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Abstract

This paper presents the comparison of the COMOPS benchmark performance in
MPI and shared memory on three different shared memory platforms: the DEC
AlphaServer 8400/300, the SGI Power Challenge, and the HP-Convex Exemplar
-SPP1600. The paper also qualitatively analyzes the obtained performance data based on
an understanding of the corresponding architecture and the MPI implementations. Some
conclustions are made for the inter-processor communication performance on these three

shared memory platforms.




Introduction

Introduction

Parallel computing on shared memory multi-processors has become an effective
method to solve large scale scientific and engineering computational problems. Both MPI
and shared memory are available for data communication between processors on shared
memory platforms. Normally, performing inter-processor data communication by copy-
ing data into and out of an intermediate shared buffer seems natural on a shared memory
platform. However, some vendors have recently claimed that their customized MPI imple-
mentations performed better than the corresponding shared memory protocol on their
shared memory platforms even though the MPI protocol was originally designed for dis-
tributed memory multi-processor systems. This situation makes it hard for users to choose
the best tool for inter-processor communication on those shared memory platforms on
which both MPI and shared memory protocols are available. In order to clarify this confu-
sion, a comi)arison experiment was conducted to illustrate the communication perfor-
mance for the COMOPS operations on major shared memory platforms. This paper
presents the experimental results and presents some qualitative analyses to interpret the

results.

This paper has four sections. In the first section, the architectures of three shared
memory platforms are briefly described. The implementation details of the experiment are
described in the second section. The second section also discusses the shared memory

simulation of those communication patterns defined in the COMOPS benchmark set. The
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third section presents the data and analyses. It graphically exhibits the collected commu-
nication performance data and qualitatively interprets _the performance behavior based on
an understanding of underlying architectures. In the final section, some conclusions and

recommendations are made regarding the interprocessor communication performance on

the three shared memory platforms.

Architectures
Currently there are two types of shared memory connections for multi-processor

systems. One is the bus-connected shared memory system as illustrated in Figure 1. The

DEC AlphaServer 8400/360 and the SGI Power Challenge have this type of architecture.

Processor Processor Processor
cachd cache ~ cachd

‘& t Shared Bus #\
\\\\\\ \\\\\I\\\\ \\1\\\\\\\\\\ NN

Memory Memory Memory
Module Module Module

Figure 1. Bus-connected shared memory multiprocessors

In this type of system every processor has equal access to the entire memory system

through the same bus. Another type of shared memory multi-processor connection archi-
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tecture is the crossbar switch. This crossbar connection is a typical connection mecha-
nism within one hypernode of many distributed shared memory (DSM) systems such as

HP-Convex Exemplar and NEC SX-4. The Exemplar SPP architecture is shown in Figure

Figure 2. Convex Exemplar Hypernode Structure

2. The Convex machine we have access to (courtesy of Convex) is a one-hypernode 8-pro-
cessor machine. The inter-hypernode connection is irrelevant to this experiment and this

paper focuses on the intra-hypernode structure only.

The memory access pattern and the physical distance between two processors are
different in bus-connected and distributed shared memory systems. In a bus-connected

shared memory structure, the memory access for each processor is uniform. But in a dis-
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tributed shared memory structure, the memory access is non-uniform. This structure is
called a NUMA (Non-Uniform Memory Access) architecture. Also, the inter-processor
communication in bus-connected shared memory systems is homogeneous and every pro-
cessor is equi-distant to any other processor in the same system. On the other hand, in a
NUMA system such as Convex SPP, a processor always has some neighbors electrically
closer than the others in the system. As illustrated in Figure 2, even though the memory
access is still uniform within one hypernode of the SPP1600, each processor is electrically
closer to the one shared with the same agent because it does not need to go through the

crossbar switch for the inter-processor communication.

In this experiment, none of the three shared memory machines has a physical
implementation for CPU-private or thread-private memory. In a bus-connected multi-
processor system, such as the SGI Power Challenge and the DEC AlphaServer 8400/300
(nickname Turbolaser), the memory system is purely homogeneous. Therefore, there is
no physical distinction between a logically-private memory space and a logically-shared
memory space. For the NUMA system SPP1600, although it is a DSM system, its CPU-
private or thread-private memory is not physically implemented (HP-Convex, 1994).
Instead, the operating system partitions hypernode-private memory (memory modules
within one hypernode) used as CPU-private memory for each of the processors in the

hypemode. The reason for this is that implementation of a physical CPU-privéte memory
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would not result in substantially lower CPU-to-memory latency, and the latency from a

processor to hypernode-private memory would be increased (HP-Convex, 1994).

The Experimental Method

The direct objective of this experiment is to clarify the difference in the perfor-
mance of inter-processor communication between the shared memory protocol and the
message passing protocol on a shared memory platform. To achieve this goal, the com-
mon inter-processor communication operations specified in the LANL COMOPS bench-
mark set are used to perform the comparison. ”The point-to-point communication
operation actually used in this experiment is ping-pong. The tested collective operations

_ include broadcast, reduction, gather, and scatter.

The COMOPS benchmark set is designed to measure the performance of inter-pro-
cessor point-to-point and collective communication in MPI. It measures. the communica-
tion bandwidth and message transfer time for different message sizes. The set includes
ping-pong, broadcast, reduction, and gather/scatter operations. The MPI performance
measurement can be directly performed on the three platforms with the corresponding best
available MPI implementation. Both SGI and HP-Convex have their own customized MPI
implementations on their shared memory platforms. Although the current version of MPI
implementation on our DEC AlphaServer 8400/300 Turbolaser is a public-domain

MPICH version, according to the information from DEC, this MPICH implementation
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performs no worse than the DEC customized version MPI within one shared memory
multi-processor box. The main effort of this experiment is to write a shared memory ver-
sion of the COMOPS benchmark set. The shared memory version of these communica-

tion operations is illustrated in the following pseudo-code.

Ping-pong:
call timer
do ntimes
if (my_thread .eq. 0) then
shared_temp=private_send !! Thread O sends out message
endif
barrier !! synchronization
if (my_thread .eq. 1) then
private_val=shared_tmp 1! Thread 1 receives the message
shared_tmp2=private_recv  !! Thread 1 sends out the message
e endif
barrier !t synchronization
if (my_thread .eq. 0) then
private_val=shared_tmp2 'Thread O receives back the message
endif
enddo
call timer
Broadcast:
call timer
do ntimes
if (my_thread .eq. 0) then
shared_temp=privated_send !! Thread O sends out message
endif
barrier ! synchronization
if (my_thread .ne. 0) then  !! Other threads receives the
private_recv=shared_tmp !! message simultaneously
endif
barrier 1! synchronization
enddo
call timer
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IReduction (global max):
call timer
do ntimes
critical section
shared_tmp=max(shared_tmp, private_send)
end critical section
barrier 1! synchronization
if (my_thread .eq. 0) then !! Thread O collects the final
private_recv=shared_tmp !! result
endif
enddo
call timer

Gather:
call timer
do ntimes
shared_tmp(j+my_thread*N_size)=private_send(j)
barrier ! synchronization
if (my_thread .eq. 0) then !! Thread O collects the final
private_recv=shared_tmp !! result
endif
enddo
call timer

Scatter:
call timer
do ntimes
if (my_thread .eq. 0) then
shared_tmp=private_send !! Thread O sends out the message

endif
barrier 1! synchronization
private_recv(j)=shared_tmp(j+my_thread*N_size)
barrier ~ !!'synchronization
enddo
call timer
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This experiment actually involves two versions of shared memory codes because

of the different shared memory programming environments. The shared memory pro-

gramming environment on both the DEC AlphaServer and SGI Power Challenge systems
is compatible with PCF (Parallel Computing Forum) standard. Therefore, only one ver-
sion of code is needed for these two machines. The Convex shared memory programming
feature in Fortran is slightly different. In particular, in the operation of ping-pong, a lock-
and-wait mechanism, instead of the general synchronization barrier, can be used for the

synchronization between Processor 0 and Processor 1.

As shown in the pseudocode list, only one pair of processors participate in the
operation of ping-pong, regardless of the total number of processors involved. The collec-
tive communication operations involves all the processors in the run. The shared memory
version accomplishes the same operations performed in the original MPI version of the

COMOPS benchmark.

Performance Data and Analysis

The original MPI COMOPS benchmark set and the equivalent multi-thread shared
memory version have been run on three platforms outlined in Table 1 (SGI, 1995, DEC,

1995 & Reed, 1996). On both SGI and Convex machines, vendor’s customized version of
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MPI are used in this experiment. On the DEC Alpha machine, a public-domain MPI

implementation (MPICH) is used.
TABLE 1.Three Tested Shared Memory System Configurations

SGI Power DEC Convex
Challenge Turbolaser SPP1600
CPU/clock 8 * MIPS R10K/ 10 * Alpha 21164/ | 8 * HP 7200 /
194MHz 300MHz 120MHz
Data Cache L1:32KB L2: L1: 8KB Li: IMB
2MB L2: 96KB (plus 2KB on-chip
L3: 4MB cache)
Memory 2304MB 1-way 4GB 8-way inter- 1Gb 4-way inter-
interleaved leaved leaved
Peak Connecting 1.2GB/sec 1.6GB/sec 1.25GB/sec
Bandwidth

The collected performance data are illustrated in Figures 3 through 17. Figures 3

" through 5, Figure 7, and Figure 8 exhibit the cross-platform bandwidth comparison and

the comparison between the shared memory communication protocol as well as the mes-
sage passing communication protocol. These performance data are all obtained using four
processors with different message sizes. It is clear that the performance of the SGI MP1 is
generally superior to the other ones (except for pingpong performance). The SGI MPI is
also better than its corresponding shared memory performance on all 5 communication

operations (ping-pong, broadcast, reduction, gather, and scatter).

More specifically, on the SGI Power Challehge, MPI is about three times faster
than shared memory for the performance ping-pong. The broadcast performance on this

SGI shared memory machine is about the same for MPI and shared memory. Scatter
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operations in the SGI MPI are nearly 10 times faster than shared memory for medium and
big message sizes. As for gather operations, MPI bandwidth is nearly five times higher
than shared memory bandwidth for medium message size. For a message size of 800KB,

this MPI performance still holds at the level of twice as fast as the shared memory.

The DEC AlphaServer 8400/300 has comparable MPI and shared memory perfor-
mance for the ping-pong operation. But for all the tested collective operations (broadcast,
reduction, gather, and scatter), its shared memory bandwidth is considerably higher than

the MPI bandwidth.

On the Convex Exemplar SPP1600, the Convex-customized MPI performs eight
times faster than its shared memory does for the ping-pong operation. The Convex MPI is
also the best one in terms of pingpong pérformance. For the other four collective opera-

tions, the performance of MPI is just slightly better than that of shared memory method.

Figure 6 demonstrates the ping-pong round tfip transfer time for small message
sizes (8 Bytes to 80 Bytes). This performance typically reflects the communication
latency. It is clear that the shared memory method on the DEC AlphaServer8400 has the
lowest ping-pong latency. In Figures 9 through 17, the performance behaviors for ping-
pong, broadcast, and reduction are respectively shown on each platform for a fixed mes-
sage size (800KB) with different number of processors. It should be noted that the band-

width calculation of ping-pong in COMOPS is what some people called “ping-pong rate =
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message_size / round_trip_time”. So, it’s only half of the “one-way” ping-pong band-

width as other benchmark reported.
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Figure 7 and Figure 8 reflect a big difference between the gather and the scatter
bandwidth in the SGI MPI. According to Eric Salo (1996), a SGI MPI expert, for scatter
operations, the root processor essentially sends a pointer and a length of the targeted data
block to each of the slave processors, which then copy the data in parallel. This turns out
to be the situation in which every slave processor directly reads the corresponding block of
data from the space owned by the root processor. Since in scatter operations, every slave
processor reads a différent block of data, virtually no memory conflicts exist, and all pro-
cessors can read the data at full bandwidth. But for gather operations, the situation is
reversed. The root processor has to move the data from different locations all by itself.

So, the gather bandwidth is limited by this implementation at the level of about 70MB/sec.
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Now, based on an understanding of architectures and the underlying MPI imple-
mentations, the qualitative performance analysis of ping-pong, broadcast, and reduction
operations on each platform is presented here. Figure 9 shows the ping-pong time on the
DEC AlphaServer for a fixed message size (800KB) with different number of processors
involved. On this DEC machine, MPI is built on top of its shared memory communication
protocol. Therefore, MPI performance is always slightly worse than shared memory
because of the overhead involved in the MPI implementation. Also, MPI processes seem
to be “heavy”. Although only two processors participate in the ping-pong operation, the
time slightly grows up when the number of MPI processes increases. This is probably due
to the interruption from the operaﬁng system and the other MPI processes, which are sup-
posed to be idle. On the other hand, the time for the shared memory ping-pong operation
remains constant, regardless of the number of processors in the run. This is because the
cache coherence caused by invalidating the shared cache line on each processor is per-
formed by broadcasting the message on the bus, instead of sending it to each processor

separately.

The broadcast performance oﬁ the DEC AlphaServer (Figufe 10) is easy to under-
stand. The increase of the shared memory broadcast time with more processors is caused
by the increasing queue length of the slave processors. In MPI, the synchronization cost
causes the broadcast time to increase more significantly with more processors. The same

situation holds for reduction (Figure 11). Howeyver, because the shared memory reduction

16 Shared Memory vs. Message Passing



Performance Data and Analysis

involves a critical section (as listed in the pseudocode), the reduction time increases more

as more processors are waiting to enter the critical section.

Similarly, the ping-pong operation has a flat performance on the SGI Power Chal-
lenge (Figure 12). The difference from the situation of the DEC AlphaServer is that the
MPI ping-pong time does not grow up with more processors. It looks like the MPI pro-
cesses are “light” on the SGI Power Challenge because the OS interruption does not steal
the effective bandwidth even if all processors are in the run. The SGI implementation of
MPI is based on the global memory copy function Beopy() (Salo, 1996). Thus, the ping-
pong operation is accomplished by directly copying data from the space owned by the

source processor to the destination processor, without going through an intermediate
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shared space (Gropp, Lusk, Doss & Skjellum, 1996). Therefore, the shared memory
scheme, which uses an intermediate shared space as an interim, takes more than twice as

long as MPI does.

The performance of shared memory broadcast and reduction on the SGI machine
(Figure 13 and 14) is similar to what is observed on the DEC AlphaServer because of the
identical architecture and the same vérsion of shared memory code. The time for broad-
cast grows up with more processors because of the increasing queué length for reading the
shared space. For reduction, the cost from the critical section increases with more proces-
sors involved. The MPI performance behaviors for broadcast and reduction on the SGI
Power Challenge are interesting. In fact, the MPI performance illustrated in Figure 13 and
14;eﬂect the underlying implementation of the SGI MPI. The MPI operation for broad-
cast is implgmented as a fan-out tree bn the top of the Beopy() point-to-point mechanism
(Salo, 1996). For reduction operations, it is in the reversed order as a fan-in tree. Both of
them have some parallelism as each pair of processors can perform fan-in or fan-out inde-
pendently. Since the algorithm of fan-in/fan-out tree requires a synchronization at each
tree-fork/join stage, the cost of broadcast/reduction will grow up with more fork/join syn-
chronizations as more processors participate into the operation. Therefore, the time for
reduction on eight processors is nearly the same as that for six processors because they

both involve the same number of join synchronization stages. The big growth in the time

for broadcast on eight processors (Figure 13) in fact is caused by the synchronization at
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the completion of broadcast. With all the processors in the system being synchronized at
certain point, the OS overhead can be significant. On the other hand, there is no need for

such a synchronization in reduction.

The ping-pong performance on the Convex SPP1600 (Figure 15) is very similar to
that on the SGI Power Challenge. From the phenomenon that the MPI takes nearly half
time of what the shared memory scheme takes to perform the ping-pong operation, it is
reasonable to anticipate that the MPI implementation on the SPP1600 may be also based
on the direct memory copy, instead of going through an intermediate shared space (Gropp,
et al, 1996). Also, some special manipulations must have done to achieve nearly 8 times

faster pingpong speed in the Convex implementation of MPIL.
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The performance of shared memory broadcast and reduction on this SPP1600
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(Figure 16 and 17) is similar to the other two machines. The queue length for reading the
shared block and the cost from the critical section are the major effects in broadcast and

reduction respectively.

Since the details of broadcast and reduction implementation in the Convex version
of MPI are unclear at this moment, it is anticipated that the MPI broadcast involves regular
synchronizations, just like the situation on the DEC AlphaServer. As for reduction opera- |
tions, the slightly higher cost on six processors is probably because two of the six proces-
sors may not be on the same agent (Figure 2). Therefore, the interaction between these

two processors has to go through the crossbar switch.

Conclusions

From the COMOPS benchmark results measured on three shared memory

machines, the following conclusions can be made.

1. The MPI implementation on the SGI Power Challenge is generally

superior to the others, at least for COMOPS operations.

2. In general, the communication performance for COMOPS operations is
better in two customized versions of MPI, the Convex MPI and the SG

MPI, than in their corresponding shared memory schemes.
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3. On the DEC Turbolaser, the communication performance in the shared

memory scheme is slightly better than that in the MPI because of the MPI

overhead.

It is clear that customizing the MPI implementation based on the specific hardware
architecture is a good way to achieve high performance for message passing operations on
a shared memory platform. Also, using direct memory copy, instead of going through an
intermediate shared space, is critical to the improvement of the communication perfor-

mance.
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