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Abstract

SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which
is appealing as a possible alternative to numerical techniques currently used to
analyze high deformation impulsive loading events. In the present study, the SPH
algorithm has been subjected to detailed testing and analysis to determine the
feasibility of using PRONTO/SPH for the analysis of various types of underwater
explosion problems involving fluid-structure and shock-structure interactions. Of
particular interest are effects of bubble formation and collapse and the permanent
deformation of thin walled structures due to these loadings. These are
exceptionally difficult problems to model. Past attempts with various types of codes
have not been satisfactory. Coupling SPH into the finite element code PRONTO
represents a new approach to the problem. Results show that the method is well-
suited for transmission of loads from underwater explosions to nearby structures,
but the calculation of late time effects due to acceleration of gravity and bubble
buoyancy will require additional development, and possibly coupling with implicit or
incompressible methods. ‘

This work was performed at Sandia National Laboratories, which is operated for the U. S.
Department of Energy under Contract No. DE-AC04-94AL85000, and was partially funded by the

Naval Surface Warfare Center under WFO proposal #15930816. ﬁ
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Introduction
1. Introduction

SPH (Smoothed Particle Hydrodynamics)"9 is a gridless Lagrangian technique
which is appealing as a possible alternative to numerical techniques currently used
to analyze high deformation impulsive loading events, such as hypervelocity

impact or explosive loading of materials. While Eulerian techniques can easily -

handle the gross motions associated with the large deformations involved in such
events, detailed analysis is difficult because of the lack of history and the smearing
and spreading of information (referred to here as diffusion) as the mass moves
through the fixed-in-space Eulerian grid. Standard Lagrangian techniques,
although desirable due to their ability to keep accurate histories of the events
associated with each Lagrangian element, cannot be used because the material
deformations are so large that the Lagrangian grid becomes severely distorted and
the calculation breaks down.

SPH offers a possible solution to these difficulties. The technique is Lagrangian
and thus provides complete history information and should be well-suited for
tracking details of the deformation process associated with each material element.
SPH is actually quite similar to standard Lagrangian methods. In fact, the term
hydrodynamic in the name is a misnomer, since strength is easily included. The
difference from standard techniques is that spatial gradients are approximated by
a method which is applicable to an arbitrary distribution of interpolation points so
that no grid is required.Thus, the technique is gridless and should be applicable to
arbitrary deformations, including the production of individual fragments. The lack
of a grid also means that 3D calculations are as easy as 1D. Various organizations
which have chosen SPH as a natural technique for large deformation calculations
have used it to produce numerous results and are strongly supportive of its
capabilities.

SPH has been coupled into the transient dynamics finite element code,

PRONTO'0, providing a combined capability which exceeds the individual
capabilities of either method. The coupling embeds the SPH method within the
finite element code and treats each SPH patrticle as an different element type within
the finite element architecture. Contact surface algorithms used in the finite
element method are used to couple the SPH patrticles with the finite elements. The
ability to couple particle methods and finite element method allows fluid-structure
interaction problems to be solved efficiently. SPH can be used in large deformation
regions where standard Lagrangian finite elements would become too distorted.
However, SPH need not be used for the entire problem. Low deformation regions
and structures can be treated with finite elements. Also, very thin regions can be
treated with shell elements. Since various types of boundary conditions are easier
to apply to finite elements than SPH, SPH regions can be surrounded by finite
elements for the purpose of applying boundary conditions.

5o
)\k
e




The purpose of the present effort is to evaluate the feasibility of using PRONTO/
SPH for the analysis of various types of underwater explosion problems involving
fluid-structure and shock-structure interactions. Of particular interest are effects of
bubble formation and collapse such as the loads on structures due to bubble
pulses and cavitation closure, the formation of re-entrant jets during bubble
collapse, the interaction of these jets with a structure, and the permanent
deformation of thin walled structures due to these loadings. These are
exceptionally difficult problems to model. Past attempts with various types of codes
have not been satisfactory. Coupling SPH into the finite element code PRONTO
represents a new approach to the problem.

As part of this effort, considerable development work has been done on PRONTO/
SPH. SPH has been added to the three-dimensional version of PRONTO,
including the latest developments in variable smoothing length, methods for
calculating density, as well as interface and smoothing options. Also, an
axisymmetric option has been added to the two-dimensional version of PRONTO.
Throughout this report, a familiarity with SPH is assumed and no technical details
concerning the SPH method are provided. The reader unfamiliar with SPH should
consult reference 9 for a description of SPH.
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Plane Wave on a Spherical Shell

2. Plane Wave on a Spherical Shell

The first test problem involves a plane acoustic wave incident on a hollow spherical
elastic shell submerged in water. Analytic solutions are available for the response

of the sheli1-12. The first test involved a pure finite-element calculation using the
two-dimensional axisymmetric mesh shown in Figure 2.1. The left boundary is the

cylindrical symmetry axis, and a pressure of roughly 20 atmospheres is appliedto ~ .

the top surface. This pressure was chosen to satisfy the acoustic approximation
inherent in the analytic solution, and is so small that the relative motion between
the water and the shell is essentially negligible during the time of the calculation.
The right and bottom boundaries are placed far enough away from the shell that no
wave reflections from them reach the shell during the time of the calculation. A
close-up view of the mesh in the vicinity of the shell in shown in Figure 2.2. The
thickness of the shell is one-fiftieth of its radius, so that the individual elements in
the shell cannot be detected. Comparisons of calculated and analytical results for
the radial velocity at the top and bottom of the shell are shown in Figure 2.3 for
three different mesh resolutions. The coarse, regular, and fine calculations have
20, 50, and 125 elements along the half-circumference of the sphere. The
calculations show excellent agreement with the analytic solution.

The second test involved a pure SPH calculation using the initial particle
distribution shown in Figure 2.4.The figure shows the initial particle distribution as
well as the initial pressure and vertical velocity in the calculation. This is also an
axisymmetric calculation with the particles reflected across the symmetry plane to
generate the plot. Again, the thickness of the shell is so much less than its radius
that individual particles in the shell cannot be detected, although the shell has
uniform particle distribution with four particles through the shell thickness. In this
calculation no attempt was made to match the positions of the water particles to
the shell surface, but rather all particles in the water were placed on a regular
lattice. No water particles were placed at a lattice positions which fell inside the
outer diameter of the shell, resulting in the steps in the positions of the water
particles next to the sphere surface. Although a smoother interface could easily
have been constructed, it was of interest to see if this quick, albeit rather crude,
placement could yield acceptable results. As shown in Figure 2.5 the agreement
between calculated and analytical results is again quite good.
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Figure 2.2 Close-up of the finite-element mesh in the vicinity of the spherical shell.
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Underwater Bubble Period and Radius

3. Underwater Bubble Period and Radius

The next test was to determine whether pure SPH could correctly predict the first
period and maximum radius of the explosive products gas bubble resulting from
the underwater detonation of an explosive charge. After detonation of the charge,
the rapid expansion of the bubble and the inertia of the outwardly moving water

cause the bubble to expand beyond the point of pressure equilibrium. After further -

expansion the higher pressure in the surrounding water reverses the motion and
the bubble contracts. Again, equilibrium is overshot, and at the next minimum of
the bubble size the gas is recompressed to several hundred atmospheres. This
forms a second ‘explosion’ and the process is repeated several times. Simple

theories have been developed to predict the bubble period and maximum radius3,

Pure SPH calculations were done to compare bubble period and radius with theory
and also with results from other types of numerical methods. Comparison with
other calculations is a more direct check of the SPH results than comparison with
predictions of the simple theory, since the underlying physics and assumptions
involved in the theory may differ from those in the calculations, and a specific
calculation using a particular equation of state for the explosive and water may not
necessarily agree with the theory. Two different calculations can be set up with
identical conditions and material properties so that the only differences should be
in the numerical solution methods. The SPH results were compared with results

from the Lagrangian finite-difference wavecode TOODY', Although the SPH
calculations were two-dimensional and axisymmetric, the deformations are too
large for a gridded Lagrangian code, so the TOODY calculations were one-
dimensional and spherically symmetric.

In order to keep the bubble period relatively short and to bound the ratio of the
maximum bubble radius to the initial explosive radius, calculations were performed
for the detonation of 1000 kg of TNT at a depth of 5000 m. The initial pressure in
the surrounding water was set to the pressure at this depth, but rather than adding
the acceleration of gravity and the variation of pressure with depth, the initial
pressure in the water was about 0.5 kbar, independent of depth. Figure 3.1 shows
SPH results for particle positions and pressures at times (from left to right and top
to bottom) prior to detonation, at first bubble maximum, first bubble minimum, and
second bubble maximum. The particles are reflected about the symmetry axis to
produce the plot, with the color on the left side of the axis corresponding to type of
particle (red for explosive, green for water), and the color on the right
corresponding to a pressure color scale (pressure units in Mbar.) The boundaries
are reflective and are only a few maximum bubble radii away from the detonation
point in order to provide a close-up view of the particles in the gas bubble. The
figure emphasizes the adaptive gridding provided by the variable smoothing length
option in the SPH method. The explosive particles are initially considerably smaller
than the water particles, but as they expand and their density increases, the size
of the particle’s interaction region increases so that they can keep in




communication. Density in all calculations shown in this report is calculated by the
kernel sum method, with boundary anomalies accounted for by multiplying ali
densities at all times by the ratio of the ambient density to the kernel sum density
calculated at time zero.

Figure 3.2 shows a much larger calculation with the boundaries moved far enough
away to have negligible effect on the first bubble period and maximum radius. In
this calculation the position of the shock at the time of the first bubble maximum is
clearly shown (upper right). The initial shock is just reflecting from the boundaries
at the time of the first bubble minimum (lower left), and the outgoing pressure pulse
produced at that time can clearly be seen interacting with the ingoing waves
reflected from the boundary (lower right).

Comparisons of bubble size versus time for the two types of calculations for
different mesh resolutions are shown in Figure 3.3. In the figure legend, 2D SPH’
refers to the SPH calculations, and ‘1D VNR’ (von-Neumann Richtmyer difference
method) refers to the TOODY calculations. As can be seen, resolution has an
effect on the calculations. The two methods are in reasonable agreement, even
though the SPH calculations are not truly spherically one dimensional. The simple
theory predicts a maximum bubble radius of about 2 m, and a first period of about
16 ms, so the calculations are in general agreement with the simple theory,
although the two numerical methods agree with each other better than with the
theory.
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4. Shallow Explosion Above a Hollow Cylinder

The next test involves the detonation of a shallow charge above a thin-walled
aluminum pipe. The charge is 15 gm (2 mm/side) of pentolite at a depth of 7 cm,
located 9 mm above a 46 cm (18 inch) diameter, 0.48 cm (0.19 inch) wall thickness
pipe. The geometry is representative of a series of experiments known as IED

cylinder tests!®. The initial three-dimensional setup of the problem for a 3 foot long
section of pipe is shown in Figure 4.1. Gravity was not included and the initial
pressure in the water is zero. The calculation demonstrates the full PRONTO
capabilities for coupling different types of elements, since the explosive and nearby
water are SPH (which is treated as simply another element type in PRONTO), the
rest of the water is hex elements, and the pipe is shell elements. A close-up of the
SPH region is shown in Figure 4.2, which emphasizes the difference in the initial
sizes of the SPH water particles and the SPH explosive particles.

Figure 4.3 shows the propagation of the pressure pulse due to the detonation of
the explosive from the SPH region into the surrounding finite-element water. The
SPH particles and the shell elements are not shown in this figure. Figure 4.4 shows
a series of plots of the material deformation at various times (indicated on the figure
in microseconds). Again, the figure emphasizes the adaptive gridding of the
variable smoothing length option in the SPH method as the size of the explosive
particles increases while their density decreases. Although no quantitative
comparisons were made with experiment because of unknowns in the
experimental configuration, the calculations agree qualitatively with the
deformations observed in the pipe in the tests, and demonstrate the feasibility of
using PRONTO/SPH for coupled fluid-structure interactions.
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Deep Explosion Beneath a Flat Plate

5. Deep Explosion Beneath a Flat Plate

The final test involves the detonation of a deep charge beneath a flat steel plate.
The plate is circular in shape, 70 inches in diameter and 1 inch thick, with a 1 foot
diameter, 6 inch thick aluminum plug bolted into the center. The explosive charge
is 10 gm of CH®6, placed 5.5 inches below the center of the plate. The entire
assembly is at a depth of 167 feet. This test is representative of a series of tests

known as Seneca Lake®. Figure 5.1 shows the initial three-dimensional mesh for
the problem. The entire problem is represented by hexagonal finite elements,
except for the explosive and water directly beneath the plate. This is treated with
SPH, shown in close-up in Figure 5.2. For this problem gravity was included, and
the initial pressure in the water was initialized to a depth-dependent value so that
the pressure field in the water was in equilibrium with the acceleration of gravity.
The initial pressure field in the water is shown in Figure 5.3, with pressure units in
Mbar. The initial pressure at the depth of the plate is about 6 bar. The water
boundary at depths below the charge location was placed 2000 m away from the
charge to preclude signals reflecting from the boundary back to the plate during the
15 ms duration of the event. The pressure was maintained by use of a no-
displacement boundary condition at this location. To allow for vertical plate
movement, an applied pressure boundary condition was used on the upper
horizontal surfaces.

The propagation from the SPH region to the finite-element water of the initial
pressure wave due to detonation of the explosive is shown in Figure 5.4 at a time
0.9 ms after the detonation. Only the finite element water and not the SPH region
or the metal plates is shown in the figure. A series of snapshots of the explosive
bubble at various times during the calculation is shown in Figure 5.5, in which the
color of the SPH region is based on density. In the actual tests, the bubble is
observed to expand until it begins to interact with the plate, and by 10 ms the upper
portion of the bubble has risen to contact and attach to the plate, producing a flat
upper boundary. Around 12 ms the bubble begins to collapse from the bottom,
producing a jet which impacts on the plate at about 15 ms. The figure shows that
these events are not seen in the calculation. The bubble does not attach to the
plate and begins to collapse uniformly near its original position. Also, the boundary
between the SPH water and the finite element water shows an hourglass shape at
late times due to the flow of the water apparently being too weak near the plate.
This is indicative of excessive friction at the plate-water interface, which likely also
affects the bubble motion in this region. However, it is clear that it is not reasonable
to expect the calculations to be able to capture both the strong fluid-structure shock
wave interactions present at early times in the calculation and also the late time
effects due to acceleration of gravity and bubble buoyancy, without some special
effort to mitigate numerical effects present not only in this method, but in most (all?)
others as well. In the centimeter-gram-microsecond system of units which is most
convenient for shock calculations, normal accelerations during an event are of the

order of unity, while the acceleration of gravity is of order 107%. While most would
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consider a few percent to be reasonable accuracy in an explicit dynamics

simulation of the type considered here, no one would expect accuracy in the 9t
significant digit. it is clear that numerical effects such as artificial viscosity,
hourglass viscosity, and minor inaccuracies will swamp the late time phenomena
seen in actual tests, and the ability o accurately model these phenomena in the
same calculation which accurately models the early shock phenomena will require
extensive method development and fine tuning of numerical artifacts. An additional
concern is the amount of computer time required to reach such late times with an
explicit dynamics calculation. The small spatial dimensions present in the problem
limit the time step so that tens or hundreds of thousands of time steps may be
required to reach the desired problem time, requiring tens of hundreds of hours of
CPU time. Some sort of implicit method (with no explicit time step limitation) or
perhaps an incompressible treatment might be more efficient for the intermediate
stages of a problem such as this.

It might also be noted that the calculation shown above was done in three
dimensions, even though the experiment is conceptually two-dimensional and
axisymmetric. The axisymmetric option developed for PRONTO/SPH has been
extensively tested and compared to analytic solutions in simple geometries where
analytic solutions are known. The method clearly works and has been shown to
produce correct results in these situations, as well as in the axisymmetric resulis
shown previously. However, SPH has a peculiar difficulty in axisymmetric
calculations which does not occur with gridded methods. Although the method is
correct given a reasonable distribution of particles, in certain anomalous
circumstances a single particle can get-into trouble with the singularity at the
symmetry axis. Since a single particle’s density is proportional to radius due to the
fact that a particle represents a torus of revolution in axisymmetry, particles which
stray too near the axis can have their density and thus pressure increase to
unreasonable levels. This would not occur with a gridded method, since even if a
single element experienced a density increase as it neared the axis, the internal
pressure in the element would cause it to expand, thereby reducing the pressure.
However, a single particle has no degrees of freedom and cannot expand to
reduce the density. Extreme pressures can thus be generated which destroy the
calculation. An example is shown in Figure 5.6 which shows the end-on impact of
two cylinders. The material jets outward at the impact plane, whose normal is along
the symmetry axis. The calculation proceeds normally until at late times a particle
drifts too near the symmetry axis, producing a large pressure which then drives the
other particles from its vicinity, effectively blowing a hole in the problem. This
phenomenon does not occur in all axisymmetric calculations, but does prevent
certain calculations from proceeding to completion.
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Conclusion

6. Conclusion

Smoothed particle hydrodynamics (SPH) is a gridless Lagrangian technique which
shows potential for detailed analysis of high deformation events which are not well
handled at present by either Eulerian or standard Lagrangian techniques. In
principle, the method should be able to overcome both the diffusion problems
associated with Eulerian methods and the grid distortion associated with-
Lagrangian methods. The name ‘smoothed particle hydrodynamics’ is misleading,
since the particles are actually interpolation points, and the method is not
hydrodynamic, since inclusion of full stress and strain tensors is easily
accomplished. The apparent strength of SPH is the'calculation of spatial gradients
by a kernel approximation method which does not require connectivity of the
particles and should be able to treat arbitrary deformations. in the present study,
the SPH algorithm has been subjected to detailed testing and analysis to
determine its applicability to underwater explosion problems involving fluid-
structure and shock-structure interactions.

The sample problems show that PRONTO/SPH is well-suited for transmission of
loads from underwater explosions to nearby structures, including the permanent
deformation of thin walled structures due to these explosions. However, it is clear
that it is not reasonable to expect the calculations to be able to capture both the
strong fluid-structure shock wave interactions present at early times in the
calculation and also the late time effects due to acceleration of gravity and bubble
buoyancy. Numerical effects such as artificial viscosity, hourglass viscosity, and
minor inaccuracies swamp these very late time phenomena which are due to
physical forces and effects which are many orders of magnitude more subtle than
those involved in the early parts of the event. The ability to accurately model these
late-time phenomena in the same calculation which accurately models the early
shock phenomena will require extensive method development and fine tuning of
numerical artifacts. Also, the amount of computer time required to reach such late
times with an explicit dynamics calculation is a major concern. The small spatial
dimensions present in the problem limit the time step so that hundreds of
thousands of steps may be required to reach the desired problem time, requiring
tens or hundreds of hours of CPU time. An implicit method with no explicit time step
limitation, or perhaps an incompressible treatment, might be more efficient for
some parts of the problem. Although the current investigation has revealed areas
in SPH (as well as most other numerical methods) that need improvement if late-
time gravitational effects are to be modeled, the potential of the method in the area
of large deformation Lagrangian calculations is very real.
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