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FIELD-SCALE SIMULATION OF MATRIX-FRACTURE INTERACTIONS
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Introduction

Simulation of flow in fractured media
continues to be among the most
challenging problems faced in
geothermal reservoir engineering.
Because of a lack of information
regarding specific matrix-fracture
characteristics (e.g., fracture distribution,
spacing, and aperture, and interfacial
area for exchange of fluid), explicit
representation of the reservoir is
generally not feasible. Instead, a multiple
(but usually dual) continua model is
used. In multiple continua models,
specific details of the reservoir are
replaced with averaged properties
(average fracture spacing, for example).
Such averaging facilitates the simulation
of fractured reservoirs; however, field-
scale simulation remains numerically
intensive. For example, it has been
stated that 5-10 nested shells are
required in the Multiple INteracting
Continua (MINC; Pruess and
Narasimhan, 1982) formulation in order
to adequately resolve transient pressure
and saturation gradients between the
fracture and matrix domains (Zimmerman
et al., 1992). While this results in a large
amount of additional work (compared
with a single porosity system of the same
dimension), it should be noted that the
MINC method /s capable of resolving
such transients, whereas most dual
porosity simulators cannot.

Many of the numerical models used to
simulate flow in fractured media invoke
variations on the Warren and Root (1963)
model of fractured reservoirs. The
Warren and Root (W&R) model treats the
fractured reservoir as dual continua, in
which one continuum contains the
fracture domain and the other contains
the matrix domain. Interaction between
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the two is assumed to be lined
dependent on the pressure dlffém:egcg 1997
between the (numerical) grid g § T
fracture pressure and average ma /
pressure. This linear dependence has
been referred to as the “pseudo-steady
state assumption,” and is known to be
inaccurate at “small” times, especially in
reservoirs with large fracture spacings
and highly compressible fluids (see, for
example, Najurieta, 1980). '

This paper describes recent efforts at
relaxing the assumptions inherent in the
W&R formulation, through use of
analytical solutions to the equations
governing interporosity flow. For slightly
compressible fluids, the governing
equation is the well-known diffusion
equation, for which analytical solutions
are readily available (e.g., Crank, 1975).
This work was recently presented
(Shook, 1996) for the case of a single
rock matrix surrounded by fractures.
Those results will be presented, and the
extension to field-scale simulation will be
discussed.

Resolving the pressure gradient:
Single block case

Mass conservation equations written for
dual continua formulations contain a
matrix-fracture interaction term, Q,
describing the fluid flow between the two
continua. This term Q can be derived
from Darcy’s law and the characteristics
of the matrix-fracture interfacial area.
Assuming single phase flow in a three-
dimensional fracture network of spacing
L, with all six sides of the rock matrix in
contact with fractures, the interaction term
can be written as (Shook, 1996):
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This expression is completely general,
and only requires that the pressure
gradient be correctly resolved.

Warren and Root (1963) and other
workers in the field assumed that the
pressure gradient could be approximated
as the pressure difference between the
two continua expressed over some
characteristic distance. Using the
fracture half-spacing as that distance, the
assumption of pseudo-steady state
results in the following expression for the
pressure gradient. '

vp_Pg-P
Vp=<f~Tma
L2

When this is used in Equation 1, the
matrix-fracture interaction term becomes:

Q=-Vbi—§§<Pﬁ-P‘m>

where 12/L2 is known as the shape
factor. Values used for the shape factor
range from 12/L.2 (Kazemi et al., 1976) to
60/L2 (Warren and Root, 1963).

It has long been known that this
assumption of pseudo-steady flow is
incorrect at small time. For example,
Najurieta (1980) shows that the transition
time to pseudo-steady state flow depends
on, among other variables, rock and fluid
compressibility and matrix dimensions.
Zimmerman et al. (1992) show that the
W&R-predicted response due to a step
function change in pressure at the
fracture face converges very slowly to the
correct solution. Zimmerman et al. (1992)
further state that the W&R-type equation
(i.e., a constant shape factor) always
predicts an incorrect time dependence on
pressure at some time scale. In order to
preserve the simplicity of the W&R
formulation and correctly resolve
pressure gradients, one must start with
Eqgn. 1 and remove the linear
approximation for the pressure gradient.

By using analytical solutions to the
diffusion equation, Shook (1996)
obtained a semi-analytical expression
that correctly describes the pressure
gradient over all time scales. The exact
solution to the problem is given as
(assuming spherical coordinates; Crank,
1975, p 91):

where r is the spatial coordinate in the
matrix, a is the characteristic matrix half
length (in spherical or cylindrical
coordinates, the radius; in linear
coordinates, it is fracture half spacing), t
is time, and D is the diffusivity of the
matrix (fluid + rock):

D=—K
PHC

Equation 2 contains two infinite series;
however, these series converge relatively
rapidly, and may typically be truncated
after only a few terms. The number of
terms required to obtain an accurate
solution is:

L
4Dt

N Terms =

Thus, the infinite series (which are
intractable in a numerical model) are
approximated by a finite-limit DO loop,
and the pressure gradient for interposity
flow is easily obtained.

The new method was validated by
comparing solutions against fine grid
simulations in 1-, 2-, and 3-D, as
described in Shook (1996). Here, we
show only the validation results for the 3-
D case. For comparison purposes, W&R
results are also shown. A schematic is




given for the test problem in Figure 1.
The grid employed for the fine grid
simulation was 21 x 21 x 21. Both the
new formulation and the W&R simulation
used two grid blocks; one for the fracture
domain and one for the matrix. Aside
from the differences in numerical grid,
properties were identical between the
fine grid and dual porosity simulations.

The test case is an example of matrix
mass depletion. From a uniform initial
condition of 1000 kPa, fracture pressure
was dropped to 100 kPa at t=0, and was
held constant throughout the simulation.
Because of the pressure difference
between the matrix and fracture, flow
occurs from matrix to fracture.
Interporosity mass flow rates are shown
in Figure 1. Excellent agreement is
observed between the fine grid
simulation and the new formulation,
except at very early times. Further
analysis of the fine grid simulation
indicates that this grid was insufficiently
fine to capture the correct pressure
gradient at early time (i.e., the grid blocks
are too large). Comparisons between the
new formulation and analytical results
indicates that the new method is

Fracture blocks are along
all 6 faces of cube

Figure 1. 3-D fracture validation problem

extremely accurate over all time scales.
That is to be expected, since this
formulation is based on a truncated
version of the analytical solutions. In
contrast, the W&R simulation exhibits
significant error over all time scales.

Generalization for Field-Scale
The formulation described above works
well for a single rock matrix surrounded
by fractures which are subjected to a
single change in pressure. It appears
that one could readily generalize the
formulation to account for muitiple matrix
blocks, so long as the change in pressure
were restricted to a single step function
change. However, a more realistic
situation is one in which there are an
arbitrary number of changes in fracture
pressure occurring on a field scale (i.e.,
an arbitrary number of numerical grid
blocks). As discussed below, that

- problem is substantially more difficult to

solve using an extension of the above
formulation.

The general solution for matrix pressure
as a function of time and space (again
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Figure 2. 3-D validation results

from Shook, 1996.




assuming spherical coordinates) is
(Carslaw and Jaeger, 1959, p 233):

P(r,t) = a% 21 exp(:-“z—:ZZD—L) sin(%) X
n=

t
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(3)

The first integral above accounts for the
initial condition, and the second for
changes in fracture pressure, both of
which are damped through time by the
exponential decay term (term 1).

One may take either of two approaches in
solving Egn 3. Typically, the initial
condition is treated as a constant, and all
subsequent variations in pressure are
captured in the second integral. While
this is mathematically tractable, it
appears to be numerically difficult. The
first integral is trivially solved, but solution
of the second integral requires that all
previous changes in fracture pressure be
stored. Furthermore, since the previous
changes in fracture pressure are damped
in time, it is not a matter of “updating” the
effects of previous changes in pressure,
but rather a recalculation at each time
step. While it is true that “old” changes in
pressure decay with time (and therefore
could be omitted from consideration), an
a priori means of evaluating how many
such changes can be omitted does not
appear to exist.

A second means of evaluating the
general solution, and one that is currently
being invéstigated, is to update the initial
condition at the end of every time step,
and consider only the current change in
fracture pressure. That is, identify a
parametric function that accurately
describes the pressure distribution in the
matrix, and evaluate the second integral
only over the current time step. In this

approach, constraint equations are used
to identify the unknowns in the
expression P(r,t). The idea of a
parametric expression for pressure has
been used by several researchers (e.g.,
Vinsome and Westerveld, 1980; Pruess
and Wu, 1993). Our current approach is
simpler in that we are attempting to
describe the matrix pressure explicitly;
therefore, no iteration on the unknowns in
the expression are required. Constraint
equations in this case include fracture
pressure, pressure gradients at the
matrix-fracture interface and matrix
center, and average matrix pressure - all
known from the converged solutions to
the governing equations from the last
time step. This solution has not yet been
proven out, but remains the current topic
of research on this project.

Summary and Future Work

A new method for semi-analytically
resolving the pressure gradient in
fractured reservoirs was presented and
validated for a single step change in
fracture pressure. This new method,
while generalizable to field-scale
problems, is likely to be restricted to
cases in which a single change in
fracture pressure occurs. In order to
develop the approach for field-scale
work, one must go back to the general
solution for matrix pressure, and either, 1)
treat the initial condition as a constant
and store all previous variations in
fracture pressure, or 2) update the initial
condition at each time step, and treat only
the current variation in fracture pressure
as a perturbation acting on the system.
From our preliminary studies, the second
option appears to be more readily
implemented. Current efforts are focused
on the identification of a parametric
expression for pressure that is both
simple enough for use, and accurate in
describing the initial pressure distribution
at each time step.
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Nomenclature

English

a characteristic diffusion length in rock
matrix (fracture half-spacing in 1-D,
effective matrix radii in 2-D and 3-D)
[=]m

A Cross sectional area [=] m2

¢t Total compressibility (rock + fluid) [=]
kPa-1

D diffusivity (k/jmc) [=] m2/s
k  permeability [=] m?2

L Characteristic rock matrix length
(fracture spacing) [=] m

P Pressure [=] kPa

Pma Average matrix pressure [=] kPa
g Volumetric flux [=] m/s

t Time[=]s |

Q Matrix/fracture Source/sink term [=]
m3/s

Vp. Grid block bulk volume [=] m3

Greek
¢ Porosity [=] vol. pore space / bulk
volume

p Viscosity [=] mPa-s

Subscripts
fr  fracture

ma matrix

[ initial (condition)
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