963, Cahill and Amazeen 1963]

and trapped radiation [Bonetti et al., 1963, Freeman et al., 1963,

and Frank, Van Allen, and Macagno 1963] are the best observations of
the magnitude of the pressure of the solar wind attainable. Cahill and
others observed the bouﬁdary to fluctuate around 10 ea;th redii from 8
to 12 earth radii near the subsolar point where the boundery was recog-
nized as a sudden change in direction and usually decrease in magnitude

of the observed magnetic fieid. Heppner and others observed a similar
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change at 22 earth radii and about 40 from the antisolar line which
is the calculated position of the boundary surface when the subsolar

radius is 10 earth radii. They also observed occasionel regions of

fairly constant magnetic field at greater distances which might be

caused by shock disturbances discussed in the following but are more
apt to be caused by clumps of compressed interplanetary masgnetic field.
The trepped particle flux observed on Explorer XII dropped abruptly

to zero within sixty km at the same position as Cahill observed abrupt
changés in the magnetic field. _

THE EFFECT OF THE INTERPLANETARY MAGNETIC FIELD

The previous conditions of a zero temperature wind incident on
the geomagnetic field will create an infinite cylindrical hollow on '

the downstream side; but these conditions are unrealistic. A finite

temperature or, in particﬁlar, an interplanetary magnetic field will

severely modify this picture on the downstream side of the earth and
will cause the hollow to be closed there.at a finite distance from the
earth.

The Pioneer and Mariner satellites have established the existence
of an interplanetary magnetic field of approximately 5v during quiet
conditions [Coleman, Davis and Sonett 1960, Sonett, Judge, Sims and
Kelso 1960, Neugebauer and Snyder 1962]. Zhigulev [1959), Dessler -
(1962], Kellogg [1962], Gold [1959), Axford [1962] and Spreiter and \
Jones [1963] have suggested that the interplanetary magnetic field

could create. conditions for a shock wave beyond the outer boundary of ‘
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the geomagnetic field. The evidence for such a shock strucfure is
very tentative atAthe present time. Cahill and Amazeen [1963] in
particular, have obfained magnetic records on Explorer 12 illustfated
in Fig. 12. As can be seen in the figure the magnetic.field becomes
very irregular beyond the magnetosphere and changes abruptly in ave-
rage direction. Whether the fluctuations are evidence of shock
structure or result frém compressed observed inhomogeneities in the
interplanetary medium cannot be ascertained. In any case there exists
the observational data that the magnetic field exterior to the boundary
is almost an order of magnitude greater on the'average than thé inter-
planetary value of 5vy.

Frank, Freeman, and Van Allen [1963] observed a region approxi-
mately 12,000 km thick Jjust beyond the magnetosphere where there was

010 electrons/cmzsec having an energy

an omnidirectional flux of 1
between 1 and 10 kev. This corresponds to an electron density of

6-2 electrons/cc. They have suggested that this high energy electron

flux is evidence of a thermalized plasma which is part of a shock

structure. It could also result from clumps of plasma being energized

by compression against the surface of the magnetosphere. Electrons

~would have the observed energy while in the charge seperated boundary

layer surrounding these small clumps.
The theoretical Justification for believing a shock structure

exists in the absence of collisions between the particles is that the

radius of the cyclotron orbits of the particles in the interplanetary
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field are negligible compafed with the dimensions of the surface. These
considerations are believed to replace those of mean free path, and
that in this way particles reflected from the eﬁrface will interfere with
the incident particles and thus create conditions for a shock. Conditions
in a magnetized plasma, however, are quite different from those in
ordinary hydrodynamics. Cyclotron motion is essentially two dimensional
and more important is a well ordered motion. It i1s not at all clear
how well the conditions for ordinary shock waves are met in a magnetized'
plasma. |

In the absence of a well developed theary of shock structure at
the megnetosphere boundary, appeal has been made to the magnetohydro-
dynamic collisionless shock model of Auer, Hurwitz, and Kildb [1962].
In this model an infinite sheet of magnetlzed plasma suddenly hes an
electric field (oppositely directed on the two sides of the sheet)
imposed on the surface parallel to the surface but perpendicular to
the magnetic field. The plasma is permitted to move only perpendi-
cular to the boundary and currents flow only parallel to the electric
field. The comparison to the magnetosphere is suggestive but indef-
inite. Kellogg has described the shock wave that would be formed for

.an ordinary gas in the hope that it might be some guide to the real

situation. Spreiter and Jones slightly improved Kellogg's earlier
description by using the actual shape of the magnetosphere as an

obstacle to the solar wind, and their result is illustrated in Fig. 13.
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The central fact to be kept in mind in consldering the problem
is that the interplanetsry magnetic field and the thermasl motion of
the particles exert a préssure two orders of magnitude less than the
pressure exerted as a result of the stream velocityl The overwhelming
pressﬁre of the wind compresses the feeble interplanetary field tight
against any obstacle such as the magnet;sphere. Magnetic flux will
be conserved. ©Since the field will be limited to a maximim value
found by equating magnetic and solar wind pressﬁres, conservation of
flux furnishes a means of estimating the compressed boundery layer

(Beard 1963]. For example, if the field were in the direction of the

- wind the interplanetary field lines would be deflected smoothly and

symmetrically around the magnetosphere as illustrated in Fig. 1k.

Conservation of magnetic flux requifes that the thickness of the

boundary layer, t, at a radius from the subsolar line, r,'be given

by
T2, = 2MrtB,
and thus
‘B
_r-i
t = 2 Bc (h’7)

-where Bi is the interplanetary field and Bc is the compressed field.

If the interplanetary field is aligned somewhat perpendicularly

to the soler wind velocity so fhat the field is borne along in the

. wind, the field would be compressed against the magnetopause as before

and slip around the sides of the magnetopause with the tangential

velocity of the reflected particles. In the case of a spherical
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magnetosphere surface of radius R whose dipole axis is parallel to

the incident trapped field, the amount of flux incident on a projected
equatorial area of unit height and length.parallel to the equator, Yy,
is Biyv = BiVRsine where 8 is measured from the wind direction with
the dipole taken as origin. The amount of flux leaving this volume

at the edge of the magnetosphere is BctVsine so that
t = (B,/B )R (48)
In either case t will be of the order of a few earth radii depending

on the fraction of the maximum possibie value, Bc is. (A blob of pure

field will be compressed to maximm B , but if it contains plasma the
(o4

. Bc will be less). However, Eq. 48 states that the boundary layer

will decrease slowly away from the suhsolar point in & direction per-

pendicular to the field while Eq. 47 states that the boundary layer

" will increase from zero thickness as one moves awsy from the subsolar

point.

The interplanetary medium is far froﬁ homogeneous. Blobs of
plasma are kept intact (prevente@ from diffusing) by magnetic fields
which are maintained by the surface currents on the plasma. As
expected, the thermal pressure of the plasma as reported by Mariner II
is about equal to the interplanetary magnetic4field pressure. Whén
this inhomoéeﬁeous medium is compressed against the magnetopause
fluctuations of the magnetic field in magnitude and direction as a

function of distance will result. Whether this is the cause of the




- 33 -
observed fluctuations as illustrated in Fig. 12 cennot be determined
untll the spatial extent of the inhomogeneities is befter known but
the inhomogeneities would have to be as‘small as of the order of an
earth radius to furnish a suitable explanation. While the direction
of the magnetic field would oscillate due to the surface currents on
the plasma blobs, the average direction would be tangential to the
magnetopause and in general entirely unrelated to the directioﬁ of the
geomagnetic field. Compression of the plaswa blobs and the charge

separatlon electric fields on their surface would create energetic

electrons in the cpmpressed layer difficult to distinguish in origin

from shock induced energetic electrons. One prime effect of any non-
adiabatié process such as shock phenomenon will be to increase ihe
ratio of thermal (sideways) particle pressure to magnetic pressure in
the layer beyond the magnetosphere over the value of the ratio in
interplanetary space. Thus non-adiabatic processes will expand the
layer over that'expected_frém free space vélues of particle thermal -

pressure to magnetic pressure.
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SUMMARY

The tﬁeoretical shape of the termination of the geomagnetic field
is well understood on the solar side of the earth except for a small
region near the magnetic poles. This successfui.undérstanding is pos-
sible because of the overwhelming dominance of the pressure of the solar
wind. On the antisolar side of the earth, however, the effect of the
pressure of the solar wind is very much changed by the thermal properties

of the plasma after it has passed over the solar-side surface of the

'magnetosphere and particularly by the presence of an inhomogeneous

- interplanetary magnetic field. The antisolar surface of the magneto-

sphere will close quite possibly in & long tear-drop shaped tail, but
the exact details of this surface have yet to be found.
On the solar side three entirely different methods of approxima-

tion have been found whose results differ little between themselves

" except in the polar region where none of the approximations have yet

yielded a precise and reliable result. The results of the approxima-
tions are illustrated in Figs. 4, 5, 6, 9, 10, and 11. The scale of the

surface (about 10 + 2 earth radii at the subsolar point) is in good

' agreement with satellite determinations of the energy density of the

N .
solar wind, r°3 = 2M/(32m1)2 where M is the geomsgnetic dipole moment

and u is the energy density of the solar wind, Nd%mpv2.

e e
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TABLE 1

r of the plasma sheath surface in units of'Ro and |r cost| as a

; function of §, the longitudinal positlon in the equatorial plane
1 : o ,
5 of the earth's magnetic dipole; 90° £ § < 180 corresponds to the

5 5. 1/6
night side of the earth. R_= (M /8nN6miv )

-3 o] 15 30 - 45 60 90 120 150 180

N e

r 1.00 1.0l 1.03 1.07 1.13 1.3% 1.8k 3.47 =
Ir sins] 0 0.6 0.52 0.76 0.98 1.3% 1.60 1.74 1.78
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TABLE 2

Values of a and B as a function of 6§, the latitude angle, where
a and B are the cpefficients in a series expansion of r of the plasma
sheath Sﬁrface as a function of %, the longitudinai angle from the
plane containing the earth's dipole ana the earth-sun line; r = 1

2 4 . _ ' 2v1/6 . .
+ ad< + B®* in units of RO = (M@éﬂlﬂomiv ) , and ® is expressed in

radians.

0 90° 75 60 15° 30° 15°

a 0.104 0.102 0.096 0.086' 0.068 0.051
8 0.011 0.011 0.010 0.008 0.007 0.00k4
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TABLE 3

Coefficients in the Equation for the Surface Using the Moment Technigue

gty

-0.000200

= 1.41395 c

Q
|

0.000597

= 0.120039 c

[¢]
|

-0.000326

0
1

= 0.004180 c

(¢}
]

.0.001085. ¢

0.000094
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TABLE 4

Ratio of Net Field to Dipole Field X 10°

-Distance _ : Moment Surface Self-consistent
First Approximation
from the
Surface, . In the In the
Fraction of - On the Equa- , On the Equa~-
Equatorial Polar torial Polar torial
Radius Axis Plane Axis Plane
0.04 -905 ~0.4 -61078 7126
0.08 -222 +0.2 -42966 6721
0.16 . -23 0.6 -27676 5997
0.32 -2.7 0.5 -15913 L8lL
0.64 - -0.9 0.5 | -7947 3324
1.28 - - -0.2 0.2 -3378 ' 1817
2.56 0.1 0.3 -1002 3
5.12 -0.0 0.5 -386 267
10.24 - 0.2 ' 0.0 110 81
|
|
|
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FIGURE CAPTIONS
Fig. 1. Naive charged particle trajectories in the equatorial plane
for particles incident from the left on a current sheath surrounding
a dipole pointed into the paper (field out of paper at boundary).
Solid lines trace the paths of positive ions; dashed lines trace elec-
tronlpaths. |
Fig. 2a, b. Charged particle trajectories in a boundary layer between
a plasma and a magnetic field as computed by MacMshon. |
'Fig. 3. Coordinate system used in self-consistent field calculations.
ggis the geomagnetic dipole and x'is the solar wind stream velocity
vector. The dashed vector is the projection ofyx on the magﬁetic
equatorial plane and ) is the geomagnetic latitude posit}on of the
sun.,
Fig. 4. The intersection of the magnetosphere boundary with the meri-
dain plane for A = 0 using the selffconsistent field computational
method in first approximation. The solid line is for the chénged
polar boundary condition. The long dashed line is the continuation

of the antisolar solution. The short dashed line is for a smooth fit

. between 'subsolar and antisolar solutions. All solutions presented

are for a zero temperature solar plasma containing no magnetic field.
A more realistic antisolar shape would be a rain-dropped tail joining
these solutions near the pole and intersecting the axis at between

3-10.

Fig. 5. The intersection of the magnetosphere boundary with the meri-

- dian.plane for solar wind velocities not perpendicular to the dipole
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axis as calculated by Spreiter and Briggs in first epproximation.
Fig. 6. Contours of the magnetoéphere boundary on the solar side.
View shown is looking down on the pole and the contours are shown
for various éolar angles. The intersection of the magnetosphere
with the equatoriai plane is presented for the antisolar side as
well (zero temperature, no interplanetary magnetic field).

Fig. 7. Exact and approximate cavity surfaces for a line dipole

in a zero temperature plasma stream. The exact surface 1s presented

as a solid line; the firs£ approximation of the self-consistent

. field method is indicated by the dashed line.

Fig. 8. First quadrant of the cross-section of the boundary between
an isotropic plasma exerting uniform particle pressure and a dipole
magnetic field. The solid line is for Midgley and Davis' solution
using thelr moment method; the dashed curve is for their first
approximation surface using the.sglf-consistent field method.
Fig. 9. Plctorial view of the megnetosphere boundary as computed
by Midgley and Davis using a moment technique. Earth's dipole is
along y axis and the solar wind is moving in the - z direction. :
(erer balf of tigere)  (bowver halg)
Fig. 10. Cross-sections in the moon meridiagAFnd equatoria%Aplanes
for the magnétospheré boundary surfaces calculated by the first approx-
imation to the self-consistent field and Midgley and Davis' moment
technique. The solid line is the self-consisteht field sﬁrface; the
dashed line a "smoothed" Midgley and Davis surface; the dotted portion

is Midgley and Davis' surface before "smoothing."

o v



Fig. 11. Cross-sections in the moon meridian of the magnetosphere
boundary as computed by Slutz' "free surface" method. A small con-
stant static pressure has been added to the solar wind pressure; ‘
Fig. 12. Explorer 12 magnetometer observations on Sept. 30 as reported
by Cahill and Amezeen showing total intensity, F, and angular orien-
tation o and ¢y. The solld smooth line is the predicted intensity in
the absence of a solar plasma.

Fig. 13. Traces of magnetosphere boundary and suggested ordinary gas
hydrodynamic shock for a solar wind with a stream velocit& of 600 km/sec,
N, = 2.5.protons/cc; B=5 gam@aland Alfven Mach number 8.71 after
Spreiter and Jones [1963]. 4

Fig. 14. Illustration of magnetic flux conservation at the surface

of the magnetospﬁere in the equatorial pl&né. Light solid lines indi-
catevmagnetic linés iﬂitially filling & circular area of redius, r,
compressed within a thickness, t, against the surface of the magneto- |
sphere. Earth's dipole position is'indiéatéd by é large dot on the

axis.
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