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THE DEVELOPMENT OF THE KINETIC THEORY OF GASES 

V. THE EQUATION OF STATE 

Stephen G. Brush  

Lawrence Radiation Laboratory,  University of California 

Livermore ,  California 

ABSTRACT 

Some ea r ly  at tempts  to explain deviations f r o m  the ideal gas  laws a r e  

discussed. In 1846, Elie Ritter proposed the equation of s ta te  ' . 

p . =  a p ( 1  + a t )  - bp 2 

( t  = t empera ture  in "C, p = density) where the f i r s t  t e r m  rep resen t s  the p res -  

, 
s u r e  of the ca lor ic  fluid (which was believed to behave like an ideal gas)  and 

the second t e r m  i s  a sma l l  correct ion due to interatomic at t ract ive forces .  

The constant b was to be calculated f r o m  the vir.ia1 of'the forces ,  assuming 
. . 

the atoms to be fixed in space. 

After the establishment of the kinetic theory of gases ,  Clausius intro- 

duced the v i r ia l  theorem which, together with t:he Maxwell- Boltzmann d is t r i -  

bution law, made . i t  possible to calculate low-density cor rec t ions  to the ideal 

gas  law for  a lmost  any fo rce  law. In genera l  these correct ions 'have the f o r m  

suggested .by Ritter,  but the correct ion would be positive fo r  repulsive forces ,  

and b usually var ies  with temperature.  The special  case  of hard  spheres  was 

f i r s t  t reated cor rec t ly  by van d e r  Waals (1873), who showed that the Ifexcluded 

volume 1 1  is approximately four  t imes  the atomic vdlume; Lor  entz l a t e r  derived 

the same re su l t  by a d i rec t  application of the v i r ia l  theorem. Second v i r ia l  

coefficients for more ,genera l  f o r c e  laws were  calculated by Boltzmann (1896)., 

Keesom (1912), and others.  



While Rit ter '  s equation i s  valid 0 v e r . a  cer tain range of densit ies and 

tempera tures ,  and his expression for  b i s  s imi lar  to that obtained f r o m  the ki- 

netic theory, his theory was based on incorrec t  physical assumptions and would 

not have survived comparison with more  accurate  experimental data. 

1. INTRODUCTION 

Among the natural  phenomena in .the .domain of physics, the mechanical 

and thermal  propert ies  of gases  under ordinary conditions a r e  perhaps the bedt 

understood. By assuming a gas  to be composed of many smal l  par t ic les  obey- 

ing Newtonian mechanics, colliding with the walls of the container but occupy- 

ing a negligible fract ion of the total volume, one can easi ly  deduce the "ideal 

gas11 laws; a few refinements enable one to explain t ranspor t  propert ies  and the 

equation of s ta te  a t  low densities.  The myster ious phenomena of condensation 

and the c r i t ica l  point a r e  interpreted by means of a cubic equation, derived 

f r o m  a model of attracting but impenetrable spheres .  Thus an impress ive  

range of observations can be explained in t e r m s  of llatomsll without-having to 
'G 

worry  about the messy  details of atomic s t ruc ture ,  and without r ecourse  to 

elaborate mathematics.  In short ,  theory i s  the showpiece of c lass ica l  

In o rde r  to f ind.an e r a  when the situation was not s o  sat isfactory - -  and 

to understand how our present  ideas were  developed. - -  one must  go back a t  

leas t  a century. With the exception of Bernoull i ' s  work (1738) most  of the theory 
\ 

was developed during the nineteenth century. In the previous a r t i c l e s  in this 

s e r i e s  we have discussed the work of John Herapath (1790-1868), J. J. Waterston 

(1811-1883), Rudolf Clausius (1822-1888), and J a m e s  Clerk Maxwell (1831- 

1879).'l The efforts of these scient is ts  were  mainly directed toward  establish- 

ing the kinetic explanation of the ideal gas  laws, althkugh in the l a t e r  work of 



" Clausius and Maxwell the idea of a toms a s  non-interacting point-masses had .' . 

to be abandoned in' o rde r  to account f o r  t ranspor t 'p roper t ies .  

In this paper we shall  look a t  some of the ea r ly  at tempts  to explain devi- 

ations f r o m  the ideal gas  laws. The f i r s t  a t tempts  were  made by scient is ts  

who believed that the p res su re  of an ideal gas  is due, not to the collisions of 

a toms with the s ides  of the container, but to the action 'of a subtle fluid - -  
tlcaloric. 1 1  However, they a lso  real ized that the p r e s s u r e  would be affected by 

interatomic fo rces ,  and they could calculate the p r e s s u r e  due to such fo rces  

by assuming the atoms to be fixed in space. In this way the Swiss physicist  

Elie Rit ter  (1801-1862) derived an equation of state of the fo rmL 

where p i s  the density, t the tempera ture  in degrees  Centigrade, a the coeffi- 

cient of expansion, and the constant b i s  essent ial ly  the v i r ia l  of the interatomic 

fo rces .  

Ri t ter  1 s paper appeared in 1846; many yea r s  l a t e r  the kinetic theoris ts  

a r r ived  a t  a s imi lar  equation by different reasoning. During the period 1845- 

1855 the ca lor ic  theory was overthrown and heat was shown to be, not a fluid, 

but simply a f o r m  of energy .which could be converted into other f o r m s  of energy. 

Many. scient is ts  thought that thermodynamics,  which descr ibed these energy 

t ransformations on a macroscopic bas is ,  was sufficient for  a l l  pract ical  pur- 

poses,  and refused to entertain speculations about invisible atoms.  But af ter  

KrSnig, in 1856, revived the'old idea that heat i s  the kinetic energy of a tomic 

motion, Claus ius, Maxwell, and Boltzmann developed the kinetic theory in 

consider,able detail. The s tar t ing point for  l a t e r  theories  of the equation of 

s ta te  i s  the v i r ia l  theorem, p r 0 v e i l . b ~  Clausius in 1870, which r e l a t e s  the p r e s -  
4 .' 

s u r e  to the velocities of the atoms,  . and the fo rces  and dis tances between pa i r s  

of a toms.  F o r  actual calculations i t  i s  necessa ry  to know something about the 



average spatial  distribution of the atoms;  a s  long a s  the density i s  low enough 

that interactions between pa i r s  of a toms can be considered independent of the 

positions of other a toms,  i t  i s  sufficient to use the Maxwell-Boltzmann d is t r i -  

bution law ( f i r s t  given by Maxwell ili 1873 and l a t e r  proved more  rigorously by 

Boltzmann). Thus the necessa ry  mathematical apparatus  had been develop,ed 

by 1875, even though detailed calculations with rea l i s t ic  force  laws were not 

begun untilL thirty .years  l a t e r  when accuratg .experimental data on the equation 

of state became available. Equation (1) was then regarded a s  mere ly  the begin- 

ning of a serieq. in' increasing powers of the density. The coefficients of highe.r 

powers could be related theoretically to simultaneous interactions of three o r  

more  atoms,. although because of the mathematical difficulties involved i t  was 

ra re ly 'poss ib le  to calculate these coefficients exactly. 

.The special  case  of a . g a s  of hard spheres  had a l ready been considered by 

Bernoulli,  who argued that the volume, v, of the gas  should be replaced in the 

equation of s ta te  by (v  - b.), where b i s  a constant represent ing the volume PC- 

cupied by the atoms themselves.  It was not until 1873 that van der  Waals showed 

that b should real ly  be equal to approximately four t imes  the atomic volume. 

So'mewhat la te r  Lorentz  obtained a s imi lar  r e su l t  by applying {he v i r ia l  theorem, 

and pointed out that the net resu l t  of this correct ion was an  increase  in the p r e s -  

s u r e  proportional to the square of the density (neglecting higher powers of the 

density). 

As in other pa r t s  of atomic theory, the bas ic  physical principles of gas  

theory w e r e  sta.ted l.ong befare  they were  proved; one must  r e s i s t  the temptation 

to glorify the isolated pioneer mere ly  because subsequent work showed that he 

had guessed right. Thus a c r i t ica l  examination of Ri t te r '  s theory shows that 
'. 

by making seve ra l  unjustified assumptions he was fortunate enough to a r r i v e  a t  

an expression for  the second v i r ia l  coefficient ve ry  s imi lar  to the c o r r e c t  orle; 



but that his theory could not have survived comparison with m o r e  accurate  ex-.. 

per imental  data, and did not provide a good theoretical basis  fo r  fur ther  develop- 

ments.  It must  the.refore be regarded  a s  an interesting curiosity, but not an  

anticipation of the more  solid achievements of the la te r  kinetic theoris ts .  

2. THE EQUATION OF STATE IN THE CALORIC THEORY 

As Rit ter l  s work i s  not generally known, and i s  not ve ry  accessible ,  it 

s eems  worthwhile to give a f a i r ly  complete account of it here .  Ritter did not 

d iscuss  the calor ic  theory in any detail, but mere ly  accepted the cur rent  idea 

that calor ic  behaved like an ideal gas.  He considered the p r e s s u r e  of a r e a l  

gas  to be the resu l t  of two causes: the repulsion due to caloric,  and the a t t rac- .  

tion due to interatomic forces .  He assumed in par t icular  that the two effects 

could be treated independently and then added together; while this had no theo- 

re t ica l  justification, i t  permitted him to calculate the contribution of the f o r c e s  

in a manner independent of the calor ic  theory. 

Ritter borrowed f r o m  poisson4 the mathematical apparatus necessa ry  

for  this calculation. The p res su re  of a gas  i s  the force  per  unit a r e a  exerted 

on a surface in the gas; Poisson and Ritter assumed that the atoms a r e  fixed 
, 

in a cubic a r r a y  in space, neighbouring atoms being a distance A apart .  

Poisson showed that .the p r e s s u r e  i s  

p = ( l /6a3)  z r f ( r )  (2) 

where f ( r )  denotes the fo rce  exerted by an atom a t  a distance r ;  the s u m  i s  to 

be computed by choosing some central  a tom and summing the contributions 

. .1:4 
f r o m  a l l  the others .  Assuming that a spherical  shel l  a t  a distance r f r o m  

2 2 '  the central  a tom contains 45rr /A atoms,  Poisson wrote Eq. (2) in the f o r m  



where now the sum i s  simply over possible values of the magnitude of r :  A, 

5 2A, 3 4  . . . . In order  to evaluate' this s u m  he used the formula 

By successive integrations by pa r t s  the l a s t  t e r m  in this equation can be 

reduced to a power s e r i e s  i n A ,  the coefficients being the derivatives of F(r) 

3 a t  the origin. In this c a s e  F ( r )  = r f ( r ) ;  so. F ( O ) ,  and F l : ( O ) ,  and F"(0) were  

a l l  s e t  equal to zero.  (Neither Poisson nor Rit ter  considered the possibility 
I 

that f ( r )  might become infinite a t  r = 0, and their formulae a r e  not very  use-  

fu l  for  calculations with singular forces .  ) The final resul t ,  obtained by 

Poisson and given ag i in  by Ritter,  i s  that the contribution to the p r e s s u r e  i s  
00 

3 Since the density i s  proportional to l /A  , this could a l so  be written a s  a 

s e r i e s  in descending powers of p2/3: 

Poisson thought this formula  might represent  the total p r e s s u r e  of a gas ,  

though he found i t  difficult to reconcile this with the empir ica l  fact  that the p r e s -  

s u r e  i s  approximately proportional to the density., and he did not make much use  

6 
of the formula.  Ritter,  on the other hand, t reated this contribution a s  a sma l l  

. cor rec t ion  to the ideal gas  law, obtaining Eq. (1) a s  a f i r s t  approximation for  

a t t ract ive forces .  It should be noted that b i s  a constant independent of. tem- 

peratui.e and density according Lu RiLLcll a theory. 

In order  to compare . theory with experiment,  Ri t ter  derived expressions 

fo r  the coefficients of expansion a t  constant p r e s s u r e  and volume. If the den- 
<: 

sity a t  t = 0 "C i s  p, and one r a i s e s  the tempera ture  tn 100°C, keeping the 

p res su re  constant, the density will then be p(l  t 100 a1 ). (This  i s  Rik&er.*l s 
, . 



definition'of a ' . .  ) Eliminating the p r e s s u r e ,  he  obtained 

If instead the volume i s  kept constant, the p r e s s u r e  will i nc rease  f r o m  

p to p(l t100all);  eliminating p, the coefficient of expansion a t  constant volume 

was found to be 

7 Both .a1 and a" reduce tq a fo r  ideal  g a s e s  (b  = 0). Regnault had found that 

hydrogen obeys the ideal  gas  law a t ' p r e s s u r e s  f r o m  1 to 3-1/2 a tmospheres ,  

and that a has  the value 0.0036613. 

Regnaultl i experiments, on a i r 7  showed deviations f r o m  the ideal  ga; 

laws,, though the deviations were  so  sma l l  that Regnault himself at tr ibuted them 

to e r r o = s  of observation.  Ri t ter  calculated the values of a and b in Eq. (7,) f o r  

th ree  observat ions  and obtained the resu l t s :  (1)  a = 761'.4714, b = 1.4714; (2)  

a = 760.2864, b = 0.2864; (3) a = 760.1865, b = 0:1865., where  the p r e s s u r e  i s  

measured  in mi l l ime t r e s  o f .mercu ry .  Taking a = 761 and b = 1, he then cal-  

c.ulated a1 and.la11 fo r  s eve ra l  p r e s s u r e s  with the following resu l t s :  

P r e s s u r e  . a ' ~  a" 
(a tmospheres )  theory expt. theory expt. 

1 .0036716 .0036706 OU3.6661 . UU366tjO 

Regnaultf s observations on carbon  dioxide could be represen ted ,  accord-  

ing to Ritter, by the formula  

and the coefficients of expansion were,  a s  follows: 



P r e s s u r e  a11 P r e s s u r e  at 
( m m  mercury)  theory expt. ( m m  mercury)  theor'y expt. 

1742.73 ,003,7225 .00'37523 

3589.07 ,0037920 .0038598 

Ritter concluded that his theory gave the co r rec t  explanation fo r  deviations 

f r o m  the ideal gas  laws, although fur ther  observations a t  higher p r e s s u r e s  

would be desirable.  

3. THE EQUATION OF. STATE IN THE KINETIC THEORY 
. . 

During the next thirty yea r s  l i t t le progress  was made in understanding 

deviations f r o m  the ideal gas  laws, although i t  was well known that such devi- 

ations 'existed, and .several  empir ica l  equations of s ta te  were  suggested. The 

attention of theoretical physicists was oc.cupied instead with est.ablishing the 

prin=iple s of macroscopic thermodynamics and applying the kinetic theory to 

ideal gases .  As ea r ly  a s  1853 the Joule-Thomson experiment8 had shown that 

interatomic fo rces  have a measurable  effect on the thermal  proper t ies  of gases ,  

but it was some time before these fo rces  were  taken into account theoretically. 

Fur the rmore ,  l i t t le information was yet available about the prec ise  nature of 

these forces,,, as ide f r o m  the fact  that they must  reduce to inverse-square gravi- 

tational fo rces  a t  l a rge  distances.  A ve ry  .elaborate hypothesis abo'ut the nature 

of interatomic fo rces  h a d b e e n  by Roger Boscovich (1711-1787), who 

regarded atoms a s  points,. no two of which can ever  coincide; the fo rce  between 

two atoms i s  a c.ontinuously changing function of their  distance, beginning with 

. . infinite repulsion a t  ve ry  shor t  distances,  probably alternating seve ra l  t imes  

between attractiori arid repulsion, and finally ending as gravitational a t t ract ion 



a t  l a rge   distance^.^ Although B o s c o v i c h ~ s  ideas remained popu la r fo r  a long 

time, they were  condemned by many nineteenth- century scient is ts ,  who thought 
, 

i t  inconceivable that point a toms could have such propert ies .  Indeed,. any kind 

of action a t  a distance was somewhat suspect,  and was usually explained, a s  due 

to the action of the aether .  10 

Nevertheless,  two simple models were  proposed during the la te  nineLeenth 

century before much was known. about atomic s t ructure,  and both .are  s t i l l  often 

used in calculations although they a r e  now known to be incorrect .  Maxwell 
11 

considered rebulsives  forc.es cjf the f o r m  r-n in his work on the theory of vis- 

cositye and found that by setting n equal to 5 the calculation was  great ly  simpli-  

fied, and the resu l t  agreed with experimental data available a t  the t ime. Though 

l a t e r  experiments  showed that this fo rce  law could not be cor rec t ,  a Maxwellian 

model i s  often assumed fo r  t ransport- theory calculations for  reasons  of mathe- 

matical  convenience. 

A somewhat more  rea l i s  tic model was proposed by William.Sutherland 

(1859-1912): a hard sphere with .a fourth-power at t ract ive force  a t  g rea te r  dis- 

tance s p  going over eventually to the inverse- square  gravitational fo rce  a t  very  

12 la rge  distances.  He thought .that '  the Itultimate iaw of action of one part ic le  

on anotherl'l could be expknded in powers of l /rL,  the f i r s t  t e r m  being the law 

of gravitation, the second being the law of molecular force ,  

2 4 
I t .  . . ,with G/ r  + M/r to express  the law of molic fo rce  

thru the whole range of distances f r o m  molecular up to a s t ro -  

nomical, one i s  tempted to speculate whether the law of the t e r m s  

r.epresenting atomic o r  chemic force  may not be expressed  by 

2 one or  m o r e  higher powers of l / r  , represent ing a fo rce  in- 

sensible a t  molecular distances a s  the molecular t e r m  of molic 

fo rce  i s  insensible a t  as tronomical  distances,  but sensible a t  



atomic .distances, with the' associated idea that atomic dis - 
tances a r e  exceedingly smal l  compared to molecular.. This 

conception would (speaking in a purely relative manne.r) r e -  

duce the molecules almost  .to mathematical points, and would 

almost remove the .difficulty a s  to collisions of molecules. 

In this manner -we can .endeavour to real ize all the actions of 

matter  on matter ,  a s  pure attractions.  l 1  

Having decided on some part icular  fo rce  law, one then has to calculate 

the effect on the pressure .  The starting point for  most. modern work on the 

equation of state i s  the v i r ia l  theorem of Clausius. l 3  The theorem s ta tes  that 

the mean -value of the kinetic energy in a sys tem of mater ia l  points i s  equal to 

the mean value of a quantity called the virial: 

I 

where x, y, and z represent  the rectangular coordinates of the points, X,. Y, 
. .. 

and Z the respective components .of the force  acting on each point; the ave'rage 

value i s  taken over a t ime, in the case of a periodic motion, equal to a com- 

plete period, o r ,  in the case  of i r regular  motion, sufficiently long that .the 

mean value becomes c.onstant. It is fur ther:  assumed .that the sys tem i s  in 

1 1  stationary motion, I f  i. e., that the points move within a limited space and 

t h e  velocities do not change continuously in any part icular  direction. 

The total vir ia l  may be divided into two parts:  (1) the internal virial ,  

which resul t s  simply f r o m  the fo rces  which .the points exer t  on each other;  and 
. .  . 

(2) the external virial ,  resulting f r o m  external  fo rces  acting on the system. I£ 

we l e t  f ( r )  represent  the force  between two points a t  a distance r ,  the i n k m a 1  

1 
v i r ia l  i s  the s u m  of (-  rf(r)) f o r  each pair of points; and if the only external  

f.orce i s  a p ressu re  p confining the sys tem to a .voIume v,. the external  vir ial  

i s  .simply 3pvlZ, In this way Clausius .a r r ived  a t  the equation 



where E denotes the mean vis viva (kinetic energy) of the internal motions. 

This i s  essentially the same  a s  the equation used by Rit ter ,  except that Ritter 

used ' for  E an empir ical .value derived f r o m  the ideal gas  law, instead of setting 

i t  equal to the kinetic energy of ato,mic mo.tion. 
14 

.Cl'ausius gave the following proof of this theorem: 

'!The equations of . the motion of a mater ia l  point a re :  

': .:. But have 

o r ,  differently arranged,  

d2x 
2 (dx/dt)' = -2x - t d2 (x2) 

dt2 dt2 

Multiplying this equation by (m/4), and putting the magnithde 

2 2 X for  m(d x/dt ), we obtain 

2 
A Y x  

2 .2 ( )  = - -  xrid ( x )  
2 

t -  
* .  dt2 

The t e r m s  of this equation may now be integrated &r  the t ime 

f r o m  0 to t, and the integral divided by t; we thereby obtain 

where (*) denotes the initial value of - a x z )  
dt ' " " "  



"The l a s t  t e r m  of the equation, which has i t s  factor  includ- 

ed in the square brackets,, becomes, '  when the moti0.n i s  per i-  

odic, = 0 a t  the end of each period, a s  a t  the end of the period 

2 
d ( x  )/dt r e sumes  the initial value When .the motion 

is.  not periodic, but i r regular ly  varying, the factor  in brack- 

e t s  does not. so  regular ly become = 0; yet i t s  value cannot 

continyally increase with the time, but :can only 'fluctuate with-. 

in ce r t a in  l imits ;  and .the divisor,, t, by 'which .that t e r m  i s  

.affected, must  accordingly cause the t e r m  to become vanish- 

ingly sma l l  with ve ry  .great values of t. Hence, omitting it,  

we may  wri te  

As the .same equation i s  valid a l so  for  the.remaining coordi- 

nates . . . . and.for  a sys t em of any number of points we 

have . . . , 

It should be noted that the important contribution of Clausius was the 

elimination of the l a s t  t e r m  in..Eq. (lo).,, since that equation itself was a l ready 

15 well known in clas s ical  me chanic s o  

The f i r s t  attempt to apply the v i r ia l  theorem was the famous equation of 

s.tate .of van de r  Waals (1837- 1923), proposed in his Leiden thesis  in 1873, Van 

.de r  Waals did not make any special  assumptions about the f o r m  of the force  

law,. but he t r ied to draw some genera l  conclusions about the effects of such 

'forces. Although .his discussion of these fo rces  pertained mainly to liquids* 

it:was rea.sonab1e to expect the same equation to apply to gases  where the 

.correction to the ideal gas  law would be .small  anyway, 



He assumed that such f o r c e s  have a ve ry  shor t  range, s o  that 

I t . .  . we ne.ed only take .account. ( in considering the force  on . : :... 

any given part ic le)  those other par t ic les  which a r e  within 

a .sphere of ve ry  sma l l  radius  having the particle ,as centre ,  

and termed the Itsphere of action, 1 :  the fo rces  themselves 

becoming ins.ensible a t  distances grea ter  than the radius  of 

the sphere.  I f  
1 7 ' .  . 

Lf the density. i s  constant throughout, 

I t . ,  . i t  follows that a l l  those points will be in equilibrium 

about which .we can .describe a sphere  of action without en- 

croaching on the boundary. By this of c o u r i e  i s  meant: that 

the par t ic les  will be in equilibrium a s  f a r  a s  attraction.alone 

i s  concerned; not necessar i ly  so'when the molecular.  motion 

i s  a l so  taken into account -- though this will actually be the 

case  f o r  the m a s s  taken a s  a whole, In other words, the 

fo rces  X, Y,. and Z a r e  ze ro  f o r  a l l  points within the mass .  

Consequently the expression (Xx t Yy t Zz) vanishes , , .. C 
The part ic les  for  which the fo rces  may be put equal to ze ro  

constitute - a p r i o r i  by . fa r  the g rea te r  par t  of the mass ,  leav- 

ing only a comparatively sma l l  number on which uncompensa- 

ted fo rces  act. These l a s t  l ie  on the boundary and f o r m  a 
I 

l ayer  whose. thickness i s  the radius  of the sphere  .of action; 

and the fo rces  on these par t ic les  a r e  directed inwards. If 

about .one such part ic le  we descr ibe  the sphere  of action, 

pa r t  of this s p h e r e w i l l  be external  to the liquid, and this 

pa r t  will represent  the space which would be occupied by. the 

par t ic les  which would if p resent  annul the forces .  So the 



remaining force acting inwards i s  equal in magnitude to the 

attraction which the particle in question would have experi- 

enced f r o m  the action of the part icles  which a r e  absent. 
18 

The equation of state, including this additional pressure ,  mgy thus b'e written 

where p i s  the total pressure  exerted by the boundary, and pt is the molecular 

p ressure  a t  the surface. Van der  Waals believed that p,would be much grea ter  

than pl in gases,  but p f  would be g rea te r  in liquids. 

In order  to determine how pl depends on density, :van der Waals appealed 

to the hypothesis of molecular motion: 

". . . consider an  infinitely thin column in the boundary layer,  

and imagine a part  of space below this layer ,  within the body, 

containing every molecule that could a t t rac t  the c ~ l u m n .  If 

in this space there were a molecule a t  r e s t ,  we should re -  

quire to know the law of fo rce .  to be able to estimate its at-  

traction on the .column. But .if this molecule is in motion* 

and can occupy any par t  of the space indifferently, the above 

difficulty f o r  the most par t  disappears; and we can take the 

attraction exerted by the molecule to be the mean of the at- 

tractions which it  would exert  in i ts  different possible posi- 

tions in the space. The same consideration applies to a 

second molecule which may be within the space a t  the same  

time a s  the f i rs t .  In short, the attraction exerted by the 

matter  in the space mentioned i s  proportional to the quanti- 

ty of matter ,  or  to the density. The same holds for  the mole- 

cules within the column, so that the attraction i s  proportional 



to the square of the density, o r  inversely proportional to the 

. . 19 
square  of the volume. 1 1  

. . 
In o rde r  to take into account the influence of finite molecular extension, 

van d e r  Waals used a different methodl he re  he avoided a mistake which had 

been made by his predecessors .  

"Of course  the effect of the extension will be .to make the 

volume within which the motion takes place sma l l e r  than i t  

s eems  to be. At f i r s t  I considered that the difference between 

the external  volume and the volume taken up by the mole- 
, 

cules was the space within which the motion takes place. But 

I t rus t  to be able to' prove, by fur ther  considerat ions, .  that 

up to a cer tain degree of condensation of mat te r  the external  

'volume must  be diminished by four t imes  the volume of the 

molecules,  and fo r  g rea te r  condensation that it must  be di- 

minished by a continuously diminishing multiple of this vol- 

ume. t~ 
20 

The factor  of four was deduced by considering the mean f r e e  path of an 

atom. Clausius had taken into account, in his derivation of the mean f r e e  path 

formula  ( see  the third paper of this s e r i e s ) ,  the extension of the molecules in a 

plane perpendicular to the direction of motion, but not in the direction of motion 

i tself ,  and hence his resu l t  was too large: 

". . . just a s  if the f r e e  path of a ball thrown against a wall were  

said to be the distance of the cent re  of the ball  f r o m  the wall 

when the motion began; whereas the f r e e  path i s  that distance 

minus the radius of the ball. Thus, considering the diameter  

of the molecule we get a shor t e r  f r e e  path, and consequently 

a proportionately g rea te r  number of encounters.  But then the 

opposing p r e s s u r e  must  be g rea te r  in proportion. " 2 1 



I£ A i s  the mean distance of the molecules,  supposed to be arranged in 

cubical o rde r ,  and each molecule i s  regarded a s  a sphere of diameter  0 ,  then 

according to Clausius' the mean f r e e  path of a single moving molecule i s  

when a l l  the others  a r e  assumed a t  r e s t ,  o r  

When the  others  a r e  moving with the same velocity. 

"'We must  now find how much the diameter  of the molecules 

diminishes the path. If a l l  the impulses were  in the motion 

joining the cent res  of the molecules considered a s  spheres,, 

then 1 would have to be diminished by the distance between 
1 

the cent res  when impact occurs .  F o r  half the diameter  of 

the molecules must  be subtracted a t  the beginning a s  well a s  

a t  the end of the f r e e  path. Thus 

P 2  = P 1  - a 

considering that ( . . ~ / 2 )  is the ra.di11s nf the rnnlec~~le here re- 

3 
garded a s  a sphere,  and that nA i s  equal to the unit volume 

3  
here  taken a s  v; a l so  that (4nn0 / 3 )  i s  eight t imes  the volume 

of the molecules themselves'; we get 

where b is the volume of the molecules. 1 

" The encounters,  however, a r e  only cent ra l  exceptionally; 

and therefore,  in the mean, 1 must  be diminished by l e s s  
1 



than 0. F r o m  the following considerations we can find what 

f ract ion of 0 i s  to be sub t rac ted f rom l.  At the instant of 

impact .the centre  of the moving molec'ule . l ies on a spherecof 

radius.  0 described about the cent re  of the second molecule. 

Consider :this sphere  bisected b y ' a  plane perpendicular .to the 

dir.ection of motion. F o r ,  cent ra l  impact the cent re  of the 

...... .:-. .:::.moving molecule has .grea tes t  distance f r o m  this plane, 

and f o r  intermediate cases  the cent re  is a t  other points of 

the hemispherical  surface.  The diminution of the path i s  the 

distance a t  impact of the centre  of .the mdving molecule f r o m  

the plane, and hence the mean diminution of the mean path i s  

the mean ordinate of the hemisphe.re. But .s ince the cent re  i s  

equally l ikely to fa l l  on any point of the hemisphere,  we must  

take the mean ordinate fo r  equal e lements  of the hemispherical  

surface,  and not, a s  might easi ly  be thought, for  equal ele- 

ments  of the plane. We have :to find 

where dw is the.element:of surface.. Thi's i s  the ordinate of 

the cent re  of gravity of a .hemispherical surface,  and i s  known 

to be half the radius.  Hence f r o m  l1; we .'must subtract  (b/Z) 

and not 0 .  Putting 1 - (0 /2)  = 1 'we get 
1 3 

x., - 4bl A3 ; - . -  . 1 1  (See ref.  22) 
.1 v 

I£ one takes into account the fact  that the molecules have a Maxwellian 

distribution of velocities, the factor  (4/3) in the above formula fo r  l 1  must  be 

rep lacedz3 by a, b u t  this does not change the final result:  the volume 



available to the mole.cules i s  to be written a s  v - b, where b is equal,. a s  a 

f i r s t  approximation, to four  t imes  .the volume of the molecules themselves.  

Thus van de r  Waals derived his equation of s ta te  " 

2 
( p  + a/v ) ( v  - b) = '  X m v 2 / 3  = ~ ( 1  + at). 

. . 

(12) 

Th2s equation has been very  useful in correlat ing and interpreting the 

proper t ies  of gases ,  and i t s  success  may. probably be attributed to the addition 

2 
of t h e - t e r m  (a /v  ) to i r p r e s e n t  the effect of interatomic forces .  (The constant 

b was a t  this stage simply an adjustable paramete.r ,  chosen to f i t  experimental  

data, and therefore making i t  equal to - four t imes  the volume. of the molecules 

had li t t le prac t ica l  significance.) However, the derivation of the equation i s  

not ve ry  sat isfactory f r o m  a theoretical point of view, 24 and since i t  i s  dis- 

cu'ssed'quite thoroughly in m o s t .  textbooks on the kinetic theory it does not s e e m  

necessa ry  to go into the subject here .  La ter  work, based on more  d i rec t  ap- 

plication of the v i r ia l  theorem,: is .of m o r e  in te res t  than empir ica l  modifications 

of the van d e r '  Waals equatidn, and has given m o r e  information about inter-  

atomic fo rces  than can be obtained f r o m  such empir ica l  equations of state.  
. . . . 

A bet ter  d.eduction of the equation of  s ta te  for. hard  spheres  was given by 
. . 

25 H. A. Lor.eritz(1853-1.928) in 1881 ,' Lorentz  ' s ta r ted  by writing the contri-  

bution to' the 'v i r ia l  f r o m  collisions ,of spheres  of diameter  0 as .  

where K i s  the repulsive forc:e which the spheres .  exer t  on each other a t  a dis- 

tanc.e o,,, and the s u m  i s  ov.er a l l  p a i r s  of molecules ivhich'collide a t  a par.ticular 

time. .Actually K i s  ze ro  except a t  the instants when collisions 'occur, and then 

i t  is infinite. To., evaluate the s u m  it i s  m o r e  convenient to average 'over a t ime 

interval  7, and then interchange the o rde r  of summation and integration: 
25 



  he quantity I l K d l  i s  just  the momehtumchange in a collision, s o  we have 

where U i s  the relative velocity measured along the l ine of cent res .  This  ex- ' 

n 

press ion  can then be wr-itten in t e r m s  of the velocity-distribution function f (u): , 
I 

the number of collisions during the t ime T be tween two molecules with veloc- 
I 

i t ies  lying in the ranges (u, u + du) and (u '  , u '  + du ' ) ,  such that the angle be- 

tween u and u:' i s  between $ and $ +. ,dp,  and the angle between' the relat ive 

velocity U and the line of cent res  i s  between x  and,^ + dX (thus Un = Ucosx),  i s  

2 
(rro ~ / v ) f ( u ) f ( u ' ) U  sin g s in  x cos x d u d u '  dq d x .  

2 2 Now substituting U = u + u'  - 2uu:' cos  4 and integraiillg over a l l  the . . ,  vari-  

ables,  Loren.tz 'obtained the resul t  

2 .  2 f (u)f(u!')(u +u12  -,2uuI cos g )  s i n g  sin x cos x dudu' dg d x  
. . 

. It i s  not actually necessa ry  to know what f(u) i s ,  since jt i s  sufficient to express  

the answer in t e r m s  of N and the mean square  velocity: 

Hence 

. . 
3 2 .-z 

A = ( r m o  / 3 v )  N u 
...- 

and using the v i r ia l  theorem we find fo r  the equation of s ta te '  



where b has  the same meaning a s  in van de r  Waalsl s equation. Equation (1 3) 

ag rees  with Eq. (12) to f i r s t .  o rder  in (b/v),, i f  we se t  a = 0 (no at t ract ive 

forces) .  

In order  to calculate the contribution to the p res su re  of fo rces  whic,h a r e  

continuous functions of the distance, i t  i s  necessa ry  to know something about 

the spatial  distribution of molecules in the gas; Poissonf  s s ta t ic  model i s  c lear -  

ly  inadequate if the fo rces  become strong when two molecules get c lose to each 

other. The .required f or.mula' i s  of course  the Maxwell-Boltzmann distribution 

26 
law, which s tates  that the relative:.probability of a molecular configuration 

with potent ialenergy V i s  e-V/kT ( T  = absolute temperature in 'K and k = 

~ b l t z m a n n l  s constant). F o r  the calculation of the second vir ia l  coefficient i t  

i s  sufficiently accura te  to assume that this formula can be applied to a pair  of 

molecules,  neglecting their  interactions with other  mole.cules in the gas.  

This me thod  was used by ~ o l t z m a n n ~ ~  to calculate the second v i r ia l  co- 

efficient f o r  m.olecules interacting with a force  law f ( r )  = ~ r - ~  ( ~ a x w e l l i a n  
00 

molecu1e.s). The potential energy V(r)  i s  ihen [ f ( r )dr  = K/4r4, and the con- 
J 
'r 

tribution to the v i r ia l  i s  

Evaluating the integral, Boltzmann obtained the resi.1l.t 
1 

pv = RT( l  + B/v) = RT( l  + a(N/v)(K/kT) 3/4) . . 

.where' a is a constant which has  the value (not given explicitly by Boltzmann) 

of (~r/3<2) r (1/4). 
28 

Equation (14) i s  in principle the solution of the problem considered in this 

paper,  in the sense that i t  permi ts  one to calculate the f i r s t -o rde r  correct ion to 



the ideal gas  law whenever the f o r c e  law i s  given -- provided the integral  con- 

verges.  (The method does not work, fo r  example, when the force  is a Coulomb 

2 
attraction, V(r) = e / r ,  and therefore ionized gases  cannot be descr ibed in this 

way.) There  i s  a l so  a. c lear ly  defined procedure fo r  calculating higher v i r ia l  

coefficients, even though the calculation may not be prac t ica l  fo r  most  fo rce  

laws. The main pract ical  difference between Boltzmannl s method and Ri t t e r f  s 

method i s  that the f o r m e r  gives a temperature-dependent vir ia l  coefficient, s o  

that by comparing theoretical formulae with observations one can obtain in- 

formation about the force  1aw.which operate  s. 

We conclude this account by. giving Keesomf s calculation of the second 

vir ia l  coefficient f o r  the Sutherland model, which i l lus t ra tes  the procedure for  

a llrealisticll potential. The integralMis a s u m  of two t e rms ,  29 

. , -p,/kT 
the f i r s t  t e r m  i s  the l~col l is ion .virial,,ll Lorentzl  s value m~l t ' i ' ~ l ' i ed  by e 

30 
where (i- = -V(o). The second integral  may be evaluated a t  high.:te.mpe.~at.lri?~:s . : 

-n  
by expanding the exponential function; f o r  V(r)  = - c r  (n > 3) ~ e e s o m  obtained 

-n where p = c a  . Other calculations a r e  discussed in the t r ea t i se  by Hirschfelder 

e t  al .  
31 
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