skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

Conference ·
OSTI ID:484571

The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC05-96OR22464
OSTI ID:
484571
Report Number(s):
CONF-970726-10; ON: DE97006004; TRN: 97:011019
Resource Relation:
Conference: American Society of Mechanical Engineers (ASME) pressure vessel and piping conference, Orlando, FL (United States), 27 Jul - 1 Aug 1997; Other Information: PBD: 1997
Country of Publication:
United States
Language:
English