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THE DEVELOPMENT OF THE KINETIC THEORY OF GASES

V. THE EQUATION OF STATE

Stephen G. Brush

Lawrence Radiation Laboratory, University of California

Livermore, California -

ABSTRACT

Some early attempts to explain deviations from tHe ideal gas laws are

discussed. In 1846, Elie Ritter pfoposed the equation of state

p-=ap(l + at) - pr
('t = temperature in °C, p'= density) w.here the first term represents the pres-
sure of the caloric fluid (which was believed to behave like an ideal gas) and
the second term is a small correction due to interatomic attractive forces.
The constant b was to be calculated from the virial of the forces, assuming
the atoms to be fixed in space.

After the establishment of the kinetic theory of gases, Clausius intro-
duc.ed the virial theorem which, together with the Maxwell-Bolfzmann distri—
bution law, made it possible to calculate low-density corrections to the idealA
gas law for almost any force law. In general these correction‘s have the form
suggested by Ritter, but the correction would be positive for repulsive fo.'rc"es,
and b usually varies with temperature. The special case of h;rd spheres was
first treated correctly by van der Waals (1873), who sh&wed that the '"excluded
voiume" is approximately four tvimes the atomic volume; Lorentz later deri-ved
the same result by a direct application of the virial theorem. Second virial |

coefficients for more .general force laws were calculated by Boltzmann (1896),

Keesom (1912), and others,
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While Ritter's equation is valid over.a certain range of densities and
temperatures, and his expr'ession for b is similar to that obtained from the ki-

netic theory, his theory was based on incorrect physical assumptions and would

not have survived comparison with more accurate experimental data.

1. INTRODUCTION
Among the natural phenomena in the domain of physics, the mechanical
and thermal properties of gases under ordinary conditions are perhaps the best

understood. By assuming a gas to be comboéed of many small particles obey-

. ing Newtonian mechanics, colliding with the walls of the container but occupy-

ing a negligible fraction of the total volume, one can easily deduce the ''ideal
gas' laws; a few refinements enable one to expiain transport prop'er-ties and the
equation of state at low densities. The mysterious phenomena of condensation
and the critical point are ipterpreted by means of a cubic equation, derived
from a model of attracting But impenetrable spheres. Thus an impressive
range of observations can Be explained in terms of "atoms' without having to
worry about the messy details of atomic structure, and without recourse to
elaborate mathematics. In short, gé}s theory is the showpiece of classical
physies. | |

In order to find.an era when- the situation was not so satisfactory -- and
to understand how our present ideas were developed -- one must go back at
least a century. With the exception of Berﬁoulli' s work (1738) most of the theory
was developed during the nineteenth century. In the previous articles in this \
series we have discussed the work.of John Herapath (1790-1868), J. J. Waterston
(1811-1883), Rudolf Clausius (1822-1888), and James Clerk Maxwell (1831-

18.79).,‘1 The efforts of these scientists were mainly directed toward establish-

ing the kinetic explanation of the ideal gas laws, althéugh in the later work of
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Clausius and Maxwell the idea of atoms as non-interacting point-masses had
to be abandoned in order to account for transport properties.

In this paper we shall loc;k at some of the early attempts to explain devi-
ations from the ideal gas laws. Thé first attempts were made by scientists
who believed that the pressure of an ideal gas is due, not to the collisions of
atoms with the sideé of the container, but to the action of a subtle fluid --
f'caloric. " However, they also realized that t.he pressure would be affected by
inté'ratomic forces, and they could calculate the pressure due to such forces
by assuming the atoms to 'be fixe'd in space., In this way the Swiss physicist

Elie Ritter (1801-1862) derived an equation of state of the form?

p=ap(1+at)f‘bp2 ‘ (1)

~where p is the density, t the temperature in degrees Céntigrade, a the co_effi-
cient of expansion, and the constant b is essentially the virial of the interatomic
forces.

| Ritter!'s paper appeared in 1846; many yearé laterAthe kinetic fhéorists
arrived Aat a similar equation by different reasoning. During the period 1845-
1855 the caloric theory was overthrown and heat was shown to be, not a fluid,
but simply a form of energy 'Which could be converted into other forms of energy.
Many scientists thought that thermoaynamics, which described these energy
transformations on a macroécopic basis, was sufficient for all practical pur-
poéés, and refused to entertain specﬁlations about invisible atoms. But after
Krjﬁnig, in 1856, revived the old idea that heat is the kinetic energy of atomic
motion, Clausius, Max&ell, and Boltzmann developed the kinetic theory in
considerable detail. The starting point for later theories of the equation of
state is the virial theorem, proved.by Clausius in 1870, which relates the pres-
sure to the velocities of the atoms, . and the forces and distances between pairs

of atoms. For actual calculations it is necessary to know something about the
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average spatial distribution of the atoms; as long as the density is low enough
that interactions between pairs of atoms can be considered independent of the
positions of other atoms, it is sufficient to use the Maxwell-Boltzmann distri-
Bution laQ (first given by Maxwell in 1873 and later proved more rigorously by
Boltzmann). Thus the necessary mathematical apparatus had been developed
by 1875, even though detailed calculations wifh realistic force laws were not
begun until thirty years later whén accuraté experimental data on the equation
of state became available. Equation (1) was then regarded as merely the begin-
ning of a seriesg in increasing powers of the density. The coefficients of higher
powers could be related theoretically to simultaneous interactions of three or
more atoms, although because of the mathematical difficulties involved it was
rarely possible to calculate these coefficients exactly.

_’I"hé spe‘cial case of a gas of hard spheres had already been considered by
Bernoulli, who argued that the volume, v, of the gas should be replaced in the
equation of state by (v - b), where b is a constant representing thé volume ©cC-
cupied by the atoms themselves. 3 It was not un.til 1873 that van der Waals showed
that b should really be equal to approximately four times the atomic volume.
.Somewhat later Lorentz obtained a similar result by applying the virial theorem,
and pointed out that the net result of this correction was an increase in the pres-
sure proportional to the square of the density (neglecting higher powers of the
density).

As in other parts of atomic theory, the basic physical principles of gas
theory were stated lang before they were proved; one must resist the temptation
to glorify the isolated pioneer merely because subsequent work showed that he
had guessea right., Thus a critical examination of Ritter's theory show; that
by making severé.l unjustified assumptions he was fortunate enough to arrive at

an expression for the second virial coefficient very similar to the correct one;
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but that his theory could not have survived comparison with more accurate ex--
perimental data, and did not provide a good theoretical basis for further develop-
ments. It must therefore be regarded as an interesting curiosity, but not an’

anticipation of the more solid achievements of the later kinetic theorists.

2. THE EQUATION OF STATE IN THE CALORIC THEORY

As Ritter's wo'rk is not generally known, and is not very accessible, it
seems worthwhile to give a fairly complete account of it here. Ritter did not
discuss the caloric theory in any detail, but merely accepted the current idea
that caloric behaved like an ideal gas. He considered the pressure of a real
gas to be the result of two causes:. the repulsion due to caloric, and the attrr—;tc'e‘-~
tion due to interatomic forces. He assumed in particular that the two effects
could be treated Aindependently and then added together; whilé this had no theo-=
retical justification, it permitted him to calculate the contribution of the forces
in a manner indépendent of the caloric theory.

Ritter borrowed from Poisson4 the mathematical apparatus necessary
for this calculation. The pressure of a gas is the force per unit area exerted
on a surface in the gas; Poisson and Ritter assumed that the atorr;s are fixed
in a cubic array in space, neighbouring atoms being a distance A apart.
Poisson showed that the pressure is

| p = (1/62)) = rf(r) (2)
where f(r) denotes the force exerted by an atom at a distance r; the s.um is to -
be computed by choosing some central atom and summing the contributions
from all the ot:hex"sﬂ.'"li4 Assuming that a spherical shell at a distance r from
the central atom contains 41rr2/A2 4 atoms, Poisson wrote Eq, (2) in the form

p = (2n/32) z r35(r) ‘ (3)
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where now the sum is simply over possible values of the magnitude of r: A,

24, 3A, .... In order to evaluate this éum he used the formulé.5

) ® , ol & |

Z F(r) = (1/4) OS F(r)dr - (1/2)F(0) ot (2/23)5‘ Z cos(2mir /A) F(r)dr.
‘r=A ! . ' 0 =1

By successive integrations by parts the last term'in this equation can be
reduced to a power sefieé in.4, the ’coefficients ‘t;eing the derivatives of F(r)
at the origin. In this case F(r) = r3f(r); so F(0), and F1(0), and F'(0) were
all set equal to zero, (Neither Poisson nor Ritter considered -the possibility
that f(r) might become infinAitev at r = 0, and their formulae are not véry utse-
ful for calculations with singular forces.) Th;e final result, obtained by

Poisson and given again by Ritter, is that the contribution to the pressure is
& )

p = _(zn/3A6) S'r3'f'(r)dr + (n/18025)£(0) — (w/756)E1(0) + .... (4)
P s

~ Since the density is propbrtibnal to 1/A3, this could also be written as a
2/3,

2/37) q 4 ep=2/3

series in descending powers of p
vp=‘bp2+Cp + ... | | (5)

Poisson thought this formula might represent the total pressure of a gas,
t'hough he found it difficult to reconcile this with the empir‘ical fact that the prés-
sure is apprboximately proportional to the density, and hel did n.ot make much use
of the for-mula.6 Ritter, on the other hand, treated this contribution as a small
.correction to thé ideal gas law, obtaining Eq. (1) as a first approximation for
attractive forces. It should be noted that b is a constant independent of tem-
perature and density according Luv Riller! s theory, |

'In order to compare .theory with experiment, Ritter derived expre.ssions,
for the coefficientslof expansion at constant pressure and volume. If the den- .

~sityatt=0°C is p,» and -one raises-the temperature to.100°C, keeping.the

pressure constant, the density will ‘then be p(1 + 100a"). (This is Rifter's
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definition'of a'.) Eliminating the pressure, he obtained

1+ 100a+;L1 + 100a)” +'(1'29/a)2"i]1/2 . (6)

'
1 + 100a 3(1-bp/3)

If instead the volume is kept constant, the pressure will increase from
p to p(1+100a'); eliminating p, the coefficient of expahsion at constant volume
was found to be ‘
| a'" = aa/(a-bp). ' (7)
Both a' and a' reduce to a for ideal gases (b = 0). Regnault7 had found that
hydrogen obeys the ideal gas law at pressures from 1 to 3-1/2 atmospheres,
and that a has the value 0,.0036613.

Regnault!s experiments on air | showed deviations from the ideal gas
laws, though the deviations were so small that Regnault himself attributed them
to errors of observation. Ritter calculated the values of a apd b in Eq. (7) for
three observations and obtained the results: (1) a = 761.4714, b = 1.4714; (2)
a=760,2864, b = 0,2864; (3) a =760.1865, b = 0,1865, where the .pressure is
measured in millimetres of. mercﬁ.ry. Taking a = 761 and b = 1, he theﬁ cai-

culated a! andia' for several pressures with the following results:

Pressure _ - a! a'l ‘
(atmospherg_s) theory expt. theory expt.
1 : .0036716 ,0036706 . 0036661 . 0036650
3 .0036865 .0036944  ,0036758 -.0036894
5 . 0037038 . 0036856

Regnault!'s observations on carbon dioxide could be represented, accord-
ing to Ritter, by the formula
p = 500.5522p% — 2,3230p%,

and the coefficients of expansion were as follows:
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Pressure . e att '~ Pressure : a'
(mm mercury) theory  expt. (mm mercury) theory expt.
758,47 .0036874 . 0036856 ';/60 .00370685 .0037099
901. 09 .0036924 0036943 2520 .00381886 0038455
1742. 73 .0037225 . 0037523 |
3589.07 . 0037920 . 0038598

Ritter concluded that his theory gave the correct explanation for deviations
. from the ideal gas laws, although further observations at higher pressures

would be desirable.

3. THE EQUATIOAN OF . STATE IN THE KINETIC THEORY

During the next fhirty years little progress was made in understanding
deviat.ions from the ideal gas laws, although it was well known that such devi-
ations existed, and .several empirical equations of state were sugg.ested. The
attention of theoretical physicistsv was oc-cupiéd insAtead‘ with establishing the
principies of macroscopic thermodynamics and aiaplying the kinetic theory to
ideal gases. As early as 1853 the Joule—Thomson eXperimentS had shown that
intérat_orﬁic forces have a measurable effecf on the thermal properties of gases,
but it was some time bef01.'e these forces were taken into account.theoretically.
Furthermore, little information was yet available about‘the precise nature of
these forces, aside from the fact that they must reduce to inverse-square gravi-
tational forces at large distances. A very elaborate hypothésis about the nature
of interatomic forces had been pro'posed by Roger Boscovich -(1;711-1787)., who
regarded atoms as points, no two of which can evér coincide; the force between ‘
two atoms is a C'ontinuously changing function of their distance, beginning with

infinite repulsion at very short distances, probably alternating several times

between attraction and repulsion, and finally ending as gravitational attraction
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at iarge distances. 9 Although Boscovich's ideas remained popular for a long
time, they were condemned by many nineteenth-century scientists, who thought
it inconceivable that point atoms could have such properties. Indeed, any kind
of action at a distance was somewhat suspect, and was usually explained, as due
to the action of the aether. 10

Nevertheless, two simple models were proposed during the late nineteenth
century before much was known about atomic structure, and both are still often
used in calculations although they are now known to be incorrect. Maxwell
considered repulsives forces of the form r ® in his work on the theory of vis=-
cosity, and found that by setting n equal to 5 the calculation was greatly simpli-
fied, and the result agreed with experimental data available at the time. Though
later experiments showed that this force law could ndt be correct, a Maxwellian
model is often assumed for transport-theory calculations for reasons of mathe-
matical convenience.

A sofhewhat more realistic médel was proposed by William Sutherland
(1859-1912): a hard sphere with a fourth-power attractive force at greater dis-
tances, going ovef eventually to the inverse-s.quare g}'avitational force at very
large distances. 12 He th.ought that the "ultifnate law of action of one particle
on another" could be expanded in powers of l/rz, the ’first term being the law
of gravitation, the second being the law of molecular force,

..o owith Cr/r2 + M/r4 to express the law of molic force -

thru the whole range of distances from molecular up to astro-

nomical, one is tgmpted to speculate whethér the law of the terms

representing atomic or éherriic force may not be expressed by

one or more higher pov;/ers of l/rz; representing a force in-

sensible at molecular distances as the molecular term of molic

force is insensible at astronomical distances, but sensible at
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atomic distances, with the associated idea that atomic dis=~

tances are exceedingly small compared to molecular. This

conception would (speaking' in a purely relative manner) re-

duce the molecules almost:to mathematical points, and would

almost remove the idifficulty as to collisions of molecules.

In this manner we .can.endeavour to realize all the actions of

matter on matter as pure attractions."

Having decided on some p;r.ticular force law, one then has to calculate
the effect on the pressure. The starting point for most modern work on the
equation of state is the virial theorem of Clausius. 13 The theorem states that
the mean .:%/alue of the kinetic energy in a systefn of material points is equal to

the mean value of a quantity called the virial:

| '. Z(m/z)? = -(1/2) Z (Xx‘a+‘ Yy + Zz), (8)

where x, y, and z repreéent the rectangular coordinates of the points, X, Y,
and Z the respective components of the force acting on each point; the average
value is taken over a time, in the case of a periodic motion; ~equal to a com-

- plete period, or, in the case of irregular motion, sufficiently long that -the
mean ;/alue becomes constant. It is further:assumed that the system is in
"stgtioﬁary motion, " i, e., that the points move within a limited space and
‘the_velo;:ities do not change continuously in any particular direction.

The total virial may be divided into two parts: (1) the internal virial,
wh1ch rlgsults simply from the forces which the points exert on each other; and
(2) tljxe external virial, fesuiting from exte_rné.l forces acting on the system. If
we' let f(r) represent the force betweeﬁ two points at a distaﬁce r, the intermnal
vir‘ial is the .sum of (-’x%— rf(r)) for each pair of points; “;nd if the only external
‘f,org:e is a pressure p confining ti1e system to a -volume v; the external virial

is 'simply 3‘p_\‘/'2., In this way Clausius .arrived at the equation



-12=- . UCRL-6006

E = (1/2) )rf(r) + (3/2)pv _ (9)

where E denotes the mean vis viva (kinetic energy) of the internal motions.
This is essentially the same as the equation used bvy Ritter, except that Ritter
use(Ai‘for E an empirical value derived from the ideal gas law, instead of setting
it equal to the kinetic energy of atomic motion.

Clausius gave the following proof of this tihéorem:

"The equations of the motion of a material point are:

/2 A 2 2 -
m <d—}-; = X3 m <i—§ = Y; m<-d-—2‘E = Z.
dt dt /. dt

© . But we have

2,.2 N 2 2. ‘
dx) . z-d—écd"> = 2<9’—‘> v o2x X

or, differently arranged,

2 2, 2,
2 (dx/dt)z = -2x 8 >+ -‘-1—(—’f,_—l . (10)
dt dt

Multiplying this equation by (m/4), and putting the magnitude
X for m(dzx/dtz), we obtain
2

mfax? | xx |, md®Gd)
2 \dt - 2 4 2 °

dt
The terms of this equation may now be integrated for the time

from 0 to t, and the integral divided by t; we thereby obtain

t 2 ) t 2 2
d - 1 m |d(x”) _ [d(x")
2% S‘(-Cﬁx>dt-- - 'é-t- S‘Xxdt + Zt-:-[;{t | <dt~ >]
o ’ e} ;

(o]
. | 5
where <d‘(xf> denotes the initial value of Sl.(il coos
/o

dt
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"The last term of the‘ equation, vxlzhich.has its factor includ-
-ed in the square bfackets,, becomes, when the motion is peri-
odic, = 0 at the end of each period, as at the end of the period
102 o d(x") .
(x7)/dt resumes the initial value gi— When the motion
is not periodic, but irregularly varyihg,,othe factor in brack-
ets does not'So_regula.rly become = 0; yet its value cannot
continually increase with the time, but:can only fluctuate With-. \
in ,certa‘in limits; and the divisor, t, by which that term is
-affected, must accordingly cause the term to become vanish-

ingly small with very great values of t. Hence,; omitting it,

we may write

Y 2 ) AL
m (dx}" XX
2 \dt - 2

© As the same equé;tion is valid also for the remaining coordi-

nates .... and for a systém of. any number of pdints we

have ....
Z—;—l-? = - %Z(X’x + Yy + Zz) .

It should be noted that the import‘aint contribution of Clausius was the

elimination of the last term in Eq. (10), since that equation itself was already
well known in classical mechanics. |

The first a"ttémpt to apply the virial theorerﬁ was the f?.mous equation of
state of van der Waals (1837-1923), proposed in his Leiden thesis in 1873, Van
-der Waals did not make aﬁy spécial assumptions about the form of the force
Jaw, but he tried to draw some general chclusiong about the effects of such
forces., Although his discussion of these forces pertained mainly to liquids,
it. was reasonable to expect the'samé equation to apply to gases where the

correction to the ideal gas law would be small anyway.
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He assume'd‘t';hat such forces have a very short range, so that
'""... we need only take account. (in considering the force on " : .~
any given particle) those other particles which are within

a sphere of very small radius lhaving the particle as centre,
and termed the ‘'sphere of action, ! the forces themselves

becoming insensible at distances greater than the radius of

the sphere. W17

If the

density is constant throughout,

",.. it follows that all those points will be in eduilib;rium
about which we can describe a sphere of action without en-
croaching on the boundary". By this of cour's'eA is rn‘eant; that

the particies will be in equilibrium as far as attraction .alone

" is concerned; not necessarily so when the molecular motion

is also taken into account -- though this will actually be the
c.ése for the mass taken as a whole. In other words, the
forces X, Y, and Z are zero for all points within the mass.
Consequently the expression Z(Xx + Yy + Zz) vanishes coes
The partiéles for which the forces may be put equal to zero
constitute a priori by far the greater part of the mass, leav-
ing only a comparatively small number on which uncompensa-
ted forces act. These last lie on the boundary and form a
layer whose thickness is the; radius of the sphe~re"of action;
and the forces on these particles are directed inwards. If
about one such particle we describe the sphere of action,

part of this sphere will be external to the liquid, and this

part will represent the space which would be occupied by the

particles which would if present annul the forces. So the
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remaining force acting inwards is equal in magnitﬁd_e to the
attraction which the particle in question would have experi=
enced from the action of the particles which are absent. n18

The equation of state, including this additional pressure, may thus be written

(p + p')v = ZmVZ/‘2 | : (11)
where p is fhe total pressure exért’ed by the boundary, and p!' is the molecular
pressure at the surface. Van der Waals beliex}ed-that p would be much greater
‘tha‘n p' in gases, but p' would be greater in liquids.

In order to determine how p' depends on den‘sity, van der Waals appealed
to the hypothesis of molec'ular motion:
"". .. consider an infinitely thin column in the boundary layer,
and imagine a part 6f space below this layér, within- the body,
containing every molecule that could attract the column. K
in this space there were a molecule at rest, we should re-
‘quire to know the law of force. fo be able to estimate its at-
tl;action on the golumn. But if this molecule is ip motion,
and can occu'py any part of the space indifferently, the above
difficulty for the mo_st'pa.rt_..d'is;a.-p;peia.rs; and we can take the
attraction exerted by the molecule to be the mean of the >at-
tractions which it would exert in its different possible posi=~
tions in the space. The same consideration applies to a
second molecule which may be within the spé.ce at the éame
timeA as the first.. In short, the attraction exerted by the
matter in the space mentioned is proportional to the quanti-
ty of matter, or to the density., The same holds for the mole~-

cules within the column, so that the attraction is proportional
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to the square.of the density, or inversely proportional to the
"square of the volume. W19
In order to take into account the influence of finite molecx‘llar extension,
van der Waals used a different method; here he avoided a mistake which had
been made by his predecessors.
nOf course the effect of the extension will Be .to'make the
volume within which the motion takes place smaller than it
seems to be., At fiz_-st I considered that 'the.différence between
the external volume and the volume taken up by the mole-
cules was the space within whic,fl the lmotibn takes place. - But
I‘ trust to be able to prove, .by; further considerations, that
up to a ceijt‘ain degree'of condensation of matter the external
‘volume must be diminished by f‘éﬁr times the volume of the
molecules, and for greater condensation that it mﬁst be di-
minished by a cohtinu‘ously diminishing -multiple of this vol-
ume. ”2'0 | |
The factor of four was deduced By considering the mean free path of an
atom. Clausius had taken into account, in his derivation of the mean free path
formula (see the third pape-r of this series), the extension of the molecules in a
plane perpendicular to the direction 6f mo‘tion, but not in the direction of motion
itself, z;nd hence his. result was too large: |
", .. just as if the free path of a ball thrown against a wall Were
said to be the distance of thg centre of the ball from the wall
when the motion began; whereas the free path is that distance
minus the radius of the ball. Thus, considering the diameter

of the molecule we get.a shorter free path, and consequently

a proportionately greater number of encounters. But then the

. . . 21
opposing pressure must be greater in proportion. "
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If X\ is the mean distance of the molecules, supposed to be arranged in
cubical order, and each molecule is regarded as a sphere of diameter ¢, then
according to Clausius the mean free path of a single moving molecule is

3, 2
£ = \/mo
when all the others are assumed at rest, or
= 3)\3/4-1r02

£y

‘when the others are moving with the same velocity.
"We must now find how much the diameter of the molecules
diminishes the path. If all the impulses were in the motion
jbining the centres of the molecﬁle_s considered as spheres,
then 11 would have to be diminished bylthe distance between
the centres when impact occurs. Fpr half the diameter of
the molecules. must be sﬁbtracfed at the beginning as well as
at the end of the free path. Thus

1, ‘= L4, — O
A2 = 4mg /3 '; L \3_ 4ane¥3

4ng/3 Ly \>

or [2 =

Considering that (@ /2) is the radius of the molecule here re-
garded as a sphere, and that nX3 is equal to the unit volume
here taken as v; also that (4mwno 3/3) is eight times the volume

of the molecules themselves; we get

2 ¥=
24 v
where bl is the volume of the molecules.

' The encounters, however, are only central exceptionally;

and therefore, in the mean, li‘must be diminished by less
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than g. From .the‘fo'llowing considerations we can find what
fraction of ¢ is to be subtracted from £;- At the instant of
impact the centre of the moving molec’ulg lies on a sphere:of
radius g described about the centre of the second molecule.
Consider this sphere bisected by 'a plane perpendicular' to the
dirAecyt‘i‘on of motion. For ' central impact the centre of the
....... s oamoving moleculek has its greatest distance from this plane,’
and for intermediate cases the centr‘e is at other points of
the hemispherical surface. The diminﬁtion,of the path is the
distance at impact of the centre of the méving molecule from
the plane, and hence the mean diminution of the ‘mean path is
the mean ordinate of the hemisphere. But:since the centre is
equally likely to fall on any point of the hemisphere, we must
take the mean ordinate for equal elements of the hemispherical
surface, and not, as might easily be thought, for equal eie-

ments of the plane., We hé\i’e ‘to find

Szdw/ S'-d‘w.

where dw is the element:of surface. This is the ordinate of
the centre of gravity of a hemispherical surface, and is known
to be half the radius. Hence from ,21 we must subtract (o/2)

and not ¢. Putting 2 - (0/2) = 2, we get

. ,@3 Y., - 4b1 )
—_— % e !t (See ref, 22)
2, v
If one takes into account the fact that the molecules have a Maxwellian

distribution of velocities, the factor (4/3) in the above formula for £, must be

-replaced23 by N2, but.this does not chaﬁge the final result: the volume
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available to the molecules is to be written as v — b, where b is equal, as a
first approximation, to four times the volume of the molecules themselves.

Thus van der Waals derived his equation of state

{p + a/vz)(v — b) . vaz/é = R(1 + at). | (12)

- This equation has been very useful in correlating and interpreting the
properties of gases, and its success may probably be attfibﬁted to the addition
of the term (a/vz) to represent the effect of intefatorn’ic forces. (The constant
b v;zas at this stage simply an adjustable parameter, chosen to fit experimental
: data; ar;a therefore making it equal to four timesi the volume: of the molecules
had little practical significance.) However, the derivation of the equation is
nqt very sétisfactory from a theoretical point of view,. 24 and since it is dis-
cussed quite thoroughly in most textbooks on the kinetic theory it does not seem
necessary to go into the subject here. Later work, based on mbre direct ap-
plication .of the virial theorem, is of more interest than empirical modifications
of the van der Waals equation, and has given more information about inter-
atdgﬁic. forces than can be obtained .fr"om such empirical equations of state.

A :better d.edﬁction of the equation of state for hard spheres was given by
H. A.. L’ox;“en‘tz('18543-1928') in 1881.’25 Lor‘entz’starte-d by writing the contri-

bution to the virial from collisions of spheres of diameter g as
A = =(1/2) Z (Ko)

where K is the repulsive force which the spheres exert on each other at a dis'-~

tance 0, and fhé sum is' over all pairs of molécules which collide at a particular
time. ».Actuallly K is zero except at the instants when collisions :occur, and then
it 1s infinite. To.evaluate the sum it is more 'éonvenient to average over a time

interval 7, and then interchange the order of summation and integration:25
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A =—(1/27) SZ(Ko)dT = ~to/2n { Z(K)df “~lo/2m) ) BKd]

The quantity Bde is just the momentum- change in a collision, so we have

A = —(mg/27) ZUn
where Un is the relative velocity measured along the line of centres. This ex-

pression can then be written in terms of the velocity-distribution function f (u):

the number of collisions during the time T between two molecules with veloc-
ities lying in the ranges (u, u + du) and (u', u' + du'), such that the angle be-
‘tween ‘u and u' is between ¢ and ¢ + d¢, and thé angle betweeh' the relative
velocity U and the line of ‘centres is betweeni-x and y + dx. (thus Un = Ucosy ), is

('n’oz'r/V)f(u)f(ul)U sin ¢ sin y cos x dudu' d¢ dy.

" Now substituting u? = u? + u 2. 2uu' cos ¢ and integrating over all the vari-

ables, Lorentz obtained the result

w ‘o /2
2 2
A =-(mmg /4v) f(u)f(u’)(u +ut” =-2uu! cos¢)51n¢ sin y cos”yx dudu' d¢ .dy
e 1383 .
3 2. '2 '
= —(Trmo-/év) C{un. + urT)f(u)f(ur) du.du’.,
I e

_It is not actually necessary to know what f(u) is, since it is sufficient to express

the answer in terms of N and the mean square veiocity:

Sf(u)du = gf(u' Jdut = N,
o o ) -
guzf(u)du = S‘u' 'Zf(u' )Jdut = N :1-2.
o o
Hence
2 "2

A = (Trmo3/3v) N™ u

and using the virial theorem we find for the equation of state

pv = (mN/3) :1—2 (1 - b/v)-l, - (13)
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where b has tHe same meaning as in van der Waals! s' equation. Equation (13)
agrees with Eq. (12) to first order in (b/v), if we set a = 0 (no attractive
forces). |
In order to calculate the contribution to the pressure of forces which are

gontinubus fux_l‘(':ti-ons of the distance, it is necessar? to know something about
the spatial distributioﬁ of molecules in the gas; Poisson'; stafic model is clear-
ly inadequate if the forces Bgcome strong when two molecules get close terach
other. The_ required formula'is ofv coufse the Maxwell-Boltzmann distribution
law, 26 VV:hiCh states that the‘rglativei.probability of a molecular configuration
with po’tent:iai_energy V.is e-V/kT (T = absolﬁte temperé.tufe in "Kand k =
Boltzmann' s consfﬁnté). For the calculation of the second virial coefficieht it
is sufficiently accurate to assume that this formula can be applied to‘ a pair of
molecules, neglecting their interactions with other molecules in the gas.

| This method was used by Bolt:zmann27 to calculate the second virial co-

Kr_s (Méxwellian '

efficient for molecules interacting with a force law f(r)
) [

mole.cule‘s).A The potential energy V(r) is then Slf(r)dr = K/4r4, and the con-

tfibution to the virial is *

Z rf(r) = 3NB = (ZﬁNZ/v) S r3f(r)e_v(r')/kT dr : (14)
. : g

w.
. | 4
= (ZvNZK/v) S‘ruz_e-K/4r kT dr.
o

Evaluating the integral, Boltzmann obtained the result
)

pv = RT(1 + B/v) = RT(1 + a(N/v) (K/kT)*/ %
‘where a is a constant which has the value (not given expiicitl'y by Boltzmé.nn)
of (m/382) I (1/4).‘28
Equation (14) is in principle the solution of the problem considered in this

paper, in the sense that it permits one to calculate the first-order correction to
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the ideal gas law wheuev_er the force law is given -- prouided the integral con-
verges., (Ti’xe met}_rod doés not work, for .example, uvheu the_force is a Coulomb
attraction, V(r) = ez/r, and therefore ionized gases cannot be described in this -
way.) There is also a clearly defined procedure for calculatmg higher virial
coefficients, even’ though the calculatmn may uot be pract1cal for most force
laws. - The main practical difference between Boltzmann's method and R1tter' s
method is that the former giAves'-a t‘em'peratu're-de‘pendentAvirial coefficient, so
that by cornparing theoretical forrrxula‘e with observations one can obtain in-
formation about the force laW'whiCh_opera‘teis. |

We conclude ;his accounf by. giving Keesom! s calculation of the second
virial coefficient for the Sutherlaud mod.el, which iilustrates the procedure for

29

‘a '"realistic!"! potential. The in‘tegralnis a sum of two terms,

= (N/2) { W/KT (4 no /3) + (/kT) g v(r)/kT(dV(r)/dr)(41-rr /3)d}

. the first term is the “c0111s1on virial, '* Lorentz's value mu1t1p11ed by e "L/kT

where p = -V(o). 30 The second integral may be evaluated at highute‘m;-pe‘ramrye:s -

"by expanding the exponential function; fpr: V(r) = -cr (n > 3) Keesom obtained

B-?‘"N‘73 -__'3 o\ _1 3 ()1 3 (w) -
-3 -3\kT/ 27 2n-3 \kT - 31 3n-3\kT
where p = co ™. Other calculatlons are discussed in the treatise by Hirschfelder
31 :

et al.

This work was done under the auspices of the U. S. Atomic Energy Com-
mission. The author is indebted to Prof. T. S. Kuhn for his criticisms and

suggestions,
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