] bzl QME_L_I&E_gL SRENCE NUMBER BB o
p-\" ' _ ‘ AED-Conf- 5 3’ o 17/ f// ﬁ/ b 357
Conr-He-t7
NONLINEAR TRANSVERSE WAVES IN PLASMAS o | -

by

H, S. C. Wang

and
3 e M S, Lojko
: (National Bureau of Standards, Boulder Laboratories)
4
o
it
Prepared under Contract No, CST-7328 '

DEPARTMENT OF PHYSICS
UNIVERSITY OF COLORADO
BOULDER, COLORADO

e s R s R e e Y
BERTS BACHRR e Vs PR S

 April 29, 1963




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



- : .
- Nonlinear Transverse Waves. in Plasmas* -

| ~ H. 8. C. Wang T
Departm’ént of Ph‘ysics, ..U'niversity of Colorado, Boulder; Colérédo_
' ' - | and ' R
M. S. Lojko

g - | L National Bureau of Standards, Boulder, Colorado

ABSTRACT

waves in plasmas is investigated by first solving a rela-

o _' o o The propagation of nonlinear statioriary transverse
tivistic Vlasov equation for the electrons under the 1nf1uence
of a Lorentz force due to a propagating 4-potential rigorously
and without linearization, The solution, which reduces to
‘ - a given equilibrium electron velocity distribution functidn,
|
|

is then substituted into the Maxwell equations, and a set

of wave equations is obtained, While nonlinearity couples

the transverse and longittidinal,modes except for one special |
| \ {/

* . . . i
_ A summary of this paper was presented at the American Physical
Society Meeting held at Washington, D, C., April 22 - 25, 1963.
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. casé, propagatibn of plane-polarized transverse waves
in both cold and hot (Maxwellian) plasmas is studied in
thev quasi—neutrality approximation. The conditions for

‘the existencé of periodic solutions for the nonlinear

" transverse wave equations indicate that propagation is

possible-only when the wave velocity exceeds the velocity - |
of light (for plasmas free from external magnetic field). |
Expfes sions for waveform and frequency in terms of

- elliptical integrals are derived, Unlike the case of
longitudinal waves, the nonlinear effect -on transverse
waves is manifested primarily in the reduction of frequency
rather than distortion in waveform, Several typical ex-
amples of waveform and dispersion characteristics

' (frequency vs. phase velocity) are computed and plotted,
ranging from cold to ultra-relativistically hot plasmas,

The nonlinear effect is more pronounced at lower electron

temperatures.,
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1. INTRODUCTION

The study of ‘no‘nlinear wave propagation in plasmas has recently
become an interesting subject of discussion among researchers. Publishedi
r.esults based on rigorous kinetic solutions for transverse waves are, how-
ever, still scarce, 1 In this report we shall discuss the propagation of |
stationary waves in plasmas starting from a relativistic Vlasov equation
for the electrons (ion motion is neglected) including the magnetic force
term and without linearization, Solutions compatible with given equilibrium
particle velocity distribution functions are obtained in the wave coordinate
system, and dispersion relations for nonlinear transverse modes in both

cold and hot plasmas are derived and plotted in terms of dimensionless

‘variables. A number of interesting observations are made, especially when

" the nonlihear e_fféct is different from that on the longitudinal waves,

2. SOLUTION OF THE RELATIVISTIC VLASOV EQUATION
WITH GENERAL LORENTZ FORCES

We first find a general solution for the electron distribution function
f (uh,- Xy t) under the influence of Lorentz forces due to propagating transverse

and longitudinal waves in a plasma from the relativistic Vlasov equa,tion2

of cuh ©af f.& : £ aFA o
at © 3y ° ox, . mc su, ' mc su, - 0. (2-1)
_ A A A
- Here the time t and the coordinates x>t form a 4-vector
X =:'(x>t . tet) - | | (Z—?)

11, Enoch, Phys. Fluids 5, 467 (1962).

2P. C. Clemmow and A. J. Willson, Proc, Cambridge Phil, Soc.

53, 222 (1957).
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uy is the spatial part of the 4-velocity

=Gv/e.m L (2-3)

2 -1/2

MRS %

Q

and VA is.the actual particle velocity. The summation convention over

repeated indices is from 1 to 3 for Greek and from 1 to 4 for Latin indices

- The Newtonian force F. per electron in our case is

, A
[ ] ‘ .
| . eu, 3.1\i 615\ (2-5)
- A Y a‘x)\ ox { . _
where A, = (Pm 1 ¢) is a 4-potential satisfying the Lorentz condition
oA, | | .
a—Xi' =0 N \ ‘ (2-6) -

The magnitude of charge and the rest mass of an eieotron axe denoted by e

‘and m, while c is the velocity of light in vacuum, For the Lorentz force -

o 9F |
(2 5)'. A _ 0 and (2-1) becomes
ou
A
£ af e Y (8 AN o | |
ot T Ty ax “me y \&x, ~ ox, / au o - @7
A A 1/ 9%\

]
If we assume plane wave solutions with a velocity. of propagation " Sc in the

xldirection, i.e.,

h
]

f’(ux £)

o
I

- :(Ax(g)' i€ { - } - (2-8)

, | (2-4)
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- with

€= % ’-.B‘ct:‘. . S (2-9) -

the Lorentz condition calls for

AL =Bd | | -0

" and (2-7) can be reduced to the following partial differential equation for f:

u . u .
2 3 _2 0 af
( > A, S Ay - a" ¢) a_ul
u 2
1 © af * - af mc”  of _ _
+ (B 'y) AZaquA383+ e 9t =0 (211)_
where ,
a2 = 1-32 , : . (2-12)

andA the dot indicates differeﬁtiation with respect to £, One can proceed

" in the usual manner by solving the auxiliary equations for (2-11) and finally

eobtain a general solution, It is, however, more interesting to derive such a
solution by finding three constants of motion for the electrons in a reference

frame S' moving with a velocity 8¢ in the x, direction with respect to the

1
laboratory frame S. Indeed, the physical principle used in the argument

holds only for 8 <1, the solution so obtained is mathematically correct even

for g > 1, Since electrons move in conservative fields in S', the total energy

or the fourth component of the conjugate momentum

e . - : ' ‘
p1=mcu1 -cl\.1 : | -2 (2-13)

is a constant of motion when referred to S', We have
'__ 18

Py =~ P1 T aPy

1m§ N eaz R

]




and the first constant can be taken as

e=y-Bu -V, o C (2-14)
where - |
ea’ '
¥y =7 ¢ (2-15) .
mc

Furthermore, since the Hamiltonian -
|

+&2)2 o . (2-16)

: 1
Hs= Py + A

2m

for an electron does not involve the coordinates x2 and x

3 the conjugate

' momenta pz and p3 are constant and we take

= = l‘ = 21- : 2- .
T ~. Up T B T 3, | - (2-17)
- where
L = A -, ' (2-18) -
T mc2 T ‘ o S

as the second and 'third constants, The general solution of (2.-A1 1) is therefore

f=f (e,1r2, 11») . ‘ : (2-19)
' with €, T, and Ty given by (2-14) and (2-17). This can be verified to be
the cerrect solution for both B = 1. The condition that (2- 19) reduces to

the electron equilibrium distribution function for a plasma ‘when the field

potential A vanishes enables us to write £ in definite functional form Thus, L |

for a cold plasma beam the solution is .

- N a( J " Sy . (-20)
o’ - | .

where ulO' is the 'reduced'drift velocity in the absence of any ﬁelds_ and N is

Wy
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a normalizing constant,. For av‘ plasma with Maxwellian electron velocity

distribution,

f = E%—z(a;) ‘exp {-ﬁ [e‘- B \/62"7 ‘az (1 +7I22 + 1132') ]}, {2-21)

- where

a = mc? (K‘BT)‘I , (2-22)

Kp is the Boltzmann'scbn‘stant, T is the electron temperature and Kn(a) '
denotes the nth Qrder Bessel function for a purely imaginary argument,
In the limit of Ai*- 0, (2-20) ‘and(2-21) reduce to the familiar unit-normalized

distributioh functions-

foo = '5 (ul - ulO) 6 (uz) 6 (us} . S (2-‘23). :
and
_ 2 LAy -
Afo T 4rK,(a) © o ‘ ‘(24.24) '
respectively. |

3. WAVE EQUATIONS AND COUPLING
-DUE TO NONLINEARITY

The solution of the distribution function obtained in the last section -
will be used to evaluate the 4-current dénsity, which together with the fields‘(_
must satisfy the Maxwell equations, In terms of the antiS‘yfnmetrié electro-

magneti_c field tensor

[0 B, -B,  -iE ]
Fij _ ~B, 0 B, -iE,
- B, By 0 ~iE,
1El'1, : 'mz: g, 0 | ‘ o (3-1)

3G N. Watson A Treatise on the Theory of Bessel Functions _
(Cambridge University Press, 1952) 2nd ed, -




| 1j+aFJk+aFk1'_0 - 2 2
X, ax ax - ' —_— (3-2)
k. i j ' '
and
9F, . ~ B
.1 _ _ ‘ _ '
o%, =5 , (3-3)

~ where the 4-current density s 1iare due to both the ions (assumed to be

" immobile) and the electrons:

s = s, +s _ (3-4)

*-(0,0,0,in_e) s
Si - ’ 'l ? no ¢ .

- . ui .
s, =-ne [[[f (e, my, 75 = dujduyduy . (3-6)

In (3-5) and (3-6), ng is the number density of either species of particles
under equilibrium condition With the introduction of 4-potentia1 and the

use of Lorentz gauge, it is familiar that we only need to.consider 'ghe wave

equations ‘
9 o o L e
5% o% A1 = =47 T . (3 7_)
. 173 ‘
and the field tensor is given byl
'F = ﬁ-\i - Ei_ ' ’ . . (3_8) .
ij . axi axj_ * ‘ ‘ . L

Of the four equations of (3-7), the first and the fourth are not independent and
it is sufficient to- deal with the last three equations only° These are, due to.

our plane wave assumption and upon changing vaxfiables,

W " o0 o
=3 Jo [ f He,m A *p ) dm, dmg de

2' :
~/(e+\lf) -a [1+(1r +u2) e +u3) ]

k=

K ='.2'3' B

’ (3"9) '

— jrr, i ’
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oo - oo} ©0

“ W ' '
=5 —15 Je fe. ”z'"a)( ‘ s
c . @”  “min =0 =~ J(e+w) -a [1+(1r +u2) + (7 +p,3) ]
-B | d1r3 de -1 ' - (3-10)
2 /2,
where wp = (47 n_e /m) » and the lower limit of integration € min is such

that there are no trapped electrons.

Postponing detailed .solution of these equations, we can observe certain
general characteristics concerning nonlinear transverse waves-in a plasma; If
. Ky and My are set eq:al to zero, (3-10) reduces to the same equation for
longltudinal waves, Since the integrand in Eq. (3-9) are odd in 1r2 and 113
when by = Hg = 0, the equations for the transverse waves are identically'

" satisfied, and longitudinal waves can exist alone, The converse, however,

is not true, Let us assume that “'3 = 0 for simplicity and Mo # 0., The in-
tegral in (3-10) involves £and a variable space charge is always present
wherever- a transverse electric field exists, Equation (3-10) cannot be satisfied
by a vanishing yand a longitudinal wave always accompanies the transverse
waves in an exact nonlinear analysis | . N | |

In the case of a cold plasma, substitution of the distribution function

‘ (2 20) into (3-9, 10) yields .

' ~ o N -1/2
J:l.. C,{(eow)z - az (1 +'U'22 + “32)} " =2, 3, ‘(3-11)

T T ,

B . - ‘ € +\V - W . . i
v =cf =2 =) - —B—, (3-12)
' /(e +\lr)2-a2 1+ ‘y 2) ‘ cz' ‘

. | Ha THa ] Lo
"where : T A -

. - e . . -1

C = zz“’pla(ﬁ' - > | (3-13)

4H S. C. Wang,' "Nonlinear Stationary Waves in Relativistic Plasmas, "
“to be- published in the Phys Pluids ” , .
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. 2 - C ‘
o= 1+ - . -
o “10 .3u10 o A (3-14)
and the choice of the normalizing constant N depends on further consideration's.v
The discussion in the previous paragraph still applies except that one special

case may be worth mentioning. If we iet

My = pcos KE
My = b sinkE , L (3-18)
vy =0

.so that the transverse amplitude p is a constant, and

' € ) € . -1 ' '
S N= (8- /“z—z—-—_g— B = - o (3-16)" .
o ( "eo-a)( A\/e_—a (1+“) ) |

- all the three equations given in (3 11 12) can be satisfied for

_ - -1/2%
-‘(;E(B ‘/eo - a 1+ L ) - eo> . '(43—17)-. ‘

with the value of glimited to be greater than unity. The particular solution £

(3-15) represents a-circularly polarized purely transverse wave with angular - '

‘ frequency
g @ asn e, (3-18) -
p ' a '
where 4 ' |
A 1 2 2 2, .
| ul = az {BGU-‘/GO -(")l 1+ )} | | (3-19)

is a new constant drift velocity increased due to the transverse wave amplitude

k. The trajectories'of the electrons are helices with axis of symmetry in the

direction of wave ropagation, In the limit of u—0, u . N—=1, and o
_p.~1/2 p' g 2. -1/4 . K | 1" Y10 © -1/2
@ | ~1-87 " (+ nm )' ; if in addition u, ;- = 0 ) -1 - B ) .
| . : . !

a result well known from linear theory. By choosing u, . suitably, i.e. ,

10




. neutrality assumption used either explicitly or implicitly by several authors

-11-~

- —{B‘/l"'li ‘/3 + U } Uy given by (3-19) can be made :

to vanish and the ?%ectrons m0\lre4in circular orbits with a frequency
Z)‘ = B (B 1+ ;12) . This is the special case pointed out

p
by Akhiezer and Polovin.' 5

4.' NONLINEAR PLANE-POLARIZED TRANSVERSE WAVES
IN A COLD PLASMA

In this section we wish to investigate the nonlinear effects on the
plane-polarized'transverse waves, As was mentioned before, the coupling

between such waves and longitudinal waves would necessitate the solution

of two second order nonlinear differential equations simultaneously ‘ To the

= ‘knowledge of these writers, a completely rigorous analytic method does not

exist, We can, however, learn a great deal by first ignoring V¥ in Eq, (3- ll) "
say, for the My mode (H3 = 0), This is r_oughly equivalent to the quasi-

in studying similar problems. It is also shown in the Appendix that the fre=
quency of nonlinear transverse mo.de so obtained agrees with that derived .

from Cesarl's theorem and method of successive approximation8 for an

autonomous system to the order of amplitude squared,

Since the amplitude of plane-polarized transverse waves vanishes

. somewhere in the plasma,. we take N = 1, ' Mg = ¥ = 01in (3= ll), =0

10
in (3-14) for simplicity, and write '

°A. 1. Akhiezer and R. V. Polovin, J. Exptl. Theoret. Phys.

(U, S 3.R.) 30, Slo (1956).

. D. Pataraya Technical Phys, (U.8.5.R.) 7‘ 9'7 (1962).
7Ts D Loladze andN L. Tsintsadze Technical Phys

-(U.S8.S.R.) 6, 944 (1962)

8L Cesari, Asymptotic Behavior and Stability Problems in Ordinarj .

Differential Eguations (Springer-Verlag, Berlin, 1959)..

1,6,7
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-

where
1 < . -
"7 = B £ 44 B 51 ’ . , ' (4_2)
and w' .
k2o =2 (4-3)
[o) 2 2
a c ‘

‘The first integral of (4 1) from 7 min to 7 is

1'72=Y(n)'=t2k <J1=Fn Jlxn ) 1. (4-4)~ 

The function Y in (4-4) vanishes at n.. and 7 , and is positive

‘ . max _=-nmin
in between only when the lower signs’are used, From the discussion in a

~ previous papexj,4 we conclude th'at. periodic solutions or oscillations are

possible Only for B>1, If we chdose the origin of the € ~axis such that -

n (0) = 0, the solution of (4-4) is

£ = {F.(K).;E(X'K) - r1+'1 [ K(x) - F (X k) ]},:

o< E<EM ) . . s

where. , . E
r = . ~ (4-6)
X = (4-7)

E and F are respectively the normal elliptical integrals of the second and

the first kind with the modulus

-,K~=.l r=1 R »' | _' “ | . (4-8),

o T T —
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The curve of n vs. € is, due to the evenness of Y(7n), odd with respect to

" the origin, and of course symmetric with respect to the lines £ = £ (n ).

‘ ‘ max
In the limit of infinitesimal amplitude, (4-5) reduces to a pure sinusoidal wave
. Wn -
n=n, sin(koﬁ). In Fig, 1, we plot one cycle of the W, Wave vs, (_:_p £ as

abscissa for 8 = 1.5 and 17m'=0, nm =0,5, 1.0, based on Eq, (4-5). The curve
labeled n = 0 represents a sine wave, As the amplitude increases, the non-
linear effect is felt primarily through the increase 1n wavelength for a fixed
velocity of propagation rather than distortion in waveform, The last conclusion
is different from that for nonlinear longitudinal waves9 and is largely due to

the evenness of the function Y(n). The wavelength X and frequency w are

given by . , .
x=k—:‘)7.['zﬁ(«)-‘«'2x(x)1 I )
and , _ : 4
w T B k' : .
_— = = e e - ’ } ’ (4-10)
“p 2 VB -l ZE(K)'-K'ZK(K) ' |
‘where - | : ‘ /_2_ | :
| | = V1=« (4-11)

is the complementai‘y modulus, In the limit of vanilshzing N, (4-10) reduces

to the frequency of linear theory: w— B (ﬁ - 1) . The dispersion relation”f
b -

(4-10) for-,nonlinear transveree waves is computed and plotted in Fig, 2 for
values of My © 0, hm =0.5 and'1,0. Similar to the case of nonlinear’longi-'-
tudinal waves, ‘the frequency decreases as amplitude is Increased overwide ‘
' 'range of the wave velocity, For small values of ‘r; and hence K, we expand

. the complete elliptical 1ntegrals in (4-10) into series of k and obtain ,

w _ . _B 32
= (1= 2%+ o )
“o T‘/ﬁz.-.ll &

or in terms of M and then A’Zm I

. ,:f"-'. (4-12)

_9A. Ca:x)aliefe; ‘N'uovo:.cimento g:_i_,'4_40 (1962).

T T ——

A,

Rl
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| | 2 2 S
Cw B ). 3a ( = > A, 2} . (4-13)
% va© -1 { ‘ .1632 mc2 - %m : o

The agreement between this and the result obtained (see Appendix) by using

: 4 : 2 A
Cesari's successive approximation to the order of AZm serves as.a justification

for the quasi-neutrality assumption introduced earlier,
5. NONLINEAR TRANSVERSE WAVES IN HOT PLASMAS

Following the same reasoning in the previous sections, we may
investigate the propagation characteristics of nonlinear transverse waves
~ in plasmas of finite electron temperature Let us consider the AZ or p,z mode
in the quasi—neutrality approximation by setting Hy = \y = 0 in Bq. (3 9)
2 S
fle, my, @ ) (11 +. “z)

.s ' w P ' !
F2 T Z;c_z W =02 Zj dr”z;d"s d_e e

Mo =Y([J.2) R o ,
=—p— { 4 ffff(e, 2,'zr) («/e -a [1+(1r +u2) +1r
| \/e.-a (1+1122+11 )> m, d7, de P | (5-2)
':wher'e " . 2 - z_v , - A
% = =7 [y, @O - o (5-3)
@ o |

. is p’ro_po‘r,t'ional to the square of the maximum transverse electric or magnetic
,fields and the pos_sibility of electron trapping is excluded from consideration,
It.is easy to see that the second derivative of Y with respect to “2 ' '
' , 2w T - (1+1r ) A -
S ae s T {f ..-a [1+(1r "'#2) +113 ]}'

50

o
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is always negative for g > 1, but positive for B < 1. Wave propagation is
therefore pos sible for phase velocities greater than c, as in the case of a -

cold plasma. We expand the function Y (p.z) into a Taylor's series

2 .
. w 0 : '

_ b n ' _

Y ) = 2 nz_-o a by ~ - -9
with

a_= %2— Y“ () /n! . , (5-6)

w ..

P

For plasmas with isotropic equilibrium electron velocity distribution, all odd -
order coefficients vanish, 1,e., a = O,n=1,3,5,--., and Y is even with -
respect to By o We shall consider the nonlinear effects"up to the M24 term,

In the case of a plasma with Maxwellian electron distribution we found

az u 2
= _l' [ "—22 :l du1 du, du3' '
1 f . 1" 6a’ uz2 '_ s5at u24 o
(BY‘U) (3'}’-0) (B-y-u) : A A

' or, upon substituting from (2-24) and integrating over the angular part, 4

- Lz K (a) aﬁ 'foo -acosh—r
2_,0‘2 Kz(a)l ZKzfa)' o L

inhr cosh~r In (Bcothr 1

. o0 ’
a < -acosh-r

a, == fo e sinh 41- (cothz—r --15) 3'v~,dT . (Sf8) L
a, - o : .
For a, < 2 2 . the quartiq-’.appr__qrcimation_of. Y has four real zeros
Zy=-2,) (i . o2 /2
R {% [?azi (az2 - 4aoa )1/2] } . (5-9)
z,=-2, | - L% » S

L oA oy e y




Integration of (5-2) with Y expressed in terms of these zeros yields a quarter

" and

cycle : . _ ,
¢ = v [Fixge0 -F&, 0}, (510
T wa Yz vz o ! |
p 4 1 2 o S o
0< E<E (uy ) 4
where ,
y = sin’] @ +2) @y - ) b <2
o= - [ ; ’
22, 2) -y | 2.2
-1 /% 7%% |
Xo =sin 2z
|
K= Z, + 2, z,Z, .

In the limit of 1nﬁn1tesimai amplitude, i.e., a, "o, (5-10) approache,s a

" pure sinusoidal wave

' a 1/2 : w 1/2 .
“2=(-i) sin{—cg(-az) §}.

Typical examples of nonlinear transverse waveform in hot plasmas have aléo'
been computed from (5-10); they are of the same general shape as those plotted
' in Fig. 1, The low distortion in the waveform here is primarily due to the lack
of the cubic or, for that matter, the odd' power terms in the series expatisic_m» :

(5-5). The wavelength and frequency are given by ,
' . 8¢ P(x K) o :
A= e
‘wp 1/2 (Z -+ Z ) '

and '
S V2 AP
n Bz

4 P (Xol K) ' ‘

w -
w .(5.11)'
p




- 5, dispersion characteristics for nonlinear transverse waves in plasmas of

. different temperatures (a = 0,05, 1.0, and 10) are plotted based on computed .-

'amplitude. It is again seen that nonlinearity causes a general decrease of -

,frequency-'of.cscillation or an increase in the wavelength as in the case

«Boulder Laboratories. The authors are also indebted to the staff of the computer

-17-

|

In the limit of a_—~o, (5-11) tends to the limiting value B (.-az)]'/2

or ‘
- 4 K (a) 3 L ' ' _

w . _B_ 1 ap -acoshr S

“ : o’ Ky (a) " 2K, (@) fo € sinh7 ?OShT

/ . ‘ .
1 Bcotht +1
n (Bcoth-r-l dr .

It can be demonstrated that the last relation is equivalent to a dispersion

equation derived by Imre10 based on linearized analysis, In Fig, 3, 4, and

results from Eq. (5 11) for values of a labeled on each curve, The solid

curve in each figure represents the characteristic for a wave of infinitesimal

of a cold plas'ma. 'The nonlinear effect is, however, more pronounced for .

plasmas of lower electron temperature, - S _ PR
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APPENDIX

NONLINEAR TRANSVERSE WAVE SOLUTION BY
'SUCCESSIVE APPROXIMATION

3 We show here that Cesari 58 method of successive approximation for -

nonlinear autonomous systems applied to the case of transverse-longitudinal '

3

%10

K Imre Phys Fluids 459 (1962)

—
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waves in a cold plasma. yields the same frequency (to the order of wave am-

~ plitude squared) as that derived in Section 4. For “3:‘ o, By and VYrelatively

o = 0s and N =1, equations (3-11, 12) can be written as’

- 2 ~, 2 3

o * KRy My =.€("az Hy V¥ i) | o
. S : (A-1)

2 .

12

2

v +k By

,"',?.

V=

wz‘
2

2.

w

2 % ~ 1
and € =35 °

voogst o g%

(Afl), is equivalent to the following canonical system:

, assumed'to;be' a small quantity.

<
e .
L

~N .
j j

y e j?'ir"' e 4, S (A—Z)

| .
= tkopy + G L =12,

I

<
L SV

N
ot
~

1 o Ve ew ) et JRE:
f. = =-f, =—>——(y, +y My, +y,) +—5 (v, +V,)
M 2 20!zkbk 1 Y2'%3 .' 4’ 8ko3. 1 72 S
1 2 = S ' :
f, = =-f, ==—>% (v, +7V,)
o gt R

Taking for the zerath arder approximation

© _ golkE O _ g -1KE
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