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Superimposed magnets often occur in accelerators, such as in the interaction regions of
colliders. This note presents the linear transfer matrices of various superimposed magnets.
Since readers of this note are probably well informed, we simply list the results without
derivation. The method used to calculate the linear transfer matrices is outlined in Ref. [1].
We list the Hamiltonian H and the corresponding matrix ¢ ~*#* for several combinations of
common magnets (only sector magnets without fringe field) used in accelerators. Magnetic
fields and vector potentials (in Coulomb gauge) are also listed for reference. The usual
{#,%, 8} coordinate system is used.! The transfer matrices are for the commonly used
canonical variables {z, P;,y, Py, 2,6}. For definitions of the coordinate system and the
dynamical variables, see Ref. 1, 2]. For those cases when the transfer matrices depend
on the gauge selection, we also list the matrices for the coordinates and kinetic momenta
{z,p:,y,py}. The magnetic fields and Hamiltonians are correct only up to the order
appropriate for linear optics. In this computer age, complicated analytical results may
lose their usefulness and attractiveness in many applications. However, we hope our exact
analytic results to linear order are still useful for particle dynamics studies in superimposed
magnet systems. \

1 Horizontal Dipole + Quadrupole (curved)

This is the simplest and well-known case, encountered for example in weak focusing syn-
chrotron accelerators. It also occurs in combined function magnets. The Hamiltonian for

tIn the Frenet-Serret coordinate system,
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where e, p are signed quantities and, P, is the nominal momentum.
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such Dipole + Quadrupole system reads:

2 : 1
_ L1 2y 0 L2 _ .2
H= g4 B =S 2 ke - ) (1)
The magnetic field and vector potential used:
- P - P, .
B=2yi+ G+Rofl+0E),  A=-R+I4k - @
The transfer matrix reads:
( cos Vks ﬁ sin Vs 0 : 0 0 ;2;; sin? 3%'53 \
—VEsin VEs cos Vs 0 0 0 sin Vs
p\/_
0 0 coshvks L-sinhvks 0 0 3
7E (3)
0 0 VEsinhvks coshvEs 0 0
—75111\/—3 ——vsm ﬁ— 0 0 1 o
0 0 0 0 1 )
where o = -—}g (Vl——isin I::s—s) and k= k + ;1;
2 Horizontal Dipole + Skew Quadrupole (curved)
The Hamiltonian reads:
a:6 z?
= —(P2 +B) =T ke (4)
The magnetic field and vector potential used:
B =2kt + (G - k)il +Oey), A= _%(1 + % — 2kay)s. (5)

The transfer matrix R reads:




where
( R;, = lg[(a + 1) cosb, + (a — 1) coshb_]

Ry f-’—(b+ sin by + b_sinhd.)
Ris —f’—(— cosb, + coshb_)
Ry %as[ (a—1)bysinb, + (a+ 1)b_sinh b_]

Ry = 2as[ (a4 1)bysinb, + (a — 1)b_sinh b_] 0
Rs; = [(a —1)cosby + (a+ 1) coshb_]
Ry, = 2|k|as s=—[(a — 1)b_sinb, + (¢ + 1)b, sinh b_]

| Ry = lﬁlﬂ_( b_sinby + by sinhb_)
and ¢ = /1 +4k2p%, by = ,/“f—li.

3 Dipole + Solenoid (curved)

The Hamiltonian reads:
z6 a:z

B B2
H—-Uﬂ+Pﬂ———+ — (@B, ~ yP) + 2 (=" +v°) (8)

The magnetic field and vector potential used:!

5_ Fo l 1 . r_ B
B= e py+ 1+:c/pBos)’ A= "2

y . z. . z..
B F—Bopln(l+=)g+(1+-)8]. (9
selBoraTsE — Bapln(+ )i+ (14 D)3l (9)

The transfer matrix R reads:

a_ + a4 cos Bs %sin Bs —9-s1n Bs 24 sin B— 0 Ry
-5 - e BsinBs Ry —a+Bo sin? BZ’ —Bop, + a_,.TB‘l sin Bs 0 Ry
—Roy —Ryy ay +a_cosBs 32 =+ 2_9;_ sinBs 0 R
—st —R13 -—92;.3 sin BS R33 0 R46
—Rag —Ry6 Ry R 1 R
0 0 0 0 0 1
(10)
where ) )
R16 = 32 sin E’
Ry = v(a+ sin Bs +a_Bs)
{ Rz = (sm Bs — Bs) (11)
Ry = -ﬁ-B,ﬂ— sin? %’
| Bse B3 =—(sin Bs-— Bs)
and B = /B + 35, a2 = 3(1 535)-
tThe magnetic field can not satisfy the Maxwell’s equation V x B = 0 without the factor 1~ 1 + Feryrs in B.

It also guarantees the Coulomb’s gange V - A=o. However, this factor does not contribute to the linear
Hamiltonian.




Since the vector potential components A, and A, are nonzero, the canonical momenta
P, and P, are different from the kinetic momenta p, and p,. From Eq.(10) and p,, =
P,, — €A, /Py, one can obtain the transfer matrix for {z,p,,y,p,, 2,6} via a similarity
transformation:

[ (B + Fa COS Bs % sinf?s 0 25 sinzﬁ,i 0 —Rs )
—-»— sin Bs cos Bs 0 %L sin Bs 0 BopR24
B, = (Bs sin Bs) —%::%‘1 sin®£2 1 Tt %z- sinBs 0 Rs,4 (12)
-;—f-‘?,-smz & —%ﬂ sinBs 0 T + (%) cos Bs 0 —pRy
—(B)?2 - gissin Bs -5, sin” & B g —-g—aﬂ;(Bs —sin Bs) 1 3-Rs
0 0 0 0 o 1
4 Solenoid + Quadrupole (co-axis)
The Hamiltonian reads:
1 B B? 1
A= 24 B)-Benyp)+ B )1 ket - (19)

The magnetic field and vector potential used:

R

- P N
B = —go—(ky:i + kzj + Bg$), A= [Boy:c — Bozi + k(z* — y?)4]. (14)

The non-zero elements of the transfer matrix read:

(Riy = Ry = 5 (bycos ¢+ +b_cosh¢.)
Ry, = = 2a1_,3 ( = Lsin g, + ==2 b‘ L sinh ¢_ )
Ris = —Ry = i (ba+1 sin ¢y + L smhrﬁ )
Ry = —-Rsp = ( 0s ¢y — COSh¢ )
Ry = = —fa ( L sin gy + 5= smh¢ )

§ Rz = —Ry = 28(cos ¢+ - cosh¢ ) (15)
Ry = —Ry = 1 (b—f—j; sin ¢4 — 5= sinh qb_)
Rss = Ry = o(b_cosoy + b+ cosh é_)
Ry, = = —2a1130 (b_ =4 b—tﬂ' sinh ¢_ )
Ry = = & (‘;;f“ sin ¢y — smh(f) )

\ Rss = R = 1

where a = /T + 4k2/Bg, ay = /%, a_ = sgnlk]/%5}, bs = a £ 2k/ B}, ¢+ = as Bos.




In addition, the transfer matrix in terms of kinetic momenta reads:

(( Ry, = = s=[(by —1)cos¢s + (b~ + 1) cosh¢_]
Ry, = = £ (a_(by +1)singy + ay(b_ — 1)sinh ¢ ]
R13 = R31 = '}1‘ (—a_ sin ¢+ + ay sinh (25...)
Ry = —Rsy = ——p-(cos¢y —coshg_)
R, = = —2fa_(by+1)sindy +ay(b_ — 1)sinh¢_]
R,y = = 3-[(by + 1)cos¢y + (b — 1)cosh¢_]

{ Rz = Ry = - af}o (cos ¢y — cosh¢..) (16)

Ryy = —Ry = i(aysing,+a_sinhg_)
R = L[5 — 1) o5y + (b + 1) cosh g ]

it
!

Ry, = g2 [~ay (b —1)sind, +a_(b; +1)sinh ¢_]

Ry = = Bofa_(b_ +1)sing, + ay(by — 1)sinh ¢_]
Ry = = 5 [(b- +1)cosdy + (by — 1) coshp_]
\ Rss = R = 1

Due to the axial symmetry of the solenoid field, one can get the Hamiltonian and transfer
matrix of the Solenoid 4+ Skew Quadrupole system by a 45° rotation.

5 Cavity 4+ Quadrupole

We consider the well-known periodic cavity structure with cylindrical symmetry,
whose accelerating field E, and other non-zero field components read:[3]’

hod . had k.n .
E. = ) —iBpJo(kmr)e ™t By = 37 B (Rer)e R
n=-00 n=-oco0 M
17
— 1k {wi—kzn2) ( )
Bg: Z zk—'EnJl(krn'f')e o

where E,, assumed to be constant, i.e. no fringe field, d is the period length, n is the space
harmonic index, k7, + k2, = k* = (%)%, and k., = k, + 27n/d. The vector potential of
the cavity field can be chosen as:
A, = i Ln (kppr)ei@i=ken2) - A = i ikmp g (kppr)€i@i=kan?) (18)
z w 0\ vrn b) r n=—°owkrn nY 1\ fvrn

N=—-00

Since we are interested in linear dynamics here, we can expand the Bessel functions as
Jo(z)=1—22/4+ .- and Ji(z) = /2 + - - -, which yields

A= g2 Kzt + Kyi+ [FHAC =0+ K +)|s) (9)
0

€

tFor cavities in storage rings, usually only one mode is of concern and commonly used field expression
is much simpler, nonetheless, it is covered by the general form.




- Ze k2 En —kan k.n zEn
where K, PO?R [zn: Y e'@t=En) | and K ———-% Z g Wi=kznz) D; the
subscript 0 means keeping the 0-th order term in {z, 6} We assume K. and K, are
constant.!

It is not difficult to see that the longitudinal and transverse dynamics are decoupled
at linear order. The superposition of quadrupole or solenoid with the cavity will not affect
the linear dynamics longitudinally, thus we will compute only the 4 x 4 transfer matrix
of the transverse motion. For this purpose, the Hamiltonian of the cavity+quadrupole
system reads:

1 K, : 4K, + K?
o= 5(P 4+ B+ 2P+ yP)+ @ ) 4 2@ -y (20)
where £k is the quadrupole strength.
The vector potential used:
- P, R .
A= -2—2{Krm:2+K,yy+ [k (2? - y?) + K. (z* + )] 8} (21)
The transfer matrix reads:
cos gy + 2= +o sin ¢ ;1: sin ¢ 0 0
- —i sin ¢ cos ¢y — 2%? sin ¢, 0 : 0
0 0 cosh ¢_ + &= sinh ¢_ = sinh &
0 0 k_ smh é_ cosh ¢>_ 5= sinh @
(22)
where ¢, = kys, ky =vk: K, and Ky =k £ (K. + K2/4).
The transfer matrix for the kinetic momenta {z,p,,y, p,} simply reads:
coskys ;1: sinkys 0 0
—kysinkys coskys 0 0
0o - 0 coshk_s Lsinhk_s (23)
0 0 k_sinhk_s coshk_s

which is just a quadrupole with horizontal and vertical focusing strength modified by K.
as it should.

Although this transfer matrix is simplectic, damping effect is apparent if we remember
that the momenta are normalized by a constant P,. Usually it is the total momentum
of a particle. But for this and next case, due to the existence of accelerating field, the
total momentum of a particle is not conserved anymore. The increase of the total final
momentum yields the dumping effect. However, care is needed when the energy gain is
significant since 6 = —’-’—Pﬁ may not be a small quantity.

Hn order for the K, to be constant, the longitudinal motion must be well synchronized such that the
phase will not change (this may not be possible for different space harmonics). Otherwise, the Hamiltonian
for the transverse dynamics will be time dependent and our treatment does not apply.




6 Cavity + Solenoid
Similar to the last section, the Hamiltonian reads:
1, . K. B 1
H= §(Pf +P))+ — (@l +yPy) - "22(9«‘1’;: - yP:)+ §K($2 +9%) (24)

where B, is the solenoid strength and K = K, + (B + K?).
The vector potential used:

- P, N N .
A= —5:3 [(Krz + Boy)& + (K,y — Boz)§ + K. (2* + y*)$] (25)
The transfer matrix reads:

£y cos ¢ Ecosd €,sing Esing
—~Kfcos¢p €_cos¢ —Késing E_sing

—€,sing ~Esing £, cosdp  Ecosg (26)
KEsing —£_sing —K€cosgp £.cosg
where £; = cosag + 3K, £ = ;E-sinag, and ¢ = ;1 Bos, a = /1+ 4K, /B3.
The transfer matrix for the kinetic momenta {z, p;,y, p,} reads:
cos ¢ cosag + L sin psinag 3 cos gsinag ~Rs; —Rs;
- Zgo cos ¢ sin a¢ cospcosap — Lsingsinap —~Ray —Ra 27)
—sin ¢ cosag + L cos ¢sin ag —ﬁ:; sin ¢ sin a¢ Ry Ry
2= sin ¢ sin ag —sinpcosad — Lcosgpsinap Ry Ry

Note that both Eq.(27) and Eq.(23) are independent of the parameter K, i.e. the trans-
verse electric field does not play a role in the transfer matrices. This is due to the cancel-
lation of electric and magnetic forces.

7 Remarks

From these matrices, we see that, except for the dipole+quadrupole and cavity+quadrupole
cases, all other cases are sources of linear coupling of transverse degree of freedoms. A quick
look on the stability properties of these matrices will be interesting. The dipole+quadrupole
system is stable provided that £ > 0 and k < 0. This is the well known stability condition
0 < n < 1 for a weak focusing synchrotron[4], where £ = —n/p?. The cavity+quadrupole
case is stable if |k| < K.. The cavity+solenoid system is stable provided that BZ > —4K..
The other systems are unstable in general. Note that when combined with dipole, solenoid
and quadrupole axes are assumed to curve along the bending orbit. Dipole with straight
solenoid or quadrupole are also practical cases but are not discussed here. Also note that
the vertical dipole + quadrupole case can be obtained directly from the horizontal dipole
+ quadrupole case. So is the vertical dipole + skew quadrupole case.
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