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Abstract

It is shown that the infall of collisionless dark matter onto isolated galaxies
produces a series of caustic rings in the halo dark matter distribution. The
properties of these caustics are investigated. It is found in particular that
the density profile of the caustic behaves as the inverse distance to the ring.
Bumps in the rotation curve of NGC 3198 are interpreted as due to caustic

rings of dark matter.
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There are compelling reasons to believe that the dominant component of the dark matter
of the universe is non-baryonic collisionless particles [1]. The leading candidates are axions,
WIMPs and massive neutrinos. The word “collisionless” signifies that the particles are so
weakly interacting that they have moved purely under the influence of gravity since their
decoupling at a very early time (of order 10~* sec for axions, of order 1 sec for neutrinos and
WIMPs). In the limit where the primordial velocity dispersion of the particles is neglected,
they all lie on the same 3-dim. ’sheet’ in 6-dim. phase-space. Their phase-space evolution
must obey Liouville’s theorem. This implies that the 3-dim. sheet cannot tear and hence

that it satisfies certain topological constraints.

Let us assume that collisionless dark matter (CDM) exists. Usually, CDM means ‘cold
dark matter’ (e.g., axions or WIMPs) but because massive neutrinos (m, >> 1077 eV)

behave, from the point of view of this paper, in a similar way we include them in our

definition as well. Because their phase-space sheet cannot tear, CDM particles must be
present everywhere in space, including specifically intergalactic space. The space density
may be reduced by stretching of the phase-space sheet but it cannot vanish. Moreover, the
average space density is recovered as soon as the average is taken over distances larger than
the distance CDM may have locally moved away from perfect Hubble flow. In a region
which is sparsely populated with galaxies, this distance is much smaller than the distance
between galaxies. The implication is that isolated galaxies are surrounded by unseen CDM
and hence, because of gravity, CDM keeps falling onto isolated galaxies continuously from all
directions. If the galaxy merges with other galaxies to form a cluster, infall onto the galaxy
gets shut off because of lack of material but infall onto the cluster continues assuming that
the cluster is itself isolated. In an open universe (2 < 1), the infall process eventually turns
off because the universe becomes very dilute. However, even if our own universe is open, we
are far from having reached the turn-off time.

It has been shown [2] that, under a wide range of circumstances, CDM infall onto an
isolated galaxy produces a halo whose density falls off like ;17 for large r, where r is the

distance to the galactic center. Such a halo implies a flat galactic rotation curve [3]. It has
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also been shown [4] that the angular momentum carried by the CDM particles has the effect

of depletiﬁg the inner halo and of making the halo contribution to the rotation velocity
vanish at 7 — 0, thereby introducing an effective core radius. Both the approximately flat
rotation curves and the presence of effective core radii are consistent with observation. The
focus of the present paper is the appearance of ring caustics in the halo distribution caused
by CDM infall. The existence of these\caustics was noted in ref. [4] but their properties were
left unexplored.

Consider then the infall of CDM onto an isolated galaxy. Let’s first neglect the velocity
dispersion of the infalling particles. In practice it is sufficient that the velocity dispersion
of the infalling matter is much smaller than the rotation velocity of the galaxy but it is
convenient to consider the extreme case of zero velocity dispersion first. Consider the time
evolution of all CDM particles which are about to fall onto the galaxy for the first time in
their history at time ¢. For the sake of definiteness, we may consider all particles which
have zero radial velocity (7 = 0) for the first time then. Such particles are said to be at
their ‘first turnaround’; they were receding from the galaxy as part of the general Hubble
flow before ¢t and will be falling onto the galaxy just after t. These particles form a closed
surface, enclosing the galaxy, hereafter called the turnaround ’sphere’ at time ¢. (The present
turnaround sphere of the Milky Way galaxy has a radius of order 2 Mpc.) The turnaround
sphere at time ¢t falls through the central parts of the galaxy at a time of order 2¢. Particles
falling through the galactic disk (assuming the galaxy is a spiral) get scattered by an angle
A6 ~ 1073 by the gravitational fields of various inhomogeneities such as molecular clouds,
globular clusters and stars [5]. However most particles carry too much angular momentum to
reach the luminous parts of the galaxy and are scattered much less. Because the scattering
is small, the particles on the turnaround sphere at time ¢, after falling through the galaxy,
form a new sphere which reaches its maximum radius R' at some time ¢'. The radius R’
at the second turnaround is smaller than the radius R at the first turnaround because the
galaxy has grown by infall in the meantime. The sphere continues oscillating in this way

although it gets progressively fuzzier because of scattering off inhomogeneities in the galaxy.
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From a topological viewpoint, each time the sphere falls through the galaxy it turns itself
inside out and hence there is a ring of special space-time points associated with each fall
through the galaxy. This ring may be defined as the locus of points which are inside the
sphere last. Fig. I illustrates this. It shows successive 2-dim. cross-sections of a sphere
falling in and out. The cusps in frames (d) and (e) are located at the intersections of the
ring with the plane of the figure. Because CDM falls in continuously, the ring in space-
time associated with one infalling sphere is in fact a persistent feature in space. For an
arbitrary angular momentum distribution on the turnaround sphere, the ring is a closed
loop of arbitrary shape. However, if the angular momentum distribution is dominated by
a smooth component which carries net angular momentum, the ring resembles a circle. If
there is no angular momentum at all, the ring reduces to a point at the galactic center. As
we will soon see, the ring is the location of a caustic with strong density contrast. There is
one caustic ring due to CDM particles falling through the galaxy for the first time, a caustic
ring of smaller radius due to particles falling throurgh for the second time, a yet smaller ring
due to particles falling through for the third time, and so on. The caustic rings move slowly
in space, generally in an outward direction, as the properties of the infalling CDM particles
(in particular, their turnaround radius and angular momentum distribution) change.

Let’s obtain the density profile of the caustic in a particular case of axial symmetry
about the z-axis and parity (z—-z). The symmetry assumptions will force the caustic to
lie on a circle in the z=0 plane. However the density profile near the caustic is expected to
be independent of these assumptions because it is determined by the local properties of the
CDM composing it at the time, as opposed to the global symmetry properties of the system.
‘Consider then the time evolution of CDM particles initially located with uniform density on
a turn-around sphere of radius R and with the angular momentum per unit mass distribution
U(7) = wF x (2 x 7) where ¥ = R7. Thus the turnaround sphere is assumed to be initially
rotating about the z-axis with angular velocity w as if it were a rigid body. Let’s assume
further that the particles fall into the spherically symmetric potential: V(r) = v2, In(R/7),

which is such that it produces a flat rotation curve with rotation velocity v,o;. One readily
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finds that a continuous flow of particles falling through under the stated conditions produces

a density distribution which has a caustic ring in the z = 0 plane of radius a given By:

a Vrosy/2In(R/a) = wR*(1 + 0( )) (1)

In this case, the caustic is the locus of points where the particles with the largest amount of
angular momentum (£,,,; = wR?) are at their distance of closest approach to the galactic
center. A calculation shows that, to leading order in an expansion in powers of a/R, the

density distribution is given by:

aM 2 1
dQdt v \/( —'a2)? + da222

d(a; p, 2) = (2)

where (p, z, ) are cylindrical coordinates, r = /% + 22, & dQ 77 is the rate at which mass falls
in per unit time and unit solid angle, and v = v,,;1/2In(R/a) is the velocity of particles near

r = a. From Eq. (2), one readily finds the behaviour of the density near the caustic:

dM 1
dQdt vao (3)

where o = /(p — a)? + 22 is the distance to the ring.

For an isolated galaxy, there is a ring of radius a; due to particles falling through for

d(a; p, 2) =

the first time, a ring of radius a, due to particles falling through for the second time, and

so on. Thus the quantities R, a, v, d and % carry an index n = 1,2,3.... One caustic

ring is associated with each pair of velocity peaks [5,4] in the halo distribution. Eq. (2)

implies 952 = r2d,(0;r). This relates the value of the prefactor %=L for each infall
to the density d,(0;r) the associated pair of velocity peaks contributes in the limit of zero
angular momentum (a = 0). Estimates of d,(0,7) can be found in ref. [4] for the case of
self-similar infall. Of course a caustic ring is perfectly sharp, with d ~ % for arbitrarily small
o, only in the limit where the velocity dispersion of the infalling CDM is zero. If the velocity
dispersion is Awv,, the caustic singularity spreads over a distance of order Aa, = Rﬂ%.

The infall is called self-similar [2,6] if it is time-independent after all distances are rescaled

by the turn-around radius R(¢) at time ¢ and all masses are rescaled by the mass M ()
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interior to R(t). In the case of zero angular momentum and spherical symmetry, the infall
is self-similar if the initial overdensity profile has the form % = (%1)5 where M, and ¢ are
parameters [2]. € must be in the range 0 € € < 1. The rotation curve is flat if 0 < € < 2/3
[2]. The infall model was generalized in ref. [4] to include the effect of angular momentum. It
was found that self-similarity requires the angular momentum distribution £(¢) to have the
time-dependence £(t) = j Etﬁz, where 7 is a dimensionless and time-independent distribution.
A good agreement of the self-similar model with the properties of our own galaxy was found
[4] for parameter values of order € = 0.2, 7 = 0.2 and h = 0.7 where j is the average of the j

distribution and A is the Hubble rate in units of 100 km/sec.Mpc . Using the model of ref.

[4], the following values for the radii of the first five rings are obtained:

jma:c O7> Urot
Lin=12.5)~ (37,18, 12,9.5, 7.1k bk 4
{anin 5} = (37,18,12,9.5,77) pc(0.25> ( 3 (220%) (4)

where jmqz is the maximum j value of the j distribution, and where the value ¢ = 0.2 was
used. For € = 0.3, a; ~ 31kpc (1022"?’) (th) (2—2—()”—;%—/;) but the ratios a,/a; are almost the
same as in the e = 0.2 case.

Luminous rings surrounding galaxies have been observed and such rings may be related
to the caustics described here. However, luminous matter is presumably baryonic and the
behaviour of baryons is more complicated than that of CDM particles. Infalling baryons
do not necessarily behave in a collisionless manner and they may easily get stripped off
the CDM flow. In contrast, the conclusion that isolated galaxies are surrounded by caustic
rings of dark matter appears unavoidable if CDM exists. Because of this, we will limit
ourselves in this paper to the observational implications of CDM rings which follow from
their gravitational fields. CDM rings may nonetheless have a baryonic component. These
baryons may have the same phase-space distribution as the CDM or they may have accreted
onto the ring from neighboring space.

The Newtonian gravitational force per unit mass due to the density distribution of Eq.
(3) is
2nG C,

Qn

& ()

ﬁn(g)z_




for small o, where C,, = 842 2 — 2 ¢ (0;r). Hence there is a discontinuity in the rotation
dsudt vn,

velocity

A'n,'Urot o 1 dn (O, an)
Urot 2 d(an) ’ (6)

directly across the n®* caustic, in the ideal case where this caustic is perfectly sharp and lies
in the galactic plane. In Eq. (6), d(r) = ;1—:%55 is the total density at r in the limit of spherical

symmetry and perfectly flat rotation curves. The ratios f, = %d’;((i;)r) were found to be of

order (12, 5.3, 3.3, 2.4, 1.9, ...)1072 in the self-similar infall model with ¢ = 0.2. (Forr << R
and small n, the f, are nearly r-independent.) There are of course a number of effects that
will smooth out sudden variations in the measured rotation velocities. One effect is that the
CDM ring may be some distance away from the galactic plane where the rotation velocities
are measured. Secondly, the measured rotation velocities are spatial averages over some
distance across the galactic plane. Thirdly, the CDM ring may be fuzzy because of velocity
dispersion as mentioned earlier. Thus the discontinuities of the ideal case are smoothed out
into bumps. The bumps occur in the measured rotation curve near the location of CDM
rings if the latter happen to be close to the galactic plane.

Galactic rotation curves often do have bumps. Of special interest here are those bumps
which occur at radii larger than the disc radius because they cannot readily be attributed to
inhomogeneities in the luminous matter distribution. Consider the rotation curve of NGC
3198 [7], one of the best measured and often cited as providing compelling evidence for
the existence of dark halos. It appears to have bumps near 28, 13.5 and 9 kpc, assuming
h = 0.75. Although the statistical significance of these bumps is not great, let’s assume for
the moment that they are real effects. Note then that their existence is inconsistent with
the assumption that the dark halo is a perfect isothermal sphere. On the other hand, the

radii at which the bumps occur are in close agreement with the ratios:
{an/Gns1:n=1,2,3,4} = (0.48, 0.68, 0.77, 0.81) (7)

predicted by Eq. (4) assuming that the bumps are caused by the gravitational fields of the

first three caustic rings of NGC 3198. Since vr,; = 150 km/sec, we find that j,ee = 0.3
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in this case if ¢ = 0.2. The uncertainty_ in A drops out. A fit of the infall model to our
own galaxy produced j = 0.2 for € = 0.2 . If the turnaround sphere is taken to be rigidly
rotating, one has jme; = 2j. Thus the values of j for our own halo and that of NGC 3198
are found to be similar.

The ratios of caustic ring radii given in Eq.(7) are characteristic pf the ¢-dependence in
the angular momentum distribution {(7,¢) = j(#)R(¢)?/t . The main reason for using this
ansatz in ref. [4] was that it produces exact self-similarity in the time evolution of the halo.
However, there is a broader justification for a time-dependence close to the one of the ansatz.
Consider particles which at some early initial time ¢; are at a distance r; from the center
of a large overdensity which will grow into a galactic halo. These particles have magnitude
of angular momentum with respect to the overdensity’s center: (7)) = 7;v;, (7;) where v;;
is the magnitude of the component of the initial velocity ¥;(7;) transverse to 7;. Because

—

7(0) = 0, it is reasonable to assume v;, (7;) is proportional to r; when comparing values of
r; which are of the same order of magnitude. In that case, I(7;) ~ r? ~ Mi% ~ R(r;)2/t(r;)3
where M; is the mass interior at time #; to the sphere of radius r;, R(r;) and ¢(r;) are the
turn-around radius and turn-around time of particles initially at radius r;, and where we
used GM; = w2R(r;)®/8t(r;)?. Except for the relatively slowly-varying factor of 1/4, this is
the time dependence which leads to self-similarity. Exact self-similarity corresponds to the

143¢/2

case v; 1 (13) ~ 7; , or [(ry) ~ r?+3e/2

. Using the methods of ref. [4], the ratios of caustic
ring radii are found to be of order {a,;1/a, : n =1,2,3,4} = (0.43, 0.64, 0.74, 0.78) when
I(r;) ~ 72 Comparisbn with Eq. (7) provides an estimate of the model-dependence of the
ratios of caustic ring radii and suggests that the values given in Eq.(7) are fairly robust. At
any rate, since the gravitational field around a large isolated overdensity is approximately
spherically symmetric and hence angular momentum about the center of the overdensity
is approximately conserved, the study of bumps in rotation curves may inform us about
the peculiar velocities associated with primordial density perturbations and thus constrain
theories on the origin of these perturbations.

Finally, let’s remark that if the caustic rings lie in the galactic plane, the halo density is
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enhanced there compared to the case of spherical symmetry. If, for the sake of an ezample,

we use the parameter values € = 0.2, jne = 0.254 and h = 0.7 to model our own galactic
halo, then its caustic rings are at the radii: 38, 18, 12.5, 9.7, 7.9 kpc ... . If all rings lie
in the galactic plane, we at 8.5 kpc would be between the 4th and 5th ring. The 4th ring
would have passed by us approximately 650 million years ago assuming that our distance
to the galactic center remained constant. The 5th ring would pass by us approximatekly 370
million years from now. If the angular momentum distribution is the one %JQ. = ﬁ%ﬁﬁ%
characterizing a turn-around sphere which is initially rigidly rotating, the contributions of
the first eight incoming peaks to the local halo density would be approximately (0.8, 1.7,
3.1, 8.6, 13.9, 4.3, 2.7, 1.9) 1072 _Z; whereas the averages [4] over all locations at the same
distance from the galactic center as us are approximately (0.8, 1.4, 2.0, 3.0, 3.4, 2.1, 1.6,
1.3) 10722 The 4th and 5th velocity peaks are considerably enhanced in this example
because of our proximity to the corresponding rings. If all the caustic rings lie in the galactic
plane, the local halo density would be boosted from approximately 0.5 107245 which is
the usual estimate in the case of spherical symmetry, to approximately 0.75 107** £, Such
an enhancement is consistent with a recent estimate of the local density based on a flattened
model of our galactic halo [8]. These results are relevant to the axion [9] and WIMP [10] dark
matter searches which in fact provided the original impetus for this work. It is conceivable
that these experiments will measure some day the contributions of the velocity peaks to the
local density and thereby provide us with detailed information about the structure of our

galactic halo.
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FIGURES

C) ~ d)

e) f)
FIG. 1. Infall of all particles on a given initial turnaround sphere. The sphere crosses itself

between frames b) and c). The cusps in frames d) and e) are at the intersection of the ring caustic

with the plane of the figure.
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