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Nonlinear "transverse Waves. in Plasmas* · . . . . . 

by 

H. s. C. Wang 

Department of Physics 1 University of Colorado 1 Boulder 1 Colorado 

and .. 
• < ...... 

M. s. Lojko 

National Bureau of Standards 1 Boulder 1 Colorado 

ABSTRACT 

The propagation of nonlinear stationary transverse 

waves in plasmas is investigated by first solving a rela­

tivistic Vlasov equation for the electrons under the influence 

of a Lorentz force due to a propagating 4-potential rigorously 

and without linearization~ The solution, which reduces to 

a given equilibrium electron velocity distribution function, 

is then substituted into the Maxwell equations 1 and a set 

of wave equations is obtained. While nonlinearity couples 

the transverse and longitudinal modes except for one special 

\ 

* A summary of this paper was presented at the American Physical 
Society Meeting held at Washington, D. c. 1 Apri~ 22- 25, 1963. 
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case, propagation of plane.:..polarized transverse waves 

in both cold and hot (Maxwellian) plasmas. is studied in 

the quasi-neutrality approximatio"n. The conditions for 

·the existence of periodic solutions for the nonlinear 

transverse wave equations indicate that propagation is 

possible· only when the wave velocity exceeds the velocity 

of light (for plasmas free from external magnetic field). 

Expressions for waveform and frequency in terms of 

elliptical integrals are derived. Unlike the case of 

longitudinal waves 1 ·the nonlinear· effect· on transverse 

waves is manifested primarily in the reduction of frequency 

rather than distortion in waveform. Several typical ex­

amples of waveform and dispersion characteristics 

(frequency vs. phase velocity) are computed and plotted 1 

ranging from cold to ultra-relativistically hot plasmas. 

The nonlinear effect is more pronounced at lower electron 

temperatures. 
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1. INTRODUCTION 

The study of nonlinear wave propagation iri plasmas has recently 

become an interesting subject of discussion among researchers. Published 
• 
results based on rigorous kinetic solutions for transverse waves are., how-

. 1 f ever, still scarce. In this report we shall discuss the propag?Uon o 

stationary waves in plasmas starting from a relativistic Vlasov equation 

for the electrons (ion motion is neglected) including the magnetic force 

term and without linearization. Solutions compatible with given equilibrium 

partfcle velocity distribution functions are obtained in the wave coordinate 

system,· and dispersion relations for nonlinear transverse modes in both 

cold and hot plasmas are derived and plotted in terms of dimensionless 

·variables. A number of interesting observations are made, especially when 

the nonlinear effect is different from that on the longitudinal waves. 

2. SOLUTION OF THE RELATIVISTIC VLASOV EQUATION 
WITH GENERAL LORENTZ FORCES 

We first find a general s.olution for the electron distribution function 

f(uA., xA., t) under the influence of Lorentz forces due to propac;1ating trans~erse 

and longitudinal waves in a plasma from .the relativistic Vlasov equation 

.ai F~ af f · aF A. 
+- -- +-- = 0 • 

axA. . me auA. me auA. 

af CUA 
-+ --at · y (2-1) 

. Here the timet and the coordinates xA. form a 4-vector 

1 . . 
J. ·Enoch, Phys. Fluids .§., 467 (1962). 

I'·. 
2

P. C. Clemmow imd A. J. Willson, Proc. Cambridge Phil. Soc. 
. g, 222 (1957) .. 
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· uA. is the spatial part of the 4~velocity 

(2-3) 

2 -1/2. 
Y = (1 - v 2 ) . = (1 .+ u2) 1/2 (2-4) . 

c 

and vA. is.the actual particle velocity. ·The summation convention over 

repeated indices is from 1 to 3 for Greek and from 1 to· 4 for Latin indices. 
. . . . I . 

.: The Newtonian force F ~per electron in our case is 

• 
(2-5) 

where Ai = (~, i cf>) .is a 4-potential satisfying the Lorentz condition 

- 0 (2-6) •' 

The magnitude of charge and the rest mass of an electron are denoted bye 

·and m, whil~ c is the velocity of light in vacuum. For the Lorentz force· 

= 0 and ( 2.:..1) becomes 

(2-7) 

If we assume plane wave solutions with a velocity. of ·propagation· {3c in the 

x 1direction, i.e., 

(2-8) 
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·with 

(2-9) .. 

the Lorentz condition calls for 

A· = (:l n. 1 .~ ., (2-10). 

and. (2-7) can be reduced to the following partial differential equation fot f: 

where 
2 a 

2 me 
e 0 I (2-11) 

(2-12) 

and the dot indicates differentiation with respect to ~. One can proceed 

in the usual manner by solving the auxiliary equations for (2-11) and finally 

.obtain a general solution. It is, however, more interesting to derive such a 

solution by finding three constants of motion for the electrons in a reference 

frame s I mOVing With a VelOCity (3 C in the x
1 

directiOn With respect tO the 

laboratory frame S. Indeed, the physical principle used in the argument 

holds only for (3 < 1, the solution so obtained is mathematically correct even 

for (3 > 1. Since electrons move in conservative fields i~. S', the total energy 

or the· fourth component of the conjugate momentum 

e .. 
p 1 = m c u

1 
- - A

1 ~ r: 

is a constant of motion when referred to s•. We have 

111 . 1 
p4 = - (l pl +-p a 4 

= imc { y- tlu1 

2 

~} ea ---a 2 
me 

(2-13) 

i•-••O._...-.,..,.,_"""l!"!'~~·-~-<-~."\'f .. ~.~~ ....... ,_.~':"" .. -.""""'!"'~~~~~------"" .. 'iR!c·'"'·.~~~'-,~.-.~-"-~·------_....,=--:~~,_,.~-.""=.·'""'·=::=~ 
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and the first constant can be taken as 

where 

e = y - {3u . . 1 

2 ea w=-2 ct>. 
me 

Furthermore 1 since the Hamiltonian 

(2-14) 

(2-16) 

for an electron does not involve the coordinates x
2 

and x
3 1 the conjugate 

momenta p
2 

and p
3 

are constant and we take 

1T =U-p. 
T T . T 

T = 2 1 3 1 (2-17) 

where 

e· 
p..,. = --2 A . 

' : T me 
(2-18) . 

i · as the second and third constants. The general solution of (2 -11) is therefore 

I 
I 

',f 

(2-19) 

wit~ e 1 1r
2 

and 1r
3 

given by _(2-14) and (2-17). This can be verified to be 

the correct solution for both f3 ~ 1. The condition that '(2-19) reduces to 

the electron equilibrium distribution function for a plasma when the field 

potential Ai vanishes enables us t6 write .f in defin~te functional form. Thus 1 . 

. i . for a COld plasma beam 1 the. SOlUtiOn iS 
' 

. f = No(~ e_- ~- j e 2 ·~ a 2 · ·~ u 1 ~. o (7T
2

) o (7T
3

) 
. \a a ·. )} 

. . 

(2-20) 

where u10 is the .red~ceddrift ve.locity in the abserice of any f~elds. and ~ is 
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a normalizing constant •. For a· plasma with Maxwellian electron velocity 

distribution, 

·where 

(2-22) 

KB is the Boltzmann's constant, Tis the electron temperature and K (a) 
th n 3. 

denotes th.e n order Bessel function for a purely imaginary argument. 

In the lim~t of Ai.;.... 0, (2-20) and(2-21) reduce to the familiar unit-normalized 

distribution functions · 

and 

respectively. 

• "'!ay e 

. 3. WAVE EQUATIONS AND COUPUNG 
·DUE TO NONUNEARITY 

; (2-23) 

(2-24) . 

The solution of the distribution·function obtained in the last section 

will be ~sed to evaluate the 4-current density, which together with the fields· 

must satisfy the Maxwellequations •. .In terms of the antisymmetric electro-

magnetic field tensor 

0 B3 -B 
2 

-iE . 1 

-B .o B1 -iE 

Fij 
3 2 

-
B . -B ·0 .. -iE3 . 2 . . .. 1 

. iE1 . iE2 
· iE 0 (3-1) 3 I 

3 . 
G. N. Watson, A Treatise on the Theory of Bessel Functions 

{Cqmbridge University Press, 1952), 2nd ed· •. 

! 

I 

.. 
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Maxwell 1s equations can be written as 

and 

: 

ariJ 
ax . 

k 

arJk arki 
+ -+- = 0 

axi axj 

ariJ 
si = I 

axj 

where the. 4-current density· sil are due to ~oth the ions {assumed to be 

immobile) and the electron~: 

u 
si- ::::: -n

0 
e JJJ f ( e 1 1r2 1 1T3) 'Yi du1 du2du3 • 

(3-2) . 

(3-3} 

(3-4} 

(3-5) 

(3-6) 

In (3-5) and (3-6) 
1 

n
0 

is the number density of either species of particles 

under equilibrium condition. ~ith the introduction of 4-potential and the 

use of Lorentz gauge 
1 

it is familiar that we only need to. consider the wave . 

equations 
2 

a A = 
axjaxJ i 

and.the field tensor is given by 

aAJ 
F = 

iJ . ax
1 

-41T s 
i 

·. (3-7) 

(3-8) 

Of the four equations of (3-7) 1 the first and the fourth are not independent and· 

it is sufficient to deal with the last three equations only. These are 1 due to. 

our plane wave assumption and ·upqn changing variables, 2 . ' . . 
w 00 00 00 . 

. ~T = +z fe J . J f(e 11T2·~ 1T3) ( 1TT +JJ.r) d1T2 d1T3 de 
a c min -oo -oo · J 2 2 2 2 

1 

. . . . . . .· (e+v) ~a [1+.(1T2+JJ.2) +(1T3+JJ.3) 1 
(3-9) . 

I = 2, 3, 

" 
' 

\, 
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-(:l)d1f2 d1f3 d€ - 1} • (3-10) 

2 . 1/2 
where w = (417' n · e /m) ' , and the lower limit of integration e is such 

P o . · 4 . min 
that there are no trapped electrons. 

Postponing detailed .solution of these equations, we can observe certain 

general characteristics concerning nonlinear transverse waves· in a plasma .. If 

J..L2:and J..l.3 are set e~al to zero, (3-10) reduces to the same equation for 

longitudinal waves. Since the integrand in Eq. (3-9) are odd in 17'
2 

and 17'
3 

when J..L2 . = J..L
3 

= 0, the equations for the ~ransverse waves are identically 

satisfied, and longitudinal waves can exist alone. The converse, however, 

is not true. Let us assume that 113 = 0 for simplicity and J..L
2 

=1- 0. The in­

tegral ·in (3--1 0) involves ~and a variable space charge is always present 

wherever a transverse electric field exists. Equation (3-10) cannot be satisfied 

by a vanishing 'ljr and a longitudinal wave always accompanies the transverse 

waves in an exact nonlinear analysis. 

In the case of a cold plasma I substitution of the distribution ·function . 

(2-2 0) into (3 -9, 1 0) yields . 

where 

.. 
"' 

'f.: 21 31 (3-11) 

2 
..5L. 

2 
c 

, (3-12) 

•(3-13) 

4 . . . . . . . 
H. S. c. Wang, "Nonlinear Stationary Waves in Relativistic Plasmas," 

·to be published in the Phys. Fluids. · · 

' 
~-

·.'. 

,r.' 
~ 
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{3-14) 

and the choice of the normalizing constant ·N depends on further considerations. 

The discussion in the previous paragraph still applies except thatone special 

case may be worth mentioning. If we let 

.. 112 = 11 cos k~ 

113 = 11 sin k~ 

"ljr = 0 

I 

. so that the transverse amplitude 11 is a constant, and 

. N = {j - · 2 ° 2 (3 -. 2 ° 2 Z 
( 

€ ') ~ € . · ,/e 
0 

- a . J e 
0 

- a {1 + 11 ) 

all the three equations given in {3-11, 12) can be satisfied for 
. ' ' . . \ 

. ·. w ( j 2 2 2 . )-1/2 ,' 
k = 7". {j e 

0 
- a {1 + jJ. ) - e 

0 

·(3-15) 

{3-16). 

{3-17) 

with the value of (3limited to be greater than unity~ The particular solution · 

{3-15) represents a· circularly polarized purely transverse wave with angular· 

frequency 

2 . 1/2 2 2 ~ 1/4 . 
= (3 {(3 - 1) .- . {1 + .u 1 + 11 ) ' 

{3-18) 

where 

(3-19) 

is a new constant drift velocity increased due to the transverse wave amplitude 
l . . . 

ll· The trajectories of the electrons are helices with axis of symmetr_Y in the 

direction of wave 2ropagation. In the ~imit of 11-0, u
1
-u

10
, N-1, and _

1
.12· w -2 -1;2 . . 2 -1/4 . w -2 -;- i {1 - {j ) . {1 + u10 ) ; if in addition u10 = 0, .w--{1 - {3 ) 

p: . . p . 

a result well known from linear theory. By choosing u
10 

suitably, i.e., 
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u
10 

= ----\ ~ j 1 + ,.Z ~ j (32 + ,} l , u
1 

given by (3~19) can be made 

a . ·~·· 
to. vanish and the ~lectrons move in circular orbits with .a ·frequency . 

2 -1/2. 2 -1/4 . . . 
&. = {3 ({3 - 1) · (1 + p. ) • This is the special case pointed out w . 

p . . 5 
by Akhiezer and Polovin~ 

4. NONLINEAR. PLANE-POJ;.ARIZED TRANSVERSE WAVES· 
IN A COLD PLASMA 

In this section we wish to investigate the nonlinear effects on the 

plan~-polarized transverse waves. As was mentioned before, the coupling 

between such waves and longitudinal waves would necessitate the solution 

of two second order nonlinear differential equations simultaneously. To the 

knowledge of these writers, a completely rigorous· analytic method does riot 

exist. We can, however, learn a great deal by first ignoring 'if in Eq. (3-11), 

say, for the p.
2 

mode (1J.
3 

= 0). This is roughly equivalent to the quasi- . · · 
. 1 6 7 

neutrality assumption used either explicitly or impl~citly by several authors ' ' 

in studying similar problems. It is also shown in the Appendix that the fre;.; . 

quency of nonlinear transverse mode so obtained agrees with that derived . . 
• •• •• 0 ' 8 . . . 
from Cesari's theorem and method of successive approximation for an . _ . 

autonomous system to the order of amplitude squared •.. 

Since the amplitude of plane-.polarized transverse waves vanishes 

· somewhere in the plasma,. we takeN :::: ·1, 1.1.
3 

= 'if= 0 in (3~11), u10 = 0 

in (3-14) for simplicity, and write 

5 . 
A. I. Akhiezer and R. V. Polovin, J. Exptl. Theoret. Phys •. 

(U.3.3.R.) 30, 915 (1956). 

6 A. D. Pataraya, Technical Phys. (U.S.S.R.) _1, 9'7 (19 62). 
7 . . . . . 
Ts. D. Loladze and N. L. Tsintsadze, Technical Phys. 

(U.S.S.R.)'~ 944 (1962). 

.. ·. 

8 . . . . . . . . . 0 

L. Cesar!, Asymptotic.Behavior and Stability.Problems in Ordinary. 
Differential Equations (Springer-Verlag, Berlin, 1959). 

. '{ 
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•• 2Q 1] = -k 
0 l=J=7] 

{3 :;;; 1 I (4-1) 

where 

1 /±a2 1] =13 11-2 I {3 :;;; 1 (4-2) 

and 2 
k 2 

w· 
= ....JL 

0 2 2 (4-3) 
a c 

(4-4) . 

The first integral of {4-1) ·from 17 i to 17 is 

• 2 . · 2 (1m n 2 j 2 )· · · 
17 = Y (1]) = ± 2 k

0 
1· =J= 17. - 1 =J= 17 min . 1 {3 :51 • 

The function Yin (4-4) vanishes at 17 i and 17 = -17 i 1 and is positive 
m n max m n . 

in between only when the lower signs· are used. From the discussion ir) a 
4 ·. . . .. 

previous paper 1 we conclude that periodic solutions or oscillations are 

possible only for {3 > 1. If we choose the origin of the ~-axis such that · 

17 (o) = 0 1 the solution of (~-4) is 

~ = y 2 (r + I) 
k· 

. 0 
{E(K) ~ E(x,<)- r ~ 1 ( K(K)- F (x ,K) ]J , 

0 < ~- < ~ (7]max) 

where 

j ·. 2 
r - 1 + Uffi 1 1}ffi : 

I· 

. . -1/r -J 1 + n2 
. X = sin · · r- 1 · . 

(4-5) . 

(4-6) 

(4-7) 

E and r· are respectively the normal elliptical integrals of the second and 
. . 

the first kind with the modulus 

~ 
·.K ·= ..J r+i_-- (4-8)_ 

'· 

( 

' 
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The curve of 11 vs. ~ is,. due to the evenness of Y(7]), odd with respect to 

the origin, and of course symmetric with respect to the lines ~ = ~ (7] ) •. . . max 
In the limit of infinitesimal amplitude, (4-5) reduces to a pure sinusoidal wave 

. . ~-

1] = 71 sin(k ~). In Fig. 1, we plot one cycle of the ,_,.
2 

wave vs. ~ as 
m o . c 

abscissa for f3 = 1. 5 and 7J :::::0, 71 = 0. 5, 1. 0, based on Eq. (4-5). The curve 
m m 

labeled 71. ::::: 0 represents a sine wave. As the amplitude increases, the non-m . . . 
linear effect is felt primarily through the increase in wavelength for a fixed 

velocity of propagation rather than distortion in waveform. The last conclusion 
. 9 

is different from that for nonlinear longitudinal waves and is largely due to 

the evenness of the function Y(7J). The wavelength X and frequency w are 

given by 

and 

where 

A = k 4 K I [. 2 E (K) - . K I 
2 

K ( K ) 1 
0 

J!L ·1f _fi_ Kl 
= . 

2 "/iFl 2 . w p 2E(K)-K 1 K(K) 

I 2 Kl = ./1 - i( 

, (4-9) 

, (4-10). 

(4-11) 

is the complementary modulus·. In the limit of vanishing 1J , (4-10) reduces . 
w 2 -1/2 m .· 

to the frequency of linear theory·- = f3 ({3 - 1) · • The dispersion relation· 
. . Wp . 

(4-10) for nonlinear transverse waves is computed and plotted in Fig. 2 for 

values of 71 ::::: 0, 1J = 0. 5 and: 1. 0. Similar to the case of nonlinear long!-
. m 4 m . . · 

tudinal waves, ·the frequency decreases as amplitude is increased over wide · 

range of the wave velocity. For small values of 1J and hence K , we· expand 
. . m : . 

·. the complete elliptical integrals in (4-iO) into. series of .K and obtain 

w .·. (3 3'2 4 
- = (1 - -. K . + O(K ) ) w j 2 4 . . . 

p J3 ":' 1 -. . . . 
, . (4-12) 

or in terms of 7Jm and ~hen A'2m , 

. ·.' 

9 A. Cavaliere, ·Nuovo..cimento 23, 440 {1962) • 

. ,· 

I ~, '", 

I 

i ' 
I 
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(4-13) 

The agreement between this and the result obtained (see Appendix) by using 
2 . 

Cesari 's successive ap~roximation to the order of A2m serves as. a justification 

for the-quasi-neutrality_assumption introduced earlier •. 

5. NON.UNEAR TRANS~RSE WAVES IN HOT PLASMAS 

Following the sanie reasoning in the previous sections 1 we may 

investigate the propagation characteristics of nonlinear transverse waves 

in pl_asmas of finite ele~tron temperafure. Let us ·conslder the A2 (>r p.2 mode 

in the quasi-neutrality approximation by setting p.
3 

=. w· = 0 in Eq. (3~ 9)_: . . . 
. 2 . . . . . 

. wp · f(e 1 7T2 1 7T3)(7T2+·p.2) ·.. . . . 

P.2 = 2 2 JJJ j 2 2 . 2 2 . . d 7T 2 d 7T 3 de • . : (5-1) 
a ~ e ... a_ . [ 1 + ( 7T 2 + p.2 ) . + 7T 3 l · . · . : ' 

The first integral of (5-1) is I assuming p.
2 

(o) = 01 

• 2 
p.2 = y (p.2) 

. 2 . 

= w~ •. {ao- 2
4 JJJ f(e, ~2' "3) 

c . · a . . 
. ' . 

( J 2 2 2 2' 
. E -a (1 + (7T2 +p.z)· .. ·._+7T3. ] ... 

·where 

j.2 ~ a2 (1 + "2 2 + "3 2) ) d"2 d"3de} 

2 2. 

a = --%:--. [~2 (o)l 
\ 0 .w 

p 

I 
(5-2) . 

is propoi;:tional to the square. of the maximum transverse electric or magnetic 

. fields 1 and the pos.sibility of electron trapping is excluded from con~ideration. 

It is easy to see ·that the second derivative of Y with respect to p.
2 

2 2 . 2 2 .: 

yn (~) = 2:p2 JJjt(e, "2'"3). -t 2 e -2 a (l +."3 ) ·~ . 2 }3/2 d7T2 d1i3dE 
a c e ._-a [1+(7T

2
+p.

2
) +7T

3
] ·. · ·:: 

.. . . -~~~ .· 
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is always negative for {3 > 1, but positive for {3 < 1. Wave propagation is 

therefore possible for phase velocities gre_ater than c, as in the case of a 

cold plasma. We expand the function Y (p.
2
) into a Taylor's series 

with 

2 w 00 

. y (p.2) = --lj- 2: an IJ.2 n ' (5-5) 
c · n=O 

2 
c 

a = n 2 
w 

p 

Y{~) (0) In! {5-6) 
I 

For plasmas with isotropic equilibrium electron velocity distribution, all odd · · 

order coefficients vanish, i .• e. , an = 0, n = 1, 3, 5, ·• • • , and Y is even with · 
. . 4 

respect to p.2• _We shall consider the nonlinear effe.cts up to the p.2 term •. 

In the case of a plasma with Maxwellia~ electron distribution, we found 

. f (u) [ a
2 

u2
2 J JJJ _Q__ 1 + · 2 du

1 
du2 du3 , 

. 'Y . ({3 'Y - ul) 

. a4 = 
f {u) [. . : l·.Jff 0 . 1 . . + 

4 'Y ({3 'Y - u ) 2 
1 . . . . .· . . . 4.·. 

or, upon substituting from (2-24) and integrating over the .angular part, 

00 

f -a C 0 S h T 8 C 0 t h T+ 1 
0 

e. . . sinhT coshTJn ({3cothT-l) dT, (5-7) 

a 
00 . . 

f · -:a cosh T ·. -4 2 1 -3 
0 

e s in h . T (cot h T ·- 2 ) . · · · dT 
{3 

• (5-8) 

2 . a 
For a < ..L. , the quartic approximation of Y has four real zeros· 

o 4a
4 

} 1/2 
{5-9) 
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Integration of (5-2) with Y·expressed in terms of these zeros yields a quarter 

cycle 

~= 
2c {r ( Xo' K) F <x, K)}. 1 . (5-l 0) 

1/2 
wp a 4 (Z1 + z2) 

,0 < ~ < ~ (1J.2 max) I 

where 

sin 
-1 (Zl + 22) (Z2 - 1J.2 

< z2 X = 
2 .z2 czl - IJ.2) 

I IJ.2 

-1/S:? 
Xo =sin 22 . 1 

and 
2 

.J zl z2 K = zl + z2. 

In the limit of infinitesimal amplitude, i.e., a -o, (5-10) approaches a 
0 . 

pure sinusoidal wave 

a 1/2 { w 1/2 . } 
IJ.2 = ( - a; ) sin -f ( -a2) ~ 

Typical example$ of nonlinear transverse waveform ·in hot plasmas have also· 

been ·computed from (5:-10); they _are of the same general shape as those plotted 

in Fig. L The low distortion in the waveform here is primarily due to the lack · 

of the ·cubic or, for that matter, the odd power terms in the series expansion 

(5-5). The wavelength and freq\.iency are given by· 

and 

w 1T -= w 4 
p 

. Be F( X , K) . 
0 

I 

·• (5--11). 
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. . 1/2 
In the limit of a

0
- o; (S-11) tends to ~he limiting value {3 (~a2 ) 

or 

w --w 
p 

Jt 
~· 2 a 

ln (Be o t h ; + 1 ) d 
1 

\f3cot h; - 1 

00 
-a cosh; . 

e . sinh; cosh;· . ' 

It can be demonstrated that the last relation is equivalent to a dispersion 
lOi . 

equation derived by Imre based on linearized analysis. In Fig. 3 1 4 1 and 

S 1 dispersion characteristics for nonlinear transverse waves in plasmas of 

different temperatures (a = o. OS I 1. 0 I and 10) are plotted based on computed 

results from Eq. (S-11) for values of a labeled on each curve. The solid 
. . 0 . . . . 

curve in each figure represents the characteristic for a wave of infinitesimal 

amplitude. It is again seen that nonlinearity causes a general decrease of . 

. frequency of.o~cillation or an increase in the wavelength as in the case 

of a cold p~asma. The nonlinear effect is 1 however 1 more pronounced for 

plasmas of lower electron temperature. ~ . 
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APPENDIX 

NONLINEAR TRANSVERSE WAVE SOLUTION BY 
·SUCCESSIVE APPROXIMATION 

8 ·. . . . . 
We show here that Cesari 's. method of successiye_ approximation for · 

. . . ' 

nonlinear autonomous systems applied to the case of transverse-longitudinal 

1 °K. Imre;. Phys •. Fluids .§.1 4S9 (1962). 

·'· 

' 
I 
I 
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waves in a cold plasma. yields the same frequency (to the order of wave am­

plitude squared) as that derived in Section 4. For ll3 =· 0 ~ IJ.2 and 'ljrrelativ~ly 

small,. u
10 

= 0, and N =1, equations (3-11, .12) can be wri.tten as· 

• • 2 "'· 2 
'ljr + k'ljr 'ljr = e IJ.2 

2 
w 

I (A-1) 

. 2 
with .k'ljr "' 1 and e = 2 • p , assumed to .be a small quantity. 

(A-1) is equivalent to the following canonical system: 

(A-2). "' . j : t 1 yj = i 'T j y j + € fj . , .. I 4 I 

where 

(A-3) 

j-1 • 
j = 1121 

l yj = i k 0 IJ.2 + ( -1) IJ.2 I 

y = i k'ljr 'ljr+ (-l)j-1 ~ I j : 31 41 . j . 

.. (A-4) 'Tl = -T = k ,I 2 0 
'T 3 : - 'T 4 : k'ljr I 

and 

f1 = - f2 = 

• (A-5) 
1 2 

f3 = - f4 = ---2 (yl + y2) 
. 4k. ·. 

0 . 

TakiriiJ for the 7.P.roth .nrnP.r r~pproximRtion 
. . 

(o) i k ~· 
. Y = Jll-e 

1 
. (o) _, -i k ~ 

Y =-cR"e . 2 . ' ,I I 

(o) ·. (o) 
0 Y3 . = Y4 = I 

with real cJi1., we have 1 from the determining equation 



I 
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"' 
i k + 1 . ll 81-2 - i k . 

8 k 3 0 
, . (A-7) 

0 

. "' 
th~ frequency of wave solution to the first order of e 

, (A-8) 

which.is equivalent to.(4-13) in view.of (A-3). 
. ~ ' . . 

I 
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UST OF FIGURE CAPTIONS 

· Fig •. l. Waveform for nonlinear transverse waves in a cold plasma, 

{3 = l. s. 
Fig. 2. Dispersion characteristics for nonlinear transverse waves 

in a cold plasma. 

Fig~ 3. Dispersion characteristics for nonlinear transverse waves 

in a hot plasma~ a = 0. OS. 

· Fig. 4. Dispersion characteristics for nonlinear transverse waves 

in a hot plasma, a = 1. o. 
Fig. s.· Dispersion characteristics for nonlinear transverse waves 

in a hot plasma, a = 10. 
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