

AUG 20 1963

GMELIN REFERENCE NUMBER

AED-Conf-63-100-6

MASTER

POSTOPERATIVE TREATMENT OF THYROID CANCER WITH I-131
RADIOACTIVE IODINE

by

OPINS LIBRARY
WITHDRAWN
BROADWAY AVENUE

William H. Blahd, M.D., and Jerry M. Koplowitz, M.D.

ABSTRACTED IN NSA

CONF-164-4

Radioisotope Service, Veterans Administration Center, Los
Angeles, and Department of Medicine, School of Medicine,
University of California at Los Angeles

Society of Nuclear Medicine
10th Annual Meeting
Montreal, CANADA
June 26-29, 1963

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Despite numerous reports which have appeared in the medical literature during the past decade, the therapeutic efficacy of radioactive iodine (I^{131}) in the management of thyroid cancer remains controversial. A major factor in this controversy is the relatively small number of thyroid cancer patients who have been treated with I^{131} . Furthermore, because of the remarkable longevity of most thyroid cancer patients only a few of these treated patients have been followed for periods sufficient to be considered of therapeutic significance. The evaluation of this form of therapy is further confounded by the multiple and combined modalities of therapy employed. These have included the use of antithyroid agents, thyrotropic hormone, desiccated thyroid, x-ray therapy and a host of surgical procedures. In the present series an attempt has been made to follow a relatively consistent therapeutic regimen involving four basic modalities of therapy: surgical thyroidectomy, thyrotropic hormone stimulation, cancerocidal doses of I^{131} , and thyroid extract administration.

Methods

Since 1949, 45 patients have received therapeutic amounts of I^{131} and have been followed for more than one year in the Radioisotope Service, Veterans Administration Center, Los Angeles. Cancer metastases and postsurgical remnants were localized by means of the mechanical scintiscanner after patients had received

large tracer doses of I^{131} preceded by injections of thyrotropic hormone. Individual therapeutic doses of I^{131} ranging from 100 to 150 mc. also preceded by thyrotropic hormone injections were administered to patients with functioning metastases. Smaller doses were used to ablate postsurgical thyroid remnants. Total I^{131} dosage ranged from 85 to 660 mc. All patients received thyroid extract in tolerance doses upon the completion of I^{131} therapy. A detailed description of this therapeutic regimen has been described previously. (1)

The patients were predominantly male which may be attributed to the prevailingly male population of the Veterans Administration hospitals. The patients ranged in age from 21 to 73 years.

All patients had thyroid surgery prior to I^{131} therapy. Forty-two had total thyroid removal and 23 had associated radical neck dissections. In 3 patients, surgery was limited to unilateral lobectomy.

Tumors were differentiated cell types with the exception of 3 undifferentiated and two Hurthle cell carcinomas.

Results

Twenty-nine patients in this series had proved metastatic lesions; 18 are living and 12 (41%) have lived 5 or more years (Table 1). Twenty-two of the 29 patients had demonstrable I^{131} uptake in their metastases.

All of the 16 patients who were free of metastases at the time of initial thyroid surgery were living although 4 have been lost to follow up after postsurgical intervals of 3 to 7 years.

At the time of this report, 11 patients were dead. Eight of the 11 deceased patients died as a direct result of thyroid cancer (see Table 2). Four patients had undifferentiated or Hurthle cell tumors, 7 had differentiated tumor cell types. In 5 cases there was demonstrable I^{131} uptake by metastatic lesions. The average survival of these patients was 3.7 years.

No complications from I^{131} therapy were observed in the present series.

Discussion

In the present study four basic principles of management have been employed. Of these the primary procedure is thyroid ablation. It is our belief that all patients with either operable or inoperable thyroid cancers should have total thyroid removal. The rationale supporting this viewpoint is two-fold: (1) The presence of multifocal intraglandular neoplasia either as multicentric foci of origin or as contralateral metastases is well documented,⁽²⁻⁴⁾ (2) most metastatic lesions do not concentrate I^{131} in the presence of functioning thyroid tissue. However, once the thyroid has been removed tumor metastases may begin to concentrate I^{131} to a variable degree. Increased I^{131} uptake in thyroid cancer

metastases after thyroidectomy was first recognized by Rawson in 1948. (5) The importance of thyroid ablation has been widely confirmed and it has now become an established prerequisite to the I^{131} therapy of thyroid cancer metastases. In addition as much as possible of the primary carcinoma should be removed to preserve the airway and to prevent or relieve compression of the esophagus.

Although the importance of total thyroidectomy in thyroid cancer is more or less generally accepted, the question of cervical dissection of lymph nodes is unsettled. Most thyroid surgeons are agreed that prophylactic lymph node dissection is not indicated. On the other hand, the proper surgical approach when cancerous lymph nodes are present is the subject of considerable controversy. The most widely accepted practice seems to be radical dissection of the cervical region on the involved side when there is positive evidence of lymph node involvement.

The second principle of management is the use of thyrotropic hormone stimulation to enhance I^{131} uptake in thyroid cancer metastases. The use of this agent to augment the I^{131} uptake of metastases was described by Truaxell and collaborators in 1948. (6) It is currently used in many clinics throughout the country and appears to be an effective adjunct in the I^{131} treatment of thyroid cancer metastases. This agent is not however without its compli-

cations. Nearly 25% of the patients in the present series had some form of sensitivity reaction.

The prolonged administration of antithyroid drugs may also increase the concentration of I^{131} in thyroid cancer metastases. (7, 8) The use of these agents however is associated with serious disadvantages which include long periods of myxedema and drug reactions. For these reasons, with one exception, antithyroid drugs were not employed in this series.

The third principle of management is the administration of I^{131} in undivided cancerocidal doses of 100 to 150 mc. Smaller or divided doses have been shown to be less effective and to increase tumor radioresistance. (7, 9, 10) On the other hand, larger therapeutic doses exceeding 200 mc. have been associated with hematological complications and pulmonary fibrosis. (10-13)

The use of desiccated thyroid extract in tolerance doses following I^{131} therapy is the fourth principle of management. Although thyroid extract has been employed as replacement therapy for many years, its possible therapeutic value in thyroid cancer was first described by Franz in 1950. (14) Franz and co-workers noted that tumor growth in a patient with thyroid cancer metastases was arrested following thyroid extract therapy. The rationale for the use of this agent in the treatment of thyroid cancer is based on experimental studies suggesting the promotion and dependency

of thyroid cancer on endogenous pituitary thyrotropic hormone secretion and the ultimate suppression of thyrotropic hormone production by exogenous thyroid administration. (15-17) Long term control of patients with thyroid cancer metastases, however, has been less rewarding than anticipated. Nevertheless the use of thyroid hormone in the management of thyroid cancer as an adjunctive agent would seem to be indicated.

An attempt has been made to appraise the results of I^{131} therapy in the postoperative treatment of thyroid cancer metastases in a number of the larger reported series, including our own. The results of this evaluation are tabulated in Table 1. It is immediately apparent that a random and variable use of therapeutic modalities was employed. Furthermore, despite the therapeutic management employed, approximately one-third to one-half of the I^{131} treated patients who had metastases had died at the time these reports were written. Less than one-third of the patients had survived or had been followed for more than 5 years. All patients who were reported to be free of metastases after surgery and received only supplementary I^{131} therapy were living and had been followed for varying intervals up to 9 years.

Because of the inconsistencies of management in the above reported series and the relatively benign biological course of this disease, a realistic appraisal of the efficacy of I^{131} treatment

of thyroid cancer is extremely difficult. Despite the uncertainty of the benefits to be derived from treatment, therapeutic procrastination is not warranted. It is important to recognize that thyroid cancer may have a fatal outcome even though the majority of tumors are slow growing, highly differentiated cell types. In Hirabayashi and Lindsay's excellent study of 390 thyroid cancer patients, 11% of the patients with papillary carcinomas and 33% of the patients with follicular carcinomas did succumb to their disease. (2) It is essential therefore that once the diagnosis of thyroid cancer is established, vigorous and definitive patient management should be promptly instituted. Since differentiated thyroid cancer metastases are often successfully ablated with I^{131} , all patients who have such tumors should be considered candidates for I^{131} therapy. Demonstrable benefit has been derived from this therapy in as many as two-thirds of these patients.

Summary

1. This report reviews the experience of the Radioisotope Service, Veterans Administration Center, Los Angeles, California, in the postoperative treatment of thyroid cancer with radioactive iodine since 1949. Forty-five patients have received therapeutic amounts of I^{131} and have been followed for more than one year.
2. Cancer metastases were localized by means of the mechanical scintiscanner after patients had received large tracer doses of I^{131} preceded by injections of thyrotropic hormone.

3. A consistent therapeutic regimen was followed involving four basic modalities of therapy: surgical thyroidectomy, thyrotropic hormone stimulation, cancerocidal doses of I^{131} and thyroid extract administration.

4. Twenty-nine patients in this series had proved metastatic lesions; 11 are dead, 18 are living, and 41% have lived 5 or more years. All patients who were free of metastases after initial thyroid surgery are alive.

5. No complications from I^{131} therapy were observed. This is attributed to the conservative dosage regimen employed.

6. The results of the use of I^{131} in the postoperative treatment of thyroid cancer in other reported series have been reviewed.

Acknowledgments

The authors are indebted to Dr. Franz K. Dader who participated in the management of many of the early cases, to Lucille Shoop, R.N., and Billie Jean Ellingsay who assisted in the compilation of the data, and to Esther L. L. Wilson for secretarial assistance.

References

1. Blair, W. H., Nordyke, R. A., and Bauer, F. K.: Radioactive Iodine (I^{131}) in the Postoperative Treatment of Thyroid Cancer. *Cancer.* 13: 745, 1960.
2. Hirabayashi, R. N., and Lindsay, S.: Carcinoma of the Thyroid Gland: A Statistical Study of 390 Patients. *J. Clin. Endocrinol. & Metab.* 21: 1596, 1961.
3. MacDonald, I., and Kotin, P.: Surgical Management of Papillary Carcinoma of Thyroid Gland—Case for Total Thyroidectomy. *Ann. Surg.* 137: 156, 1953.
4. Martin, H.: Surgery of Thyroid Tumors. *Cancer* 7: 1063, 1954.
5. Rawson, R. W., Marinelli, L. D., Skanse, B. N., Trunnell, J., and Fluharty, R. G.: Effect of Total Thyroidectomy on Function of Metastatic Thyroid Cancer. *J. Clin. Endocrinol.* 8: 826, 1948.
6. Trunnell, J. B., Rawson, R. W., Marinelli, L. D., and Hill, R.: Effect of Thyroid Stimulating Hormone on Function of Human Normal and Malignant Thyroid Tissue. (Abstr.) *J. Clin. Endocrinol.* 8: 598, 1948.
7. Rall, J. E., Miller, W. N., Foster, C. G., Peacock, W. C., and Rawson, R. W.: Use of Thiouracil in Treatment of Metastatic Carcinoma of Thyroid with Radioiodine. *J. Clin. Endocrinol.* 11: 1273, 1951.

14. Frantz, V. K., Larsen, W. G., and Jaretski, A., III: Evaluation of Radioactive Iodine Therapy in Metastatic Thyroid Cancer. J. Clin. Endocrinol. 10: 1084, 1950.

15. Purves, H. D., and Griesbach, W. E.: Studies on Experimental Goitre; VIII, Thyroid Tumours in Rats Treated with Thiourea. Brit. J. Exper. Path. 28: 46, 1947.

16. Sonenberg, M.: Physiologic Concepts in Genesis and Management of Thyroid Tumors. Am. J. Med. 20: 710, 1956.

17. Thomas, C. G., Jr.: Hormonal Treatment of Thyroid Cancer. J. Clin. Endocrinol. 17: 232, 1957.

18. Benua, R. S., Cicale, N. R., Sonenberg, M., and Rawson, R. W.: The Relation of Radiiodine Dosimetry to Results and Complications in the Treatment of Metastatic Thyroid Cancer. Am. J. Roentgenol. & Rad. Therapy. 87: 171, 1962.

19. Catz, B., Petit, D. W., Schwartz, H., Davis, F., McCammon, C., and Starr, P.: Treatment of Cancer of Thyroid Postoperatively with Suppressive Thyroid Medication, Radioactive Iodine, and Thyroid-stimulating hormone. Cancer 12: 371, 1959.

20. Halnan, K. E., and Pochin, E. E.: Aspects of Radiiodine Treatment of Thyroid Carcinoma. Metabolism 6: 49, 1957.

21. Majeski, F. P., Nefal, M. M., and Beierwaltes, W. H.: Treatment of Thyroid Carcinoma with I^{131} . J.A.M.A. 183: 262, 1963.

22. Miller, F., Vickery, A. L., and Rapp, B.: Evaluation of Various Factors Influencing Treatment of Metastatic Thyroid Carcinoma with I^{131} . J. Clin. Endocrinol. 16: 1, 1956.

Table 1

¹³¹ I Dose, Pt.	Thyroid- ectomy	Anti-thy. Drug	TSH	Pts. with Metastatic Disease			A. S. survival
				Alive	Dead	5 yrs. or more	
3	45	42	1	44	13	11	41
- 1, 10	59	28	19	7	-	-	57
- 1, 2, 7	44	33	0	44	10	8	17
- 1, 7	76	37 (?)	14	0	56	20	9
- 1, 9	200	(?)	0	0	81	40	24 (?)
- 1, 11	21	15	14	0	13	8	33

Table 2

Summary of Deaths

Case	Age	Histol.	Metastases			Survival (yrs.) after I^{131}	Cause of Death
			Locat.	Uptake	Ablat.		
T. A.	73	Adenoca.	Spine	No	No	2	Ca. pancreas
I. K.	45	Follicular	Cerv. Pulmo. Brain	Yes	No	2 $\frac{1}{2}$	Thy. ca.
M. W.	62	Papillary	Cerv. Pulmo.	Yes	Yes	1 $\frac{1}{2}$	Myocardial Infarct
J. M.	62	Hurthle cell	Pulmo. Sternal	No	No	8	Thy. ca.
E. J.	54	Mixed Pap. & foll.	Cerv. Mediast.	Yes	No	3	Metastases after liver biopsy
J. R.	58	Undiff.	Bone	No	No	2 $\frac{1}{2}$	Thy. ca.
..	58	Follicular	Cerv. Bone	No	No	3	Thy. ca.
F. G.	58	Hurthle cell	Bone Liver	No	No	6	Thy. ca.
C. D.	50	Undiff.	Generalized	No	No	1 $\frac{1}{2}$	Thy. ca.
M. A.	38	Papillary	Cerv. Brain	Yes	No	1-1/4	Thy. ca.
E. P.	31	Follicular	Cerv. Brain	Yes	No	5	Thy. ca.