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Abstract

Spectroscopic ellipsometry is a very powerful technique for optical character-
ization of thin-film and bulk materials, but the technique measures functions of complex
reflection coefficients, which are usually not of interest per se. The interesting character-
istics such as film thickness, surface roughness thickness, and optical functions can be
determined onl}: by modeling the near-surface region of the sample. However, the meas-
ured quantities are not equivalent to those determined from the modeling. Ellipsometry
measurements determine elements of the sample Mueller matrix, but the usual result of
modeling calculations are elements of the sample. Often this difference is academic, but
if the sample depolarizes the light, it is not. Ellipsometry calcule'ltions also include
methods for determining the optical functions of materials. Data for bulk materials are
usually accurate for substrates, but are not appropriate for most thin films. Therefore,
reasonable parameterizations are quite useful in performing spectroscopic ellipsometry
data analysis. Recently, there has been an increased interest in anisotropic materials, both

in thin-film and bulk form. A generalized procedure will be presented for calculating the




elements of the Jones matrix for any number of layers, any one of which may or may not
be uniaxial.

I. Introduction

Spectroscopic ellipsometry (SE) is a powerful optical characterization technique
for a variety of needs,'? including the monitoring of film growth and the determination of
the optical properties of thin film and bulk materials. However, the data obtained from a
SE measurement is not useful by itself. If one is interested in film or roughness
thickness, or the optical functions of bulk or thin film materials, one must first model the
near-surface region of the sample and obtain the complex reflection coefficients (CRC)
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from the mode The CRCs must then be compared with the ellipsometric data, which

involves some assumptions concerning the nature of the light interaction with the surface.

Another problem z;ssociated with the interpretation of SE measurements taken on
thin film systems is that often the optical properties of thin-film material are quite
different from those of the bulk material; moreover, these optical properties will often be
a very strong function of the deposition process. This is at once an advantage and a curse.
A major advantage of SE is that it is sensitive to the details of the deposition process and
can therefore be used to monitor and control the process. However, this sensitivity of the
optical functions means that we begin the modeling having only a rough idea of the
values of the thin-film optical functions, which must then either be measured or

parameterized.

Recently, work on SE and its interpretation has been extended from isotropic to

anisotropic materials. This is a challenge both from an experimental and a theoretical



point of view, in that traditional ellipsometers cannot measure all the relevant parameters
in one configuration and methods of calculation must be developed to determine the

additional parameters resulting from the sample anisotropy.

In this paper, the procedure used to compare calculations with SE data will be
examined. First, the differences between measured and inferred quantities will be
discussed. Secondly, the three steps involved in comparing SE data with a model of the
near-surface region of a sample will be briefly outlined. Some of the recentimodel
parameterizations used to deal with thin film and bulk materials will then be discussed.
Finally, the steps involved in calculating the CRCs from models where one or more of the

constituents is anisotropic will be outlined.

IL. Measured and Calculated Quantities

A. Measured Quantities

In a generalized ellipsometry experiment, the light from the source passes through
. the polarization state generator (PSG), interacts with the sample (reflects from or
transmits through), and then passes through more polarization optics and is detected [the
polarization state detector (PSD)]. The light that has passed through the PSG is described

by its Stokes vector,5 S where
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The elements of the Stokes vector are all intensities and are therefore real. The quantity
1, is the total intensity and I_ss, Iy, 145, and gy are the intensities of light polarized at -45°,
0°, 45°, and 90° with respect to the plane of incidence of the sample. The quantities I
and J;c denote the intensities of right-circularly and left-circularly polarized light. The
Stokes reprcsentation contains all possible polarizations of the light beam, including

partial polarization. In general,

1,2 (0% + U + VH2 | (2)

where the equal sign holds for totally polarized light. The PSD can be represented by the
transpose of Eq. 1. Therefore, one requires a 4X4 Mueller matrix M to describe the

interaction of the light beam with the sample, given by

M= 3)

Of course, not all of these elements are independent in that any polarization system




cannot “overpolarize” the light, nor can the output energy exceed the input energy; this
leads to several necessary constraints on the elements of M.” The intensity of the light

incident upon the detector is a linear combination of the elements of M:

I = Spsp M Spsg @

Usually, ellipsometers measure 2 to 4 independent linear combinations of the
Mueller matrix elements. If the PSG (PSD) does not contain a compensating element,
then the 4™ element of Spsg (Spsp) will be 0 and the ellipsometer is not sensitive to

elements of the 4" row (4[h column) of M.

B. Calculated Parameters

Optical calculations for a reflection ellipsometry experiment determine the

elements of the complex Jones reflection matrix, given by
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where the elements are the polarization-dependent complex reflection coefficients. The
elements of this Jones matrix will depend upon the angle of incidence and the details of
the near-surface region of the sample, including the number and thicknesses of the thin

films, as well as their refractive indices (n) and extinction coefficients (k). For




transmission experiments, the r terms are replaced with complex transmission
coefficients r. The normalized Jones matrix has 6 independent quantities. If the sample
is isotropic, then the off-diagonal elements are zero and only 2 parameters are

independent.

To compare the calculated Jones matrix with experimentally measured quantities
(elements of the sample Mueller matrix), one can calculate an equivalent Mueller-Jones

matrix given by®

M=A(J®J*)A" (6)
where
I 0 0 I
A=l 00 %)
0 I 1 0
0 -1 i 0

There are constraints on the elements of M for it to a realizable Mueller matrix’ and
additional constraints for M to be a Mueller-Jones matrix.>'® If the normalized
representations of the sample Jones matrix and Mueller matrix are used, then only the 6

elements of M are linearly independent.

For an isotropic sample in a reflection ellipsometry configuration, the normalized

sample Mueller matrix is given by’
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where N =cos (2 y), S = sin (2 ) sin (4), and C = sin (2 y) cos (4). If an ellipgometer
contains a compensating element, and measures at least 3 independent parameters, then it
is possible to totally characterize M (such as with the two-channel spectroséopic
polarization modulation ellipsometer'"). If no compensating elements are used (as with
the simple rotating element ellipsometer'?), then it is impossible to measure S. The
addition of a static compensating element in a rotating element ellipsometer'® makes it

possible to measure a linear combination of the C and the S component.

If the sample is not isotropic, or if there are strained windows between the PSG
and the sample, or between the sample and the PSD, then there are additional non-zero
and independent elements in the Mueller matrix for the sample and windows. The

Mueller matrix for an isotropic sample between input and output strained windows is

given by'*:
1 -N 0 Nég,,
M = ~-N 1 $85.1 = 05,0~ C8y, , (8)
0 S50 C-S6y S+Céy

-Né,,, 0,,+Cd,, —-S-Co, C-S6,




where

Oswo = Op sin (2 Ou0) (9a)
Osw; = Oy sin (2 O,y) (9b)
and Ow=cos (2 0.0) + O;cos(20,;) . (9¢)

The quantity & (d;) is the static strain retardation of the window between the PSG (PSD)
and the sample and 6, (8..;) is the azimuthal angle of the fast axis of the window with -

respect to the plane of incidence. Therefore, the use of windows introduces three
additional independent parameters into the Mueller matrix. If either the upper right or

lower left 2X2 block of the sample Mueller matrix is measured, then the parameters dswo
and Js,,; can be determined. The measurement of dw requires the use of a known sample.

Once these three parameters are known, then corrected values of N, S, and C and be

obtained.

If the sample is anisotropic, then the off-diagonal elements of the sample Jones

matrix may be non-zero and the resulting sample Mueller-Jones matrix (from Eq. 6) is*!

| "‘N_aps Csp+é’l SSP+§2
M=| N 1ma,ma, =0 e =S, e, (10)
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where

N=(l-% - ¥ - % D D=+ % + % + %) =2/(1+N) (1la,b)

S=2%p sin(A,,,,) /D C=2ypcos(Ay) /D (1lc, d)
Sop =2 Yip sin(Ag,) / D Cyp =2 Yipcos(Ay) / D (11e, f)
Sps = 2 Yps SIN(Apy) /'D | Cps =2 Yps c08(Aps) / D (Ilg, h)
0p=2 %y /D Ops=2 Yo' / D (114, j)
Br=(DI2)(Cyp Cps + Sip Sps) o= (DI2) (Cp Sps - Ssp Cps) (11k, D)
$r =(DI2) (C Cps + S Sps) & =(DI2)(C Sps - S Cps) (11m, n)
E=(D12)(CCyp + S Sy) E=DI)(CS,-SCy). (1lo,p)

Thus, the measurement of 7 parameters (N, S, C, Sy Cyn Sps, Cps) completely determines
the sample Mueller-Jones matrix. In this approximation, the measurement of either the
upper right or the lower left 2X2 submatrix and one element of M corresponding to each
of the N, S, and C parameters is sufficient to completely determine M. The normalization

condition can be written as

N+ +C+S,7 +Cp +85° +Cp’=p° . (12)

If the sample is non-depolarizing, then p=1 and we have only 6 independent parameters.
However, if the sample does depolarize the light beam, then the NSC parameters so
measured will normalize to p<I and p becomes a measure of this depolarization. Most

samples do not measurably depolarize the incoming light, but there are many real



situations where the sample does depolarize the incoming light beam: 1) If the input light
beam illuminates an area of the sample where the film thickness(es) are not uniform, |
quasi-depolarization can occur'', and p<1. 2) If the sample substrate 1s transparent then
light reflecting from the back surface will contribute an intensity component to the light
entering the PSD that is not phase-related to the light reflected from the front face and the
light beam will be partially quasi—depola.rized.l6

It must be emphasized that one can always associate a Jones matrix with a
Mueller matrix, but the converse is not true. Rough surfaces, for example, depolarize the
incident light beam,'”'® both in the sense that some of the light reaching the PSD has no
identifiable polarization state, and in the sense that cross polarization occurs in nominally
isotropic systems (s-polarized light goes to p-polarized light and visa versa). Some
depolarization effects can be monitored with the p-parameter of Eq. 12, but the cross-

polarization effects cannot.

III. Calculation Procedure

If it can be assumed that the light reflecting from or transmitted through a sample
can be represented by a modified Mueller-Jones matrix, the fitting of ellipsometric data is

a three-part procedure™:

1. Assume a model, including the number of layers and layer type (isotropic,

anisotropic, or graded).

2. Determine or parameterize the optical functions of each layer

10



3. Fit the data with a suitable algorithm and figure of merit to obtain the
unspecified parameters.
As was pointed out in refs. 3, 19 and 20, step 3 is critical. If there is no measure of the
figure of merit, one does not know whether the model_ fits the data. One MUST use an

error-based figure of merit, such as the reduced )(2 , which is given by

139

Y A (pj,exp(li) - :Dj,cac(ﬂ’i’z))2
2 X ’

j=t =l 5pj()‘i)2 (1)

NMml

In Eq. 13, pjexp(A0), Pjcac(Ai), and Sp;(A)) represent the experimental, calculated, and error
quantities at wavelength A;, and data set j, while N is the total number of data points, m is
the number of fitted parameters, and M is the number of data sets. Furthermore, realistic
measurements of the error limits of the fitted parameters must be calculated as well as
cross correlation coefficients. To ignore this step invites drastic errors in the

interpretation of spectroscopic ellipsometry data.

IV. Parameterization of Optical Functions

One of the critical steps involved in fitting spectroscopic ellipsometry data to a
given model is that one often must use existing knowledge of the optical functions for
each of the layers in order to make the problem tractable. Unfortunately, the optical

functions of thin films are often quite different from the optical functions of nominally

11




equivalent bulk materials,” even for epitaxial films.” Furthermore, the optical functions

23,24

of crystalline thin films can change with composition ™" or with temperature.25 The

problem is even more severe for amorphous films, since even single-element films can
26-30

have widely different deposition-dependent optical functions.

3132 was to model the layer

One of the first attempts to deal with this complexity
using a Bruggeman™ effective medium approximation, where the complex dielectric

function € of the composite film was given by solving the equation

— &

=2/ =Y f (14)

£ +2£’

where the sum goes.over j constituents. (see Roussel et al.** for an ehlegant method for
performing this calculation with two constituents, thereby avoiding problems associated
with the selection of the proper branch from a multivalued inverse of a complex
function.) Generally, the early work did not use a reliable measure of the figure of merit,
s0 it is not possible to know whether the data actually fit the model. Recent experience
has shown that this model is not generally useable, but can be reliable in certain

circumstances.

Although amorphous materials often have optical functions that depend upon
deposition conditions, the optical functions usually have no sharp features, and so it is
possible to model them using only a few parameters. One of the first attempts to
parameterize the optical functions of amorphous materials is due to Forouhi and

Bloomer.>> In this formulation, the extinction coefficient k(E) was

12



A(E - E,)*

k(E) =
( )AH—BE+C

(15)

and the refractive index n(FE) was determined using Kramers-Kronig integration, where an
additional fitting parameter n(e) was included. This formalism approximately fitted
some data in the literature, but again a realistic figure of merit to quantify the goodness of

fit was not used.

There are several fundamental errors in the Forouhi and Bloomer paramete,rization:30

1) k(E)>0 for E<E,. This is clearly unphysical for interband transitions.

2) k(E)—constant as E—eo. k(E) should go to 0 as 1/E? or faster.

3) In performing the Kramers-Kronig analysis, Forouhi and Bloomer did not use

the time-reversal requirement that k(-E)=-k(E).

Recently, Jellison and Modine™ derived a model for the optical functions of
amorphous materials that does not violate the problems listed above. This formulation
uses a combination of the Tauc band edge and the Lorentz formulation for a collection of

uncoupled atoms to determine the imaginary part of the complex dielectric function &(E),

which is given by

AE ,C(E-E)) 1
o = 2 1.2 22 1

E>E, (16)

=0 ' E<E,
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The real part of the dielectric function is determined from &(E) using Kramers-Kronig
integration from 0 to o, so time-reversal symmetry need not be considered. The model
employs at least 4 fitting parameters: the band gap E,, the Lorentz resonant energy E,, the
Lorentz broadening parameter C, and the transition matrix element, which is proportional
to A. In some cases, one can include g(=) as a 5 parameter, although this is not always
necessary (often’’ it can be set directly to 1). Several data sets found in the literature
were fit to this Tauc-Lorentz (TL) model, and the fits were far better than when the

Forouhi and Bloomer™ model was used.

Recently, the TL model has been used by Fujiwara et al.*® to analyze
spectroscopic ellipsometry data from graded amorphous silicon-carbon alloys. Jellison et
al.”” have also used the TL model to characterize a series of SiN films grown on silicon
using plasma-assisted chemical vapor deposition. In both cases, the fits obtained from

the TL model were far better. In the case of the SiN work, €,(e) was set to 1, and the

resulting xzs were all near 1, verifying that the model fits the data.

An alternate empirical model, using 7 parameters, has been proposed by
Yamaguchi et. al.*” which consists of a sum of damped harmonic oscillator terms
(Lorentz oscillators), whose square root amplitudes are Idistributed according to a
hyperbolic function of photon energy connected to an exponential function. Reasonable
fits to a-Si and a-SiN data sets(from Ref. 38) were obtained over a very wide energy

range, although no attempt was made to determine a goodness of fit.
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Crystalline materials present even more of a challenge to parameterize the optical
functions, where critical points exist in the optical spectrum that often result in sharp
features in the dielectric response functions. A realistic model becomes even more
important when one wishes to simulate spectra from alloys, such as Al,Ga;.<As or
SixGe,.x, which contain critical points in the optical spectrum that vary continuously with
composition x. Snyder et al.>} compared 3 models for the dielectric functions of
AliGa, «xAs and found that the best fits were obtained when the critical points were
modeled using one or more Lorentz oscillators. For each oscillator, the peak energy,
width, and amplitude is fit as a function of x, allowing the composite dielectric function
to be calculated as a function of x. This approach works reasonably well near the critical
points, but breaks down at small photon energies where the absorption coefficient
becomes small. Susuki and Adachi®® used a similar approach to fit the spectroscopic
ellipsometry data from microcrystalline silicon films. One of the main problems with this
approach is that often 15 or more parameters are required to fit crystalline spectra, and

correlations between parameters can become significant.

V. Calculations involving Anisotropic Materials

Until very recently, very iittle spectroscopic ellipsometry work has been done on
anisotropic materials. The problem is both experimental and theoretical. In general, the
off-diagonal elements of the sample Jones matrix (Eq. 5) are non-zero, so additional
measurements must be made to determine all the components. Using a rotating element

ellipsometer at multiple polarizer azimuths, Schubert et al.*® measured the 6 independent

15



elements for rutile (TiO,), which is a uniaxial material. Using 2-modulator generalized
ellipsometry'®, Jellison et al.* simultaneously measured 7 components (in the NSC
representation) with a single measurement. (The measurement of the S parameters means
that the surface roughness can be taken into account; this is not possible with the

measurements of Schubert et al.39)

Theoretically, the analysis of spectroscopic ellipsometry data where one or more
of the components is anisotropic is considerably more involved than for isotfopic
media.*'® The approach which we have used in our laboratory is based primarily on the
paper by Berriman*? and the modifications of Lin-Chung.L"3 33 There are significant

parallels between this calculation and that of Schubert.*’

The Berriman equation is given by

d¥ .
— = IAY (17)

dz

where WT = (Ex, Hy, E,, -Hy), and A is the 4X4 complex Berriman matrix. The
components of the y matrix are just the instantaneous electric and magnetic fields in the

x-and y- directions, where the z-direction is defined as perpendicular to the plane of
stratification. This is just a re-formulation of Maxwell’s equation. For a uniaxial crystal,

the Berriman matrix becomes™*

16




(18)

s
=
h "’Dv
S - O O

where the elements are given in Ref. 45. If it is assumed that the A matrix is independent

of z over a short interval 8z, then the solution to Eq. 17 is given by

v+ &)= K&y v@)=P(& V),

where the K(&z) matrix is given by

e 0 0 0
0 e*% 0 0
0 0 %% 0
0 0 0 %%

K(éz) = (19)

The q; are the 4 eigenvalues of the A matrix (Eq. 18), and the y matrix is a 4X4 matrix

where the i™ column is the i™ eigenvector associated with g;.

If the near-surface region consists of several layers, then

WO) =P d)P'(ds) .. PldY)w(d +ds + ... +dy) . | (20)
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- This expression gives the solution in terms of the electric and magnetic field components.

However, we observe elements of the modal matrix* s o = (Ex, Ry, Ey, R))

L GO S
E o
’ ~1 cos(¢) 0 0
o= oy w1t Ma P (0) @D
= Ev =%Xo - 2 0 0 1
R. n, cos(¢)
0 0 1
n, cos(¢)

where E,, E, are the x-and y-components of the electric field for the input light, and R,, R,
are the x-and y-components of the electric field for the reflected or output light. The

solution in the substrate must also be transformed to the modal solution, which yields

® =y P'd)P'(d)... P(d) % s =M D, (22)

where ;s is the column-wise set of eigenvectors for the A matrix associated with the

substrate and CDST =(A,, 0, A3z, 0). The 0 elements of <I>ST arise because it is assumed that
any light propagating away from the layer stack will either be absorbed or transmitted out
the back of the sample and lost. Therefore, two of the eigenvalues (q; and g3) must be

selected such that they are the two physically realizable solutions (that is, the modes that

are propagating back to the layer stack).

18




The complex components of the reflection Jones matrix can be calculated:

m.,m - m,,m
— 12 20 10 22
Top = (23a)
Mo, My — MMy,

;o= M3 Moy — MMMy,
ps (23b)
My My — MMy,

m . m,, —m. ,m
— 10 02 12 00
r, = (23¢)

sp
MMy — Moy My,

MMy, — M, m
r o= 230"0 32 00 | (23d)

s
Mg Moyy — MMy,

Note that the A; and A; parameters are not involved in the expressions of Egs. 23

This formalism assumes that the A matrix is non-singular. If the layer is isotropic,
or if the layer is uniaxial with its optical axis in the plane of incidence or perpendicular to
the plane of incidence, then the A matrix becomes block-diagonal®. If this is the case,

then the resulting eigenvectors have two zero components and the P matrix is also block-

51,54

diagonal. For isotropic layers, the P matrix reduce to two Abelés matrices, the one

for the p-component in the upper left block, and the one for the s-component in the lower
right block with all elements of the upper right and lower left blocks being 0. Bearing

this in mind, this formalism can be used for any layer structure.
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