
MASTER

325  
35-41  
Q5

ORNL-3143  
UC-10 - Chemical Separations Processes  
for Plutonium and Uranium  
TID-4500 (16th ed.)

MISCELLANEOUS EXPERIMENTS RELATING TO THE  
PROCESSING OF CETR FUEL BY SULFEX-THOREX  
AND DAREX-THOREX PROCESSES

L. M. Ferris  
A. H. Kibbey



OAK RIDGE NATIONAL LABORATORY  
operated by  
UNION CARBIDE CORPORATION  
for the  
U.S. ATOMIC ENERGY COMMISSION

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

Printed in USA. Price \$0.50. Available from the

Office of Technical Services  
Department of Commerce  
Washington 25, D.C.

**LEGAL NOTICE**

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ORNL-3143

Contract No. W-7405-eng-26  
CHEMICAL TECHNOLOGY DIVISION  
Chemical Development Section B

MISCELLANEOUS EXPERIMENTS RELATING TO THE PROCESSING OF  
CETR FUEL BY SULFEX-THOREX AND DAREX-THOREX PROCESSES

L. M. Ferris  
A. H. Kibbey

DATE ISSUED

AUG 30 1961

OAK RIDGE NATIONAL LABORATORY  
Oak Ridge, Tennessee  
Operated by  
UNION CARBIDE CORPORATION  
for the  
U. S. ATOMIC ENERGY COMMISSION

## ABSTRACT

Experiments with unirradiated Consolidated Edison reactor  $\text{ThO}_2\text{-UO}_2$  fuel pellets indicated that uranium losses to Sulfex and Darex decladding solutions were proportional to the  $\text{UO}_2$  content of the pellets. For example, after 7 hr, losses to boiling initial Darex solution (5 M  $\text{HNO}_3$ —2 M  $\text{HCl}$ ) were 0.45 and 0.65% from pellets containing 3 and 9%  $\text{UO}_2$ , respectively. The initial rate of dissolution of these pellets in 200% excess boiling 13 M  $\text{HNO}_3$ —0.04 M  $\text{NaF}$ —0.1 M  $\text{Al}(\text{NO}_3)_3$  was essentially independent of the  $\text{UO}_2$  content. Rates were 2.1, 3.0, and 2.4  $\text{mg min}^{-1} \text{cm}^{-2}$  for pellets containing 3, 6, and 9%  $\text{UO}_2$ , respectively. The presence in the dissolvent of the soluble neutron poisons  $\text{H}_3\text{BO}_3$  and  $\text{Cd}(\text{NO}_3)_2$  in concentrations up to 0.1 M and 0.075 M, respectively, had little effect on the rate of dissolution of sintered  $\text{UO}_2\text{-ThO}_2$  fuel pellets.

## CONTENTS

|                                                                                       | Page |
|---------------------------------------------------------------------------------------|------|
| 1.0 Introduction                                                                      | 4    |
| 2.0 Results                                                                           | 4    |
| 2.1 Physical Properties of Process Solutions                                          | 4    |
| 2.2 Studies Relating to Decladding Losses                                             | 6    |
| 2.3 Studies Relating to Dissolution of ThO <sub>2</sub> -UO <sub>2</sub> Fuel Pellets | 7    |
| 3.0 References                                                                        | 15   |

## 1.0 INTRODUCTION

The purpose of this report is to summarize laboratory data obtained on the processing of unirradiated Consolidated Edison power reactor fuel between January 1, 1960 and January 31, 1961. Information relating to both the Sulfex-Thorex and Darex-Thorex processes (1) is included. Experimental work performed prior to January 1, 1960 and preliminary results with irradiated fuel specimens have been reported (1-7).

## 2.0 RESULTS

### 2.1 Physical Properties of Process Solutions

#### 2.1.1 Densities of Stainless Steel--Sulfuric Acid Solutions

Density measurement may be suitable for regulation of the Sulfex-Thorex process. The densities of stainless steel--sulfuric acid solutions varying in composition from 0 to 10 N  $\text{H}_2\text{SO}_4$  and from 0 to 40 g of stainless steel per liter were determined over the temperature range 20 to 80°C. The data were correlated by means of the equation

$$d = 1 - 4.31 \times 10^{-6}(t^2) + 0.0275 (H^+) + 0.00262 (SS)$$

in which the variables were

$d$  = density, g/ml

$t$  = temperature, °C

$(H^+)$  = sulfuric acid normality

$(SS)$  = stainless steel concentration, g/liter

Data for solutions at 26°C are presented in Fig. 1.

#### 2.1.2 Densities of Nitric Acid-Thorium Nitrate Solutions

Densities of  $\text{HNO}_3\text{-Th}(\text{NO}_3)_4$  solutions, similar to those expected from dissolution of the CETR  $\text{ThO}_2\text{-UO}_2$  fuel pellets, were reported by other workers (8,10).

#### 2.1.3 Boiling Points of Some Process Solutions

Although a systematic determination of the boiling points of Sulfex, Darex, and Thorex process solutions was not made, some data were collected in the course of the work. These data are listed in Table 1.

UNCLASSIFIED  
ORNL-LR-DWG. 58095

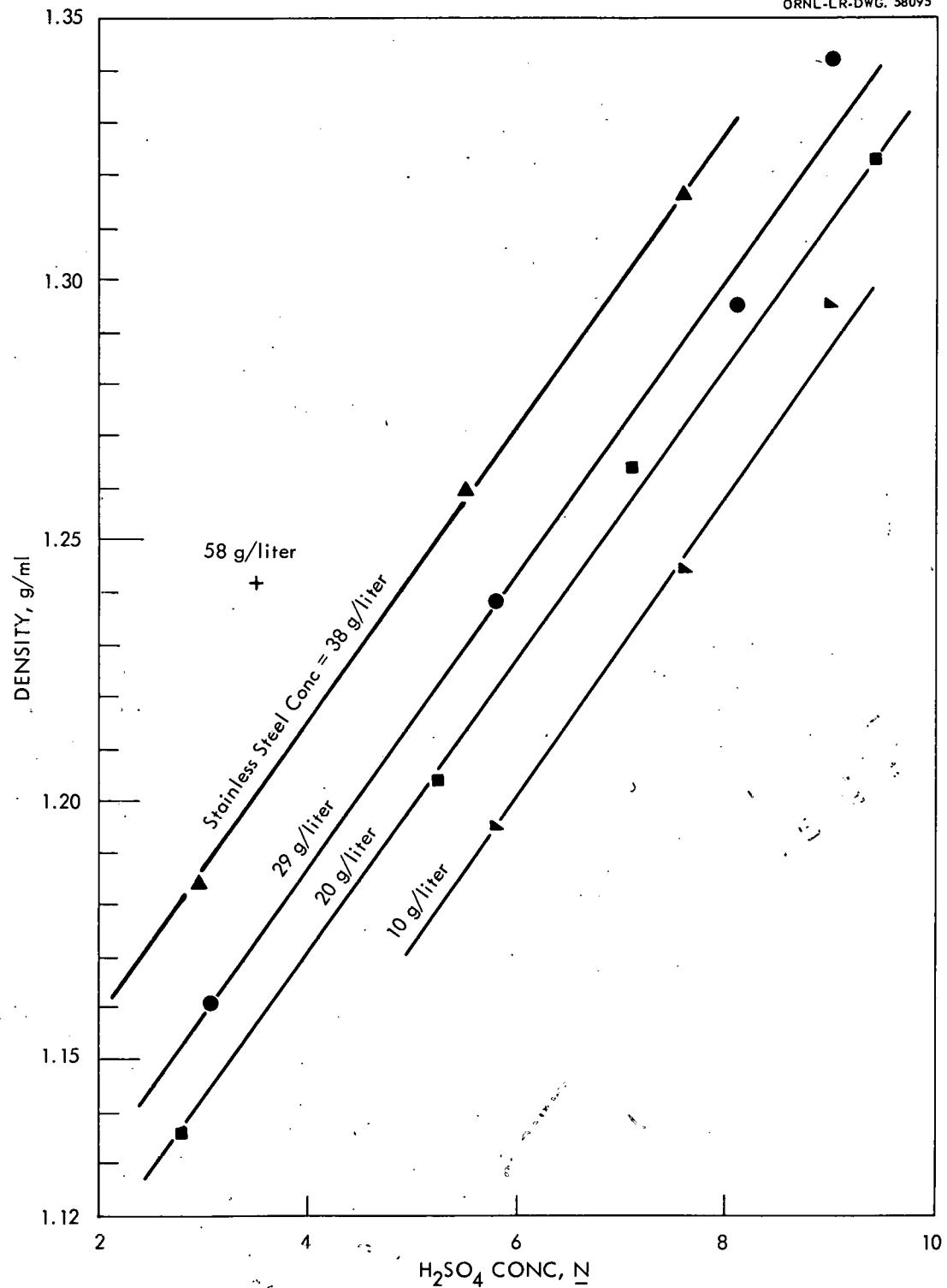



Fig. 1. Densities of stainless steel-sulfuric acid solutions at 26°C.

Table 1. Boiling Points of Some Darex, Sulfex, and Thorex Process Solutions

| Solution                                                                                                          | Boiling Point,<br>°C, at ~745 mm Hg |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 5 M HNO <sub>3</sub> —2 M HCl                                                                                     | 105-107                             |
| 1.5 M HNO <sub>3</sub> —1.5 M HCl—50 g SS/liter                                                                   | 109                                 |
| 4 M H <sub>2</sub> SO <sub>4</sub>                                                                                | 107-109                             |
| 6 M H <sub>2</sub> SO <sub>4</sub>                                                                                | 115-117                             |
| 6.5 N H <sub>2</sub> SO <sub>4</sub> —100 g SS/liter                                                              | 115-116                             |
| 4.5 N H <sub>2</sub> SO <sub>4</sub> —70 g SS/liter                                                               | 107                                 |
| 13 M HNO <sub>3</sub> —0.04 M NaF—0.1 M Al(NO <sub>3</sub> ) <sub>3</sub>                                         | 118                                 |
| 8.5 M HNO <sub>3</sub> —0.04 M NaF—0.1 M Al(NO <sub>3</sub> ) <sub>3</sub> —1 M Th(NO <sub>3</sub> ) <sub>4</sub> | 126-129                             |

#### 2.1.4 Solubility of Thorium Nitrate in Nitric Acid

In previous studies the solubility of thorium nitrate in nitric acid was measured only in solutions where the acidity was less than about 10 M (10-12). The results of this investigation, which are in excellent agreement with those of the other workers, show that at 26°C the solubility of thorium nitrate decreases from about 620 to 180 g of thorium per liter when the nitric acid concentration increases from 0 to 18.3 M (Fig. 2).

### 2.2 Studies Relating to Decladding Losses

#### 2.2.1 Effect of UO<sub>2</sub> Content of Fuel Pellet on Decladding Losses

*Unclear?*  
Interest in this variable stems from the fact that the Consolidated Edison reactor will have a three-region core containing fuel pellets ranging in UO<sub>2</sub> content from 3 to 10% (13). Uranium and thorium losses were determined by exposing unirradiated pellets containing 3, 6, and 9% UO<sub>2</sub> to boiling Sulfex and Darex decladding solutions. The pellets were nominally 93% of theoretical density. The results, while not entirely conclusive, indicated that soluble losses were a function of the UO<sub>2</sub> content of the pellet. After a 7-hr exposure to boiling initial Darex solution (5 M HNO<sub>3</sub>—2 M HCl), for example, uranium losses were 0.45 and 0.65% from pellets containing 3 and 9% UO<sub>2</sub>, respectively (Fig. 3a). In the initial Darex solution, the losses from pellets containing 6% UO<sub>2</sub> were higher than those from pellets containing 9% UO<sub>2</sub>; this effect may be due to the lower density of the pellets containing 6% UO<sub>2</sub> (Sect. 2.3.1). In the

initial Sulfex solution (6 M  $H_2SO_4$ ) the losses were in direct proportion to the  $UO_2$  content (Fig. 3b). As expected from previous studies (1,6,7), the Sulfex losses were 2- to 10-times lower than those to Darex solutions.

Thorium losses were 2- to 10-times lower than the uranium losses in both the Sulfex and Darex systems, and were also somewhat dependent on the composition of the pellets (Table 2). Losses to final solutions, i.e., those containing dissolved stainless steel, were lower than those to the initial solutions (Table 2).

Table 2. Effect of  $UO_2$  Content on Losses of Uranium and Thorium from Unirradiated CETR Fuel Pellets to Darex and Sulfex Decladding Solutions

| Solution                                   | Pellets <sup>a</sup> exposed to boiling solutions for 48 hr |      |                   |      |                   |      |
|--------------------------------------------|-------------------------------------------------------------|------|-------------------|------|-------------------|------|
|                                            | 3% $UO_2$ Pellets                                           |      | 6% $UO_2$ Pellets |      | 9% $UO_2$ Pellets |      |
|                                            | U                                                           | Th   | U                 | Th   | U                 | Th   |
| 5 M $HNO_3$ —2 M HCl                       | 0.37                                                        | 0.03 | 2.17              | 0.31 | 1.32              | 0.36 |
| 1.5 M $HNO_3$ —1.5 M HCl—<br>50 g SS/liter | 0.35                                                        | 0.02 | 0.07              | 0.09 | 0.55              | 0.08 |
| 6 M $H_2SO_4$                              | 0.17                                                        | 0.05 | 0.20              | 0.08 | 0.20              | 0.06 |
| 5 M $H_2SO_4$ —50 g SS/liter               | 0.05                                                        | 0.02 | 0.09              | 0.05 | 0.52              | 0.15 |

<sup>a</sup>Pellets nominally 93% of theoretical density.

### 2.3 Studies Relating to Dissolution of $ThO_2$ - $UO_2$ Fuel Pellets

#### 2.3.1 Effect of $UO_2$ Content on Rate of Dissolution

Because the Consolidated Edison reactor will contain fuel pellets of varying  $UO_2$  content, it is essential to determine the effect of this variation on the rate of dissolution of the pellets in the Thorex dissolvent, 13 M  $HNO_3$ —0.04 M NaF—0.1 M  $Al(NO_3)_3$ . Preliminary studies indicated that the amount of  $UO_2$ , up to 10%, had no effect on the rate of dissolution:

| $UO_2$ in<br>Pellet, % | O/U<br>Ratio | Bulk<br>Density, g/cc | Initial, 10-min, Dissolution<br>Rate, mg $min^{-1} cm^{-2}$ |
|------------------------|--------------|-----------------------|-------------------------------------------------------------|
| 3                      | 2.005        | 9.2                   | 2.1                                                         |
| 6                      | 2.005        | 9.1                   | 3.0                                                         |
| 9                      | 2.005        | 9.3                   | 2.4                                                         |

UNCLASSIFIED  
ORNL-LR-DWG. 60277

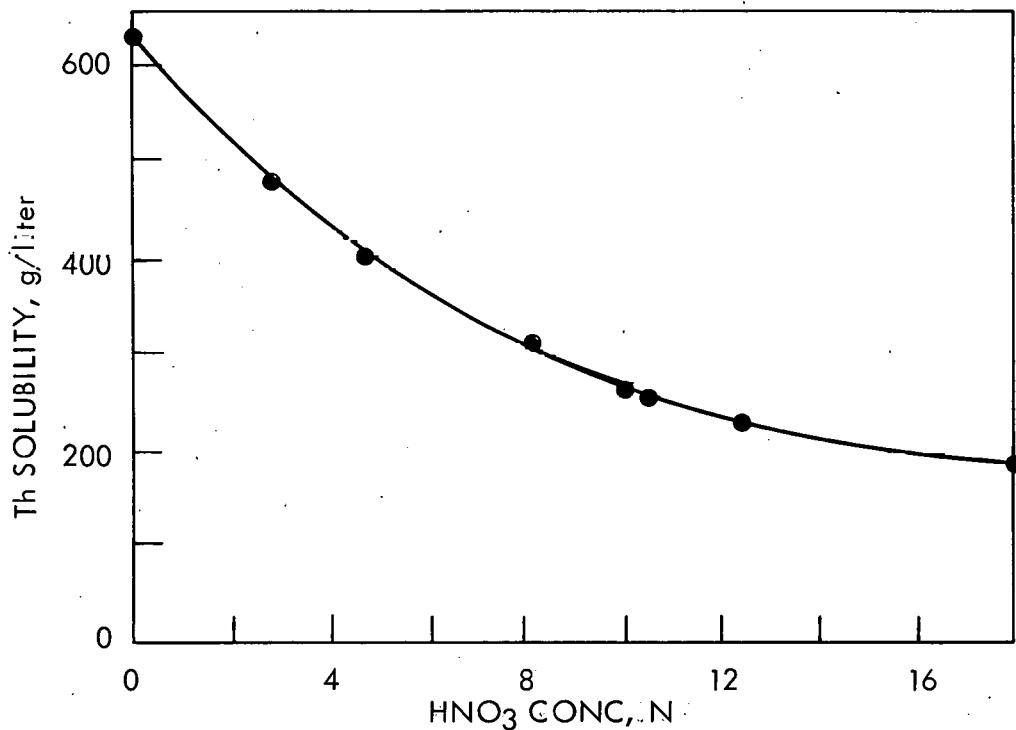



Fig. 2. Solubility of thorium nitrate in nitric acid solutions at 26°C.

The variation in rates is within the experimental error, and is probably due in part to the difference in densities of the pellets.

### 2.3.2 Effect of Dissolved Nuclear Poisons on the Dissolution Rate

Addition of soluble neutron poisons such as boron or cadmium to process solutions to aid in criticality control has been suggested (6). Preliminary studies have shown that the presence of up to 0.1 M H<sub>3</sub>BO<sub>3</sub> or 0.075 M Cd(NO<sub>3</sub>)<sub>2</sub> in boiling 13 M HNO<sub>3</sub>—0.04 M NaF—0.1 M Al(NO<sub>3</sub>)<sub>3</sub> had little effect on the rate of dissolution of 95% ThO<sub>2</sub>—5% UO<sub>2</sub> pellets whose densities were about 94% of theoretical.

The pellets used in these studies were supplied by the Universal Match Company and contained 5.3% UO<sub>2</sub>. In three series of experiments, made to evaluate the effect of boron, initial 10-min rates of dissolution were determined

UNCLASSIFIED  
ORNL-LR-DWG. 58094

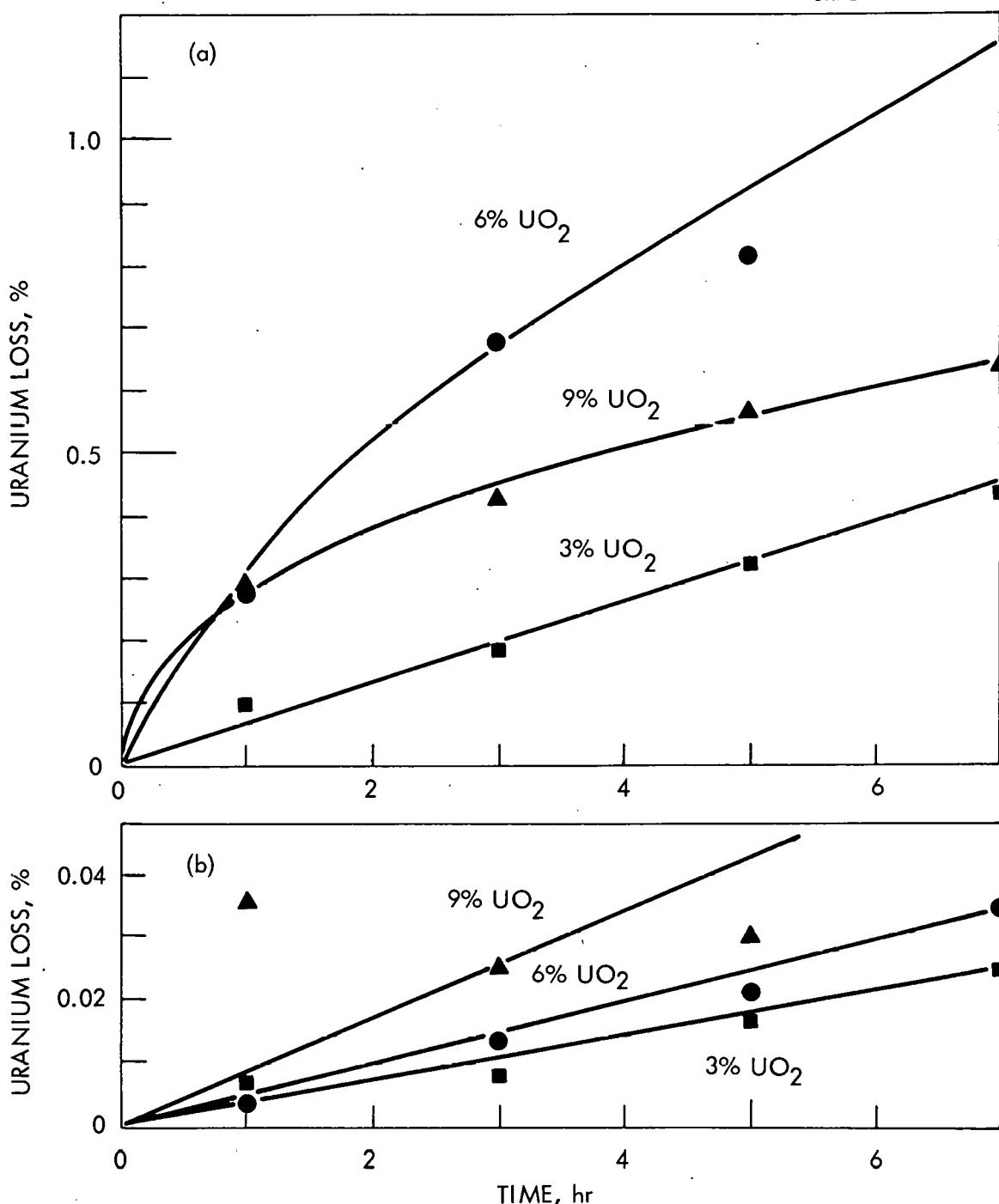



Fig. 3. Soluble uranium losses from ThO<sub>2</sub>-UO<sub>2</sub> pellets containing 3, 6, and 9% UO<sub>2</sub> in boiling (a) 5 M HNO<sub>3</sub>-2 M HCl and (b) 6 M H<sub>2</sub>SO<sub>4</sub>. Pellets were nominally 93% of theoretical density.

in boiling 13 M  $\text{HNO}_3$ —0.04 M NaF containing 0, 0.04, and 0.1 M  $\text{Al}(\text{NO}_3)_3$  and boric acid in concentrations up to 0.2 M. A 200% stoichiometric excess of dissolvent was used in each case. The highest 10-min rate, about  $2 \text{ mg min}^{-1} \text{ cm}^{-2}$ , was obtained when the dissolvent contained no aluminum and less than 0.1 M  $\text{H}_3\text{BO}_3$  (Fig. 4). When the boric acid concentration was constant, the 10-min rate decreased with increasing aluminum concentration as expected (1). In solutions having a constant aluminum concentration, the 10-min rate was independent of boric acid concentration up to about 0.1 M; however, the rate in solutions containing no aluminum or 0.1 M aluminum decreased about 30% as the boric acid concentration increased from 0.1 to 0.2 M (Fig. 4). The rate in all solutions containing 0.04 M aluminum was nearly constant at  $1.3 \text{ mg min}^{-1} \text{ cm}^{-2}$ . Solutions containing 1 M thorium were stable with respect to precipitation when the boric acid concentration was 0.1 M.

The effect of cadmium on the dissolution rate has not yet been clearly elucidated. In the first series of experiments (series 1, Table 3), the initial, 10-min, rate of dissolution in solutions containing no aluminum decreased from 2 to 0.7  $\text{mg min}^{-1} \text{ cm}^{-2}$  as the cadmium concentration increased from 0 to 0.075 M. However, with 0.1 M aluminum present, the rate increased from 0.7 to 2  $\text{mg min}^{-1} \text{ cm}^{-2}$  as the cadmium concentration increased from 0 to 0.075 M. These experiments were repeated with hopes of substantiating the results. On the contrary, data from the second series of experiments (series 2, Table 3) indicated that, at all aluminum concentrations, the initial rate decreased with increasing cadmium concentration from about  $1.4 \text{ mg min}^{-1} \text{ cm}^{-2}$  to a minimum of about  $0.8 \text{ mg min}^{-1} \text{ cm}^{-2}$  at about 0.05 M cadmium; the rates increased to about  $1.3 \text{ mg min}^{-1} \text{ cm}^{-2}$  at 0.075 M cadmium. Because of the wide scatter in the data, it can be only tentatively concluded that the dissolution rate is not seriously affected by the presence of up to 0.075 M  $\text{Cd}(\text{NO}_3)_2$ .

UNCLASSIFIED  
ORNL-LR-DWG. 60278

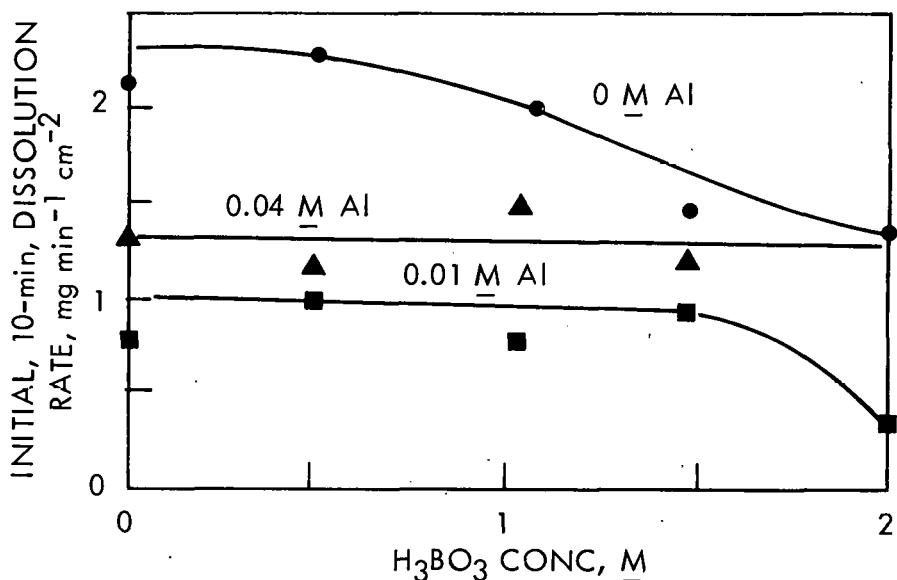



Fig. 4. Effect of boric acid and aluminum nitrate concentrations on the initial 10-min rate of dissolution of Universal Match Co. 94.7% ThO<sub>2</sub>—5.3% UO<sub>2</sub> pellets in 200% stoichiometric excess of boiling 13 M HNO<sub>3</sub>—0.04 M NaF. Pellet densities: 92-94% of theoretical.

### 2.3.3 Dissolution of ThO<sub>2</sub>-UO<sub>2</sub> Fissia Pellets

Preliminary studies were conducted to determine the effect of fission product concentration on the rate of dissolution of UO<sub>2</sub>-ThO<sub>2</sub> pellets. Unirradiated pellets used in these studies contained 5% UO<sub>2</sub> and either 2 or 4% "fissia", with the remainder being ThO<sub>2</sub>.<sup>a</sup> Burnups of about 20,000 and 40,000 Mwd/ton of core were simulated by the addition of 2 and 4% "fissia", respectively. The "fissia" mix had the composition

|                                |       |                                 |       |
|--------------------------------|-------|---------------------------------|-------|
| Mo                             | 13.8% | CeO <sub>2</sub>                | 13.0% |
| ZrO <sub>2</sub>               | 20.0  | La <sub>2</sub> O <sub>3</sub>  | 6.5   |
| Ru                             | 7.8   | Pr <sub>6</sub> O <sub>11</sub> | 5.5   |
| BaCO <sub>3</sub>              | 12.2  | Sm <sub>2</sub> O <sub>3</sub>  | 2.3   |
| Nd <sub>2</sub> O <sub>3</sub> | 14.4  | Y <sub>2</sub> O <sub>3</sub>   | 2.5   |

<sup>a</sup>The pellets were made by J. Griffin, Y-12 plant, by mixing pure UO<sub>2</sub> and ThO<sub>2</sub> powders with the "fissia" mix, pressing the pellets, which were fired in hydrogen at 1700°C for 1 hr, and then cooled in hydrogen. The "fissia" mix was supplied by Atomics International.

The initial rate of dissolution of the pellets in 200% stoichiometric excess of boiling 13 M HNO<sub>3</sub>—0.04 M NaF—0.1 M Al(NO<sub>3</sub>)<sub>3</sub> was proportional to the "fissia" content:

| Amount of Fissia<br>in Pellet, % | Density of<br>Pellet, g/cc | Initial, 10-min, Dissolution<br>Rate, mg min <sup>-1</sup> cm <sup>-2</sup> |
|----------------------------------|----------------------------|-----------------------------------------------------------------------------|
| 2                                | 9.07                       | 0.73                                                                        |
| 2                                | 9.44                       | 1.0                                                                         |
| 4                                | 9.49                       | 1.3                                                                         |
| 4                                | 9.49                       | 1.3                                                                         |

The tendency of the pellets containing 4% "fissia" to dissolve faster was substantiated in other experiments (Table 4). Even with crushed pellets, dissolution was incomplete in 85 hr. It was established that the residue contained UO<sub>2</sub> and ThO<sub>2</sub> in addition to zirconium and molybdenum oxides. Because of the low rate of dissolution and the extreme difficulty in analyzing the solutions for the fission product elements, work on these pellets was abandoned. The behavior of fission products during dissolution will probably be determined only when highly irradiated fuel specimens become available.

### 2.3.4 Dissolution of ThO<sub>2</sub> Pellets and Fused ThO<sub>2</sub>

Scouting experiments were performed to determine whether the rate of dissolution of ThO<sub>2</sub> pellets in 200% excess of boiling 13 M HNO<sub>3</sub>—0.04 M NaF—0.1 M Al(NO<sub>3</sub>)<sub>3</sub> was different from those obtained with pellets containing up to 10% UO<sub>2</sub>. The pellets were fabricated by the Davison Chemical Company and had densities varying between 85 and 99% of theoretical. Initial, 10-min, dissolution rates of pellets whose densities were 8.6 and 9.8 g/cc were 1.9 and 1.1 mg min<sup>-1</sup> cm<sup>-2</sup>, respectively. These rates are

Table 3. Effect of Cd(NO<sub>3</sub>)<sub>2</sub> and Al(NO<sub>3</sub>)<sub>3</sub> Concentrations on Initial, 10 min, Rate of Dissolution of 95% ThO<sub>2</sub>-5% UO<sub>2</sub> Pellets in Boiling 13 M HNO<sub>3</sub>-0.04 M NaF

200% stoichiometric excess of reagent used in each case

| Cd(NO <sub>3</sub> ) <sub>2</sub><br>Conc, M | Al(NO <sub>3</sub> ) <sub>3</sub><br>Conc, M | Pellet <sup>a</sup><br>Density, g/cc | Initial, 10-min,<br>Dissolution Rate,<br>mg min <sup>-1</sup> cm <sup>-2</sup> |
|----------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------|
| 0.0                                          | 0.0                                          | 9.38                                 | 2.0                                                                            |
| 0.0                                          | 0.04                                         | 9.37                                 | 1.3                                                                            |
| 0.0                                          | 0.10                                         | 9.45                                 | 0.7                                                                            |
| 0.025                                        | 0.0                                          | 9.36                                 | 1.9                                                                            |
| 0.025                                        | 0.04                                         | 9.34                                 | 1.2                                                                            |
| 0.025                                        | 0.10                                         | 9.32                                 | 0.80                                                                           |
| 0.05                                         | 0.0                                          | 9.42                                 | 1.2                                                                            |
| 0.05                                         | 0.04                                         | 9.35                                 | 1.4                                                                            |
| 0.05                                         | 0.10                                         | 9.39                                 | 1.4                                                                            |
| 0.075                                        | 0.0                                          | 9.41                                 | 0.67                                                                           |
| 0.075                                        | 0.04                                         | 9.39                                 | 1.1                                                                            |
| 0.075                                        | 0.10                                         | 9.32                                 | 2.0                                                                            |
| 0.0                                          | 0.0                                          | 9.39                                 | 1.5                                                                            |
| 0.0                                          | 0.04                                         | 9.42                                 | 1.2                                                                            |
| 0.0                                          | 0.10                                         | 9.26                                 | 1.4                                                                            |
| 0.025                                        | 0.0                                          | 9.45                                 | 1.2                                                                            |
| 0.025                                        | 0.04                                         | 9.38                                 | 1.2                                                                            |
| 0.025                                        | 0.10                                         | 9.36                                 | 0.83                                                                           |
| 0.05                                         | 0.0                                          | 9.50                                 | 0.78                                                                           |
| 0.05                                         | 0.04                                         | 9.43                                 | 0.79                                                                           |
| 0.05                                         | 0.10                                         | 9.42                                 | 0.79                                                                           |
| 0.075                                        | 0.0                                          | 9.36                                 | 1.2                                                                            |
| 0.075                                        | 0.04                                         | 9.39                                 | 1.4                                                                            |
| 0.075                                        | 0.10                                         | 9.35                                 | 1.3                                                                            |

<sup>a</sup>Theoretical density: 10.0 g/cc.

Table 4. Dissolution of  $\text{ThO}_2$ —5%  $\text{UO}_2$ —"Fissia" Pellets<sup>a</sup> in 200% Stoichiometric Excess of Boiling 13 M  $\text{HNO}_3$ —0.04 M  $\text{NaF}$ —0.1 M  $\text{Al}(\text{NO}_3)_3$

| Expt. No. | Amt. of Fissia in Pellet, % | State of Pellet | Dissolution Time, hr | Amt. Dissolved, % |
|-----------|-----------------------------|-----------------|----------------------|-------------------|
| 1         | 2                           | Crushed         | 50                   | 80                |
| 2         | 4                           | Crushed         | 50                   | 92                |
| 3         | 2                           | Whole           | 21 <sup>b</sup>      | 70                |
| 4         | 4                           | Whole           | 21 <sup>b</sup>      | 91                |

<sup>a</sup>The pellets were made by J. Griffin, Y-12 plant, by mixing pure  $\text{UO}_2$  and  $\text{ThO}_2$  powders with the "fissia" mix, pressing the pellets, which were fired in hydrogen at 1700°C for 1 hr, and then cooled in hydrogen. The "fissia" mix was supplied by Atomics International.

<sup>b</sup>Three 7-hr digestions with fresh reagent.

Table 5. Dissolution of Sintered  $\text{ThO}_2$  Pellets in 200% Stoichiometric Excess of Boiling 13 M  $\text{HNO}_3$ —0.04 M  $\text{NaF}$ —0.1 M  $\text{Al}(\text{NO}_3)_3$

| Time, hr | Hydrogen Ion Conc, M | Amount Dissolved, % |                 |
|----------|----------------------|---------------------|-----------------|
|          |                      | 9.8-g/cc Pellet     | 8.6-g/cc Pellet |
| 1        | 12.0                 | 9.3                 | 14.2            |
| 2.5      | 11.5                 | 23.2                | 32.0            |
| 20       | 8.3                  | 89.5                | 93.6            |
| 24       | 8.1                  | 94.8                | 97.0            |
| 26.5     | 8.0                  | 95.0                | 97.1            |

not significantly different from those obtained with pellets containing 3-10%  $\text{UO}_2$  (Sects. 2.3.1 and 2.3.2; also see ref. 1). In 26.5 hr, 95-97% of the  $\text{ThO}_2$  pellets dissolved (Table 5). A small residue, shown by x-ray analysis to be  $\text{ThO}_2$ , was visible at the end of each experiment.

The amount of fused  $\text{ThO}_2$  dissolved in 200% stoichiometric excess of boiling 13 M  $\text{HNO}_3$ —0.04 M  $\text{NaF}$ —0.1 M  $\text{Al}(\text{NO}_3)_3$  was determined as a function of time

and mesh size and the results compared to those obtained under similar conditions with 95.8%  $\text{ThO}_2$ — $\text{UO}_2$ .<sub>36</sub> which was 93% of theoretical density. As expected, the fused  $\text{ThO}_2$  dissolved much more slowly; e.g., after 5 hr, only about 30% of the -4+8 mesh fused  $\text{ThO}_2$  dissolved compared to about 88% of the other material (Fig. 5). Since the presence of up to 10%  $\text{UO}_2$  apparently has no effect on the rate of dissolution (Sect. 2.3.1), the results obtained with fused  $\text{ThO}_2$  are attributed mainly to its higher density.

### 3.0 REFERENCES

1. L. M. Ferris and A. H. Kibbey, "Sulfex-Thorex and Darex-Thorex Processes for the Dissolution of Consolidated Edison Power Reactor Fuel: Laboratory Development," ORNL-2934 (Oct. 26, 1960).
2. L. M. Ferris and A. H. Kibbey, "Laboratory Development of the Sulfex Process for the Dissolution of Consolidated Edison Power Reactor Fuel," ORNL-2714 (Oct. 16, 1959).
3. L. M. Ferris, "Decladding of Consolidated Edison Power Reactor Fuel by Sulfex and Darex Processes: Cyclic Dissolution Experiments," ORNL-2822 (Jan. 13, 1960).
4. L. M. Ferris, A. H. Kibbey, and J. W. Ullmann, "Three-minute Irradiation at Variable Power Density of Prototype CETR Fuel Pellets," ORNL-2999 (Sept. 28, 1960).
5. K. S. Warren, "Survey of Potential Vapor-phase Explosions in Darex and Sulfex Processes," ORNL-2937 (Dec. 27, 1960).
6. "Chemical Technology Division Annual Progress Report for Period Ending August 31, 1960," ORNL-2993.
7. R. W. Ewing, H. B. Brugger, and D. N. Sunderman, "Dissolution of Irradiated Consolidated Edison Power-Reactor Fuel by the Sulfex and Darex Processes," BMI-1427 (March 10, 1960).
8. "Chemical Technology Division Progress Report for Period August 1, 1951 to February 10, 1952," ORNL-1311.
9. "The Reactor Handbook," Vol. 2, "Engineering," AECD-3646 (May 1955), p. 642.
10. R. A. Ewing, J. B. Fishel, S. J. Kiehl, R. E. Sharpe, and A. E. Bearse, "Purification of Thorium Nitrate by Solvent Extraction with Tributyl Phosphate," BMI-262 (July 31, 1952).

UNCL ASSIFIED  
ORNL-LR-DWG. 58093

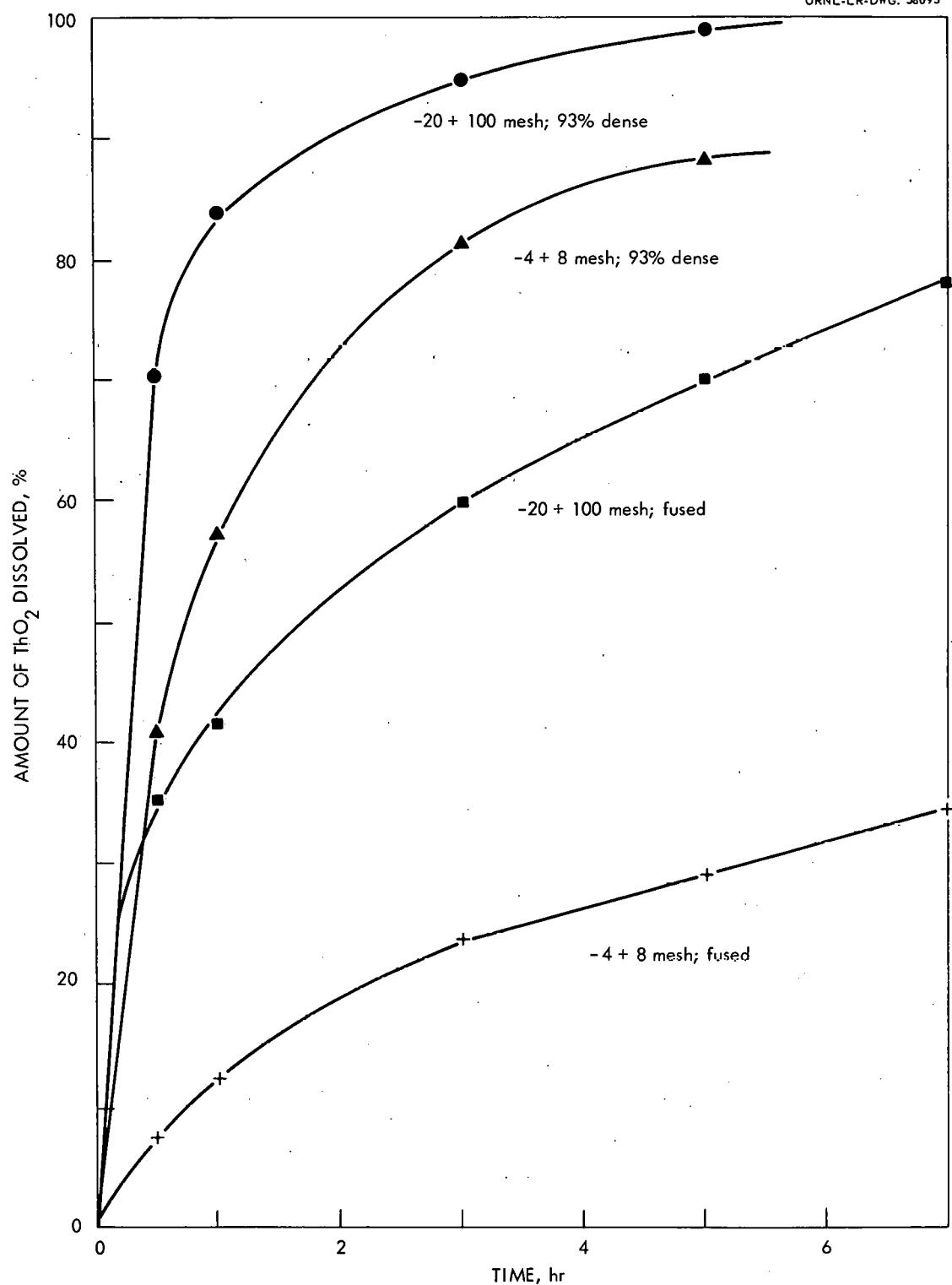



Fig. 5. Comparison of rates of dissolution of fused  $\text{ThO}_2$  and 95.8%  $\text{ThO}_2$ — $\text{UO}_2$ .<sub>36</sub> (93% of theoretical density) in 200% excess of boiling 13 M  $\text{HNO}_3$ —0.04 M  $\text{NaF}$ —0.1 M  $\text{Al}(\text{NO}_3)_3$ .

11. J. G. Moore, ORNL, personal communication, Sept. 26, 1960.
12. W. W. Morgan, "The Processing of Irradiated Thorium Fuels Using Tributyl Phosphate-Decalin. I. Partition Data and Calculations," CRDC-674 (December 1955).
13. J. W. Ullmann, ORNL, "Consolidated Edison Data Sheet, Jan. 28, 1960," personal compilation.

THIS PAGE  
WAS INTENTIONALLY  
LEFT BLANK

ORNL-3143  
UC-10 - Chemical Separations Processes  
for Plutonium and Uranium  
TID-4500 (16th ed.)

INTERNAL DISTRIBUTION

|                                                                 |                                 |
|-----------------------------------------------------------------|---------------------------------|
| 1. Biology Library                                              | 51. W. H. Jordan                |
| 2-3. Central Research Library                                   | 52. M. T. Kelley                |
| 4. Reactor Division Library                                     | 53. A. H. Kibbey                |
| 5. ORNL - Y-12 Technical Library,<br>Document Reference Section | 54. F. G. Kitts                 |
| 6-25. Laboratory Records Department                             | 55. J. A. Lane                  |
| 26. Laboratory Records, ORNL R.C.                               | 56. T. A. Lincoln               |
| 27. E. D. Arnold                                                | 57. S. C. Lind                  |
| 28. R. E. Blanco                                                | 58. J. T. Long                  |
| 29. G. E. Boyd                                                  | 59. K. Z. Morgan                |
| 30. J. C. Bresee                                                | 60. J. P. Murray (K-25)         |
| 31. K. B. Brown                                                 | 61. M. L. Nelson                |
| 32. F. R. Bruce                                                 | 62. E. L. Nicholson             |
| 33. C. E. Center                                                | 63. D. Phillips                 |
| 34-35. F. L. Culler                                             | 64. H. E. Seagren               |
| 36. W. K. Eister                                                | 65. M. J. Skinner               |
| 37. D. E. Ferguson                                              | 66. J. A. Swartout              |
| 38. L. M. Ferris                                                | 67. E. H. Taylor                |
| 39. B. C. Finney                                                | 68. J. W. Ullmann               |
| 40. J. H. Frye, Jr.                                             | 69. W. E. Unger                 |
| 41. J. H. Gillette                                              | 70. A. M. Weinberg              |
| 42. H. E. Goeller                                               | 71. M. E. Whatley               |
| 43. A. T. Gresky                                                | 72. C. E. Winters               |
| 44. W. R. Grimes                                                | 73. R. G. Wymer                 |
| 45. C. E. Guthrie                                               | 74. J. W. Youngblood            |
| 46. C. W. Hancher                                               | 75. D. L. Katz (consultant)     |
| 47. C. S. Harrill                                               | 76. C. E. Larson (consultant)   |
| 48. A. Hollaender                                               | 77. I. Perlman (consultant)     |
| 49. A. S. Householder                                           | 78. J. H. Rushton (consultant)  |
| 50. R. G. Jordan (Y-12)                                         | 79. H. Worthington (consultant) |
|                                                                 | 80. T. H. Pigford (consultant)  |

EXTERNAL DISTRIBUTION

81-82. J. A. McBride, Phillips Petroleum Company  
83. Division of Research and Development, AEC, ORO  
84-596. Given distribution as shown in TID-4500 (16th ed.) under Chemical Separations  
Processes for Plutonium and Uranium category (75 copies - OTS)