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Abstract i

Longitudinal and Transversal Plasma Wave Instabilities

in Two Counterstreaming Plasmas without External Flelds

Dietrich Bunemann .
Case Institute of Technology
Cleveland, Ohio i

.Some aspects of the theory of longitudinal and transversal waves
in a collisionless nonrelativistic plasma are treated in this paper.
A dispersion relation for multicomponent plasmas is derived from the
linearized Boltzmann-Vlasov equation using the full set of Maxwell's
equations without an external field., The velocity distributions of
the plasma streams are assumed to be Maxwellian. For the particular
case of two counterstreaming plasmas it is shown that there exists
transversal instabilities for all counterstreaming wvelocities whereas
the well known two stream instabilities only exist for velocities
greater than a critical velocity. Exact solutions for the onset of

the instabilities can be given. This kind of instability may occur

for any nonisotropic velocity distribution in a collisionless plasma. .

Supported in part by the National Aeronautics and Space Adminis-
tration. o o :




Introduc tion

Longi‘budinai wave instabilities in counterstreaming collisionless
plasmas have been discussed by several authors.* They repoi'ted that
these instabilita‘.es only occur above certain minimum cbunterstreaining
velocities, Qne of the purposes of this paper is to find whether other

instabilities of transversal character exist when the counterstreaming

‘velocity is smaller., Taking the full set of Maxwell's equations into

account this can indeed be shown. In Section I to iII we derive the
dispersion relation valid for an arbitrary multicomponent plasma. In
gection IV it.'is shown ﬁhat there exists a complete equivalence betweqn
our method of Laplace transform technique and the eigenfunction expan-
sion method, . Section_ V brings a few remarks about the general problem
of a plasma with boupdaries. Section VI s};ows the application for a
resting plasma whereas Sec'tion VII gives a detailed picture of all two

stream instabilities .

T, Fundamental Equations

The set of Boltzmann-Vlasov (B.V.) equations for a multicomponent

collisionless plasma is given by the expression

BF‘ : e, 1 .
R—+xgradFs+r-n-;(§_+-é-xx§).gradst 0 (1)

(8 = '1,2,-0‘0,3)

3

J« R, Pierce, Possible Fluctuations in Electron Streams due to Ions."
Journal of Appl. Phys. 19, 23, (19L8).

D. Bohm and E, P, Gross s "Theory of Plasma Oscillations,” Phys. Rev.
75, 1851 and 186 (19193,

O. Buneman , Dissipation of Currents in Ionized Media, Phys. Rev. 115
503 - 517 (1959)
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J
IFs is the distribution function for the particles of the component
8 of the plasma. The current j and the charge density p are given

by the following expressions

s |

1= Z eq szs(z) a(3)y - (2)
s=1 -

o= ) ey | @y (3)
8=l

" We assume the plasma to be neutral and without currents or fields

Just before we introduce some small perturbation at the time zero.

This enables us to linearize the equations (1) by subtracting the
analogous equations for the unperturbed quasi-stable distribution
Fos w;tth corresponding vanishing fields Eo and §o‘ Here Fos is to
be assumed constant in space and time., For the small perturbation
f, = F, = F__ wnich in this case will be different from zero mnly

for a positive time we get the linearized B.V, equations

oF e

| ) |
3 orTegradf + o EeSyxB).grad By, = 0 (1)

(s = 1’2,0098)

The fields E and g in these equations are produced by the small
'permrbations only. Additionally we have to satisfy Maxwell's

‘equations and the equation of continuity:




CAVE = lmp (1)
divB = 0 | ()
curl E = -%--g% .(6)
curl B = h—:l+%-g% (7
%% +div § = 0 (8)

It is our goal to solve the equations (1') together with (L) to (8).

. This solution will give us a complete and self-consistent picture of

all possible plasma waves for the assumptions initially made. We now

assume a time dependence proportional to

exp (pt-T . r) | (9)

where we have introduced the complex frequency p = iw and the compiex
wave vector I' = ik for convenience sake,

. As we deal with an initial value problem, we can use the Laplace
transformation for our equations which we already indicated by using
the letter p for the complex frequency. For the space domain' we use
the Fourier transfomationregardhg an infinite space without any -

boundary values.

II. Conductivity Tensor

-

Our next step is the elimination of B in the B v. equations by

means of Faraday's law (6) which now becomes
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-
divE = Lmp . (L)
divB = 0 | - (5)
crlE = -8 (6)
curl B = Eg.l+%% (7)
_g%+div 1 =0 (8)

It is our goal to solve the equations (1') together with (L) to (8).
This solution will give us a complete and self-consistent picture of
all possible plasma waves for the assumptions initially made. We now

assume a time dependence proportional to

exp (pt - L . x) (9)

where we have introduced the complex frequency p = iw and the compiex
wave vector ' = ik for convenience sake.

. As we deal with an initial value problem, we can use the Laplace
transformation for our equations which we already indicateAd by using
the letter p fér the complex frequency. For the space domain we use
the Fourier transformation regarding an infinite space without any -

boundary values,

II. Conductivity Tensor

Our next step is the elimination of B in the B V. equations by

means of Faraday's law (6) which now becomes -
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pB = c[xE +B(0%) . (10)
This gives us
Lyxp = irG@.B-2Ez.D S TxB0Y) )

Introducing this into the )R A equations we get after division by

p-~L.X
ne (C . grad_ F__)
fs(z) 5T ;s-E-" (gradvFos+-! =
' Phg p~-T.x
£ (%) n_e (v x grad :F )
pm_ = ‘
p=-L.% 8 p-TL.¥

If there are n particles per unit volume we normalize Fos by introduc-
-1 '

ing fos = ng Fos' In.‘begraticsan of
) X e f (¥)
s=]

/

over all velocities gives us the connection between current J and elec-

tric field E .
S 2 S 2 vv ([, grad_ f )
i = E Z S__E. Z S —-— = v 08 d3v
- Lp ~ = Lrp -le.v
s=1 s=] v) P=2.X
(1k)
‘ S S 2 '
. + @ (v x grad_f v
. y £(0) 3 + ) ) - v os‘— .3
’Z"s(f p-r‘._w_rdv*-g(o)' Z.lm p-l.x v
v s=1 (v)

The notation of two vectors written side by side without a connecting
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dot stands for a dyadic product. In this equation we used the identity

3 ' .
J"; grad_f__ d°v - _;_ . | (15)
and the abbreviation
2 Lm e 2 o
® = —38 (16)
S mS

For electrons @ is equal to the plasma frequency. I is the unit

tensor of rank 2.

Introducing the "conductivity" tensor o

s B
I,
Z ;I)'ns (L~ (r zz;_- rgraiv, o v a7
s=1 v) - T )
and the vector J_inltial containing the in‘itial values of the problem
inifcial } ¥ £(07) 3o
i p - F .V

(vxgradf v
+ B(0") . vos'Z 3y (18)
sglme I p-T.x

we arrive to the equation for j

. initial

d = g.E+3 (19)

connecting the current with the electric field.

III. Dispersion Relations

‘Eliminating the magnetic field B from Faraday's and Ampére's law,




wi

we have another formula between the electric field and the current:
(o - f'2°2)§l + P2§|| +Llmpg = pE(’) +ecl x B(0") (20)

_E_H denotes the electric field parallel, EJ. the electric field per-

pendicular to the vector . Additionally we used the identity

of x B(0*) = E¥(0") + km 3(0) (21)

Inserting the current j from equation (19) we have reduced everything

to an equation for the electric field alane:

'

S 'S ( '
I . grad £ ) :
62+ ) a)E- " E - Z‘*’sz(f T yydv.E
s=1 s=] v) p~L.X

S » +

~ v £ (0) 4

= b ) e, | Ty @V ¢ EO) 4 opx K0 (22)
' s=1 v) -7 ' ‘

S
v(v x grad_ £ __)

s=1 v) P'Ef_f

Tt

}

Formally we write this equation in the following more elegant form

D.E .- ¢ (23)

" The vector C represents the right side of (22) giving all initial values

necessary. Assuming I' in the x~-direction and defining Vv = p/T we get
the following representation for the components of the dispersion tensor

D:
-



w

B

-l

General expressions for the dispersion tensor D :

11

22

33

'Dp

13

23

v)

L)
” A cosz 3?}'{ fos 3
p° (1 + }E 5 Lr d

v =V
x
s r

'S
Dzl"PZ-r-

‘ " T8
D31 p Z r. v, - v
s=] '
S ‘v v -—é— f
o J« y 2z avx os

D = Z @

32 8 v, - v
8=]

(2L)

- (25)

(26)

(27)

(28)

(29)

For derivation of (24) and (26) we added and subtracted terms partly to

cancel the factor e = ¥ in the denominator. ‘Then there are only terms

left without a féc‘oor vx - ¥ in the numerator. Of course we used the

identity

(30)
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The formulas are still valid for any normalized distribution func-

- tions fos' We specialize these distribution functions to be Maxwellian

in all directions: e
' (v-~-7v.)
o= =S
1 2< 382 > .
2372 - (31)

~ <V
‘ (2rr I >

fOS

and use the properties of the Maxwellian distributions:

- , _
3, - = _ 2 3. . 2 ‘ '
) v fos d’v Vg I (: ;rs) fos d’v <v > (32)
" 2 3. . 2 -2
) v osdv <V, >+ 7T _ B (33)
Furthermore we introduce the following function '
to 2 2.3
1 e sX :
Z(u)=;—17§A'J‘x_uduforImu>0,us=L——2— (3k)
=00 2 <'-vs > '

and its analytical continuation into the lower p -'hélfplane which cor- -
responds to the left p - halfplane for the Laplace transformation |
(r = ik, p = ikr). Some of the properties of Z(u) are given in the
appendix. For the diSpefsion matrix we use this analyt.ipal continuatioﬂ

as we treat our initial value problem with the Laplace transformation.

 Finally we get the following formulas for the dispérsion matrix elements:
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Dispersion matrix 2 for Maxwellian velocity distributions:

2

210 T ot e )} (35)
= P 1l + 1+ 1 Z 33 3 .
1 s k <v82$ S s '
i v 2 ‘ |
Dy, = P24kl + ) P E 1+ =) . 1+, zms)](ae)
- <v. >
s x :
S =2
2. 22 2 | 25
Dy = P~ +ke” + Z W, E- (1 +:—v——2—>-) . (1 * Uy Z(p.s)](y{)
s ‘ : x
2 A
@ _ ‘
D, = Dy = p Z NI I ik vy, (1 # u, 2(w)) (38)
ST s .
\
2. .
. a)s — (1 +
D3 =Dy =p Zmihsz Mg Z(p.s)) (39)
» s s
5 .
. ms _ - i
D23 = D32 =S - 2-::—2——->Vsy N vSZ (1 +P-s Z(IJ-S)) ()40)
s s

Before discussing the ‘dispersion. relation we consider the case of a

plasma beam at zero temperature (for the function Z(u) see Appendix):

<V > =051 = 6(v - gs) (h1)
1+ 2(k) 1 :
1im 5 = --—-——-—2—2- for <v. >=» 0
<v > (v - &)
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This has to be inserted into equations (35) to (LO) for cold plasma
streams. A Maxwellian.plasma can be composed from singular vélocity '

streams according to the identity

= !
v._ “o08 : f
_._1.__ (1 +u Z(“ )) = —_— d3v = - —08 dBV
<v2'> s s v - T J (v _p_)z

s x T

(42)

A similar way of approach by superposition of single plasma streams

was done by J. Neufeld and P. H. Doyle* using the polarization concept

-of a plasma instead of the B.V, equations., Their dispersion relation

can be shown to be equivalent to a special case of our paper.
The time dependent electric field for a fixed k can be calculated

by means of the inverse Laplace transformation:

+icote ,
Bw = un [ oot gt + ) Res[{;_a(m}"l : c<p>epﬂ

€720 _ico+e Re p_>o

(L3)

. The residues at the poles :Lnl the right p-plane correspond to instabili-

ties given by the zeros of the determinant [D(p)|. The integral itself
gives all contributions corresponding to more or less damped waves mainly
dependent on the zeros of the analytical continuation of {;_J_'(p)}"1 to the
left half plane; Usually it is not possible to close the path of inte-

gration at infinity around the left half plane, This was shown by Landau

J. Neufeld and P. H. Doyle, Phys. Rev. 121, 65k (1961).
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for the case of purely electrostatic waves in a Maxwellian plasma,

IV. Comparison with van Kampen's and Zelazny's Methods

A short remark may be given concerning methods developed by other
authors., Extending van Kampen's eigenfunction expansion method* to the
initial value problem of plasma oscillaﬁions including longiwdingl and
transversal waves, R. Zelamny gave a solution for an electron plasma**.
The ions are treated as positive charge background. His method can be
generalized without difficulties to a multicomponent plasma. The main o
difference between his method and our method is the fact that Zelamny-
as we will show = implicitly used a two-sided Laplace transfonnationmo

If we assume the existence of two positive numbers Py and P, for

which the functions

E*(t) = E(t) for t>0,E'(t) = 0fort<0  (LL)
E(t) = E(t) for t <0 , E(t) = 0 for t>0 ~(Ls)

give finite values for the integrals

[}

© .t _ 0 ot | ‘
[laele™ e ma [lE0le T e 06
o ® C

we can write the following formulas valid for any finite t:

¥ N. G. van Kampen, Physica 21, 949 (1955).

** R, Zelazny, The initial value problem for longitudinal and trans-

versal oscillations, Ann. of Phys. 20, 261-278 (1962).

** Private commmication from R. E. Collin and J. Gustincic,
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Pt
Res(E"(p_)e )

)

13-
+io:>+ .
§+(t) = 2"1 J‘ {jE(ﬂ)e pt’dt} +ptdp for +>0
€=>0 -ioo+pl (o] '
+im +¢ '
- 1 +5)eP b
e gy | F@Rtee )
~im+e Re(pv)'>0
- 1
E (t) = Jim = Lr
= =0 2wl

' --icr:>—p2 - 00

+io=~¢
=" Jim .é}_. I E-(p)ept dp -

g=>0 <Mt \
-ico-¢ Re(pv)<0

For E(p) we have to insert the expression

@(p)}'l ¢(p)

The sum of, these functions is given by

+ioo

_E_:.('t':) = E”'(t) +‘_E_.(t) = % P J‘ P_(p)ept dp +

=ico

E Res(E(pv)epvt) . sign E%e(pvﬂ

Re(p )#0

The residues on the imaginary axis are cancelled and the principal value

0 /
{ J‘ E( tf)e-ptdt' } eptdp for t<O

Res (,’g:"_'(pv)epv

(L8)

(L9)

"of the integral 4is left over, This is exactly the expression which would

have resulted from the s:mgular integral method in which the sum over

the residues expresses the action on the nat:ural modes of the system.
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But as we concern ourselves cnly with an initial wvalue problem the
method of the Laplace transform as given by (L7) leads to the'same_
result in a much simpler way. The same remark applies in calculat~

ing the distribution function.

v. The General Problem ﬁth Boundary Conditions

Tﬁe B.V. equation describes the rate of change of the distribu-.
tion function along the trajectories of the particles in phase space
to be equal to the collision rate of the distribution function. We
write the B.V. equation in a collisionless plasma for small perturba-

tions £ = F =~ F__ in the following form
s s os

e
D ) s 1 )
T fo{LXt) + Yegrad, F (ny) + = (E+ 2y xB) . grad, F (r,1) =0

-8
(50)
S = 1’2,.00’8 ‘

We assume that Fos(z, v) is not dependent on time. Integration

along the trajectories of the particles yields
. Q0 . ' f
fs(z’—v-’t) = J‘ -v-'.gradrlFos(I_.."Z-' )dT
(51)

0
e @ , ‘
s -1
+ 7 I |E(x', t-1) + Sy x B(z',t-1)] . gradv,Fos('_g-',x')d'r
0 : ’ : :

where .

T
B

% . - (52)
y- j z(‘b-'r') dr!

(o]

H
L]
e ]

et
[}
4
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are the particle coordinates on their trajectories in phase space,
Having no external fields we linearize our equations by 'assuming
v oscillating with a very small amplitude and approximating v' by
V. This corresponds to a first linearization. The resulting equa-

tions*

m r
o .
f (r, v,t) = J dT@(z-x'r,t-'r) %‘- x B(xr 'r_,t-':ﬂ .gradvFos(z-_g'r,x)d'r

(53)

= =2
Mg
o0 ‘
+ I Y. grad F (r-v'r v)dr
)
8 = 1,2,...,8

are identical with the set of linearized B.V. equations (1) only if
Fos do 'not depend on space. This last assumption corresponds to a
second linearization of our equations., In this special case we can

write them as

ol

@ .
e .
s S - .
fs(_{:,z,t) m_ vf dTE(_{ VT, t~7) + = 7 X 2( -V 'b-'ﬂ . gradv Fos(v)
o}

(531)
8 = 1,2,000,3

or simply in the original differential form of the B.V. equation
9 d
5 fs(lux'r,x_r,t--r) = - fs(z-x'r,_g,t-T)-}_r.grad fs(,l"ZT:I:*"'r)
s |- ' 1 '
-I-n-s- E(g—z'r,t-'r)-rg_pcg(g-z'r,b-'rzl.grad Fos(y_)

S = 1,2,...’8

¥ Collisions can be taken into account by an- additional factor e~ 7"

(¥ = collision frequency) in the integrals.
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which is identical to the previous used set of equations (1') for
the argument r' = r - vTand t - 7.

The neglect of boundaries and space variationé in F_, implies
that the déscription given in this paper is valid only for the
following two conditions:

1. The wavelength is much smaller than the characteristic

length of the system,

2. The time interval considered is short enough that the

disturbance has not yet reached the boundaries and been re-

flected and transmitted. (Having introduced the disturbance’
at time zero we must take the time t instegd of o as upper

limit of the integrals over T),

Equation (53) has a simple interpretation: Only those vel-
ocity companents of the right side integrand contribute for which
vT Just equals the distance of the space points r and r'. This
means that we could change the time integration to a one-dimensional
spaée in_tegration in the direction of -v beginning at r. At this

integration all quantities are to be taken with a retarded time

A 2 t e T = t--lr_il.

v

Going back to the more general equation (51) we calculate the current

in the plasma
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4'1(5,{") = z e Ix fs(g,z,fb) v
s

® 2 @® ] .
= Z —E';,' j I’.I' o gradr F(r',v') d’v dT (5k)
' S v)T:O ' .
o 2 © ) ‘ .
* Z _sﬁfj i@r',t-T) *%’Z'x_g(r',*ﬁ'ﬂ.gradv F(r',v')d3vd1'
8 (v) 7=0 '

where r', v' are given by (52). This current is "generated" by asym-
metries of the distribution function in the space variables and by the

action of the fields on the plasma producing a polarization at differ-

- ent points r'., Both effects are carried along the trajectories by the

particles, This gives a retardation time equal to the time in which

the particles travel from r' to r. By eliminating B from MaMll's equa~
tions (6) and (7) and introducing the current (54) we get a complicated
integro-differential equation for the electric field E which together
with (51) gives a complete description of any collisianless plasma;
However solutions to these equations can only be found for very simple

special situations.

. VI. Solutions for a Neutral Plasma at Rest

In order to clarify the importance of the dispersion relation we
consider a plasma consisting of two componef;ts: electrons with mass ‘
mg and charge e and ions with mass my and charge Ze., For convenience
sake we"introdﬁce the following dimensionless parameters into the- .

" formulas (35) to (LO):
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. L
a = Z — . p £ e =

mi ) Vi me Ti

(55)
o p1/2 kv, -
o= = e, v, = (25) 3% = —= = I\, where A, = Debye length
2 kv e e
e .

X = Boltzmann constant

Now the dispersion relation can be separated into

2l = Dy +Dyp - D3 = O (56)
where
2

p?D = £ = 1+¥2 |1 +u2u)+ap’@ + puz(pu))] (57)

represents the condition for longitudinal waves and

1o ==v-=l(°)2 202 - ¥2|u 2(p) + ' z p(u)| (58)
K2y 2 22 oo walp) +a . pr 2 plp
e

the condition for transversal waves, As can be seen immediately, these
equlations have only solutions for damped waves, i.e. for Re p < O or

Im w > 0, The fields are assumed to be proportional to

exp (_i(cot -k .r)) | (59) .

The time behavior of our p]:asma will be determined by the zeros of (57)
and (58) which arelclosest to the real axis of the p~plane, Now we
assume large vaiues of W, As will be verified by the result we will
have small damping, i.e. a small positive imaginary part € of u.

With this condition we may approximate an equation G(n) = O by a lin-

ear expansion at the point b, = Re u:
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dG(e.,)
G(ur) +le—g
r

& 0 , (60)

Neglecting terms of higher order the real part of this equation gives

the following condition for LA

, ReG(w) 2 0 | (61) -

After having solved this equation we conclude from the imaginary part

of the equation (60):

_ G(w..)
Re G'(p)

(62)

On the real axis of the p~plane we approximate the fdnction Z(p.r) by
the expansion given in the Appendix:
2

-t

Z(u)ﬁin'l/2er--l— 14— 43 +,
h o : K 2 N
r 2, b

Now we set G(u) equal to the longitudinal or transversal wave dispersimn

relation and get the following results:

a. Longitudinal waves

: - 2 T.
W = 2(kve)2 U-r2 = (npz EL +Z ;—ﬂ + 3(kve)2 EL f-Z(;-?) -,i.-i-] (63)
2
| ~(32)? (BP1RGE)
; 11/2 @ \3 kv m 2 kv
61‘ = 2 kv.c & (-8) m(i-i) e e [(EﬁZ h—:-)(l-vpe : © :]
(6L)

Because m, << my and p2 -1 1, &> kve we might neglect the square
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brackets and our formulas reduce to the well known form of the disper-
sion relation and the Landau damping. However, there is some 'doubt
about Landau damping wﬁich can be valid only for a limited time inter-
val as we neglected the nonlinear terms of .the B.V, equations in .a

first approximation assuming that the particles maintain their velocity.
l

- b Transversal waves

We can solve the equations for the transversal waves assuming

very large values of u., Neglecting all second order terms we get

o & % +w92 ) (65)
0?2 - 3E) |
T e
' e

The phase velocity of these waves will always be faster than the speed

of 1ight., The contribution to the damping is due to particles having
velocities in the vicinity of the phase velocity. In this respect we
do a serious mistake as we use a nonrelativistic Maxwell distribu*pion

for our calculations: No particles can exist with higher wvelocities

than the speed of light. Having this in mind we better leave the damp-

ing undetermined.

VII. Solutions for Two Counterstreaming Neutral Plasmas

In Section VI we considered a stable plasma at rest., From our
dispersion relation we know that no coupling exists between longi-
tudinal and transversal waves in a plasma as long as we have a symmetric

distribution function, Therefore we consider in this section” a special
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unsymmetric distribution: two counterstreaming initially neutral

plasmas with the same kind of ions. Because of the uncertainties

connected with all "damping" effects in a collisionless theory we

will restrict ourselves to a consideration of the unstable solutions

given by the zeros of our dispersion relation in the right p-~plane.
|

We assume plasma 1 at rest and plasma 2 moving with the velocity A

'For‘abbreviation we introduce the following dimensionless parameters

1/2 1/2 \
me mi Te'(l) . mi Te(z) Ne(2)
aﬂz;n-;;fﬁ“m ”32-'3;_1‘(?54 ;Y=m;
e 1 e 1 e -
(67)
Ve(l) ~ ' ~ 9’ ve(l)
6="v-—(§5;ll —'(—)' —';—(—)-°a=vcos kn'me
e ‘
and the function
2
1 - (68)
Z(u) =
Tr172

+

and its analytic continuation for the lower half plane (Appendix).
Ti and Te are the temperatures of the ions and the electrons. For

we and ve we used the definition:

- nTe(l) 1/2 (2) "'Te(Z)
v, = ( — ) A = — ) n = Boltzmann constant
e e
(1) . e e
@ = o = — @, = plasma frequency
e for plasma "1%

Furthermore we assume the axes. 4, %,y 435 of cur coordinate system in

v

the following way:
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£, parallel to k

4, in the plane of k and ¥

2

_,93 perpendicular to both

Using formulas (35) to (LQ) we get the following dispersion relation:

p2£ \fémep'fc'c 0
| Dy, [] = émeka 20 KV, 0 = Lagp K (£V),-C7)V,, = 0 |
0 0 202KV, (70) "

The term C characterizes the coupling. The different terms in this

equation are given by the following expressions:

£ 1+ ¥2 (5 +5,) R (T1)
g, = L+ nz) +ap® @+ p 2(pw) (72)

£, = v6 [(1+ 6(wa)z(8(h-a)) + ap (1 # B 8(u-a) 2(s(u-2)))]|(73)

4y sin ¥ | )
C 2 — (7
'1;2 2
~ 2 )
Vi = Vo - (3, sin 3)° 4, | - (75)
' c 2 2 -.2
Vo2 " = (?;) - 2" =% (w 2(w) + o Bk 2(pyu) + v(u-a) Z(p-a) +
+ a,B,(u-a) Z(p,(k-a))) (76)
The root factors of the dispersion relation can be written as
D = V s 0 ' (77)

1 22
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and

D, = BV, - (3 sm$)P @+, (78)

The first condition (77) characterizes transversal waves with
oscillations of the particles perpendicular to k and v. It repre-
sents uricoupled transversal modes. The secondfconditicn charactér-'
izes the coupled longitudinal and transversal modes with pa:ticles
oscillating in the plasma between k and v. Let us first consider
the limiting case 8 = 0, where ¥, is parallel to k. Then we only get
diagonal terms in the dispersion relation, the goupling disappears and

we have to solve

£ = O for longitudinal waves

Vil = véZ. = (O for transversal waves

a, Longitudinal waves for 8 = O

The condition for longitudinal waves is

/

y ®¥%: = X242 48, = 0O (79)

vwhere £1 and £2 are given by the equations (72) and (73)s At first we

consider the limiting case of zero damping for which p becomes real,

For p real we use the formula

12 o2 (80)

’

Imp Z(p) = «

The imaginary part of equation (79) gives the following conditions:
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2 3 ~(w)? |

2
0 = p,e-”' +alﬁle +Y52]5(u_a)e-(6(u-a))

3
+ a,B,"s(-a)e
(81)
In order to simplify the analysis we assume two identical counterstream-

ing plasmas:

512 = ‘;322 = 32 andy = 6§ = 1 | (82)

or explicitly

r (2) ,' @ Ly @ g3y

1
o (1) . .

e

(2) (1)
Te 3 Ti =Y

For these conditions equation (81) has the solution

u, = T2 8)

Inserting this value u_ into the real part of equation (79), and using

the identity .
Re (~p 2(-p)) = Re(u Z(p)) for u real (85)
we get the value of &2 as a function of . :

®(n) = -2/(1 +u, Re 2n)) + ap°(1 + p u_ Re 2(pu))| (86)

Only positive values of kz(uo) are solutions to our problem; The curve
Tc'z(uo) separates the instability region from the stability region; 411
¥ smaller than Tc'(p.o) correspond to unstable solutions, In Fig. 1 the
function 1 + p Z(p) is plotted for real p. This function is negative
only for p > 0,93, Its minimum value is about -0,28 for p = 1,5,

At first we assume equal temperatures of ions and electrons; Then

our B is always greater than 42 and apz = Z, For pu = 1.5 we will have

-(Bza(u-a))
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0,98 < Re (1 + wy Z(k)) <1

This means in (86) we get-an ion-ion wave instability if the charge Z
of the ions is greater or equal to L. With greater charge number the
tendency towards an instability'for ion-ion oscillations increases be-
cause of the increasing interaction between the ions. The optimum rela-
tive velocity of the counterstreaming plasmas for this kind of instabili-
ties is of the order of the thermal velocity of the ions. The electron-
electron instabilities occur at much higher veloclities where the second
term in (86) can be neglected. The electron-electron instabilities

are practically independent of the ims., In most discussions on

two stream instabilities the effect of the ions can be neglected, In
Fig. 2 the electron-electron instability for the special case of iden-

tical plasmas is plotted. Some curves for constant growing wave ratios

have been obtained additionally. The dotted line gives the ?'ﬁalues

for the maximum growing wave ratios. For Go < 1.8} or v, < 2.6Bvé

there exists for ions with Z < 3 other inétability regions if and only
if the temperature of the electrons Te is higher than.the femperature Ti
of the ions. For Z = 1 ion-im instabilities exist for T, > 3.5 Ti at
about v_ ~ 0.0257, and im-electron instabilities exist for T, > 1.k T,
at the region where Vs is of the order of the thermal velocity of the
ioné. These special cases have been calculated by T, E, Stringer* for

a variety of different parameters,

* UOKOAOEQA." Harwell Report, August 19610
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b. Transversal waves for 8 =0

The transversal waves for vanishing coupling are ,determihed by the

dispersion relation (75)

vll(.S'= 0) = V,, =0 (86)

As can be seen inunediateiy, there are no unstable solutions possible.

-The -phase velocity would always be greater than the velocity of light.

No realistic prediction can be made about the damping in our treatment
because of the ad hoc assumption of having a Maxwellian tail if veloci- ‘ l
ties faster than the speed of light., A detailed relativistic calcula-

tion has to be made with respect to these difficulties,

c. Coupling effects. A} # 0

For the coupling effects we have to admit solutions with& £ 0. ,‘
The dispersion relgtion for waves with particle oscillations in the

plane of k'and v includes the coupling with an extra term: |

i

D = (%2 + 5+ 1:2)?62 Vpy - (8 sin$)% (% + )8, = 0 (87)

As before, we restrict ourselves to waves with non-relativistic phase
velocities which mostly correspond to longitudinal waves, For these | ,i

waves V,, is of the order of 02/v°2 which we assumed to be large. . ' !

2

2

v Sin‘9' ) .
L ) «< 1 | (88)

e = ( S

because we deal exclusively with non-relativistic effects, Plotting

the Nyquist curve as a criterion for the stability of- Dl we. get the
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diagram shown schematically in Fig; 3 for the special case of a langi-
tudinal instability. The most interesting part of this diagfam is the
vicinity of the zero point of the Dl—plane. It shows in this example
damping for transversal waves and growing for special longitudinal

waves, Taking Greek letters for the imaginary parts and indices 1 and

2 as indices for the plaémas, we get

'-ﬁl = r1+io2;£2 = r, + o, (89)

- (t,1 + t2) - i('rl + 72)

2
: 2 .
¥v,, = 1}2((3—6) - 28)(1 - 6)) witn &, =

2
¥ ((%;) - 22

(90)

- where Tys Tps Ops Oy t., t2, T1» o are real and imaginary parts of

1
corresponding quantities defined by (72), (73) and (76). As we are

restricted to moderate phase velocities, our 51 is small compared to
one except the case where X is very small. Dividing the dispersion

relation (87) by V.

op We get immediately the result

- | (% + 1, +i0)) (r, + ic,)
k +(rl+r2) +1(ol+02) = g

(91)
?2Qa- 5) |

For .the treatment of this equatién we consider 2 different cases:
1. kc >> LA |
From (90) we conclude that 61 is very small and can be neglected.,

Taking the imaginary part of this equation and using the solution for

€ = 0 we get the approximation by expanding into a Taylor series

e S Woanat v e
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8) +8, & (o) +0,) +an o'y +0') = ery(s; - s,)

1 2 t e=0
or
O, = G, :
M s g2 2 r, : - (92)
o . ! + gt 7
1 1

Taking the real part of equation (91) we obtain similarly by expansion

oA~ 2 [3 2
Ak & —pp (rv, +11,) + .ER’ +r)r-ssj
o o 1 2' 0 R () 172 7 12, o
or : (93)
. - !t 4 T 1 .
~ 2 1 [0 Ty 2
Ako = €, Eé Eko + rl)r2 - 8,8, - — (s:L - sz)r;]
8.,' +8
1 2 :
and the new solution is given by the values
w(e) = u + du
E%e) = B2+ &7

(o] 0

For two counterstreaming identical plasmas with equal ion and electron
temperatures these corrections can be seen to be extremely small for
the range of validity of our calcqlation; Uncoupled longitudinal wave
instabilities occur only for A > 8.3 )‘D as can be seen from Fig. 2.
The condition 12e? > ve2 is a restriction for small wavelengths which
combined with the first condition can be written as
8.3 % <\ << 2 -3; Ap | (k)

where )\D is the Debye wavelength.
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2. Long wavelength approximation K <cl

We already discussed solutions for longitudinal and trjap'sversal
waves which correspond to well known solutions. New solutions can be

found if &.

1 cannot be neglected, i.e. the temm

2
~2 /C 2
Ve
is not dominating. This means that we have to considér~sol{iltions for
which Tca << 1l or as a condition for the wavelengths '

2nv

= 2m (95)

A >
o D

) 4
Using previous notatlons, the dispersion relation becomes

' : 2 2

2 v (k 4+ r. + io )(r + ic )
E2(('2') - 2“2) = t1 + t2 + i(Ti + 72) +-(;$) = 1 1772 2
e : e k +r +r,+ i(O‘l + 02)

1
(96)

a. Complete Solution for @ = 90°

At first we discuss the solution for 4 = 90°. 1In the argument of
the Z-function we have v, cos '9 = 0O and the expressions become much
simpler., The imaginary part of this equation vanishes if we’ take

ik = 1y purely imaginary as we have for this argument:

1/2

2
Fly) = =iy Z(iy) = nv/“ye¥ (1 - erf(y)) (97)

We consider the previous discussed example of two counterstreaming iden-
tical hydrogen plasmas. For |y| small compared to ™. the solution of

(96) becomes
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2~
2k -k : 2
. L1/2 e\ “max - e\ R 2
y i (ve) 3(1 + ap) 0.87 {vé) (kmax k ) ‘(98)_
which shows that k2 is nearly identical to ‘
2 2
1/2 v : v
ﬁmax = 55— (2) (1+ap) = 0,90k () <<1 (99)

- as both v and v, are very small compared to c., We now proceed to solve

the equation (96) for arbitrary values of y. The functions appearing

in (96) can be expressed by F(y) in the following way:

b+ ty + 31 + T,) = =2 (F(y) +a F(py)) (100)

- and

r; + icl = T, 4 io, = 2- F(y) - F(py) . o (101)

i

Since we consider the case Tiz << 1 we can neglect 'f:e on the right side
of (96) which leads to the simpler equation "
2

:'2 c 2 "nl ve
() 142y’ (2)) = -2 (F(y) +a Flpy)) +
o . _

+ 302 (é.- Fly) - F(By))._ | (102) -

Introducing the following abbreviations
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and neglecting the term with y on the left side of (102) we write the

equation in a modified form

o= (2= v 2 (9) . (2= Ky) - Fpy)) -~ (204)

Now the argument y is given by

y = 22 . Ime _o (105)
| (2"%v, e f(2'v, k

from which we deduce the growing wave ratio
Ime = @ . ky (206)

Figure L shows a few curves of constant growing wave ratio (ky = con-

stant).

The maximum growing wave ratio as a function of the counterstream-

ing velocity is plotted in Figure La. Comparing this with the growing

wave ratio for longitudinal instabilities in Figure 2a, we conclude that -

the longitudinal instabilities grow much faster. The probability of
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excitation of the transversal instabilities depends on the initial
distribution of Fourier components in space. The wavelength ésA the

characteristic length A, for the transverse modes usually is much

t
longer than that for longitudinal instabilities. According to (106)

we get for A " the expression
i

A : 2'2n L le- = §,88 L A = ) 7 106N "'1/2:9111 em
t ‘—' v o * v ° "D . . e v ‘
e e o .
(107)
For the longitudinal modes X, becomes (Fig. 2 and 2b)
v .
Xz = 2" e -—e— = _.g.L . )\D (108)
k @g Py :
Sdmax - Smax .

where k&max is approximately 2 . kmax‘ From previous calculations we

use

~

Y4
[ JRY
<

-2(1 + By Z(p.o)) where for 0

-~ -2 ~
Hy " A g B2

This gives for values v_ S 6ve approximately

~ ve ~ 170 .
)\l = Y [J.o-d)-e- = E-C-V-e‘°)\t . (109)

proving that the characteristic length for the unstable transversal
modes is much greater than that of the unstable longitudinal modes,

In experimenﬁal devices A, might be even gréater than the whole system,

t
Fluctuations in the plasmas occur more often for characteristic lengths

comparable to Xz than for very long lengths, This means that in most
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experiments only longitudinal modes are excited, They grow fast enough |
so that we must take into account nonlinear terms of the Boltzmann |
equation befozje dealing with a considerable amount of the transverse K
instabilitir effect. However, for smaller v, where no growing longi-

tudinal modes exist the transversal mode will still serve as a strong
relaxation process‘towardc!-: an isotropic velocity distribution in the

plasma.

- 2 (o}
b, Maximum k° for & # 90

For -&7‘ 90° we calculate the minimm value of k2 which occurs for

the special case y = O corresponding to vanishing damping. The result~

~ing curve kzmax separates the region of instability from the region of

stability. We constrict ourselves to the case of two counterstreaming
identical plasmas with equal temperatures of ions and electrons as we
did for the evalua‘tfion of the uncoupled longitudinal waves., Addition-
ally we assume Z = 1, i.e, hydrogen plasmas., The equation (96) now
takes the form |

e B (&) = &) . gua) s nwinlema) g
e e h(p) + n(u-a) + .

vwhere
2

1 = () sin"$
e
We introduced the following functions'.

glu,a) = u Z(g) + (u~a) Z(u-a) + a(pu Z(Bu) + p(u~a) Z(g(u~a))(205) .

n(w) = 2+ 2w + pu 2(pw) | © (106)



32

£33

=3l=

As in the previously discussed equations for uncoupled longitudinal
instabilities ( &= 0) the imaginary part of equation (10L) vanishes
for p = a/2. This corresponds to a phase velocity of the wave equal"
to the velocity of the center of mass of the two counterstreaming
plasmas. Of course we would get zero phase velocity if we had chosen

a center of mass coordinait',e system. This cleérly shows that the oscil-~
lations have relaxational character in tﬁe same sense as the longitud-

inal electrostatic two stream instabilities. For the functions (105)

and (106) we use the property of symmetry:
h(=p ) = h*(-u. ) and G(-(p_-2)) = G*(p. -2 ) for real argument p.'(107A)
T T T 2 : T 2 '

Now we define new functions

2 |
n(3)
f(a, T{'z) - a° | 2 | (108)
Re h(-;-) . %2
" and
g (a) = gB,-a) = -23Re z(3) +a B re (82)) >0 (109)

Using these expressions we can write the solutions in the following form:

-~ : 2 ’ Vv 2 aa.
e L) = L £, D) - g(a)  (w0)
A _
Now we assumed v << c. This means we can neglect (ve/é )2 k2 as long

as k2 is of the order of one, Our solution therefore approximately be-

comes
2

k ¢ -
2 e (2 o (468 - 4% ) . £(s, 0) (1201)

Ry

®
e
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where
Vi T T 07 (111)
: . 2 r2 ve‘ 2 a
This solution is valid only for tg '3'min >0 and k© << (?) . Re h(-z-).

The last conditions is valid everywhere except the very close vicinity

‘of the point where Re h(%) vanishes-i.e. tg;%min = 0, But this last

condition corresponds to the onset of the well known longitudinal in-
stabilities., It is, as we see by comparison, indeed identical to the
earlier derived condition for the onset of longitudinal instabilities
at kmax = 0 for the uncoupled longitudinal oscillations,

For tg°-} <Owe have no solution for o . and instabilities
occur for all :‘;rglles . The solution changes at the point where
Re h(-g-) < 0 to the condition for the longitudinal waves for which

v

?'2 4+ Re h(%) = O where a = V?O . cos N '(112)
‘ v s

e
Especially at J= 0 we get the well known solutions for kmax for un-
coupled electrostatic oscillations. The function f(a) is plotted in
Fig. 5. The next figure presents J min 28 ‘a function of a. Complete

2
solutions for k max 25 2 function of the angle '9' between LA and k

with vo/ve as parameter are plotted in Fig. 7-9. Near 3 = 90° we

always have the maln change of kzmax due to the ions whereas corres-
ponding to larger phase velocities kmax for smaller angles mainly
depends on contributions due to the electrons, The growing wave ratio
for l; = l:max is comparatively small for the "transversal instability"

but increases with increasing counterstreaming velocity. It can be

e

e



-36=

estimated from the limiting cases «9’ = 90° for which we calculated

its wvalues.

Concluding Remarks

After the derivation of the dispersion relation for any aniso-
tropic distribution of particles we considered the particular case of
two counters’r;reaming neutral hydrogen plasmas without external fields,
It is shown that there exist some  transversal instabilities addition=-
ally to the weil known longitudinal instabilities. However the prob-
ability for exciting them by natural fluctuations in the plasma is small
because of their’long characteristic lengths. We introduced dimension-
less parameters related to the thermal wvelocity of the electrqns and
the plasma frequency. The angle 3 between the counterstreaming vel-
ocity Y and the wave vector k is very important. Longitudinal in-
stabilities occur for all angles for which ;o cos is greater

than 1.86 where Vo= Ve (‘r2—lve)-'1. There exist however always trans-

versal instabilities, Fig. L4 shows the limiting case '\9= 90o for

‘which the curves of constant growing wave ratio are plotted as a .func-

tion of the normalized counterstreaming velocity. The instability
. 0 '
region extends from F = 90° to \9‘ min min

. Fig, 6 shows this angle +
as a function of v _ cos & . The H+-ions contribute only if v cos 4+

is of the order of the thermal velocity of the ions which for increas--

ing \A restricts their effect to the vici.nity of 3= 90° (Fige 7=9).

, As soon as v is greater than 1.3, the instabilities exist for all

angles. The longitudinal instability is predominant only if 3 is
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smaller than {9'0 = arc cos (1'86/;6) as can be seen in the example
given in Fig. 9.

| The results can be generalized to any anisotropic.velocity dis=
tribution in a plasma, An insts ility of the same character will
occur as soon as there exists an unsymmetric velocity distribution
perpendicular to certainidirections of the vector of propagation k.
This and the effect of external fields will be shown in a following

paper.

In a different way it has been shown by J. Neufeld and F. H., Doyle
l.c, and by E, G, Harris: Transversal Instabilities associated with

?nizogropic Velocity Distributions. J..Nuclear Energy C, 2, 138
1961). .
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Appendix: The Plasma Dispersion Function Z(u)
For Maxwellian velocity distributions of the particles one has to

iﬁtroduce the function: +00 -x2
Z(p) = "-1/2 ‘[ & for Imu>0
X-p
-0

and the analytical continuation of this for Im p < O. This function
can be written alternatively as

+00 2
Z(n) = 21 eH I et at

-Q0

This representation is valid for either sign of Im p and shows the close

- relation to the error function. The following formulas give a few ex~-

pansions used in this paper,

1. Real Argument p = K,

| ‘Z(ur) = Re Z(p ) + iIm 2(p )
- - 2 B 5
: T t
Re Z(ur) = -2e ‘f e’ dt
2
In2(u) = w/2 e
-2. Imaginary Argument u =iur
' 2
1/2 Wr

Z(ip.r) = in e (l-erfp.r)

3. Power Series

2 2 2L .36
Z(p.) - 1"1/2 e-u' - 2]_1 E- -2—‘3‘-:- *%;E;‘ﬂ %%:,7 + .,J
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L. Asymptotic Series

Z(p) = iﬂl/ R

2u” 2 274

]
.Fl
H
=

A' vwhere
! .
O forImpu>2O0
o = { 1l for Imp =0
2 for Imp <O

: 5; General Propefties
2(W*) = - z(-w)"
for Im pu > O¢
. -
Z(u*) = Z(p) + 21n1/2 e'(u )’
2(w) = =201+ w2(w),

2(0) = 1mt/2 .

il
e
0
t
i
0

1 3 3.8 |
*7"‘2—'5.""3—6*--]
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