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28 
PROTON CAPTURE GAMMA RAYS .FROM Si ,.IN THE 

REGION .OF PHOTONUCLEAR GIANT RESONANCE 

Lawrence' Radiation Laboratory , 

Uni'versity.of California 

Livermore,  California 

May 6, 1,961 

. ' ABSTRACT 

The .Livermore 90- inch variable- energy cyclotron was used to 

27 
measure  the 90" excitation function for the A1 (p, y ) ~ i 2 8  reaction. 

Proton energies  between 5 and 13 Mev were  used  which gave.e-xcitation 

energies  in siZ8 corresponding to t h e  region of the photonuclear giant 

resonance.. .Two ..gamma rays  were'...observed: Y o  ,, ..the :ground- s ta te  . . . 

.gamma r a y  and y resulting . f r b q  deexcitation through the .fir s t  .excited ' 

1 

s ta te  of siZ8 a t  1. 78 Mev. They were  detected b y  a 5-in.-diam by 6-in.- 

long NaI(T1) ~ r . ~ s t a l .  . A P b  collimator was used to improve the r e so -  

lution of the .detector. The resu l t s  indicate that both yo and y display 
1 

the .giant resonance behavior ;  the yo curve reaches  a peak value of - 8  

)Ibarns/sr a t  E = 8.75 Mev, while the y peak i s  * 14 )Ibarns/sr a t  
. p 1 

E = 10 Mev. Both c u r j e s  display. the.fine .s t ructure .previously r e -  
. P 

1 
ported by Gove .et  a l .  A -detailed balance ,calculation was made, using 

2 
. the yo data.  A.c.omparison with the .measurements  of Johans son .on 

28 
the total yield of protons f r o m  the Si (y,; p ) ~ 1 2 7  reaction indicates that. 

28 
about 1/3 of the. total photoproton production in Si r e su l t s  in  maximum 

energy, o r  ground-state protons.  . I t  is concluded that this la rge  :pro- 

portion s t rongly,suggests  a d i rec t  interaction reaction mechanism. 



. . . ., . . . . 
I. INTRODUCTION - 

. . .  . . 
I . .  . . . a .  

A,. The Nuclear Photoeffect and the .Giant 
. . , . . . . . . .  . . . ; 

. . 

The. many studies made .in. recent  yea r s  of the .inte-raction of pho- . . . . 

3 
. , 

, tons with .nuclei,. have .proven to, be quite .fruitful. . Investigations of 
, . L .' 

, , radiative ' transitions in .the .lighter nuclei, ; for example, have demon- . . 

. . s trated the governing .ac tio.n.of the,.isotopic spin selection rules ,  and 

thus the .applicability of the .principle of the . -.charge . .indepe?dence .of 

nuclear forces.  Other studies, concerned with the;photodisigtegration 

i of the .deute.ron, have .led to !information about the .nucleon-nucleon .PO- 

tential. 5 

% .  

A m+jor pa r t  of the work in this field, however, ha's centered 

about  thephotonucleir  giant rksonance. This phenom&ion appears  a s  
. . 

B resbnant in the photbn absorption c r o s s  section &'gamma ener-  
' I  . '  , . . . 

' giei bktween 14 and 24 ~ k v ,  the :peak position (E,) changing with A 
. . .  . . .  . .  , . . . . . .  . . .  

.about a s  8 0 ~ -  27,. ~ e ~ a r t u r e ' s  f rom .;his smooth variation a r e  ob- 
, ' .  

served f o r  the l ight  nuclei. The resonances a r e  found 'to have  a width 
. . . . .  , . .  

of'from 3 to 7 Mev, withpeak c r o s s  'sections of the &der of 100 milli- 
. . .  . . . s .. . . .  6, 7, 8 . ' 

- .  . . . . . .  . . > . . ' .  . . 
barns .  . . 

% ; D u e  to the iack of a variable e n e r g y  source of monoenergetic 
. . .- ' 

'pkotohs, most .  of t h e  expe'='iniental work in the g ian t .  resonance :region 
. . .  . . . .  . . . . . . .  . . . . . . . . . .  

has.'used a s  a souic'e .of gamma rays  the bremss t rahlung,  spkctrum 
. . . . . . . .  , ..  . . . . . . . . 

f rom '  an .eidctron .acceler=toi .  ~ e c k u s b  of the :continGous *ature .of this 
. . .  . . . .  . . . . 

.( 
' . : .  

. . bpectrum, . resul t s  can,&hly be obtainedby a i a t h e r  elabprpte 
. . . . . . . b .  

unfolding p r o ' = b d ~ r e 9  which i&av&s details of t h e  resofiance behavior 

somewhat uncertain. In spite of this difficulty, however ,  &&h infor- 

mation o f a  general  charac ter  has been obtained. 



The, predominantly' e lectr ic  dipole . . .nature :of the. giant resonance, 

10 
for  instance, has been e i  tablished. by .comparisons of the .gamma 

. :. . .  . , . :. l . .  , ... 
absorption, c ross .  section, . integrated '  over the resonance .curve (0 ), int  

with the e l e c t r i c  dipole sum'ru le .  This modeilihdkpelident relation, 

derived by ~ e t h e  and' Levinger f rom thk s i m i h r  ~ e i c h e - K &  a'tomic 

. % 
sum rule, predicts  that Dint = 0 . 0  15A ~ e v - b a r i s :  A.lthough the effects  

of higher multipole transitions have been obser'ved, i t  has 'been found 

that f o r  mobt elements t h e  :exberimkntaliy determines @ . '  effectively ' '  

int . . 

8 , l O  . . 
exhaus t s  this 'sum. 

. . 

1. Collective Model 
' . . 

The collective :model of Goldhaber and Tel ler  was a n  early. theo-  

ret ical  attempt to  explain the :mechanism .of the giant resonance. 
12 

This model pichires  the.nucleus a s  composed of neutron and .proton 

fluids, and the.resonance as a bulk oscillation of these fluids with-in the 

nuclear volume.. The resul t  is a l inear  oscillation o f  the.center of 
. . .. . . 

charge aboiit the .cenler of mass, . which conforms y i t h  ..th.e established , 

E l  nature .of the resonance. If the envelope of the nucleus i s  assumed 
\ 

to remain.fixed and the.fluids to oscillate.in such a fashion that their 
. . .  . ,  . . . . 

combined density a t  ev-ery point remains constant, then this model 
. . . . , . 

predicts that E~ a A - ~ ' ~ ,  which i a  in fair agreement  with experimental 
. .  . . 

resul ts .  More ,quantitative predictions a r e  difficult to obtain f rom this 

model, however, since i t  applies only.to:the absorpt ion mechanism and 

says  nothing of the decoupAing of the oscillation leading to decay of the 

system. 
13 



2 .  . Shell Model 

A .more rec  erit theoretical approach. to this ~ u b j e c t  has been in 
. .  . 

14' l.5 Through the term.s of the..indep.endent.particle, . or  shell, model. 

w o r k  of  ilki ins on and others,  a simple :model .has been developed 

which  .has been able .  to.  explain thegenera l ' fea turgs  of the.  resonance 
, . .> . . 

.and. is  in most  cases  in  agreement  with.available experimental resul t s .  13 
. ,  < 

In con t ras t  to ,the collective .model, i t  makes definite :predictions about 

decay me.chanisms, and i s  thus more  useful  for  ,comparison with ex- 

periment.  

The tendency of E l  transitions to cluster  in  such a fashion a s  to 

form the giant resonance can be understood in t e r m s  of the independent 

part ic le  .rn@del by ,considering . f i r s t  the s implest  .shell  model, the iso- 

tropic har.;c.r~lunic oscillat'or .: The :clustering then. fo1low.s f rom the .equal 
. . 

spacing .of levels in  the .oscillator potential and the selection rule  .for. 

E l  transitions ,allowing only .transitions betwe.en adljacent levels.  In the 

. more  rea1istic:finite square-well  potential, this equal spacing , i s  apparr-. . 

ently .lost; However, levels of a given ,sequence, such as 1 s, lp,  , Id, 

. . . or  2s, 2p,- 2d, . . . , a rk  s t i l l  a lmost  equally .spaced, a t  1east.near 

the,  Fe.rmi surface. . Fur thermore ,  the transitions between such 
I .  

levels of a-.given sequence, which :&re - the allowed transitcons in the 

.harmonic oscillator potential, a r e  .now favored transitions.  This is: 
. . 

seen .in Table I wh:ich. gives the square of the . rad ia l  overlap.integra1s 

f o r  Various transitions.  'Since ..the Paul2 p,rinciple f e s t r i c t s  the absorp -  
.!' . '  '.. :. 

::,. . 
.:' ' tion to. those : ~ u c l ~ o f i s ' w ~ t h ~ n ~  bne .o'scillator spacing of the.  Ferkni surface, 

. . .  

i t  i s  apparent that photo'ns with ,.ene,rgy near ly  equal to this oscillator 

spacing c a n  be absorbed in a ' resonant  fashion, raising ,a .nucleon near  

the.  F e r m i  surface t o  an  unfilled single :particle level, preferably of the 



* 
Table I. Radial overlap integrals  for an infinite. square well. 

(D i s  the square of the radial  ov,erlap integral  

* 
D. H. Wilkinson, Physica 22 1039 (1956). -' 

next higher 1 value. The width of the giant resonance thus appears  a s  

a measure  of the clustering of the allowed dipole transitions,  which.do 

not all occur a t  precisely the. same  :energ.y. 

The single part ic le  transition strengths given above must  be 

modified further  by the . fac tors  of Table 11, listed for  the various . . . . 



. , '  ' 

Table 11. Strength of transitions f rom closed shells i n t e r m s  
. . 

. . * 
of the t ransi t ion stregg.th for  a single. part ic le .  

(, . . .  . . . . . .  * 
. . 

D. H. . Wilkinson, Physica 22, 1039 (1956).. 
. . - . . 

transitions allowed in j.j'coupling. These .must  be .applied to transitions 
, , .  

f rom a closed shell, which may be severa l  t imes s tronger  than a single . . 

.par t ic le  transitiori, due . to  correlat ions between .the equivalent .partii=les 
. . 

of thec losed  shell. l3  These s trength~s S are:given in  t e f m s  of thk:in- 
. . 

.dividual transition strengths and :.depend, only upon 1 . They account for 

the abi l i ty:  of 'the independent-particle transitions to effectively exhaust 

.13 
the.  dipo1e:sum rule.  

. , 

The remaining.important consideration in the .independent part ic le  
' '  

m o d e l  deac r ip tkn  of the giant resonance i s  the absolute e n e r g y  a t  which , 

. t h e  t rans i t ions  take :place.: This calculation h a s  .:be,en d o n e b y  Wilkinson 
. . .  . . . r 3 

a n d  a l s o  :by. ~bi id- '  ' and i s  s u m m a r i z e d i n  a review ar t ic le  by Wilkinson. .. . 
. . 

~ h e c a l c u l ~ t i o n ~  draw upon resul t s  of recent.optica1 model s tud ies fo r  
. . - 13 *1/3 ' ' 

determination of the r a d i u s  of the squarewel l ,  r = 1 . '2  X 10 Cm, 

and in t h e  u s e  of a"velocity- dependent r e a l  potential; . F o r  nucleon& near 
. . . . . . 

the . , ~ e r k i  surface, this velocity dependenceof the w d l  depth can be 



interpreted a s  an  effective m a s s  m* f m, P h i c h i s  chosen to  be 
. . * > . . ,  . 

m.* = m/2 a s  i s  suggested.by the Brueckner t reatment  of nuclear mat-  
. , - , ,  

t e r  . With these considerations, the -calculated values of Em a r e  in 

f a i r  agr  eeme.nt with .experimental resul t s  . . Wilkinsori has shown. that w 

. . 

a m o r e  r e a l i s t i c  .potentiag : with' a rounded edge, woul'd tend' to strength- 
/ '  , , 

. en the .agreement.  .. It  i s  emphasized that the .ability of .the .independent 

part ic le  model to explain. the .photonuclear giant resonance .leans heavily. 

upon the concept of a n  effective mass .  
13 

1. 7 
An alternative .explanation. that has recently be.en suggested 

re l ies  upon the collective' nature of the closed shells which contribute 

the .bulk of the .dipole strength. This approach takes into account the 
. .. 

. . . particle-hole interact ion involved in the .single .part ic le  . transition f rom 

a closed shell .  It i s  found .that due to the T .= 1 nature of the . interme- 

diate s tate  (required by .the.isotopic spin selection rule  .,for E l  transitions) 

this particle-hole . interact ion. is  strongly repulsive, which .tends to in- 
/ ' ,  

' Frease  the:energy of the in termedia te  state.  This improvement should 
. . 

a l low a mbrequanti tdt ive compar i son  between theory and experiment.  
. . 

C. Photonuclear Reactions 

In addition to .offering an  .explanation of the.tota1 absorption of . , ' 

gamma radiation, the .independent partidle model suggests a simple 

,picture.of .the .photoproduction reaction mechanism in. the..giant reso-  
. . . .' . 

:nance..region. The model pictdses a specific absorption transition a s  

raising a nucleon to a single .part ic le  state,..  from;.which i t  may decay 

direct ly (width I?), o r  through the action of the.ima.ginary. potential be 

amalgamated into a compound nucleus which decays by some .statistical 



mode. If the.width for the latter possibility i s  designated a s  2W (W i s  

'the :depth.of the .ima'ginary potential) and -if the..cross' s'ection.for the 
. . . .. 

specific absorption tr'ansitioh i s  0 I ,  'then t h e  direct reaction c.ross 

. section i s  given by = 0 ( I ? /~w) .  This res'onance direct emission i s  
. ! 

similar tp the -6zirljr direct emission of courant18 which, however, gave 

.cross  sections which were ,too: low due .to 'the .ne.glect of 'resonarice .ef- 

fects.  0' 'tail: easily:bk.found, using 'rabies I and..IP,. by comparing the 

transition strength of. the .initial transition picked out':' by the. reaction 

ki th  the total abboiption transition s t rength  found b y  weighting and 

summing al l  possible transitions fo r  the.nucleus in"question. This 

fraction of the .total absorption c ross  section:then equals 0 ' . This 

.picture .is, of course, only a f irst-order model. 

' .  ! D. . Ground-State Reactions 

Those ..photonuclear reactions which leave. the ,final nucleus in i ts  

g.round state a r e  especially interesting .for two r'easons. (1) Ground- 

state.decays by a statistical mode .are  .improbable. Thus i f  an appre- 

ciable,nuniber of ground- state: photoqeutrons .or .photoprotons a r e  ob- 

served .they .can almost certainly .be .k terpre ted a s  the :products of 
.. . 

some .form .of direct interaction. . (2) The.ground- state reaction can 

be.  reached .by me,ans of .  the :inverse. r eaction, in which a nucleon is  

detailed .balance relates the -capture and .photoproduction c ross  sections. 

E. Purpose of this Investigation 

27  
Thispaper .  presents the r e su l t s  of a study of the Al (p, y):Si 

28 

reaction in the .region of the :photonuclear, giant resonance,. , In order 



to 'facilitate .comp.arison with theoret ical  r-eaction. me,chanisms, c a r e  . . . . .  L ,  ,.,>*I . .,. . 

. .  was taken to obtain absolute ckos s s&c  tions . ..The. 90" .eFc.i:ta;tion.function 
. . . . . . .  . , .  . . - .  - .. 

was measured:.oker the.  ent i re  resonance . . ..region,. . In . . . . .  addition,..; , . . .  a n  angular . . .  . . .  

. , dis,tribution was o'btained, a t  E .= 8..7 .Me.v. Aluminum w a s  c,husgn a s  
, - .P" . 

. . 
. . .  

the -bombarded element  becaus i  .of the .availabilit.y, ease  of fo i l  prep-  . . . . 

. . .  .+r.ation; and isotopic.  purity of this element, and .the. general  success  
. . ' . ,.. - - . . 

of . shell  . model. c a l ~ u l a t i o n s  . . in  this region of. the -periodic table. : In ad- . . . . . .  . . . . .  . . . .  .. , 

' ditiqn, the c los ing  . . of the d5,.2. .subshell a t  siZ8 , . euggests that . resonance  . 

direct emission of gro&nd-itate nucleons :should . . . . . .  beespec ia l ly  ..strong 
. . . . . .  . . 

:for this nu.c.leus. . . . . .  . . . .  
. : : <  I . . .  . . . . .  . , . ,. , . . ,,. ( .  

i .  

. . ' .  - . . .  . . . . . . . .  . . .  . . . . . . 



II. METHOD 

A. General Descri~t ion 

The experiment was done at  Livermore, using the 9.0-inch var- 

iable- energy cyclotron as  a source of protons. Figure 1 i s  a photo- 

graph and Fig. 2 a schematic diagram of the experimental arrange- 

ment. The beam from the cyclotron was focused through a collimator 

onto the foil and then collected in a lung Faraday cup, The detector 

was mounted on an angle changer, with the crystal face 16 in. from 

the foil center. It i s  shown positioned at  90° to the beam line. 

The foils were mounted on a foil rack and changer mechanism, 

and were selected and positioned from the control room. The rack 

included a blank which was used for background measurements, and a 

plastic foil which, when inserted into the beam, served as  a source of 

4.43-Mev gamma rays. These originate from inelastic scattering of 

the incident particles off carbon nuclei within the plastic, and were 

use& ik conjunction with a tail pulser, to calibrate the energy of the 

2 y spectrum. Aluminum foils of about 20 mg/cm were used, which 

give an. energy width af about 1/2 to 1 Mev, for the range of incident 

particle energies used in the experiment. The exact foil thicknesses a r e  

given in Table UI. 

B. Faradav CUD 

The current- collecting cup was designed with the following con- 

siderations in mind. 

(1) Because of Coulomb scattering from nuclei within the foil, 

the beam of incident charged particles i s  essentially defocused at  that 

point. In order tq obtain an accurate current reading, the cup, a s  seen 



Fig. 1. Photograph of experimectal setup. 



1 
. 4  
Na I 

crys ta l ,  

' Fig. 2.  Experimental geometry. (Not to scale) 



f r o m  .the .foil, must  subtend .as  1arge.a  solid angle - a s  pos:s-ible. With 

a n  entrance ape r tu re  .of 5 in.. placed 20 in. . f rom the .foil, the .fraction 

of incident part ic les  scat tered into angles la rge  $enough to m i s s  the -cup 

:was c.alculated. to be . l e s s  than 1. 570,. Sinc&.larger e r r o r s  a r e  assigned , 

to the.data for  other reasons, no correct ion has been inade,for this 

effect. . . 

( 2 )  The ,cilp, ac t ing  a s  a. hea.m stopper, w a s  a sc;i.~ce .ul back- 
. . 

ground. With the design a s  shown in.,Fig. 2, most  of the.beam i s  c.01- 

lected a t  the r e a r  of the cup and is shielded f rom the detector by a long 

path of lead. Carbon was chosen a s  the cup mater ia l  because of the 

12 
high (- 18 Mev) C (p, n ) ~ "  threshold.   he background radiation reach- 

. . 

ing the detector . f rom this source .was .measured for various inctident 

par t ic le .  energies  and found to be .  sufficiently .low, with.the .design a s  

shown. It: consisted a lmost  entirely of the .4.43-Mev inelastic y r a y  
. .. 

13 
f r o m  ;;c12 .: ~ h & . e f f e c t  of neutrons crcc'ated in the.  c 1 3  ( p , n ) ~  reaction ' 

.. , 

was not noticeable. The. charge. collected in the .cup was measured by 

a current  integrator,  and .recorded for each run. .," 

C. . Gamma -Detectors 
, . .  

\ , . 

Two'detectors were  .used in the .course .of the .experiment. The 
. . 

I '  

f i r s t ,  diagrammed in ,  Fig. .  3,. ' consisted' .of a 4-in. -diam .by 4-in.-long 
. . 

.NaI(Tl) .c.rys tal, viewed by. a Dumont 63 63 .photomultiplier. A light- 
. . 

reflecting disk of Teflon was placed against the c rys ta l  face, around 

.the. photocathode3.0f the-photomultiplier. tube. The.unit was placed in a 

light- tight cylinder, which a lso  served to .hold the .photomultiplier in  

.. . position and was wrapped with .a magnetic shiqxding material .  The 

detect0.r was placed in a lead shield, 2 .in. thick around the..crystal, 



Fig. 3 .  'First detector with Pb collimator. . . 

Maanet ic 



and formed into a collimator in front of the crystal ,  as shown. The 

shield reduced background, and by collimating the y rays  along the 

.axis of the.crysta1, reduced .edge .effects and bremsstrahlung losses,  

improving -the .resolution .of the detector.  (Sek..Fig.. 6. ') 

The second .detector was 0btained.fror.h . ~ a r s h a w  Go.. in  t ime -for 

the. final data- taking, run;. It ,c'onsisted of a 5- in. - diam by &in. -long 

NaI(T1) c rys ta l  and dumont :63 6 3  photom;ltiplier in a ifmatched.- window" 

a ~ s & m b l y . , ~ ~   his design betie,= resolu t ionfor  la rge  crys ta ls .  . 
. 

It was a l so  .use& in .a. s imi lar  P b  .shield; 

D.-. ~ l e c t r o n i c s  

A block diagram of the detector electronics i s  given in Fig 

After init ial  amplification by the preamplif iers ,  pulses f rom the detector 

were  shortened to 0 .  5 psec by a clipping line, which was placed in the 

control room for convenience. The pulse-height spectrum was then 

,passed  through a diskriminator,  amplified, . and'displayed on an Argonne 

. . 
t y p e  .pulse'- height analyzer.. 

It was found necessary  'to use '  three.preamplif iers  .in order  .to 

obtain,.pulse heights sufficient for. operation of .the biasing diode,' o r  
.. . . .  ' 

discr iminator .  Care  .was taken to .operate:  the .preamplif iers  below 

saturation. The- adjustable dis.criminator .was used t o  keep -pulses  be- 
. . 

low -the, region of in teres t  f rom reaching the'.pulse-height analyzer.  ' 

. . 

A.major  problem in the .experiment was the :elimination of "pile- 
. . . . 

upi1  pulses f r o m  the spectrum. These a r e  caused by the coincident 

a r r i v a l  a t  the c rys ta l  of seve ra l  low-energy photons o r  neutrons, which 

can  add together to give a n  apparent high-energy pulse. The detector 

was exposed to a relatively intense .flux of low-energy photons and' 
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neutrons which originated in the .beam stopper, the collimator, and the. 

foil itself. By removing .the..foil, i t  was determined that the .grea ter  
. . 

p a r t  'of this background was due .  to the .interaction of the .incident par  - 
t ic les  with nuclei within the. foil. These. interactions can  take . the.form . - 

.of inelas'tic colli'sions with the subsequent emission of a deexcitatio'n 
. . 

gamma ray, or ,  a t  the higher energies  used'in this experiment, of 

neutron production. In either case,  photons o r  neutrons a r e  produced 

which, when captured i n .  the .crystal ,  pr0duc.e. a Pow- energy. pulse.  The 

pi l ing u p  of these smal l  pulses can be minimized by r,educini th'e pu l se  
, .  . 

l eng th  b y m e a n s  of the clipping line, .. .and by decreasing the current-.of 
. . 

incident part ic les ,  i. e . ,  , spreading out tLe.pulses over , a  longer t ime 

.interval. It was found .that with .a .pulse .length of 0. 5 psec,,  a .proton . . 

. cur rent  of 0.05 to 0. 1 pa. produced .no:pile-up .counts in the,.,sp.ectrum: 

E.. ., ~ a c k ~ r o u n d  
, '  

?. 
Above, E = 15 Mev, the only .background was found to be.due .to 

I Y 

c o s k i c  radia t ion .  Measurements with the foil out showed that i t  was 

independeit  of the. beam and of 'E .. . It  was equal to 1.68 cbubts/min- , 

Y 
Mevefor the. f i r s t  detector,  and 2.3 1 coun t s /min-~e-v . fo r  the .large'r 

, . 

detector.  

A typical pulse-height spectrum is reproduced in-Fig. 5, and 

shows two gamma rays:  the ground- s tate  gamma r a y  yo, and the gamma 

. r a y  y resulting ;from. dee.xcitation through the f i r s t  excited s tate  of 
. . 

s i Z 8 a t  1 .78Mev.  . . . 

The.detector electronics was found to be. l inear ,  by a measure-  

ment  of pulser  voltage .vs channel number. Thus a. comparison of 
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Fig. 5. . Typical spectrum (5 in. X 6 in. crystal). 



pulser  voltages for  the 4.43-Mev carbon y r ay  a n d  either yo o r  y 
: . . ;, . . , . . . . ,  . ,:. ..-::c ' ..... ' 

deteimined a n  energy scale.  E and E a r e  known f rom the reaction 
Y o  Y1 

kinematics (i. e. , E = - 27  E + 11.6 Mev and E = E - 1.78 Mev). 
Y o  28 P Y1 Y o  

Since the .gamma peak. position. cannot be determined exactly, an  erkor  

ex i s t s  in  the .energy calibration. This uncertainty . is  taken into account 
.. . 

i n  the data reduction procedure. 

The s t a t i s t i c s  nn m n s t  n l n s  were a,hniit. a ,s  shnwn i n F i g .  5. T T S I I -  

a l ly  100 counts/channel were ?btained;.over.. the  y peak in about 30 .o  
minutes running t'ime. 

In o rde r  to in terpre t  properly.the.obser 'ved spectra,  a measure- ,  

ment  was, made of the .line shape, ..i. e . ,  the.pulse- height spectrum of 

: t he  de tec to r fo r  a monoenergetic y r a y  of the appropriate  energy. A 

3 .4 
converlierlt soui.c'e of' 19. 8-Mev photons was available '  f rom the 1-1 (p,y)He 

1 

reactcon, bsing the Livermore Co.ckcroft- Walton accelerator  a s  a source.  

, . 
of A' tritium-loaded titanium .target was used. The .proton 

. . 

energywab  350 ke; which i s  well below the threshold for  a l i  competing 

reactions;.: thus the source . i s  reasonably clean, and .appropriate-for  a 
. . 

. . 

line- shape measurement .  The .geometry and electronics were ,identi- 

c a l  to thoge.us'ed in the.experirnent. 

The : ' results of the . l ine-shape measurement  a r e  shown in .  Fig.  6. 

The.genera1 fea tures  a r e  interpreted a s  follows. (1) The.main peak 

is ,composed of two-:unresolved ,peaks. The shoulder on the upper 
f 

ener,gy s i d 6 i k p r k s e n t s  .. , the :full energy $ak' a n d  the peak  displaced 

down by 1/2 M e v  i s  due to the escape of  one annihilation quantum. (2) . . - . . . 

The asymmetry  on the .low- energy s2de of the. main..p.eak i s  due to the' 
. . . . . . . , .*. ._ . ', 
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escape  of low-energy brem.sstrahlung quanta., (3) ~ h e . l o n ~  -flat  ta i l  . 
. . 

i s  due to Compton scat ter ing and edge effects. 

The tail  was found to remain.f la t  down to E .= 5 M e v . f o r t h e  
Y . . .. 

, i i r s t  detector and 8 M e v f o r  the second detector.  Below this. energy ?,' 

& r i s e  was observed, which was found to b e  .due to a neutron background, 

. part ia l ly  .beam dependent., The.proximity of the cyclotron explairls the 

gene~3.1 harkgrn i~nd ,  while the beam-depelldent neutrons could be  ,pro- 

3 
duced by the d(d,n)He reaction resulting f r o m  deuteron contamination 

of the proton beam. F o r  purposes of calculating absolute c r o s s  see-  ' 

tions, the assumption was made that the ta i l  remains  f la t  down to z e r o  

energy. The ratio. of counts under the extrapolation, to total counts was .'' 

found to be . O .  16 .foi the f i r s t  detector. and 0.24 for  the. second. 

F igure .6  shows the .be t te r  resolution obtained by the l a rge r  c r y s -  

. . 
ta l  in a matched-window assembly.  It shp)ld be noted, however, that 

different phqtotubes were  w e d  i n  each detector and a slightly longer 
. , 

pulse len i th  was used with the second detector.. Thus the bet ter  reso-  

lution may be due par t ly  to the associated electr,oniic.s. 

It is a l so  c l ea r  f r o m  Fig. 6 that the Pb  collimator provides a 

'considerable irhprov&nent i n  resolution. By confining the incoming 

-photons to' the axis  of the c r y s t a l ,  edge effects a t  the s ides  of ' the c r y s -  

ta l  a r e  great ly  reduced. Bremsstrahlung los ses  a r e  reduced for  the 

s a m e  .reason: Energy losses  can  s t i l l  occur a t  the -back -face of the ' 

. crystal ,  . however, which .accounts. in  . pa r t  for  the -low efiergy .tail. . . 



,.. . . . , . . . . . ,  H. . Detector Efficiency . , .  ' 

The detector efficiencies a r e  calculated for E = 19.8 Mev to be 
.Y 

= 0. 81 for the f i r s t  detector and E = 0.91 .for the.second, where.  T T 

cT = no. of y l s  detected/no. of yls  incident. The relation E = 1 - eerS 
T 

2 
was used; where 6 i s  the crys ta l  thickness in  g/cm and p i s  the m a s s  

absorption coefficient. The solid angle R(det) subtended by the detector 

was assumed to be R F where no = (i/212 r/(16j2 and F i s  a .  factor 
0 

which co r rec t s  for  imperfect collimation. Since the complete line shape 

i s  used in the data-reduction procedure, i t  i s  not necessary  to compute 

a peak efficiency (i. e . ,  the probability that an incident y' gives a count 

in the peak of the line s.hape). 

The collimation correct ion factor F w a s  computed f rom the for-  

mula 

- 1 
where.p is the l inear absorption. coefficient (in. ) in Pb, 8 = 1/3'2, 

0 
16 ,g . =  '1/22 and r = - - 1 

1 This relation was derived f rom 
cos 8 2 s i n 8  ' 

the figure below and represents  an  increase  in the effective solid angle 

due to photons transmitted through the Pb. The integral was evaluated 

: ;.., 
. . numerically for  various values of corresponding to the y energies . 

. . 

, . 
: :  

detected. F(Ey)  is plotted' in Fig. 7. No correct ion was made for 
. . .  . . 

; !  

. I inscattering o r  other secondary effects. 



Fig. 7. Collimation correct ion factor F. 
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. . 

I. Data Reduction 
. , 

The.problem .of ?educing the  measured raw spect ra .  to . c ross  sec- 

tions with e r r o r s ,  was programmed for. the IBM 650 computer a t  

Livermo.re. The.procedure : inv~lv&d .the. following :steps: 

(1) An energy scale  was put on the spectrum, a s  previously de- 

scribed:. The. flat background due to cosmic rays  was then subtracted 

and the . resultant sgectrum,.printed out and .plotted (see.Fig.  9).  . . . 

. (2.)' Using..the..line shapk :measured a t  19. 8 Me.v,: a new.line shape 

: .was then ..generated for E . . F o r  this the assumption was made 
yo 

.that the shape .of the . ,curye'does . .. not chaige  .with .energy. The procedure 

. i s  i l lustrated in Fig.:. 8. . . 

( 3 )  A square r e  s.olution function with width .equal 'to the .energy 

thickness of the.foi1 was then. folded into.the .line shape. This modified 
. . 

the :curve somewhat, a s  shown .i'n,.Fig. .8 .  
. . .  , 

' .  I . '  

(4) This :final line s h a p e  was then compared .with .,the .measured  ' ,  
I . I  

.. , . .  ' 

spectrum.by summing .the..counts in the .leading.edge of both.the :meas- 

ured .y and the-  line shape. The rat io of these spectrum c.ounts to..line 
, .O . . 

shape:counts is then .a :measure of the .relative c r o s s  section. u (rel) ,  . , .o I 

, for.-production of the.. ground state  y .ray. 

(5) u ( r e l )  was used to normalize.  the .line shape, whic.h was' then .o 
subtra'c ted .from the spectrum, leaving a residual  spectrum .c.omposed 

. . 

. . of t'he f i r s t  excited s tate  y ray.  

(6) Using,E = E - 1.78Mev,  the.above:procedurewas then. 
0 y1 ' Y o  

repeated f o r  y (i. e . ,  . a new line -shape was generated .for E ; . folded. ' . 
1 .  Y1 

.by -the..foil width, compared with the . residual  spectrum yielding u 
1' 

normalized by. u , ~  and subtracted f r o m  -the spectrum. ) 
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The resu l t  is a final subtraction spectrum and the - c r o s s  sections 

u ( r e l )  and a (rel) .  , Since the : la rges t  uncertainty.in the .above:proce- .O .1 
. . ,  . 

dure  was thelocat ion of the y peak (i. e . ,  the absolute energy de ter -  . o  
mination), the p r o c e s s  was repeated for  channel shifts of - 3, - 2', - 1, 

t 1 ,  t 2 ,  and . + 3 .  Each of the'se yields a subtraction spectrum 'with c r o s s  

sections.  A. spectrum a n d  t h e  .corresponding -family. of s'bbtractions 

are .plot ted ip  Fig.. 9. The.best  subtraction curve,  then, determines 

u and u The.cross  sections corresponding .to .the ..first curve to .O .1' . 

ei ther  s ide .of this "bestt t .  subtraction which i s  non-zero outside s ta-  

. . 
t ist ics,  a r e  a m e a s u r e  ,of the-  relative e r r o r  .in u and u .O .1' 

F o r t h e  data of Fig.  9, values of u = 0 . 2 7 * . 0 . 0 3  and ~ ~ ~ 0 . 4 4  
0 ,  

* 0.04 were  chosen. F o r  most  of the data, a one-channel shift was 

sufficient to produce .an unreasorlable .gubtracetion; :on some .of the data, 
: . .. . . .  . . . 

however, a ,shift of up to 3 channels was nec'essary, whi'ch i s .  reflected 
. . . , 

. . 
in l a rge r  relative . e r r o r s  on these'points.  .  he :e r ro r s  de te rmin ld  in 

. this fashion we.re . larger ,  .in general,  than the s tat is t ics  on the'. sum of 
. . 

counts over the leading edge of the measured  y ray.; 

Good subtractions ,were .obtained over the .ent i re  .energy. range of 
. . 

the' gammas (% 15 .to 24 Mev), which implies that the l ine shape did not . ' 

. . 
change hoticeably f r o m  the .one .measured .a t  . E  = 19.8 Mev. 

. . ,  
. Y 

C r o s s  'sections. were  finally computed f r o m  the ,formula : 

where 

= , atomic number of, foil mater.ia1 
. . 

No = Avagadrot s number 

2 
PA 

= thickness of foil in g/cm , 



Fig. 9. Spectrum with subtractions for  several values of AC (channel 
shift). 
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q = number of p a r t i d e s  incident (proportional, to .charge ,col- 

lected in c,up) 

Q(det) = solid .angle. subtended .by -the':detector a t  the :foil 
. . 

e (E ) . = total efficiency of detector 
T .Y 

. . 

1 %  ' = counts  in  line s h a p e  u s e d  in .  computing o(re1). 



. .! . :  .. 111. RE.SUL:~.'S . . .  . . , . . , . . , . .  ' *  
: ..., ; ; . : . ,  . - :  ... . A  

. . 

The . r e su l t s  ' a r e  tabulated, i n  Tab1,e~:III and.:the6xcitationfunctions 
. . 

presented :graphically .-in F i g . ;  .lo.. . The:gain'ma-raY:angula:r'd,~str.ib'utions, 
. . . . 

. .. 
measured a t  a pro'ton energy of 8:; 7 . ~ e v , : . ' a f &  :sho*n:.iri Fig.  ..1-1.. . The 

angular .accuracy on ,these...r~ieas.ure.n-l'ents.:wa:i i :5?.. i ., The. energy .thj.ck- 

ness  of the foil i s  given' for each measurement  'in Table 111 and shown 
. . 

I '  

a s  horizontal flags in Fig. 10. The vert ical  flags represent  the rela-  

tive e r r o r s  dete.rmine.d by the subtraction.proc:edure~. 
. . 

In addition to the .relative e r r u r s ,  an uilcertninty c x i ~ t s  in'.the 
. . 

absolute value :of the ' c ross  sections, a r i s ing  .primarily. .from the ,line- 

shape -extrapolation to zero.  energy. The assumption that the tail  r e -  

mains .flat  down ,to z e r o  energy i s  justified, in part ,  by calculations 20 

of the .line shape expected for  .high- energy gammas in la rge  :crystals .  

They .show the tail remaining flat, '  o r  decreasing slightly, with decreas-  ' . . 

ing energy. The neglect of secondary effects, such a s  Coillpton scat-  

tering of incoming photons by the . P b  collimator, alsu,inLruduces an  . 

e r ro r ' .  I£ the rat io  Q£ 1/2 the area.  , ~ ~ n d e r  the.extragolation. to :the .total 

a r e a  .of the. l ine shape . is  used .as  a measure  of the extrapolation e r r o r ,  
. . 

a value :of * 10yo~oc.an be.assigned to this uncertainty. In view of this and ' 

the .other assumptions made .in computing the . c ros  s sections, . a n  .over - . 

all ,absolute.efror:of * 1.5% would appear to be , real is t ic .  



Fig. 10. Measured cross sections. 
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Fig. 11. Measured gamma-ray angular distributions. E = 8.7 Mev 
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. . 

Table LII. Measured 90" cross  sections (p..barns/sr). 

Run 1: 4 X  4 "  crystal  
2 - 23.  0 5 mg/c.m .foil 

E 
-P. $0 .. 

(Mev) 

Run:2: 4  X  4 "  crystal ,  
2 :  

.2 1 . 9  7 mg/cm: .foil 

L 
. p do d,o (y ) -(y ) (Mev) : dS2 0 1 .  



IV. DISCUSSION . . 
. . . . .. _ ' . : 8 

A. Resonance Behavior 

It  is clear.  fr'om ,,Fig. 10 that:the .90° excitation functions for  bdth 
. . 

yo 'and y1 displayt l ie ,giant  resonance behavior. The. y curve appears  . . 0 

to peak a t a  proton energy of'about 9 Mev (E x .20 Mev) and .has a full 
yo 

width a t  half maximum of about 5 Mev.. The y ' resonance,, huwrvei : ,  
1 

" . .. . 
occurs  a t  a higher  proton energy. F r o m  Fig. 10, E,,(yl) = 1 0  Mev . . 

'> . 

and r ( y  l )  .a .4. 5.,Mev. . This upward shif t : in  the :peak position of i( is 
1 

. . .1 11 '12- . 
a l so  evident f rom themearure 'ments  of G o v r  .on thc B (p,y)C. 

' . .  . . - . . -  

reaction. . . . .  .. . , . , .  - . . .  . 

It should be .pointed out that the Wilkinson model predicts  the, 

,observed giant resonance behavior of y and can explain in a qualitative 
. .. . % .l. 

27 
aense the '  ene.rgy shift noted above.  he i n v e r s e  .of the A1 (p,y l)Si 28* 
'. . . . . - . . . . . . .  , . . .  . . ,  , 

. . .  . . 28*. 27 
. ' react ion would be the (experime.ntally unrealizable) Si  ( y ; ~ ~ ) ~ l  . . . . , 

> . r  
. ... . , .. 

reaction. . 'If. the f i r s t .  s ta te  cbnfigurstion. ef ~i~~ involves the 

'r&rrarigcmant of only' a few valerice nucleons; then the'bulk -of the 
. . 

I 

. ; .  
single-pa'r.ticle transition. r e spons ib le fo r  the dipole absorption would 

, . 
b e  r elntively ugafiec ted, and the absorption behavior would bk s imi lar  

to that of 'siZ8 in i t s  g i o u ~ d  .configuration. In- b rde r  t6. decay t d  the 
. ,  . . . .  . . : , 

ground state  of ~ l ~ ~ , ' . h o w e v e r ,  . the . proton e x ~ i t e d  f ro rn the ,&re  must  
- .  

a b s o r b  the excitation energy (1. 78 Mev in the c a s e  of siZ8),  thus shift- 

ing the resonance up in energy-by this amount. The different potential 
. . . . 

generated by the excited r$teconfiguration may; o n  theo the r  hand, - 
change the -position of the single-particle levels responsible . for  the 

absorption . . Thus the,upward shift of.Q(excitation) should be only ap- 

.proximately correc t .  



The: fine s t ruc ture  .exhibited .by,both curves  was a lso  observed..by 

.Gave..;' It ,hag 'been .noted .by  ilki ins on tha t  this .behavior :is.'to :be.:'expected . 
' 

f rom the viewpoint of the independent part ic le  model. l3  1n contrast ,  
I 

the ea r l i e r  collective model would predict  a smooth resonance curve. 

B. Angular Dist,r,ibutions 
. . 

The. y angular distribution (see..Fig. . 11 ) i s  isotropic,  within 

statistics,  whilethat .  for y appea r s  to be asymmetric., falling off a t  I 

the back angles. These measurements  were  taken a t  ,E = 8. 7 Mev 
P 

which c o r  re.sponds to the .main .peak of .the y, resonance... . The' spread 
0 

in ,proton energy,. du8 t o  tK6. foil thickness, was 0.9 Mev. 

The- fo rm of the angular distributions 'expected fro& di rec t  cap-. , 

ture  processes  was . .:first worked out by Courant l8  and can  be derived 

easily f rom irlgular correlat ion theory. P u r e  . f -  wave absorption.takes 
. . 

2 2 
the.form '1 + sin 8 whi1e:p-wave .absorption i s  given.by . l  + (1/6) sin 8 .  

The. lat ter  possibility i s  favored. (at E = 9, Mev) by about a fact.or of 3 
. P . , 

. f rom b a r r i e r  penetration .considerations. However, i t  has  been.pointed 

' out b y  ~ i c h l e r '  l 'that interference ef fec  $s cah  kad i fy  the f ? r m  of the 

angu la r  distributions,, which'may account for . the.apparent  isotropy of ;" 

the  y o  angular distribution. A detai led.  t reatment  should a l s o  consider. 

.13 ' 

the:averag.ing effect .of the ..finite, .source (foil) thickness.. 

2.8 
C. The .Photoeffec.t in Si 

.F A.d.etailed balance :calculation was ca r r i ed  out on..th.e y data. 
. < 

. 0. 

F o r  this purpose the smooth curve drawn through the y points in  
0 

du Fig. 10 was used and the assumption was made that u(p,yo) = 4n a 
(90'. ). In view of the angular distributions measured in this experiment 



and ,those previously measured a t  lower energies  by,:Gove,, this a s -  

sumption is not too .bnreasonab,le,. The siZ8 (yip )A127 excitat..$on func- .o . 
3 

tion resulting .from .this calculation . is presented,.in,,Fi-g.. 1.2. .. . ,: : 

28 . . F p r  'the Si nucle'ug, the dipole sum.r-ule:.gi,ves u,.:. (absorption) - 
int 

2 
= 4 . 4 2  Mevrbarn f o r  a 1owe.r l imit.  ~ e a s u r e m e ' n t s  by,. Jo.hans son . on 

. . . , 

the integral yield of photoprotons gave u i n t ( ~ , p )  = 0.27 Mev-barn, while 

h 
cr (y,n) has been found to be 0. O f  Mev-barn.  For comparison, a11 

int 

integration, b v e r t h e  siZ8 (y9'po)~.127 resonance of Fig. i 2 y i e l d i  

(y9p i )  = 0 . 1 0  Mev-barn. Thus i t  appears . that  * 1/4 of the total in.t . 
28 

absorption and .fully 1/3 of the .pliotoproton production in Si proc.eed s 

via the ,(y,p ) mechanism,; 
0 

This ra ther  '1arge.proportion of maximum'.energy.protons seems 

incompatible with a purely s tat is t ical  decay mode. Neutron evaporation 

takes the :form n ( ~ )  a Ee. w h e r ~  T r e p r e s e n t s  the:nucleai tem- 

.perature.  . Although :a .proton decay spectrum ~would~.have a differrent ,: . 
. . 

shape, due .to Coulomb effects 'whish tend to s);.i.ft the :peak 'of the' evap- 

oration spectrum to higher energie 5, maximum n e r g y '  decays would 
. . 

s t i l l  be extre.mk.ly improbable'. It does not appear  to .under- 

stand the observed resul t s  with this mechanism. 

On the other hand, the resonance-direct reaction mechanism 

.offers a lucid. explanation of' the.  experimental resul ts .  By the.use of 

Tables I and 11, a l i s t  of possible absorption transitions wap compiled, , ' 

. . 

'with .the :percentage -c.ontribution of  .each 'transition .to :the. total absorp-  . 

. . . . 
, . 

t i o n ,  crqs 4 se,ction .given:ih :pareqtheses .. 



' ~ i ~ . I 2 .  :Si 28 (y,po i*127J excitation function from detailed'balance. 
. . 



Transition 

Noting that only.the .firs1 three transition0 (those f rom t h e  .uppermost . . 

o r  dgI2 subshell) r e s u l t  in  the concentration of the entire' excitation 
. . 

energy in a single nucleon, i t  is c l ea r  that 'the ld5 / i '  + . l f  transition 
?/2 

should contribute the bulk..of the ground- s tate  . react ion.  ~ i ~ ~ ,  : how.ever, 
. . 

i s  a self- cyonjugate nucleus (N = Z), which implies,  equal effective 

charges for  .both neutroris and protons. Thus 1/2 :of the. table value ;or 

about 3 6% of the absorpt ions .  resul t  in a proton being raised f r o m  the 
, , , 

d,  , to the .f subshell. 
. J / L  7/2 . . . .  . . . 

Using the .expression om = ir'(r/2 W) implied .by .the .simple , form 
. . 

of, the.  Wi+inson model, a n  est imate c a n  now be made o f  cint(y,po). 

F r o m  the above considerations,, d = 0 :3 60.int(absorption) 5 0. 1 5 Mev- . . . .  

barn .  I' can be :determined .fr:om t h e  formula1 r = ( 2 k i i 2 / ~ ~ . ) T , ,  where, 
. . 

T' .represents  . the h a r r i e r  penetration,probability for f-wave .protons, 

k is the .wave .number of- the .emitted .proton, .M is the .proton mass ,  and 

R i s  the effective radiusZ2 o f  ~ 1 ~ 7 .  By means of the formulat ion of -3 

weisskopfZ3 and the exact Coulomb wave functions tabulated by Bloch, 2 4  

T was calculated for 9-Mev protons, (corresponding to the ,peak of the 

yo resonance) to be 0.2.  With an assumed r e a l  well depth of 30 Mev,. 



i t  i s .  found that  rrr .2W rr -3 Mev. . . ~ h u s  i t  i s  clear  that' r / 2 ~  I;. 1 and 
& I  . . . .  

o (y,pO) i. 0. 15 Mev-barn, es  sentiallyin agreement with theresu l t s  
.int . 

. . , . .  . 

of this experiment. 
.. . . . . . '/. ( . . . . , 

; 1t 'should b e  ..emphasized. that this prediction is  an . eb . timate only ' . 

. . . . 
and .cannot be .taken. too 'seri&sly. A -  dktailed theoret ical  anal$sis has 

. .. ' 4 0  : 
been' made -onlyfor 01.6 and- ~a , and uifortunately does not appear . . .  , '  

possible :ior other nuclei a t  .pi-es&nf. 5 '  " Even withthe r a t h e r  crud$ 
. . 

,. . 

assumptiorp of thk  simple thkor y':liowaver, the :agreement must  be 
. . ' 

.considered .as strbn'g ,evidence,for the. resonahce-direct mechanism, 
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