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DESIGN CRITERIA FOR STEEL IN NUCLEAR REACTORS 

by 

S. H. F i s ted i s 

ABSTRACT 

C r i t e r i a for s t r e s s analysis and s t ruc tura l design 
with s tee l for the c r i t i ca l components of nuclear plants are 
presented . An effort is made to in tegrate the effects on the 
s t rength of s teel of the coexisting phenomena, such as m e ­
chanical and t he rma l loads, s t r e s s cycling and fatigue, c reep 
and c r eep rup tu re , i r rad ia t ion and loss of ductility. 

Extensive use of the plas t ic region of s teel is made 
for the accommodation of t h e r m a l s t r e s s e s . The concept of 
cumulative damage in the plas t ic region is expounded for 
t he rma l fatigue and c reep . 

A short descr ipt ion is given of the five avenues fol­
lowed by sc ien t i s t s all over the world for the development of 
a theory governing the s t rength of m a t e r i a l s . A par t icu la r ly 
promis ing approach is taken up that at tempts to es tabl ish a 
" theory of fatigue" based on exper iments . 

I. NOTATION 

1 

•̂ t 
£ y 

St 
Sy 
Si 
Smax 
Smin 
Smean 
Salt 
Sf 
Sv 
Ss 
Su 

init ial s t ra in 
t he rma l s t ra in 
yield s t r a in 
t he rma l s t r e s s ( rea l or imaginary) 
yield s t r e s s 
init ial s t r e s s 
max imum t h e r m a l s t r e s s 
min imum thernaal s t r e s s 
miean component of t h e r m a l s t r e s s 
a l ternat ing component of t h e r m a l s t r e s s 
fatigue l imit of a l ternat ing s t r e s s 
max imum safe a l ternat ing s t r e s s 
max imum safe mean s t r e s s 
ul t imate s t rength 



II. INTRODUCTION 

The establ ished c r i t e r i a ref lected by the methods and procedures 
employed in engineering design with s t ruc tu ra l s teel a re not sufficient in 
nuclear applicat ions. Extensive implementat ion is needed to take into 
account severe environmental r equ i r emen t s and the behavior of steel past 
its yield point. 

The need for the new design c r i t e r i a does not extend to the conven­
tional pa r t s of nuclear plants . It only per ta ins to the components that a re 
unique in these plants or to those ord inary components that a re expected to 
satisfy unique r e q u i r e m e n t s . Under this category would definitely fall 
equipment such as r eac to r vesselSs r eac to r gr ids (support s t ruc tu re s for 
fuel e lements) , fuel cladding, piping sys t ems (p r imary and secondary, if 
any), heat exchangers , p r i m a r y containment s t ruc tu re s , supe rhea te r s , 
evapora tors , and a host of other l e s s e r components that could vary accord­
ing to the type of the r eac to r or the overa l l plant. 

An effort is being made through theore t ica l and exper imenta l work 
to re lax design c r i t e r i a for the secondary containment ves se l s ( spheres 
and cyl inders) of nuclear p lants . These ves se l s have to conform to s t r i c t 
requireiTients imposed by the ASME Code for Unfired P r e s s u r e Vesse l s 
Substantial re laxat ion of the ASME Code provis ions for these large vesse l s -
through bet ter evaluation of the containment objectives and util ization of the 
plast ic range of the naaterial - could amount to considerable savings, 

III. ORIGIN OF STRESSES IN NUCLEAR COMPONENTS 

P r i m a r i l y , s t r e s s e s in nuclear components originate by the applica­
tion of mechanica l loads and by the r e s t r a i n t of t he rma l expansion or con­
t ract ion. The f i r s t is a b road ca tegory including all types of loads and fluid 
p r e s s u r e s . S t r e s s e s can also r e su l t upon the elimination of external loads 
or reduct ion of t e m p e r a t u r e in a component, if such component had substan­
tially advanced into its p las t ic range or had crept sufficiently. 

Exper ience with c r i t i ca l components in s tee l for nuclear r e a c t o r s 
has revea led that the here tofore sa t i s fac tory e las t ic theory is not adequate 
to provide c r i t e r i a for design. At t e m p e r a t u r e s well above 650°F - r educ ­
ing the yield point of s tee l and placing an upper l imit on the mechanical 
loads that need be provided for - the e las t ic range of the m a t e r i a l is easi ly 
t r a n s g r e s s e d . Efforts to r e m a i n within the e las t ic range of s tee l in some 
very c r i t i ca l and eventually inaccess ib le components r esu l t in such thick 
c ro s s sect ions that se r ious doubts as to their meta l lu rg ica l quali t ies a r i s e . 
One should consider design c r i t e r i a which do allow yielding in such cases . 



At f i r s t glance, it may appear that economics is the motivating force 
fostering the uti l ization of the plast ic range of steel in nuclear applications. 
Although this may be the case with the large vesse l s intended for secondary 
containment, it is not so with the multi tude of s t ruc tu ra l components a s s o ­
ciated with the d i rec t operat ion of the r eac to r . The cr i t ica l nature and the 
inaccess ibi l i ty of some of these components make it economically feasible 
and prudent to use m o r e s teel if this were to insure a safer performance . 
Employment of thicker sect ions , however, does not always guarantee safer 
per formance and, in cer ta in cases , such as piping sys tems , may inc rease 
th rus t s and s t r e s s e s at connections. 

The developing philosophy for the s t r e s s analysis and s t ruc tu ra l 
design of these components is to differentiate between s t r e s s e s as to their 
origin; to t r e a t them independently; and to combine the r e su l t s (not n e c e s ­
sa r i ly the s t r e s s e s ) judiciously. 

IV. STRESSES DUE TO MECHANICAL LOADS 

S t r e s se s in nuclear components due to mechanical loads constitute 
the more conventional pa r t of s t ruc tu ra l design. These s t r e s s e s may r e ­
sult f rom gravity loads, such as those applied by the fuel e lements on r e ­
actor gr ids ; from p r e s s u r e s p resen t in r eac to r ve s se l s , heat exchangers , 
supe rhea t e r s , and evapora to r s ; from th rus t s , tors ion, and bending, such as 
those found in piping s y s t e m s , tube bundles, and other combinations of these 
and other effects. In this situation, the c r i t i ca l s t r e s s e s are kept cons ider ­
ably below the yield point of the m a t e r i a l by the application of a suitable 
factor of safety cor re la t ing the working s t r e s s to the yield s t r e s s of the 
ma te r i a l . In dealing with s t r e s s e s of t he rma l origin which may be super ­
imposed on the above type, advantage should be taken of relief by plast ic 
flow. It appears that cor re la t ion of the loads to be accommodated to the 
ul t imate s t rength of the mate r i a l l ^'^) through the concept of load factors is 
more r ea l i s t i c . The factor of safety or load factor to be employed can be 
judiciously co r r e l a t ed with the impor tance of the component, its r e p l a c e -
ability, and the other environmental and functional fac tors , such as i r r a d i a ­
tion, r e v e r s a l of s t r e s s , fatigue, and c reep . 

The r a the r complicated geomet r ic configurations of the s t ruc tu ra l 
components in nuclear instal la t ions inevitably resu l t in a reas of severe 
s t r e s s concentrat ion. Although it is good s t ruc tu ra l design to avoid or to 
provide for discontinui t ies as much as possible , there should be no dif­
ficulty in rel ieving s t r e s s concentra t ions in a ductile s teel by plast ic flow 
at highly s t r e s s e d points.^^-^ The ductil i ty available in mos t s t ruc tu ra l 
s tee ls will al leviate s t r e s s concentra t ions by plast ic flow. An exception to 
this can be severe ly deformed punched holes . 



It is recommended at this t ime that as a c r i te r ion for failure of 
s teel in nuclear applications the s h e a r - s t r e s s failure theory be used.V'*/ 
It gives conservat ive r e su l t s for ductile s teels and u l t raeonserva t ive r e ­
sults for br i t t le me ta l s , such as cas t i ron, subjected to s t r e s s e s of oppo­
site sign. Actually, the s t r e s s e s he re in descr ibed a re s t r e s s in tens i t ies . 
They a r e obtained from each set of calculated principal s t r e s s e s . The 
s t r e s s intensi ty to be provided for in the design is the l a rges t a lgebraic dif­
ference between any two of the th ree pr incipal s t r e s s e s . 

V. TEMPERATURE VARIATIONS AND THERMAL STRESSES 

Most of the p r i m a r y components in a nuclear power plant have to 
sustain t empe ra tu r e fluctuations and t empera tu re gradients because of the 
nature of the hea t -ex t rac t ing p r o c e s s . If the expansion or contraction due 
to t empe ra tu r e changes of a component is totally or par t ia l ly res t ra ined , 
t he rma l s t r e s s e s occur . By na ture these s t r e s s e s a re different than those 
of mechanical origin. The t he rma l s t r e s s d i sappears when the r e s t r a in t to 
expansion or contract ion is removed. Also, if the r e s t r a ined condition 
imposed involves s t ra ins g r ea t e r than those at the yield point of the m a t e ­
r i a l , p las t ic flow will take place and re l ieve s t r e s s . Thus corresponding 
s t r e s s e s in the ductile m a t e r i a l will not advance mate r ia l ly above yield un­
l e s s extensive s t ra in hardening occur s . A ductile s teel possess ing a mod­
ulus of e las t ic i ty of 30 x 10 and a yield point of 30,000 psi can exhibit a 
total e las t ic elongation of 0.001 in. An additional plast ic s t ra in of 0.002 in, 
can accommodate total, imaginary e las t ic s t r e s s e s up to 90,000 psi . Yet 
the 0,2% plas t ic s t ra in is much less than one-tenth of the total plast ic de ­
formation that mos t ductile s tee l s can exhibit. 

This quality becomes exceedingly important in the t r ea tmen t of 
t h e r m a l s t r e s s e s . It p e rmi t s their differentiation from those due to m e ­
chanical loads. Large t h e r m a l s t r e s s e s , considerably above the yield 
point, should not neces sa r i l y be a cause for a l a rm. The physical c h a r a c ­
t e r i s t i c s of the m a t e r i a l do not necess i t a t e their a lgebraic super imposi t ion 
on the mechanica l s t r e s s e s . The r e v e r s a l of s t r e s s , however, that can be 
exper ienced because of t h e r m a l variationsV^j should be invest igated for 
fatigue fai lure in the plast ic range.'"^"^^ A s e r i e s of t he rma l s t r e s s con-
ditionsl^j a re shown below: 

The case of a ductile s teel for which the t he rma l s t ra in &f is g rea t e r 
than the yield s t ra in e is i l lus t ra ted in Fig, 1. If the m a t e r i a l had re ta ined 
i ts e las t ic c h a r a c t e r i s t i c s at S^ > S„, the s t r e s s - t i m e cycle (Fig, la) would 
have followed the path OABAB and the s t r e s s - s t r a i n cycle (Fig, lb) would 
have been r ep re sen t ed by the s t ra ight l ine OA. When the t he rma l s t r e s s 
r eaches the yield point, the m a t e r i a l yields to satisfy the r e s t r a ined con­
dition at no additional s t r e s s . Thus the actual s t r e s s - t i m e cycle is r e p r e ­
sented by the path OA'A 'B 'A 'B ' , and after the f i rs t half-cycle the s t r e s s -
s t r a in cycle by the line A'B' in Fig. lb . 
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In the case of la rge t he rma l s t ra ins exceeding twice the yield 
s t ra in of the ductile s teel (see Fig. 2), the mate r ia l would follow the path 
OAFAF if it could behave elas t ical ly for these large s t ra ins . Actually, the 
path it follows is OA'BCDEB in Fig. 2a. The s t r e s s - s t r a i n cycle after the 
f i rs t half-cycle, will be r ep resen ted by the para l le logram EBCD in Fig. 2b. 
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FIG. 2 
STRESS, STRAIN, AND REVERSAL DIAGRAM FOR PURE CYCLICAL 
THERMAL STRESS (RELATIVELY LARGE PLASTIC STRAINS) 
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In the case of an initial s t r e s s in the member to which the the rmal 
s t r e s s is super imposed, the cycle is as shown in Fig. 3. The initial s t r e s s 
S- in the member is r ep resen ted by ordinate OA in Fig. 3a. Upon super -
imposit ion of the the rmal s t r e s s S ,̂ the steel , unable to attain elast ical ly 
the combined s t r e s s corresponding to point B, yields along line B 'B", and 
upon removal of the the rmal s t r e s s it acquires a s t r e s s equal and opposite 
to the initial s t r e s s S .̂ Subsequent reapplicat ion of the same thermal 
s t r e s s will provide a s t r e s s condition moving up and down line A'B" of 
Fig. 3b. This condition is s t r e s s - w i s e quite s imi lar to the one descr ibed 
in Fig. 1. It indicates the re la t ive unimportance to the overal l safety of the 
component of any initial s tat ic s t r e s s e s , provided the ma te r i a l has suffi­
cient ductility left to per form in this manner . 

St < St < 

FIG. 3b 

FIG. 3 
STRESS, STRAIN, AND REVERSAL DIAGRAM FOR COMBINATION 
OF INITIAL STRESS AND CYCLICAL THERMAL STRESS 

The above three figures oversimplify the behavior of ductile s teel 
at yield point. Ordinari ly, the s t r e s s - s t r a i n curve past the yield point is 
not horizontal but gradually ascends. In spite of this , the conclusions 
drawn a re safe for the relat ively smal l plast ic s t ra ins under consideration. 

VI. THERMAL STRESS CYCLING AND FATIGUE OF STEEL 

Whenever fluctuation of s t r e s s e s occurs in the elast ic region of the 
m a t e r i a l of a s t ruc tura l member , the design is for infinite life. Fluctua­
tion of s t r e s s in the plast ic region, however, brings in the concept of finite 
life for the component. The type of failure common to fatigue result ing 
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from these fluctuations is cracking, although the possibili ty of failure due 
to extensive distort ion also exis t s . This lat ter type of failure probably in­
volves very la rge , repet i t ious , plast ic s t ra ins . 

If a fluctuating thermal 
s t r e s s conditionv'^/ is graphically 
represented , as in Fig. 4, as va ry ­
ing between a maximum and a min­
imum s t r e s s level, it can be 
separated into an alternating and a 
mean component: 

^max + Sm m 
-"mean 

TIME 

F I G . n 
GRAPHICAL REPRESENTATION 
OF CYCLIC THERMAL STRESS 

Smax - Sxni m 
'alt = 

A plot of Sj-̂ gĝ j-j and S î  comprising 
steady and t rans ien t the rmal effects, respectively, in a reac tor component 
can be used for predicting the fatigue charac te r i s t i c s of the component. 
Such a modified Goodman Diagram^"'' is shown in Fig. 5. Connbinations of 
mean and alternating s t r e s s e s falling above and to the right of line AB are 
definitely unsafe. 

FATISUE LIMIT OF ALTERHATIMG STRESS 
MAX. SAFE ALTERNATING STRESS 
MAX. SAFE HEAM STRESS 
YIELD STRESS 

FIG. 5 
MODIFIED GOODMAN DIAGRAM 
OF CYCLIC THERMAL STRESS 

In a nuclear reac to r component, a se r i e s of mean and alternating 
s t r e s s combinations can be expected during normal operation. This brings 
up the question of cumulative damage to the component. 



If a s e t of cond i t ions p r o d u c e a l t e r n a t i n g s t r e s s e s Sj, S2, S3...Sn, 
and Si is r e p e a t e d tj t i m e s d u r i n g the life of the componen t , S2 ti t i m e s , 
and Sn tjj t i m e s , t h e n the c u m u l a t i v e d a m a g e can be e s t i m a t e d in the fo l ­
lowing m a n n e r : F r o m a d i a g r a m ( see F i g . 6)w) r e l a t i n g a l t e r n a t i n g s t r e s s 
to the to ta l n u m b e r of c y c l e s for f a i l u r e for the s t e e l unde r c o n s i d e r a t i o n , 
the t o t a l n u m b e r of c y c l e s for f a i l u r e a t each s t r e s s is found. Th is n u m b e r 
i n c l u d e s a l a r g e m a r g i n of sa fe ty . L e t t h e s e be T i , Tg, T3. . .Tn for s t r e s s e s 
Si, S2, Sj.- .Sn, r e s p e c t i v e l y . If ti ^ Ti o r tz — T2 or tn — T^, the des ign i s 
obv ious ly u n s a t i s f a c t o r y and h a s to be modif ied . F o r s a t i s f a c t o r y p e r f o r m ­
a n c e of the componen t , the condi t ion(9) 

h t , t , ^n ^ „ 
^ + ^ + ^ + • • +-r- <0.8 
J-1 J-z J-s -^n 

r a u s t b e m e t . 
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, A-212, 

6 

S., 
AND 

FOR TYPES 30^ , 
A-302 STEELS 

The v a l u e s of T shown in F i g . 6 p e r t a i n only to a l t e r n a t i n g s t r e s s e s . 
In the m a j o r i t y of c a s e s in which a m e a n s t r e s s a l so e x i s t s , i t s effect on 
the a l t e r n a t i n g s t r e s s wi l l have to be t a k e n into account . F o r t h i s p u r p o s e 
the modi f ied Goodnaan d i a g r a m ( s e e F i g . 7) is u sed . A s s u m e tha t point N 
c o r r e s p o n d s to a s e t of m e a n and a l t e r n a t i n g s t r e s s e s . A s t r a i g h t l ine 
d r a w n t h r o u g h po in t s Sg on the a b s c i s s a and N cuts the o r d i n a t e at point 
N ' . The a l t e r n a t i n g s t r e s s inc lud ing the effect of the m e a n s t r e s s for 
wh ich the p r o p e r cyc le n u m b e r T i s to be s e l e c t e d i s not the one c o r r e ­
sponding to N but the one d e t e r m i n e d f r o m N ' . At ten t ion should be e x e r ­
c i s e d to the fac t t ha t the m e a n s t r e s s shown on the a b s c i s s a (F ig . 7) 
i n c l u d e s the effect of the load s t r e s s e s and the t h e r m a l s t r e s s e s . T h e s e 
c r i t e r i a , h o w e v e r , shou ld not be u s e d in the eva lua t ion of the safe ty of 
load s t r e s s e s . 



MODIFIED GOODMAN DIAGRAM SHOWING 
EFFECT OF MEAN COMPONENT ON THE 
ALTERNATING COMPONENT OF STRESS 

VII. CREEP AND CREEP RUPTURE 

Creep is of p r imary importance in reac tor components. A brief 
sequential description! lOJ of the phenomenon is given in Fig. 8. When a 
uniaxial c reep specimen is subjected to a constant s t r e s s , it exhibits an 
init ial e las t ic and plast ic s t ra in r ep resen ted by the s traight line AB. With 
no inc rease in s t r e s s , the specimen creeps during the passage of t ime at 
a swift but var iable ra te r ep resen ted by the curved line BC. This interval 
is known as p r imary creep . At point C the c reep ra te becomes constant. 
The in terval during which the c r eep s t ra in ra te remains constant is known 
as that of secondary creep . This interval of constant c reep ra te is the 
most sustained and useful in c r e e p - s t r e s s calculations. As secondary 
c reep p r o g r e s s e s , the c ross section of the specimen dec reases because of 
the principle of constancy of volume, and at a certain point I the c reep ra te 
inc reases p r imar i ly because of the necking of the element. At point J c reep 
rupture under "constant s t r e s s " occurs . 

For purposes of i l lustrat ion, it is assumed that at point D the s t r e s s 
is re leased . An elast ic recovery DE will immediately take place. This 
will be followed by an extended c reep recovery represen ted by EF . If it is 
further assumed that at point F a s t r e s s equal and opposite to the original 
s t r e s s is applied to the specimen, again an initial elast ic and plastic de­
formation will be observed. The corresponding s t ra in is FG. F r o m point 
G on the same cha rac te r i s t i c s of the c reep cycle are observed as the ones 
descr ibed for the f i rs t half-cycle. 
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It is impor tant to note that in the f i rs t half-cycle, c reep rupture 
could occur at a s t ra in equal to the ordinate AJ ' . At the second half-cycle, 
failure occurs at K', corresponding to a s t ra in ordinate F 'K ' . This br ings 
out the impor tant fact that in cases of r e v e r s a l of s t r e s s , c reep failure is 
independent of the original physical dimensions of the component. After the 
f i rs t half-cycle , the absc i s sa passing through origin A is of no d i rec t con­
sequence. In the preceding descr ip t ion if there had been no zero s t r e s s 
in terval in the cycle and the r e v e r s a l of s t r e s s were almost instantaneous, 
as it could be with t r ans ien t s in r eac to r ve s se l s , piping sys t ems , or heat 
exchangers , line E F would be el iminated, and the right half of the graph 
will move to the left and upward until points F and E coincide. 

In s t r e s s analysis for c reep , only approxinaate solutions a re pos ­
sible and just i f ied,because of the inherent complexity of the phenomenon 
and the multi tude of var iab les that can affect it ( t empera ture , ma te r i a l 
composition, heat t r ea tment , changes of s t r e s s , method of manufacture) . 
When c r e e p is la rge in compar ison to the initial e las t ic and plast ic s t ra in 
of the component, the init ial e l a s t i c -p l a s t i c s t ra in and the t rans ien t c reep 
s t ra in can be neglected. Computations take into account only the signifi­
cant s t r e t ch of s t eady-s ta te c reep . However, in cases in which the 
t rans ien t c r eep is substant ial , a s izable e r r o r is introduced by ignoring 
it and basing calculat ions on s t eady-s t a t e c reep alone. In the specific 
a r e a of buckling, for which init ial deformations a re significant, s teady-
state c r eep solutions may overes t ima te s t rength and resu l t in unsafe 
conclusions. 

For varying s t r e s s conditions the s teady-s ta te c reep solutions a re 
not sa t is factory. The h is tory of the s t r e s s levels and in tervals becomes 
important . The existing s t r a in -ha rden ing and t ime-hardening theor ies for 
c r eep behavior a r e not supported by sufficient experimentat ion to pe rmi t 
their re l iab le super imposi t ion for the development of design c r i t e r i a . 
Also, the approach incorpora ted in a s t eady-s ta te c reep analysis does not 
provide for the gradual c r e e p r ecove ry which is observed upon unloading 
or par t i a l unloading of a component. Creep recovery has not been inves t i ­
gated sufficiently. Although its significance is not of grea t impor tance in 
design, understanding of this phase of c r eep behavior may contribute to 
the overa l l understanding of the mechanisna of c reep . 

The foregoing d iscuss ion has a s sumed that a constant t empe ra tu r e 
ex is t s . In components subject to t e m p e r a t u r e gradients or to t e m p e r a t u r e 
fluctuation due to t r a n s i e n t s , c r eep s t r a ins a re mate r ia l ly affected. Of 
g rea te r impor tance is the observed rel ief of t he rma l s t r e s s e s by c reep . 
When a condition of t he rma l s t r e s s is totally or par t ia l ly al leviated by 
c reep , on cooling, the t he rma l s t r e s s e s produced will be of opposite sign 
to their ini t ial value. This explains the tensi le failure of br i t t le ma te r i a l s 
in components (par t icu la r ly piping sys tems) designed to withstand c o m p r e s ­
sive s t r e s s e s . Also, a potential spot for c reep fai lure is a weak section of 



a the rmal ly r e s t r a i n e d assemibly. The weak section absorbs most of the 
deformation and becomes ser ious ly overs t ra ined. 

The c reep deformation under constant external loads will inc rease 
due to t he rma l s t r a in cycling. Efforts were madeV-^-^/ to co r re la te c reep 
and t he rma l s t r e s s e s . Recent developments^ '̂̂ '' indicate that, in mult iaxial 
s t r e s s conditions, although c reep s t ra in ra te is affected by an invariant 
quantity, c reep rupture depends r a the r on the maximuin tensi le s t r e s s . 

To predic t the life of a component subject to c reep deformation 
under different t e m p e r a t u r e and s t r e s s conditions, a concept for cumulative 
damage ( l l ) is used which is s imi la r with the one employed in considerat ions 
of fatigue failure due to t h e r m a l s t r e s s r e v e r s a l . This concept a s sumes 
that c reep rupture occurs when the sum of the fractions (time at a given 
s t r e s s and t empe ra tu r e divided by rupture life at that s t r e s s and t empera ­
ture) r eaches unity. Additional experimentat ion is needed, however, to 
es tabl i sh the l imitat ions of this approach. 

Although a proper understanding of the c reep mechan ism is n e c e s ­
s a ry to a sce r t a in the contribution of the phenomenon to the overal l s t rength 
of the component, genera l ly the p resence of c reep becomes des i rable by 
rel ieving la rge t h e r m a l s t r e s s e s . As for the mechanical loads in the cona-
ponent - those due to s ta t ic loads and fluid p r e s s u r e s - they can be kept 
sufficiently low by proper s t ruc tu ra l design. 

The p rope r t i e s of c r e e p rupture , ! !^) on the other hand, should be in­
vest igated and a sce r t a ined for the specific s teel that is to be employed in 
each c r i t i ca l component. This is n e c e s s a r y because of the long periods of 
t ime during which r e a c t o r s opera te at full t empe ra tu r e . Shor t - t ime tensi le 
t e s t s a r e not dependable since cer ta in s tee ls (such as prec ip i ta t ion-hardened 
s ta in less steel) a r e affected by sustained high tenapera tures , 

VIII. RADIATION EFFECTS 

General ly the effect of neutron i r radia t ion on the s t ruc tu ra l quali t ies 
of s teel is to i n c r e a s e the yield point and ul t imate s trength, to dec rease the 
ductility of the m a t e r i a l , and to r a i s e the duc t i le - to-br i t t l e t ransi t ion t e m ­
pe ra tu r e . Since nuclear components in s teel a re exposed to the var ie ty of 
effects previously descr ibed , loss of ductility is the most important and 
undes i rable contribution of i r rad ia t ion . Ductility is indispensable in accom­
modating high t h e r m a l s t r e s s e s in the plast ic region of s teel and in al le­
viating s t r e s s concentra t ions and init ial locked-in s t r e s s e s in the ma te r i a l . 
Any loss of ductil i ty automatical ly amounts to an indeterminate reduction in 
the marg in of safety of the component. 



Data on the s t rength and ductility changes of s teel subjected to i r r a ­
diation a r e voluminous. '^^ '^^ ' ' Such data a re useful for qualitative exerc i se 
of judgment. There appears to be dissat isfact ion,! 15} however, with the lack 
of knowledge connected with the neutron flux and spec t ra employed in the 
naaterial i r rad ia t ion exper iments . 

Radiation damage to steel(13) is reduced with increas ing environ­
menta l t empe ra tu r e during radiat ion. Some s teels show no net radiat ion 
damage when radiat ion takes place at 415°C, in contras t to increas ingly 
severe net damage at lower t e m p e r a t u r e s . In cont ras t to fe r r i t i c s tee ls , 
it appears that austeni t ic s tee ls re ta in a considerable anaount of ductility 
under heavy neutron i r rad ia t ion . Also, f ine-grained s teels and high-puri ty 
i ron-ca rbon alloys stand bet ter under i r rad ia t ion than coa r se -g ra ined 
s tee ls and alloys of l e s s e r puri ty. 

A major concern to industry is the observed inc rease in the duct i le-
br i t t le t rans i t ion t e m p e r a t u r e of s teels subjected to i r rad ia t ion , ! 1") This 
aspect could amount to loss of flexibility in r eac to r sys tems , even to p r e ­
cluding r o o m - t e m p e r a t u r e p re s su r i za t ion . 

Until the effect of i r rad ia t ion is quantitatively de termined and i ts 
effect on coexisting phenomena, such as plast ic flow, the rmal fatigue, c reep 
and c r e e p rup ture , is ascer ta ined , a genera l recommendat ion is to select 
(consistent with other r equ i rement s ) s tee ls having high ductility and low 
t rans i t ion t e m p e r a t u r e , and which have exhibited ability to re ta in a major 
portion of this ductility after considerable i r radia t ion, 

IX. TRENDS IN DESIGN CRITERIA 

The need for the development of adequate design c r i t e r i a governing 
the s t rength of m a t e r i a l s has resu l ted in a prol iferat ion of theor ies and 
approaches . The many efforts of the inves t iga tors could come under five 
dist inct areas:'-^'' '/ 

The dis locat ion theor ies deal with detailed mechan i sms and can be 
applied to a l a rge numiber of physical phenomena. These theor ies a re very 
flexible and they have advanced to the stage of offering dependable quanti­
tative solutions for s imple c a s e s . They a r e being explored by sc ient i s t s 
all over the world. 

The theor ies of absolute react ion ra t e postulate a unit flow which 
confornas to the rmodynamic c r i t e r i a . These theor ies , which depend on the 
in terpre ta t ion given, can be used to predic t c reep . 



The thermodynamic theor ies of f rac ture s t rength depend on the 
analogy that fai lure of a bond between atoms is equivalent to the melting 
p r o c e s s . These theor ies are inherent ly very broad and all embracing. As 
such, they cannot account for defects of c rys ta l origin and for var ia t ions in 
m i c r o s t r u c t u r e . 

The theor ies based on equations of state substitute s t ra in , s t ra in 
r a t e , s t r e s s , and t empe ra tu r e for the bet ter known quantit ies of volume, 
t e m p e r a t u r e , and p r e s s u r e . These theor ies make it potentially possible 
to predic t the behavior of miaterials. Their drawback is their dependence 
on the h is tory of the ma te r i a l , which is not always possible to ascer ta in for 
equipnaent components or s t r u c t u r e s . 

The theor ies of g rea t impor tance to engineering design are those 
based on empi r ica l re la t ionships and p a r a m e t e r s , A functional re la t ionship 
between s t ra in , s t ra in r a t e , t ime, s t r e s s , and t empera tu re is defined by 
grouped p a r a m e t e r s . These theor ies constitute the means by which the bulk 
of knowledge on the p roper t i e s of the m a t e r i a l s has been obtained. They are 
dependable for p roper t i e s within the ranges investigated. Extrapolation out­
side these ranges is inadvisable and basical ly dangerous. 

A comprehensive theory,! 18} which appears promis ing, at tempts to 
es tabl ish analytical equations - based on exper iments - that re la te fatigue 
m the m a t e r i a l due to mean and al ternat ing s t r e s s e s of a cycle; five m a t e ­
r i a l c h a r a c t e r i s t i c s ; and the resul t ing number of cycles to failure. This 
seems to be a successful at tempt to develop a concept of a unified approach 
to the fatigue of naetals. Its advantage is that it is dependable, readi ly usable, 
and provides for planned t es t s to yield the five m a t e r i a l cha rac t e r i s t i c s in 
a most convenient and economical manner . It a lso se ts up guide posts for 
future test ing that will make tes t r e su l t s meaningful. 

The inc reased demands imposed on steel by the constantly improv­
ing nuclear r e a c t o r s and indus t r ia l p r o c e s s e s in genera l cannot wait for the 
development and verif icat ion of theor ies which s t a r t with the abs t rac t and 
end with the p rac t i ca l . Rather , the r e v e r s e p rocess is more likely. This is 
the reason why analyt ical re la t ionships based on exper imenta l r esu l t s a re 
most promis ing at this t ime. 
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