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Longitudinal and Transversal Plasma Wave Instabilities 

* in Two Counterstreaming Plasmas without External Fields 

Dietrich Btinemann 
Case Institute of Technology 

Cleveland, Ohio 

Abstract 

Some aspects of the theory of longitudinal and transversal waves 

in a collisionless nonrelativistic plasma are treated in this paper. 

A dispersion relation for multicomponent plasmas is derived from the 

linearized Boltzmann-Vlasov equation using the full set of Maxwell's 

equations without an external field. The velocity distributions of 

the plasma streams are assumed to be Maxwellian. For the particular 

case of two counterstreaming plasmas it is shown that there exists 

transversal instabilities for all counterstreaming velocities whereas 

the well known two stream instabilities only exist for velocities 

greater than a critical velocity. Exact solutions for the onset of 

the instabilities can be given. This kind of instability may occur 

for any nonisotropic velocity distribution in a collisionless plasma •. · 

* Supported in part by the National Aeronautics and Space Adminis-
tration. · 
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Introduc tion 

Longitudinal wave instabilities in counterstreaming collisionless 

* . plasmas have been discussed by several authors. They reported that 

these instabilities only occur above certain 'minimum ct>unterstreaming 

velocities. One of ~he purposes of this paper is to find whether other 

instabilities of transversal character exist when the counterstreaming 

velocity is smaller. Taking the full set of Maxwell 1 s equations into 

account this' can indeed be shom. In Section I to III we derive the 

dispersion relation valid for an arbitrary multicomponent plasma. In 

section IV it is shom that there exists a complete equivalence between 

our method of Laplace transform technique·and the eigenfunction expan-

sion method •. Section V brings a few remarks about the general problem 

' 
of a plasma with boundaries. Section VI shows the application for a 

resting plasma whereas Section VII gives a. detailed picture of all two 

stream instabilities. 

·I. Fundamental Equation·s· 

The set of Boltzmann-Vlasov (B. v.) equations for a multicompanent 

collision+~ss plasma is given by the expression 

* 

oF e 
s d F + -1! (E l B) d F at + .! gra s ms - + c .! x - • gra v s "" 0 (1) 

(s .. 1,2, • .'.,s) 

J. R. Pierce, Possible Fluctuations in Electron Streams due to Ions." 
Journal of Appi •. Phys. 12,, 23, ( 19 48). · 

D. Bohm and E. P. Gross, "Theory of Plasma Oscillations,·· Phys. Rev. 
15, 1851 and 1864 (1949). 

o. Buneman , Dissipation of Currents in I.onized Media, Pbys. Rev. 115 
503 - 517 (1959). 

. t· 
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: F is the distribution function for the particles of the component s 

s of the plasma. The current J and the charge density p are given 

by the following expressions 

s 
.1 "" L es J.! Fs(y) d(3)v 

s=l 

p = 

We assume the plasma to be neutral and 'Without currents or fields 

just before we introduce some small perturbation at th~ time zero. 

This enables us to linearize the equations (1) by subtracting the 

analogous equations for the unperturbed quasi-stable distribution 

F with corresponding vanishing fields E and B • Here F is to. 
OS -o -o OS 

be assumed constant in space and time. For the small perturbation 

fs .. F - F which in this case will be different from zero mly 
S OS 

for a positive time we get the linearized B.V. equations 

oF e 
ots + v • g.rad fs + __.§. (E + _! v x B) • grad F = 0 

m
8 

- c- - v os 

(s = 1,2, ••• s) 

The fields ! and~ in these equations are produced by the small 

perturbations only. Additionally we have to satisfy Maxwell 1s 

·equations and the equation of continuity: 

(2) 

( 3.)_ 

(1') 
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·'divE ... 4trp (4) 

div B "' 0 (5) 

curl E 1 oB (6) = ----c at 

purl~ 
4trj lOE 

(7) ... + - -=::1 c c ot 

~ ot + div ,1 = 0 (B) 

It is our goal '00 solve the equations (1 1 ) together with (4) to (B)o 

This. solution will give us a complete and self-consistent picture of 

all possible plasma waves for the assumptions initially made. We now 

assume a time dependence proportional to 

exp (pt - r . !> (9) 

where we have introduced the complex frequency p = i~ and the complex 

wave vector r .. i.!s for convenience sake • 

. As we deal with an :initial value problem, we can use the Laplace 

transformation for our equations which we already indicated by using 

the letter p for the complex frequencyo For the space domain we use 

the Fourier transformation regarding an infinite space without any· 

boundary values. 

II. Conductivity Tensor 

Our next step is the elirnina tion of ~ in the B. V. equa tiona by 

means of Faraday's law (6) which now becomes 

~-J 
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'divE = 4rrp (4) 

divB = 0 (5) 

curl E 1 aB (6) = ---= c at 

curl B = 4rrj + 12! (7) c c at 

~ + div .1 at = 0 (8) 

It is our goal U> solve the equations (1 1 ) together with (4) to (8)o 

This solution will give us a complete and self-consistent picture of 

all possible plasma waves for the assumptions initially made. We now 

assume a time dependence proportional U> 

exp (pt - r . !) (9) 

where we have introduced the complex frequency p = i~ and the complex 

wave vector£ = i_! for convenience sake • 

. As we deal with an initial value problem, we can use the Laplace 

transformation for our equations which we already indicated by using 

the letter p for the complex frequencyo For the space domain we use 

the Fourier transformation regarding an infinite space without any· 

boundary values. 

II. Conductivity Tensor 

Our next step is the elimination of] in the B. v. equations by 

means of Faraday's law (6) which now becomes 

....,..,.., _________ ,c···,·------------_..-------......,.-~~ 
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+ 
P.!! = cr X! + ~(0 ) • 

This gives us 

·1 v X B D 1 r (v • E) - 1 E(v 0 r) + L v X B(o::'") 
c - p - - - p - - - cp - -

Introducing this into the iBo V. equations we get after division by 

p-.r·.! 

f (v) 
s-

n e 
= -~ E • (grad F 

pm - V OS s 

( r • grad F ) 
- V OS ) +v------­- p-£·.! 

n e 
+ ~ B(O+) o 

pm -

(v x grad F ) 
- V OS 

s p-.r·.! 

(10) 

(11) 

(13) 

If there are n particles per unit volume we normalize F by introduc-s ~ 

-1 
ing f

0
s = n F • 

S OS 
Integration of 

s 
\ v e f (v) L- s s-

s=l 

over all velocities gives us tbe connection between currentl and elec-

tric field E 

s=l 

(&) 
2 

s 
~-E 
LI-Ttp - !v 

v v (r o grad f ) 3 -- - V OS ----------~~~ d v 

) p-r.v 
v - -

(14) 

s 

I. (&) .
2 J ( v x grad f )v 3 S - V OS- d 

4rr p-r.v v 
. v) - -s=l 

The notation of two vec'OOrs written side by side without a c.onnecting 

:~; 
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dot stands for a dyadic product. In this equation we used the identity 

and the abbreviation 

I v grad f d3v = - I 
- V OS : 

2 
(!.) 

s 
.. 4TTn e 2 

s a 
m s 

For electrons oo is equal to the plasma frequency. I is the unit 
s = 

tensor of rank 2. 

Introducing the "conductivity" tensor £: 

I
s (!.) 

2 J v v ( r . grad f ) 
S ( -- - V OS 

£: = Gnp ~ - p - r • v 
- s=l v) - -

(15) . 

(16) 

(17) 

initial and the vector J. . containing the initial values of the problem 

·s + 
J.initial L: J: ~ £(0 ) 3 . 

:c e d v + s P - r .v 
s=l v) 

s 2 . (vxgrad f )v 
3 ~(0+) • I;~ I - V OS- (18) + d v 

sal p- r • .! 

we arrive to the equation for 1 

J. = £: • ! + j initial (19) 

connecting the current with the electric field. 

III. Dispersion Relations 

'Eliminating the magnetic field] from Faraday's and Amp~re 1s law, 
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we have another formula between the electric field and the current: 

2 _22 2 + + 
(p - rc )!l + p !11 + 4rrpj_ = p !(O ) + c£ x ](0 ) 

!II denotes the electric field parallel, !1 the electric field pel\­

pendicular to the vector £• Additionally we used the identity 

(20) 

(21) 

Inserting the current 1 from equation (19) we have reduced everything 

tQ an equation for the electric field alene: 

s ·s 
(p2 + L c.os 2)·!- r2c2 !l- L Gl)2 

s 
____ v._ . ...;o..;.s_ .! .! d v • E !. 
(£ • grad f ) 3 

s=l s=l v) p - r . .! 

s ( + 

L £ 
vf 0) 3 + 

a -4rrp e .- 8 r d v + p E(O ) 
s . p - • v -

~al v) - -

(22) 

s 

- I 
s=l 

Fonnally···~e write this equation in the following more elegant form 

(23) 

The vector Q represents the right side of (22) giving all initial values 

necessary. Assuming J: in the x-direction and defining ·II a p/r we get 

the following representation for the components of the dispersion tensor 

Dr 
= 
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General expressions for the dispersion tensor ~ . . 

().) 2 a f 

p2 (1 + L I ~vx oo J 
Dll 

s = 
r2 v - :V d v) 

s . X 

2 a f v 
2 2 .2 2 y a:v OS 

(1 + X = p .. r c + ().) 
s v - ·v D22 I I X s 

2 r2c2 + L D33 = p - ().) 
s 

s 

s ().) 2 

. 1\2 = D21 = p L . ~ 
s=l 

s ().) 2 

DlJ = DJl = p L ~ . 
s=l 

2 a f v 
2 z CV OS 

X I (1 + v - ·v 

v 0 f 

S 
y av; OS 

v - ·v 
X· 

v .J- f 

I Z OVX OS 

v - ·\1 
X 

X 

s 

L 00
s 

12 

s=l 

v v 2... f 

I y Z avX OS 

v - ·v 
X 

(24) 

d3v) . (25) 

(26)" 

(27) 

(28) 

(29) 

For derivation of (24) and (26) we added and subtracted tenns partly to 

cancel the factor v - :U in the denominator. Then there are only terms .x 

left without a factor v - v in the numerator. Of course we used the 
X 

identity 

S a 3 v ~ f ·d v = -1 
X OV OS . 

X 

(Jo) 
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The formulas are still valid for any normalized distribution func-

· tiona f • We specialize these distribution functions to be Maxwellian 
OS 

in all directions: 

f = OS 

(v- v )2 
- -s 

2 
2< v > -a 

and use the properties of the Maxwellian distributions: 

2 - 2 <v >+v s -s 

Furthermore we introduce the following fUnction 

+oo 

Z(~) 1 
= 'J-72 

rr I 
-co 

2 
-X e 

~ d~ for Irn ~ > 0 ; ~s X-

2 .. < v > s 

.E- v 
= r sx 

2 
2 <·V > s 

(31)· 

(32) 

(33) 

{34) 

and its analytical continuation into the lower ~ - halfplane which cor-

responds to the left p - halfplane for the Laplace transformation 

(r = ik, p = ikr). Some of the properties of Z(~) are given in the 

appendix. For the dispersion matrix we use thi·s analytical continuation 

as we treat our initial value problem with the Laplace transformation. 

. '· 

Finally we get the following formulas for the dispersion matrix elements: 
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Dispersion matrix D for Maxwellian velocity distributions: 
= 

2 
p2 { 1 + I· (J.) 

(1 + IJ.s Z(IJ.8))} D:u s (35) ·= 2 2 k < v > s s 

~- (1 

- 2 

Z(IL8~ {36) 
2 2 2 Li oos2 

v 
D22 .. p + k c + + 

ys ) • (1 + IJ. 2 8 < v > 8 X 

E- (1 

- 2 

Z(!L
8
)j (37) 

2 k2 2 I 2 v 
D33 

zs ) (1 = p + c + (.1) + 2 • + IJ. s s <V > 8 X 

2 

I 
(J.) 

11.2 D21 
s ik v (1 + 1J. Z(IJ. )) = ... p 2 2 • 8Y B S k < v > s s 

(38) 

(J.) 
2. 

11.3 D31 I s 
ikVSZ (1 + 1J. Z(IJ. )) .. = p 2 2 8 s k < v > s s 

(39) 

I 
(J.) 2 

D23 D s v • v (1 + 1J. Z(IJ. )) = = -32 2 sy sz s 8 <V > B s 

(40) 

Before discussing the dispersion relation we consider the case of a 

plasma beam at zero temperature (for the function Z(IJ.) see Appendix): 

I 
2 

<V >=O;f 
B OS 

.,. 6(v- v ) 
- -s 

(lu.) . I 
1 + 1J. Z(IJ. ) s s 

I 

I 
:lim ... -

' I 
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This has to be inserted into equations (35) to (40) for cold plasma 

streams. A Maxwellian plasma can be composed from singular velocity 

streams according to the identity 

0 f ... I~ OS 

v - r 
X 

(42) 

A similar way of approach by superposition of single plasma streams 

* was done by J. Neufeld and P. H. Doyle using the polarization concept 

·of a plasma instead of the B.V. equations. Their dispersion relation 

can be shom to be equivalent to a special case of our paper. 

The time dependent electric field for a fixed,! can be calculated 

by means of the inverse Laplace transformation: 

+iro+e 

= lim I 
e->o . 

-ioo+e 

· The residues at the poles in the right p-plane correspond to instabili­

ties given by the zeros of the determinant IE(p) j. The integral itself 

gives all contributions corresponding to more or less damped waves mainly 

dependent on the zeros of the analytical continuation of fu(p)}-l to the 

left half plane. Usually it is not possible to close the path of inte­

gration at infinity around the left half plane.- This was shown by Landau 

* ' 
J. Neufeld and P. H. Doyle, Phys. Rev. 121, 654 (1961). 



.. 

-12-

for the case of purely electrostatic waves in a Maxwellian plasma .. 

IV. Comparison with van Kampen's and Zelazny's Methods 

A short remark may be given concerning methods developed by other 

authors.. Extending van Kampen's eigenfunction expansion method* to the 

initial value problem of plasma oscillations including longitudinal and 

** transversal waves, R. Zelazny gave a solution for an electron plasma .. 

The ions are treated as positive charge background.. His method can be 

generalized without difficulties to a multicomponent plasma. The main 

difference between his method and our method is the fact that Zelazny­

*** as we will show- implicitly used a two-sided Laplace transformation 

If we assume the existence of two positive numbers p1. and p2 for 

which the functions 

!+(t) = !(t) for t > 0 , !+(t) = 0 for t < 0 (44) 

(45) 

give finite values for the integrals 

ro -p t J l!(t)le 
1 

dt and (46) 

0 ()) 

we can write the following formulas valid for any finite t: 

* N .. G .. van Kampen, Physica ~, 949 (1955)o 

** R. Zelazny, The initial value problem for longitudinal and trans-
versal oscillations, Ann. of Ppyso lQ, 261-278 (1962)., 

Private communication from R. Eo Collin and J .. Gustincic e 

e 
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+iro +P:J. 

l:im 2!i s 
&->o 

1 .. lim -2rri &->o 

1 = lim "2rri 
&->o 

= iim 
&->o 

-i<D+JJ._ 

+:iro+& 

I 
-iro+& 

+iro-p 2 s 
-iro-p ' 2 
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co { J !( tJ)e -pt~it~} e +ptdp for t > 0 

0 

-oo 

- pt \ ( - ) pvt ! (p )e dp - L.. Res !, (pv e ) 
Re(p )<0 

" 

For ~(p) we have to insert the expression 

The sum of, these functions is given by 

+iro _ 

~(t) = l P J E(p)ept dp + 
rri -

-i<D 

,. p t 
+ L. Res(!(pv)e v ) 

Re(p ·)ro 
" 

··(47) 

(48) 

(49) 

The residues on the imaginary axis are cancelled and the principal value 

of the integral is left over. This is exactly the expression which would 

have resulted from the singular integral method in which the sum over 

the residues expresses the action on the na blral modes of the system. 

1 .• 
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But as we cone ern ourselves only with an initial value problem the 

method of the Laplace transform as given by (47) leads to the same 

result in a much simpler way. The same remark applies in calculat;-

ing the distribution function. 

v. The General Problem with Boundary Conditions 

The B.V. equation describes the rate of change of the distribu-. 

tion function along the trajectories of the particles in phase space 

to be equal to the collision rate of the distribution function. We 

write the B.V. equation in a collisionless plasma for small perturba~ 

tions f ... F - F in the following form 
S S OS 

D · e 1 
Dt 

f (r,v,t) + v grad F (r. v) +...!! (E +- v x B) • grad F (r,v) = 0 
S - - - r OS ...., - m - C - - · V OS - -

We assume 

.s 

s ... 1,2, ••• ,s 

that F (r, v) is not dependent on time. Integration 
OS- -

along the trajectories of the particles yields 

00 . . 

f (r,v,t) s-- ""Jv•.grad 1F (r 1,v1 )d-r 
- r OS - -

0 

00 

I 
0 

where 
T 

r' .. r - I J.(t--r') dTI 

OT 

v' "" v- .f .!< 1;--r') d-r' 

0 

(50) 

(51) 

(52) 
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are the particle coordinates an their trajectories in phase space. 

Having no external fields we linearize our equations by ·assuming 

• v oscillating with a very small amplitude and approximating~~ by 

~· This corresponds to a first linearization. The resulting equa­

* tions 

0 

grad F (r-vT1 v)dT 
OS-- -

s = 1,2, •. • ,s 

are identical with the set of linearized B.V. equations (1) only if 

' 
F

0
s do not depend on space. This last assumption corresponds to a 

second linearization of our equations. In this special case we c;:an 

write them as 

f (r,v,t) 
s--

a . = 1,2, ••• ,s 

or ~imply in the original differential form of the B. v. equation 

a = 1 1 2, ••• ,s 

(53) 

* Collisions can be taken into accountbyan·additional factor e··trt. 
<u a collision frequency) in the integrals. 
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which is identical to the previous used· set of equations (1 1 ) for 

the argument r 1 .. r - vT and t - T. 

The neglect of boundaries and space variations in F implies 
' OS 

that the description given in this paper is valid only for the 

following two conditions: 

1. The wavelength is much smaller than the characteristic 

length of the system. 

2. The time interval considered is short enough that the 

disturbance has not yet reached the boundaries and been re­

flected and transmittedo (Having introduced the disturbance· 

at time zero we must take the time t inste~d of oo as upper 

limit of the integrals over T)o 

Equation (53) has a simple interpretation: Only those vel-

oci ty components of the right side integrand contribute for Which 

,!T just equals the ·distance of the space points ! and!'. This 

means that we could change the time integration to a one-dimensional 

space integration in the direction of -.:y beginning at r. At this 

integration all quantities are to be taken with a retarded time 

t' .. t - T = t - lr - r' I 
v 

Going back to the more general equation (51) we calculate the current 

in the plasma 

.. 
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.. L es J.! fs(!,,!,t) d3v 

s 

2 CD 

- I in r S .! .!' 
s tv)T=O 

(54) 

+ 1 v'xB(r', 1i-~ ~grad F(r', v' )d3vdT 
c-:- ~ v 

s 

where !', v' are given by· (52). This current is "generated" by asym­

metries of the distribution function in the space variables and by the 

action of the fields on the plasma producing a polarization at differ-

ent po:ints !'. Both effects are carried along the trajectories by the 

particles. This gives a retardation time equal to the time in which 

the particles travel from ! ' to ! . By eliminating ~ from Maxwell's equa­

tions (6) and (7) and introducing the current (54) we get a complicated 

integra-differential equation for the electric field ! Which together 

with (51) gives a complete description of any collisionless plasma. 

However solutions to these equations can only be found for very simple 

special situations. 

VI. Solutions for a Neutral Plasma at Rest 

In order to clarify the importance of the dispersion relation .we 

consider a plasma consisting of two components: electrons with mass 

me and charge e and ions with mass mi and charge Ze. For convenience 

sake wa'introduce the following dimensionless parameters into the 

formulas (35) to (40)t 
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m 
a Ill z~ 

mi 

(55) 

Q) 

~ a 

'[2 kve 

lev e 
a- "" kA.D where A.D ... Debye length 

x = Boltzmann constant 

Now the dispersion relation can be separated into 

(56) 

represents the condition for longitudinal waves and 

= .v = (58) 

the condition for transversal waves. As can be seen immediately, these 

equations ha~ only solutions for damped waves, i.e. for Re p < 0 or 

Im oo > 0. The fields are assumed to be proportional to 

exp (i(oot - ~ • !)) (59) 

The time behavior of our p~asma will be determined by the zeros of (5'7) 

and (58) which are closest to the real axis of the !J.-plane. Now we 

assume large values of !J.• As will be verified by the result we will 

have small damping, i.e. a small positive imaginary part e of !J.• 

With this condition we may approximate an equation G(J.L) a 0 by a lin-

ear expansion at the point !J. = Re !J.t r . 
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dG((.L ) 
G((.L ) + ie d(.L r ~ 0 

r r 
(60) 

Neglecting terms of higher order the real_part of this equation gives 

the following condition for IJ.j.: 

(61) 

After having solved this equation we conclude from the imaginary part 

of the equation (60): 

(62) 

On the real axis of the (.L-plane we approximate the function Z((.Lr) by 

the expansion given in the Appendix: 

Now we set G((.L) equal to the longitudinal or transversal wave dispersim 

relation and get the following results: 

a. Longitudinal waves 

6 ... 
J, 

2 
Because me << mi and ~ - 1 >> 1, CJ.r·>> kve we might neglect the square 
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brackets and our formulas reduce to the well known form of the disper-

sion relation and the Landau damping. However, there is some doubt 

about Landau damping which can be valid only for a limited time :inter-

val as we neglected the nonlinear terms of .the B. v. equations in .a 

first approximation assuming that the particles maintain their velocity. 

b. Transversal waves 

We can solve the equations for the transversal waves assuming 

very large values of ~. Neglecting all second order terms we get 

ci A k2 2 2 (65) = c + 00 e 
1 00 

2 

002 - 2(kV') . 

6t 
,. % (!!.)1/2 ~ e e (66) = 

. 2 kve 

The phase velocity of these waves will always be faster than the speed 

of light. The contribution to the damping is due to particles having 

velocities in the vicinity of the phase velocity. In this respect we· 

do a serious mistake as we use a nonreiativistic Maxwell distribution 

for our calculations: No particles can exist with higher velocities 

than the speed of light. Having this in mind we better leave the damp-

ing undeterminedo 

VII. Solutions for Two Counterstreaming Neutral Plasmas 

In Section VI we considered a stable plasma at rest. From our 

dispersion relation we know that no coupling exists between longi-

tudinal and transversal waves in a plasma as long as we have a symmetric 

distribution fUnction. Therefore we consider in this sectiona special 
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unsymmetric distribution: two counterstreaming initially neutral 

plasmas with the same kind of ions. Because of the uncertainties 

connected with all "damping" effects in a collisionless theory we 

will restrict ourselves to a consideration of the unstable solutions 

given by the zeros of our dispersion relation in the right p~planeo 

We assume plasma 1 at rest and plasma 2 mqving with the velocity . .!o o 

· For abbreviation we introduce 

m m T .(l) 
z~ ~1 

i e 
a = . "" T (1) mi ' m e i 

v (1) 

6 
e Gl) ... · c2P 1..1. "" (1) 

. , 
ve 2kv e 

and the function 

the following dimensionless parameters 

1/2 
T (2) 

1/2 

,.. 
v 

0 

+oo 

s 
-oo 

mi 
~2-

e 
; = T (2) 

me i . 

v ,.. 
0 c '12 v (1) 

a "" v 
0 

e 

2 -x e ..;;...__ dx for Im 1..1. > 0 
X-1..1. 

; y c 

cos~· k = 
J 

N (2) 
e 

N (1) 
e 

(67) 

kv (l) 
e 
Gl) 

e 

(68) 

and its analytic continuation for the lower half plane (Appendix). 

Ti and Teare the temperatures of the ions and the electrons. For 

Glle and ve we used the definition: 

KT (1) 1/2 xT (2 ) 

• , 

v (1) (2) ( e ) ( e ) = . v = ' e x = Boltzmann constant e me 

(1) 
Gl) = Gl) 

e e 

4rrN (l)e2 
e = m e 

me 
(69) 

Glle = plasma frequency 
for plasma "1" 

Furthermore we assume the axes .&:!_1 ~2 , _&
3

, of our coordinate sys tern :in 

the following way: 
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~l parallel to ~ 

_&2 in the plane of k and ! 

_&
3 

perpendicular to both 

Using formulas ( 35) to ( 40) we get the following diapers ion relation: 
I 

p2! {2ooepKc 0 

IIDikll- - 2-2 4 2~ 2 .. oopkC 2ooek vll 0 a_400ep k (!V11-c )v22 = 0 e 

0 0 2oo;~v22 (70) 

The tenn C char§cterizes the coupling. The different te:nns :in this 

equation are given by the following expressionst 

! = 1 +.K'2 (!1 + !2) (71) 

. 2 
(72) !1 = (1 + ~ Z(~)) + a1~1 (1 + ~~ Z(~~)) 

!2 = 2 IT . 2 ~ y6 (1 + 6(~-a)Z(6(~-a)) + a2~2 (1 + ~2 6(~-a) Z(6~~-a))) (73) 
,. 

sin J iv 
c 0 

• !2 . (74) = 
k2 

vll = v22 - (;o sin .S. )2 .c2 . (75) 

2 
v22 · = (~) - 2~2 - k"2 (~ Z(~) + a1~1~ Z(~1~) + y(~-a) Z(~-a) + 

+ a2 ~2 (~-a) Z(~2 (~-a))) (76) 

The root factors of the dispersion relation can be written as 
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and 

(78) 

The first condition (77) characterizes transversal waves with 

oscillations of the particles perpendicular to ~ and ~· It repre­

sents uncoupled transversal modeso The second·· condition character-

izes the coupled longitudinal and transversal modes with partiCles 

oscillating in the plasma between ,! and ~o Let us first consider· 

the limiting case Q "" 0, where v is parallel to ko Then we only get 
-o -

diagonal terms in the dispersion relation, the coupling disappears and 

we have to solve 

~ = 0 for longitudinal waves 

vll = v22 = 0 for transversal waves 

So Longitudinal waves for Q = 0 

The condition for longitudinal waves is 

= 0 (79) 

where ~land ~2 are.given by the equations (72) and (73}o At first we 

consider the limiting case of zero damping for which ~ becomes realo 

For ~ real we use the formula 

(80) 

The imaginary part of equation (79) gives the following conditions: 
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0 = 

(81) 

In order to simplify the analysis we assume two identical counterstream-

ing plasmas : 

2 2 = ~2 a ~ and y = 6 .. 1 (82) 

or explicitly 

T (l) "" T ( 2) • T (l) = T {2) N (l) = N ( 2) (83) 
e e 'i i 'e e 

For _these conditions equati·on (81) has the solution 

a6 
~0 ... 1 + 6 . (84) 

Inserting this value ~ into the real part of equation (79 ), and usmg 
0 

the identity .. 

Re (-~ Z(-~)) = Re(~ Z(~)) for~ real 

2 we get the value of k as a function of ~ : 
0 

(85) 

'K2 (~) "" -2j(l + ~ Re Z(.~ )) + a~2 (1 + ~ ~ Re Z(~~ ))I (86) 
0 0 0 0 0 

2 Only positive va:tues of k (~ ) are solutions to our problem. The c.urve 
0 

k2 (~ ) separates the mstability region from the stability region. All 
0 

k smaller than K'(~ ) correspond to unstable solutions. In Fige 1 the 
0 

function 1 + ~ Z(~) is plotted for real ~. This fUnction is negative 

only for ~ > 0.93. Its minimum value is about -0.28 for ~ = 1.5. 

At first we assume equal temperatures of ~ons and electrons. Then 
. 2 

our ~ is always greater than 42 and a~ = z. For ~~ .. 1.5 we will bave 
0 

·-



D 

B 
D 

D· 
0 
0 
0 
0 
0 

-2.5-

This means in (86) we g~t-an ion-ion wave instabilit,y if the charge Z 

of the ions is greater or equal to 4. With greater charge number the 

tendency towards an instability for ion-ion oscillations increases be­

cause of the increasing interaction between the ions. The optimum rela­

tive velocit,y of the counterstreaming plasmas for this kind of instabili-

ties is of the order of the thermal velocity of the ions. The electron-

electron instabilities occur at much higher velocities where the second 

term in (86) can be neglected. The electron-electron instabilities 

are practically independent of the ions. In most discussions on 

two stream instabilities the effect of the ions can be neglected. In 

Fig. 2 the electron-electron instabilit,y for the special case of iden-

tical plasmas is plotted. Some curves for constant growing wave ratios 

have been obtained· additionally. The dotted line gives the k ..;,alues 

for the maximum growing wave ratios. For v < 1.84 or v < a.6~v 
o · o "" e 

there exists for ions with Z ~ 3 other instability regions if and only 

if. the temperature of the electrons T is higher than the temperature T. e 1 

of the ions. For Z = 1 ion-ian instabilities exist for Te > 3.5 Ti at 

about v
0 
~ 0.025v9 and ion-electron instabilities exist for Te > 1.4 Ti 

at the region where v
0 

is of the order of t~e thermal velocity of the 

ionso These speciai cases.have been calculated by T. E. Stringer* for 

a variety of different parameterso 

* U.K.AoE.A.,. Harwell Report, August 1961. 
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b. Transversal waves for ~ ~ 0 

The transversal waves for vanishing coupling are .determined by the 

dispersion relation (7b) 

(86) 

As can be seen immediately, there are no unstable solutions possible. 

·The phase velocity would always be greater than the velocit,y of light. 

No realistic prediction can be made about the damping in our treatment 

because of the ad hoc assumption of having a Maxwellian tail if veloci· 

ties faster than the speed of light. A. detailed relativistic calcula-

tion has to be made with respect to these difficulties. 

Co Coupling effects. ,&, I 0 

For the coupling effects we have to admit solutions with~ f 0. 

The dispersion relation for waves with particle osciliations in the 

plane of ,! ·and ! includes the coupling with an extra term: 

As before, we restrict ourselves to waves with non-relativistic phase 

velocities which mostly correspond to longitudinal waves. For these 

2; 2 . waves v22 is of the order of c v
0 

Which we assumed to be large. 

·Therefore we expect the effects to be proportional to 

v sin .8' 2 
... (.....;0~-) 

c << 1 (88) 

because we deal exclusively with. non-relativistic effects. Plotting 

the Nyquist curve as a criterion for the stability of·. n
1 

we. get the 

1 
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diagram shown schematically in Fig. 3 for the special case of a langi­

mdinal instability. The most interesting part of this diagram is the 

vicinity cif the zero point of the D1-plane. It shows in this example 

damping for transversal waves and gro"Wing for special longi 'Wdinal 

waves. Taking Greek letters for the imaginary parts and indices 1 and 
I 

2 as indices for the plasmas, we get 

~ . ....2 c 2 2 
k-v = k-((-) - 2~ )(1 - 6 ) with 6 = 22 ve 1. 1 

( 89) 

- ( t 1 + t 2 ) - i ( T l + T 2 ) 

2 
~ ((£_) 2~2) 

v 
e · (90) 

where r
1

, r
2

, cr
1

, cr
2

, t
1

, t
2

, T
1

, T2 are real and imaginary parts of 

corresponding quantities defined by (72), (73) and (76). As we are 

restricted to moderate phase velocities, our a
1 

is small compared to 

one except the case where k is very small.. Dividing the dispersion 

relation (87) by v22 we get immediately the result 

,..,2 . (~ + r 1 + icr1 ) ( r 2 + icr 2 ) k + (r1 + r 2) + i(cr1 + cr2) = e (91) 

~ (1 - 61) 

For.the treatment of this equation we consider 2 different cases: 

1. kc >> ve 

From (90) we conclude that 61 is very small and can be neglected. 

Taking the imaginary part of this equation and using the solution for 

e "" 0 we get the approximation by expanding m to a Taylor series 
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. (92) 

Taking the real part_ of equation· (91) we obtain similarly by expansion 

AK 2 ,. 
-AIJ. (r•1 + r 1

2 ) + e ~R'o 2 + rl)r2 - 81sJ .. 
~ 0 0 &=0 e=O 

or 

&_2 1 ~ko2 + rl)r2 - sls2 -... e •-
0 1{2 

and the new solution is given by the values 

lJ. (e) 
0 

= j..L + 61J. 
0 0 

r ' + r ' 
s 2)rJ 

1 2 (s -
8 ' + 8 ' 

1 
1 2 

(93) 

For two counterstreaming identical plasmas with equal ion and electron 

tempera'b.lres these corrections can be seen to be extremely small for 

the range of validity of our calc-qlation. Uncoupled longi tud:i.nal wave 

instabilities occur only for A~ 8.~.AD as can be seen from Fig. 2. 

2 2 2 . 
The condition k c > ve is a restriction for small wavelengths 'Which 

combined with the first condition can be written as · 

8.3 AD~ A << 2rr f- AD 
e 

Where AD is the Debye wavelength. 

.(94) 

-~--~~-=~·--· __ _j 
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2. Lang wavelength approximation k << 1 

We already discussed solutions for longitudinal and transversal 

waves which correspond to well known solutions. New solutions can be 

found if 6
1 

cannot be neglected, i.e. the tenn 

2 2 2 k <--;.- 2~ ) 
ve 

is not dominating. This means that we have to consider solutions for 
~ . 

which k << 1 or as a condition for the wavelengths 

• 

2rrv 
e 

')., >> - = 2rr).D 
(l)e 

Usin~ previous notations, the dispersion relation becomes 

a. Complete· Solution for .,a -= 90° 

(95) 

At first we discuss the solution for ~ = 90°. In the· argu.ment of 

the Z-function we have v cos .&' = 0 and the expressions become mdch 0 . 

simpler. The imaginary part of this equation vanishes if we take 

~ ., iy purely imaginary as we have for this argument: 

F(y) = -iy Z(iy) 
1/2. 2 

= rr y eY (1- erf(y)) (97) 

We consider the previous discussed example of two counterstreaming iden­

tical hydrogen plasmas. For IYI small compared. to ~-~ the solution of 

(96) becomes 

------------------------------------------------------------------------~ 
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y .. 

~ ~ 
1/2 c 2 kmax - k · 2 2 ~ 

Tl' (ve) 2(1 + a~) = 0.87 (~) (k - k ) ,ve max · . 
(98) 

2 which shows that k is nearly identical to 

~ 
max 

1/2 v 2 v 2 

= T (~) (1 + a~) "" 0.904 ( c0
) << 1 (99) 

as both v and v are very small compared to c. We now proceed to solve o e 

the equation (96) for arbitrary values of y. The functions appearing 

in (96) can be expressed by F(y) in the following way: 

(100) 

and 

(101) 

Since we consider the case k'2 << 1 we can neglect~ on the right side 

of (96) Which leads to the simpler equation 

,,· 2 v 2 

k'2 (~) (1 + 2y2 (~) ) a -2 (F(y) + a F(~y)) + 
ve c 

A 2 
+ v 

0 
( 2. - F( y) - F( ~y) ) (102) 

Introducing the following abbreviations 
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; 2 ( y) = 2 ( F( y) + a F( ~y) ) . 
o m 2 - F(y) - F(~y) (103) 

and neglecting the term with y on the left side of (102) we write the 

equation in a modified form 

A2 A 2 A 2 
k = (v

0 
- v

0 
m(y)) • (2 - F(y) - F(~y)) 

Now the argument. y is given by 

Imoo c Y a 
Imoo 

'[2kve 
.. -

(J) 
e 

from which we deduce the growing wave ratio 

Im (J) .. (J) 
e 

\[2" ve A 

c • ky 

(104) 

(105) ' 

(106) 

Figure 4 shows a few curves of constant growing wave ratio (ky "" con-

stant). 

The maximum growing wave ratio as a functj,.on of the counterstream-

ing velocity is plotted in Figure 4a. Comparing this with the growing 

wave ratio for longitudinal instabilities in Figure 2a, we conclude that 

the longitudinal instabilities grow much faster. The probabili~ of 
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excitation of the transversal instabilities depends on the initial 

distribution of Fourier components in space. The wavelength as the 

characteristic length At for the transverse modes usually is much 

longer than that for longitudinal instabilities. According to (lo6) 

we get for At the expression 

A V 
"" \r?l 2tt ..£. ~ ... ,... v (J) 8.88 ~ • AD = 4. 7 • 106 ·Ne -l/2.;f in em 

e e 0 0 

For . the longitudinal modes A i, bee orne s (Fig • 2 and 2b ) 

A .,. 
i, 

(107) 

(108) 

where 'k
6
max is approximately 2 • kmax• From previous calculations we 

use 
,. v 

kmax = -2 (1 + 1.1. Z( 1.1. ) ) where 1.1. 
0 0 0 

= ~0~ for 
'{2v 

e 

-2 ,_ 
... IJ. if IJ. > 2 

0 0. 

This gives for values v > 6v approximately o e 

v 
41T 1.1. o (J) e 

e 

2 
"' 1 vo = --oAt 2 cv e 

proving that the characteristic length for the unstable transversal 

modes.is much greater than that of the unstable longitudinal modese 

(109) 

In e.xperimen tal devices At might be even greater than the whole system. 

Fluctuations in the plasmas occur more often for characteristic lengths 

comparable to Al than for very lon~ lengths. This means that in most 

1 

. ' 
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exper:iments only longitudinal modes are excited. They grow fast enough 

so that :we must take into account nonlinear terms of the Boltzmann 

equation before dealing with a considerable amount of the transverse 

instability effect. However, for smaller v where no growing longi­o 

tudinal modes exist the transversal mode will still serve as a strong 

relaxation process towards an isotropic velocity distribution in the 

plasma. 

b. ' Maximum k2 for ~ f. 90° 
~~~~~ma~~~~~-~~-

For J- f. 90° we calculate the minimum value of k
2 

which occurs for 

the special case y = 0 corresponding to vanishing damping. The result-

ing curve k2 separates the region of instability from the region of 
max 

stability. We constrict ourselves to the case of two counterstrearning 

identical plasmas with equal temperatures of ions and electrons as we 

did for the evaluation of the uncoupled longitudinal waves. Addition-

ally we assume Z = 1, i.e.·hydrogen plasmas. The equation (96) now 

takes the form 

= (104) 

where 

We introduced the following functions· 

g(J..L,a) = J..L Z(J..L) + (J..L-a) Z(J..L-a) + a(~J..L Z(~J..L) + ~(~a) Z(~(J..L-a))(l05) 

(106) 
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As ~ the previously discussed equations for uncoupled longitudinal 

instabilities ( .:t= 0) the imaginary part of equation (104) ~anishes 

for ~ = a/2. This corresponds to a phase velocity of the wave equal 

to the ·velocity of the center of mass of the two counterstreaming 

plasmas. Of course we would get zero phase velocity if we had chosen 

a center of mass coordinate system. This clearly shows that the oscil-

lations have relaxational character in the same sense as the longitud-

inal electrostatic two stream instabilities •. For the functions (105) 

and (lo6) we use the property of symmetry: 

Now we define new functions 

and 

~ f(a, K ) 

= g(2-,-a) . 2 = -2(2. Re z(!.) + a i! Re (~)) > o 
2 2 2 2 -

(108) 

(109) 

Using these expressions we can write the solutions in the following form:_ 

"'2 
k -2 = ·k 0 

2 Q. . Ye 2 "'2 
= tg IIJ • f(a.,(-) .k) c . (110) 

. 2 "'2 
Now we assumed ve << c. This means we can neglect (v /c) k as long . e 

"'2 
as k is of the order of one~ Our solution therefore approximately be-

comes 

(110 I) 

. ,. 

·, 
i 
' 
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gl(a) 

= f(a, 0) (ill) 

2 ""2 v 2 
This solution is valid only for tg .:J- . > 0 and k <<· ( ce) • Re h(!2) • mm-

The last conditions is valid everywh_ere except the very close vicinity 

·of the point where Re h(~·) vanishes i.e. tg-3" min = o. But this last 

condi.tion corresponds to the onset of the well known longitudinal in-

stabilities. It is, as we see by_comparison, indeed identical to the 

earlier derived condition for the onset of lCJlgi tudinal instabilities 

at k = 0 for the uncoupled longitudinal oscillations. 
max 

2 . 
For tg .s- < 0 we have no solution for J . and instabilities :nun . min 

occur for all angles 0 The solution changes at the point where 

Re h(~) ~ 0 to the c andi tian for the longitudinal waves for which 

= 0 where a = 
v 

_...;;o_ ~ cos J. 
f2've 

. (112) 

Especially at J-= 0 we get the well known solutions for k for un-max 

coupled electrostatic oscillations. The function f(a) is plotted in 

Fig. 5. The next figure 

2 

presents 1) . as a function of a. Complete mm 

solutions for k as a max func ti. on of the angle 3- between v and k 
-o 

with v /v as parameter are o e 

always ha.ve -the main change 

plot ted in Fig. 

of k2 due to max 

7-9. Near ,S. = 90° we 

the ions whereas corres-

pending to larger phase velocities k for smaller angles mainly 
. . max 

depends on contributions due to the electrons. The growing wave ratio 
... ... 

for k = k is comparatively small for the "transversal instability" max 

but increases with increasing CO'Imterstreaming velocity. It can be 
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estimated from the limiting cases ,S. = 90° for which we calculated 

its values. 

Concluding Remarks 

After the derivation of the dispersion relation for any anise-

tropic distribution of particles we considered the particular case of 

two counterstreaming neutral hydrogen plasmas without external fields. 

It is shown that there exist some transversal instabilities addition-

ally to the well known longitudinal instabilities. However the prob­

ability for exciting them by natural fluctuations in the plasma is small 

because of their long characteristic lengths o We introduced dimension-

less parameters related to the thermal velocity of the electrons and 

the plasma frequency. The angle ~ between the counterstreaming vel-

ocity v and the wave vector k is very important. Longitudinal in­
-o ,. 

stabilities occur for all angles for which v cos {1 is greater 
0 

~ '1 
than 1.86 Where v

0 
= v

0 
• (~ve)- • There exist however always trans-

versal instabilities. Fig. 4 shows the limiting case -8- = 90° for 

which the curves of constant growing wave ratio are plotted as a func-

tion of the normalized counterstreaming velocity. The instability 

region extends from J- = 90° to ~min. Fig o 6 .shows this angle .J- min 

as a function of ; cos ,.} • The H+-ions contribute .only if ; cos ,a. 
0 0 

is of the order of the thennal velocity of the ions which for increas--

ing ; restricts their e:ffect to the vicinity of J- = 90° (Fig. 7-9). 
0 

~ 

As soon as v is greater than 1.3, the instabilities exist for all 
0 

angles. The longitudinal instability is predominant .only if~ is 

. ,• 
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smaller than J · == arc cos (1.86/; ) as can be seen in the example 
0 ·0 

given in Fig. 9. 

The results can be generalized to any anisotropic velocity dis­

* tribution in a plasma. An instci:> ility of the same character will 

occur as soon as there exists an unsymmetric velocity distribution 

perpendicular to certain directions of the vector of propagation !• 

This and the effect of external fields will be shom in a following 

paper. 

* In a ·different way it has been shown by J. Neufeld and F. H. Doyle 
l.c. and by E. G. Harris: Transversal·Instabilities associated with 
Anisotropic Velocity Distributions. J •. Nuclear Energy C, 1, 138 
(1961). 

I . 
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Appendix: The Plasma Dispersion Function Z(~) 

For Maxwellian velocity distributions of the particles one has to 

introduce the function: +en 

Z(~) = rr-1/2 I 
-oo 

2 -x 
~dx 
x-~ 

for Im ~ > 0 

and the analytical continuation of this for Im ~!: o. This function 

can be written alternatively as 

2 +oo 2 
Z(~) · = 2i e-~ J e-t dt 

-oo 

This representation is valid for either sign of Im ~and shows the close 

relation to the error function. The following· fonnuias give a few ex-

pansions used .in this paper. 

1. Rea+ Argument ~ = ~r 

. 2. Imaginary Argument ~ =iJ.L 
r 

3. Power Series 
i ·• 

.. ~ .... 
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4. Asymptotic Series 

where 

0 for Im 1J. > 0 

a = { 1 for Im 1J. = 0 

2 for Im 1J. < 0 

. 5. General Properties 

for Im 1J. > 0: 

Z(O) = irr1/ 2 • 

' ' 



~-------------------------------- ---------------.. 

•· 
·LO 

:0.8 

• 

·o.s 

0.4 

0.2 

X 

-0.·2 

Fig. 1 The function 1 + x Re Z(x) 

-
-0.4 



~ 

K 
L2 

LO 

0.8 

0.4 

0.2 

10 2.0 4.0 5.0 

Fig. 2 Electron~electron instability for two 
identical counterstreaming plasmas. 



8 lmw 
0.6 Wp 

3.10-5 

0.5 

0.4 4 
2.10-

0.3 

0.2 10-3 

0.1 

1.0 

\1 - Vo vo-
./2·Vth 

~ my 1 W T w o=-· m-=1836··lm-
me Wp . . Wp 

2.0 3.0 
Vo·Cos8 

4.0 5.0 6.0 

Fig. 2a Naximum growing Have ratio vs. counterstreaming 
veloci t~·-for l;ngi tudinal instabilities. -



0 
D 
0 
9 
8 
8 
B 
~ 
g 

n 
g 
Q 

fl 
D 
D 
0 
g 

B 

.. 

01-PLANE 

Fig. 3 Nyquist curve.for a longitudinal 
instability (schematic) 

..!L~ +GO 
K 

1 
J 
1 

. J 
J 

J 
~ 

Cal -=-GO 
K 



.. 

' 1.1 

.9 

0.4 

0.2 

Fig. 4 Curves for constant crrowina 
0 b 

wave ratio for ~ = 90o. 
0.1 

0.02 



g . ; . . 

n 
0 
g 0.4 

B 
D 

B 
g 

0· 
g 

0.3 

g .0.2" 

H .. 
D 
n . 0.1 

g 
g 

0 
0 
0 

A 

k 

r 

Fig. 4a . Maximum gro~g wave· ratio :for J- = '90° 

0.5 1.0 . 15 



--

o· = 10.0 
• 

E 
0 

-f(a) 

n 
B· 

1.0 

B "• ., 
I 

D 
~ 10-l 

10 2.0 3.0 4.0 5.0 6.0 7.0 

~ 
a 

. 

~ 

c 
B 

10-2 

8 
B -

rn 10-3 

B 
Fig. 5 The function f(a) 

c 
0 
0 10-4 I 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 
a 



• ., .. 

Fig. 6 ~ . as function of .; cos tS-
mm o 

oo 
0~----~----~------~----~------~----~----~------~----~~~ 0.2 o.4 o.6 o.8 . 1.0 

8 
1.2 1.4 1.s 1.8 1.9 

V0 COS 



ADDITIONAL 
ION CONTRIBUTION 

TRANSVERSAL 

"'1 k 

INSTABILITIES 0.01 

8 
Fig. 7 

,. 
Instability region for v = 0.2 • 0 

• .. .. ... 



B 

ADDITIONAL ION 
CONTRIBUTION 

1(2 
MAX 

2.0 

1.8 

1.6 

1.4 

1.2 

Fig. 8 Instability region for ;
0 

= 1.0 

.... 
• 



! 
'· 
• 

. " 
Instability regions for v

0 
= 2.0 Fig. 9 

TRANSVERSAL 
. INSTABILITIES 

ADDITIONAL ION 
CONTRIBUTION 

•• 

10.0~ 
K 

9.0 

8.0 

2~0 

1.0 

· 0 oL,o----~Lo-o----... 2~.D~0----3~.0-0----4~0-0----5~0-0--~6~0-0 ---7~0~0~~8~0~o~~9~0p 
e 




