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ABSTRACT

A calculation of the tritium beta energy absorption in
spherical bulbs filled with mixtures of tritium and other
gases is carried out under the empirically substantiated as-
sumption that the energy absorption per spherical shell sur-
rounding a point tritium source is representable by a pure
exponential function. Primary and successive backscattering
at the wall of the vessel is taken into account by means of
a very approximate calculation. The computed energy absorp-
tion function for hydrogen gas in a silvered bulb agrees

+

within = 3% over a wide range of gas pressure with the one

available set of spherical ionization chamber data.
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Chapter 1

INTRODUCTION

The need for information concerning the tritium beta
energy absorption by spherical volumes of gas arose out of
an experimental study of isotope exchange rates in mixtures
of tritium and methane gas conducted in Group W-7. These
experiments were carried out in spherical glass bulbs vary-
ing in volume from 100 to 1000 ml and at total gas pressures
varying from 65 to 400 mm Hg. In the majority of cases, the
gas mixture was predominantly tritium. Since under these
conditions the range of the tritium beta particles is of the
order of the bulb diameter, it is clear that not all of the
emitted beta energy is absorbed by the gas.

The problem to be treated in this report is essentially
this: given a specified homogeneous medium containing a
dispersed beta emitter bounded by a spherical wall of known
composition, find the fraction of the total emitted beta

energy that is absorbed by the medium. While the formal



content of this report would be applicable to any state of

aggregation of a medium of fairly low atomic number, for
the sake of concreteness we shall use a nomenclature appro-
priate to the gaseous state.

Because of the great complexity of electron scattering
processes, any fundamental approach to the problem we enter-
tain here would be far from simple. Indeed, no theoretical
solution has yet been obtained for the electron flux dis-
tribution in a physically bounded mediuwm.

Since no direct, purely theoretical scheme of calcu-
lation is presently available, we shall have recourse to a
less fundamental, two-step approach to the problem. In the
first step we neglect backscattering from the vessel wall.
This is equivalent to assuming that the medium is homogene- -
ous and unbounded in its absorbing properties, although the
beta emitter is restricted to a definite sphere in the
medium. Then in the second step we calculate the energy
absorption due to the backscattered beta particles and add
this to the energy absorption calculated in the first step.

If both the medium and the dispersion of the beta emitter
therein were infinite (relative to the range of the beta
particles), the calculation for the first step would be
trivial, since the energy absorbed per unit volume must per-

force equal the energy emitted per unit volume. In the
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actual case, a real problem arises since the rate of energy
absorption is a function of the distance from the center of
the sphere due to the escape of beta particles from the
sphere of beta emission. In order to calculate this energy
absorption function, we must know the spacial dependence of
the energy absorption surrounding a point beta emitter in
the absorbing medium. This aspect of the problem will be

treated in the chapter which follows.



Chapter 2

THE ENERGY ABSORPTION FUNCTION FOR SPHERICAL GEOMETRY

NEGLECTING BOUNDARY BACKSCATTERING

The physical input required for this calculation is the
knowledge of the energy absorption per spherical shell of
absorbing gas surrounding a point source of tritium. While
a direct experimental study of this point-source function
has not been carried out for the case of tritium, this has
been done for beta sources of higher energy. From these
data at higher energies, we shall make an attempt to adduce
the point-source absorption function for tritium beta
particles.

First, however, let us note that we are not discussing
"absorption" in the sense it is customarily used in radi-
ation physics, but rather in its radiological sense of
"dose." For what is usually referred to as "absorption"
in physics could probably be better termed "attenuation,"”
since it is the reduction of particle beam intensity as a

function of absorbing film thickness which is usually
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studied. Experimentally, it is found that the intensity of
a beam of beta particles usually decreases in an approxi-
mately exponential manner with absorbing film thickness.
This fact is, however, of no use to our calculation since
there is no necessary relation between the energy absorp-
tion function we seek and the particle attenuation function
usually measured.

Fortunately, however, an experimental study of the rates
of ionization in hydrogen, air, and argon surrounding point
beta sources of relatively low energy has been carried out.1
The authors conclude that the energy absorption per spher-
ical shell in these gasées is rather accurately represented
by a decreasing, pure exponential function of the distance
from the source for beta sources of less than about 200 kev
mean beta energy. It was alsoc found that this exponential
dependence is far from being valid in the case of high atomic
number absorbers and/or higher beta energies. Indeed, for
these cases, a semilogarithmic plot gives S-shaped or even
peaked curves., Thus, the exponential point-source absorp-
tion function must be regarded as merely a fortuitous simp-
lification, valid in the dual region of moderately low
atomic numbers and low-energy beta particles.

Since, however; the lowest energy beta emitter studied

is 835 with a mean beta energy 8.6 times as large as the
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5.7 kev mean beta energy of tritium, some question arises
as to whether the assumption of an exponential absorption
function for tritium is justifiable. Happily, the assump-
tion is rather well substantiated--although indirectly--by
the work of G‘r\'x'n2 who measured light emission caused by
monoenergetic, collimated electron beams in air. For elec-
tron beams varying in energy from 5 to 54 kev, Gran obtained
plane energy absorption functions (roughly of haystack
shape) having practically the same shape for all energies.
This would seem to constitute good evidence that the shape
of the point-source energy absorption function for tritium
is the same as for 835~—that is, exponential.

Hence, in what follows, we assume with a fair degree
of confidence that the energy absorbed per spherical shell
of gas of moderately low atomic number surrounding a point
source of tritium may be adequately represented by the
expression

D(r) = Ae MT
where D(r) is the dose rate for a spherical shell of gas of
radius r concentrically surrounding the point tritium source,
and p is the linear energy absorption coefficient for the
particular absorbing gas. To a later section we leave the
problem of estimating the numerical values of y for various

gases. Our present concern will be to make a formal




calculation of the dose rate for a spherical volume of gas
neglecting boundary backscattering. The constant A in the
above expression can be related to the source strength s of
the point beta emitter by the relation

oo
s = \/aD(r)dr -.é.
O [+

and we thus obtain the normalized expression,
D(r) = pse™™F, (1)

In this calculation and in all that follows we neglect
the fact that the range of the beta particles is finite,
whereas the exponential function extends to infinity. How-
ever, since the data of Sommermeyer1 show that the point-
source absorption function is exponential out to a range of
at least 4/, this neglect produces only slight error, while
affording considerable mathematical simplification. If the
finite range of the beta particles were to be taken into
account, the calculated spherical absorption function would
be increased by an amount varying from O to about 1.5%,
depending in a complicated manner on the specific conditions.

We will now make use of eq. (1) to calculate the dose
rate (energy absorbed per unit of time) as a function of
position in a sphere of gas in which tritium is distributed

uniformly. The geometry involved is illustrated by Figure 1.



Fig. 1. The spherical absorption geometry.
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Consider a point P located a distance a — x from the
center O of a sphere of radius a. The beta energy emitted
per second per unit volume of the gas is €5- If the medium
were infinite, the dose rate in an infinitesimal volume
element dV located at P due to all of the distributed
sources located in the spherical shell of radius r surround-
ing P would be

D(r) dr aV = p e e M" dr av.
However, since the medium is finite, only a fraction of the
spherical shell for r>x contains beta sources. From solid
angle considerations one can show that the fraction of the
shell for x S r £ 2a - x that is within the emitting medium
is

——;L__. (22 ~ x - r)(1-+35.

4(a - x) r
For r £ x, the fraction is unity and for r 2 2a - x, the
fraction is zero.
Hence, the actual dose rate at P due to the spherical

shell of radius r for x £ r< 2a - x is

de = H € (22 - x - P)(1 + e HT gr
4(a - x) r

and the total dose rate at P per unit volume due to all
shells having portions in the emitting medium is therefore

€ = j"xu eoe"ur dr (+)
o



23 - X

+ Ho€q (22 - x - r)(1 + Xye ™ gr. (2)
4(a - x) r

X
The integration is straightforward and results in the ex-
pression

4¢€ 4 2 ~ux

BE e o e €3

HE, K K

1 x -w(2a - x) - X
+ —5 + N e - e
[u (a - x) pla - X):} [ ]

+x(23—-x) {1n23-—x
a - X X

) n n
+ X _E.:.l_)___.f‘__. [(23 -t - xn}} (3)
nes] n n!

which gives the dose rate ¢ per unit volume as a function of

the distance a - x from the center of the sphere.
Our main interest, however, lies in the total dose rate
E for the whole sphere. Now, E is given by

a 2
E = l41r€(a—x) d(a -~ x).

This integration is analytically tractable but lengthy. The

result is
o0 n
E-amade » Dn+3)

n+1l
o .
n=g (n + 4)

(2up2a)

Defining G to be the fraction of the emitted beta energy

that is absorbed by the sphere of gas and writing o for 2pa,
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we have oo
G=3 2 (-1)%(n + 3) o+l
n=0 (n + 4)!

. (4)

For computational purposes, this infinite series converges
too slowly for large o. For g greater than unity an alter-
native expression (which is valid for all values of a) is

more convenient:

G=1-i+43—§ [:1—(a+1) e'a]. (4")
2a o

A graph of G(a) appears in Figure 2. (A tabulation of G(a)
is given in Table 2, Chapter 6.)

The calculation of the energy absorption neglecting
backscattering is thus formally complete. It may be noted
that o varies with the composition and density of the ab-
sorbing gas as well as with the diameter of the emitting
volume. If P is the gas density, u/P is a constant for a
given gas; and therefore o varies directly as the product

of the gas density and the diameter of the emitting volume.
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Fig. 2. The geometric absorption fraction G as a function of q.




Chapter 3

BACKSCATTERING CONSIDERATIONS

@

When an electron beam is incident on a relatively dense
medium, an appreciable fraction of the beam is (more or less
diffusely) scattered back into the half-space of its origin.
This fraction is called the 27 (or half-space) backscattering
coefficient. Typically, the backscattered electrons pene-
trate the medium for a distance varying from about one-
twentieth to one-half of their rectilinear range in the
medium before being turned back.

Generally considered, backscattering is a vastly compli-
cated phenomenon and considerable experimental effort has
been expended toward its elucidation. Much of this work is
beyond the scope and interest of this report. No monograph
or book seems to have been written on the subject and the
literature is rather dispersed. However, the references
cited in this report can serve as a guide to the main body

of literature.



Accurate experimental work on backscattering is as rare
as it is difficult. By far the largest amount of datae is
of a crude and exploratory nature. In the energy range of
interest here only the work of Palluel,3 Sternglass,4 and
Kanter5 can be considered definitive,

The magnitude of the backscattering coefficient in-
creases markedly with the atomic number of the backscattering
mediums'8 and also depends on the angle of incidences—7 of
the electrons and on the angular aperture of the counter or
collector.7 Because of the angle effects, it makes con-
siderable difference whether the incident electron flux is
collimated or diffuse.9 But, in any case, the directional
distribution of the backscattered electrons is more char-
acteristic of diffusive than of specular reflection.

On the other hand, the backscattering coefficient is
relatively insensitive to changes in electron energy above
about 3 kev.4 In particular, for atomic numbers of less
than about thirty, no energy dependence is evident above
about 3 kev. For high atomic numbers, the backscattering
coefficient is by no means small. For example, it is about
0.7 for diffuse incidence on lead9 in the Mev energy region.

So far we have only been discussing particle backscat-
tering without any concern about the energy distribution of

the backscattered electrons. However, our interest in the




backscattering process arises from our need to know the
energy ''reflected" back into the sphere of absorbing gas.
The energy distribution depends on the atomic number of the
backscattering medium and on the angle of incidence.4_8
The shape of the distribution is practically independent of
the energy of the incident electrons for low energies4
(~1 kev), but exhibits some dependence at high energies8
(~ 500 kev). Moreover, the dependence of the distribution
on atomic number is much larger at high energies than at
low.4

The ratio of the mean energy of the backscattered elec-
trons to the mean energy of the incident electrons is, in
the region of low energy, essentially independent of the
incident energy and only slightly dependent on the atomic
number. This ratio varies from about 0.5 for low atomic
numbers to about 0.6 for high atomic numbers in the energy

region from about 1 to 10 kev.4’5

Use will be made of this
fact in our computation of the backscattering contribution.

As might be expected, the presently available data on
backscattering processes--even though fairly extensive--are
by no means sufficient to make possible a precise calculation
of the energy deposition in the sphere of gas due to the

backscattered electrons. A precise calculation would demand

detailed data on the particle flux, directional distribution,



and energy distribution of the beta particles incident on
the wall, and would also require detailed data on the back-
scattering coefficient per element of solid angle as a
function of atomic number, (incident and reflected) direc-
tion, and energy, and, in addition, would require detailed
data on the energy per backscattered electron as a function
of the above parameters. Moreover, especially at low values
of the absorption parameter a (discussed in the last section),
second-order backscattering (i.e., backscattering of the
backscattered electrons after traversing the gas) and even
third-order backscattering must be taken into account.

It is therefore apparent that, even if accurate data
were available in profusion, the precise calculation of the
backscattering contribution to the energy absorption in the
gas would be a most formidable task. Indeed, because of the
geometrical complexities involved, the task might well be
practically impossible.

For these reasons we here proffer a rather crude calcu-
lation as a substitute for exact analysis. 1In a later sec-
tion we shall see that, in spite of the severe approximations,
some empirical evidence suggests that the calculation is not
grossly in error even for wall materials of atomic number as
high as silver. Because the relative backscattering contri-

bution diminishes with the atomic number, this calculation
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should be sufficiently accurate for wall materials of mod-
erately low atomic number.

Qur approach will involve the following basic assump-
tions:

a. Each surface element of the spherical wall emits
backscattered beta particles isotropically into the half-
space of the absorbing gsas.

b. The average energy of the once-backscattered beta
particles is degraded by an amount such that the average
absorption coefficient is y,u, where 713>1 and p is the
average absorption coefficient of the unbackscattered beta
particles in the gsas.

¢. The total energy of the once-backscattered beta

particles is 4/3ﬂ'a3

€ b(l1 - G) so that the relative (to the
total beta energy emitted in the sphere of gas) energy is
b(1 - G), where b<1l is assumed to be a constant depending
only on the atomic number of the wall material. (1 - G) is
the fraction of the total emitted beta energy that is "inci-
dent" on the spherical wall.

d. Successive backscattering can be taken into account
by successive application of the considerations given in (a),
(b), and (c).

In accordance with (a) and (b) and using the same geom-

etry as in Fig. 1, save that x = 0, we find the energy
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absorbed per second in a spherical shell of the absorbing
gas due to an element of surface area on the wall of emis-
sion strength eo‘ to be

- waALL
22 r e 1

1 2a
Now, the total energy absorbed per second by all of the gas

is just

2a —y1a
€' -J~ de' = €' 1 -1 (1-e’? )
0 7@

where, as before, a= 2ua.
Since the same relation holds for every element of wall
area, the total dose rate in the absorbing gas due to once-

backscattered electrons is

__i*.:ra3eob(1-e) 1 - Y (1 -e 1%
3 71(1

and the dose rate relative to the total beta energy emitted
in the medium is

B1 = b(l - G)f1

-y 10
where f,=1 -1 a-e 71 ).
; 7 o

It is evident that not all of the backscattered beta

particles will be absorbed by the gas: a fractionmn 1 - fl

of the original b(l - G) energy will be left over to
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"reimpinge" on the wall. The resultant, twice-backscattered
beta particles will thus carry a total relative energy
amounting to bz(l - G)(1 - fl) and will have an average
absorption coefficient 7 ol where 72J>71. Of this energy,

—yad
72 ) will be absorbed

a fraction f, =1 - (l/yza) (1 - e
by the gas. Thus, B, = bz(l - G)(1 - £)) f,.

Similarly, the dose rate in the gas due to the thrice-

backscattered beta particles will be Bj = b3(1 - (1 - fl)
_ ~r3a
(1 - £,) £y, where y5 > y,, and f5= 1 - (1/y40)(1 - e ).
In general, the total relative dose rate due to back-
oQ
scattering of all orders is B = izl Bi‘ In practice, where

a is not smaller than about 0.1 in the region of interest,
B may be taken as B1 + Bz + B3, For o greater than about

20, only B, need be computed. A graph of f(ya) vs ya

1
appears in Fig. 3.

At this point the formal part of our calculation is
complete. The fraction of the total beta emission energy
that is absorbed by the spherical volume of gas is F= G + B.
While G depends only on a, B depends (through b) on the
atomic number of the wall material as well as on a. Our
next task will be to assign numerical values to b, Yo and
. This will be undertaken in the following chapter.

First, however, comments on the nature of b may be

worthwhile. b is the fraction of the total beta energy
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“incident'" on the wall that is backscattered. Hence, b is
given by the product of the particle backscattering coef-
ficient (averaged over all angles and, if necessary, over
all incident energies) and the average energy of the back-
scattered beta particles relative to the average energy of
the emitted beta particles. Now, the average energy of the
backscattered beta particles is, in turn, given by the pro-
duct of the average energy of the beta particles incident
on the wall and the average fraction of the incident energy
retained by the particles during backscattering. In our
range of energy, this latter fraction is independent of the
incident beta particle energy and only slightly dependent
on the atomic number of the backscattering materia1.4’5
However, it is not difficult to see that the average
energy of the beta particles incident on the wall depends
somewhat on the g of the sphere of gas. For extremely small
o, the average energy of the incident beta particles should
be close to the average energy of the beta emission. For
very large a, the average energy of the incident betas should
be in the neighborhood of one-half of the average emission
energy. The actual dependence on g would be rather difficult
to calculate and will not be attempted here. Even an approxi-
mate calculation of the dependence of the energy distribution

on depth of penetration in a medium is a rather formidable



task.10 Furthermore, the uncertainties in the other assump-
tions are probably as large as the error introduced by as-
suming b to be constant with o over the range of o we are
concerned with (typically, from 1 to 20). In this range,

we estimate that the average energy of the incident beta
particles is roughly 0.7 of the average energy (5.7 kev)

of the beta emission from tritium.




Chapter 4

NUMERICAL ASSIGNMENTS

For the sake of continuity with the discussion of the
last section, we shall consider the b values first. For
the values of the backscattering coefficients, we shall take
values from the curve given by Kanter11 for the energy inter-
val from 3 to 10 kev. The agreement between these values
and earlier values reported in the literature is fairly
good. From Sternglass,4 we choose the value 0.6 for the
average fraction of the energy retained by the electromns
during the backscattering process. And, for reasons men-
tioned in the previous chapter, we choose 0.7 as the average
energy of the incident beta particles relative to the average
emission energy.

Therefore, b is given by b = 0.6 (0.7) (backscattering
coefficient). For example, for silver, b = 0.6 (0.7) (0.38) =

0.16. Now, it has been shown12 that insulators backscatter

like metal if the average atomic number is used. Thus, for



borosilicate glass we calculate Z = 9.5 and use this value
to get a backscattefing coefficient of about 0.107 from the
curve. Therefore, for borosilicate glass, b = 0.6 (0.7)
(0.107) = 0.045. |

Values of b calculated by this procedure for seven

atomic numbers are listed below.

Substance _Z _ b
Be 4 0.02

C 6 0.03
glass 9.5 0.045
Al | 13 0.055
Ni 28 0.11
Ag 47 ' 0.16
Au ' 79 0.18

Next, we seek numerical values for Y1 7o and rg-
Fortunately, because of compensating effects, the accuracy
of these numerical assignments need not be great. This is
especially true for 79 and rg-

‘There is some evidence1 that the mass absorption coef-
ficient k=u/p, where p is the material density, is given
(at least to a fair approximation) by k = nn/¢ , where 7 is

the mean energy loss rate (mean stopping power) of the beta
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particles and ¢ is the mean energy of the beta particles.
This relation has only been checked for mean energies equal
to or greater than 49 kev, the mean energy of 835 beta
particles. We shall make the assumption that it is also
valid down to about 1 kev,

As noted in the previous chapter, the mean energy of
once-backscattered tritium beta particles is about 0.6
(0.7)(5.7 kev) = 2.4 kev; that is, about 0.4 of the mean
beta emission energy.

To compute y,, we use the well-verified Bethe-Bloch
theory with the mean excitation potential values taken from
Nelms13 to calculate nn at an electron energy of 2.4 kev.
Now, considered strictly, the mean energy loss rate is not
equal to the energy loss rate calculated at the mean beta
energy. Moreover, the mean backscattered beta particle
energy in the §g§ is not equal to the mean energy of the
backscattered beta particles. However, since we shall only
be dealing with ratios, one can show that the error intro-
duced by these simplifying procedures is small compared with
the uncertainty probably inherent in the basic assumptions.

Now, by definition, ry = kl/k and, in turn, kl/k =
ﬂl/n . 6/61. Therefore, ry1 = 2.38 ﬂl/n . Fortunately for
simplicity, the calculated ratio nl/n varies only slightly
with the nature of the gas. We take 1.9 as a typical value.

This gives 7, - 4.5, approximately, for all gases.

- 31 .-



Two items of experimental information lend credence to
this method of calculation. In aluminum, range-energy

measurementsl4’15

show that the Bethe-Bloch theory is valid
down to at least 1 kev., In aluminum, again, a study16 of

the rate of secondary electron formation indicates indirectly
that kl/k = 4.9, approximately, for once-backscattered elec-
trons.

Applying this method of calculation to Yo, We find
Y9 = k2/k = ﬂz/n . e/e2 = 6.3 nz/n, and since nz/n equals
about 4.0 for all gases, y, = 25.

For y5 we obtain, similarly, yg = 17 n3/n = 140 for
all gases.

Using these values of Y3 and taking b = 0.16, the energy
absorption B due to backscattering of all orders from a silver
wall may be calculated. The result appears in Fig. 4. Note
the surprisingly -sharp peak at about o = 0.9. Parenthetically,
we may remark that this value of o corresponds to about
60 mm Hg of,Hz gas at 25°C in a bulb of 100 ml volume. The
shape of the curve B(a) is approximately the same for all
wall materials and the ordinates are roughly proportional
to the respective b-values.

The most important numerical assignment yet remains-—--
that of the y values. From Chapter 2 we recall that.if

the linear absorption coefficient | is known for the absorbing
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gas, o and thence G(a) can be computed. We have just shown
how B(a) can be computed for a specified wall material if o -
is known. Hence, if U is known, the problem of calculating
F =G+ B (the fraction of the total tritium beta emission
-energy absorﬁed by the spherical volume of gas) is solved.

Our approach to the calculation of y will be to use
the relation of Sommermeyer1 referred to above, k= u/p =
n/€, and compute k for tritium beta particles from Sommermeyer's
measurements1 of k for 835 beta particles.

From the most recent and most precise measurement of
the heat output of tritium17 and the end point (18.6 kev)

of the tritium beta spectrum,18 the mean beta emission

energy of tritium is calculated to be 5.7 kev. The mean

beta emission energy of 835 is 49 kev.19 Hence,
k5.1 _ 22 Ms7_ g 0051
k40 5.7 T4 Ms9

For hydrogen gas, the 1 ratio computed by means of the
Bethe-Bloch theory is 5.50. Therefore, for Hy, kS.Z/&49 =
47.3. Now, Sommermeyer1 finds for H2 a k-value of 0.465
cmz/mg for 835 beta particles. Thus, we calculate for
tritium beta particles in hydrogen gas that k = 22.0 cmz/mg.

Since Sommermeyer does not give an estimate of the

3
uncertainty in his measurement of k for S > beta particles,

and since it is difficult to estimate the uncertainty
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inherent in the assumptions by which the k for tritium beta
particles is calculated from Sommermeyer's measurement, no
concrete assessment of the expected error can be giwven.
However, for what it is worth, we believe that the actual
value of k for tritium beta particles in hydrogen gas is
likely to lie between 21 and 23 cmz/mg. In the next chapter
we shall see that some empirical evidence tends to support
this contention. 1In any case, we shall take k = 22.0 cmz/mg

for H, as our point of departure from which the k values of

2
other substances will be calculated.
Sommermeyer1 also made measurements on air and argon

traversed by 535

beta particles. These k values are 0.204
and 0.193 cmz/mg, respectively. By the procedure just out-
lined, we calculate the corresponding k values for tritium
beta particles to be 8.8 and 7.8 cmz/mg.

Using the Bethe-Bloch theory with the values of the
mean excitation potentials taken from Nelms13 to calculate
N for various substances at an electron energy of 5.7 kev,

we may then calculate k, for various substances by using the

1
relation, k,/k,. = 7/n, . Under the assumption that k, =
» 17 7H Hy H

22.0 cmz/mg, k., values from the Bethe-Bloch theory have been

1
calculated for fourteen substances and are listed in the

second column of Table 1.
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TABLE 1

ABSORPTION COEFFICIENTS FOR TRITIUM BETA PARTICLES

Pat
k1 k2 k 25°C Ww %t
Substance cm2 cmz cmz 76$gmm 723 gm
(2) ('rﬁ"g'“) ('ﬁf'g"') ('fn"é”\) (HI> (cm—1)
H, (1) 22,0 22.0 22.0 0, 0824 1.81
He (2) 9,47 11.1 10.3 0.1635 1.68
c (6) 8.41 11,1 9.75 — -
N, (7) 8.11 11.1 9.60 1.146 11.0
02 (8) 7.86 11.1 9. 48 1.309 12.4
Ne (10) 7.38 11,0 9.19 0.8249 7.59
S (16) 6,60 11.1 8.85 - -
A (18) 5,75 10.0 7.87 1.634 12.9
Kr (36) 4,22 9.52 6.87 3.397 23.4
Xe (54) 3.37 9.11 6.24 5.360 33.4
CH, 11.8 13.8 12.8 0.6567 8.40
002 8.00 11.1 9,55 1.811 17.3
Air 8,00 11.1 9.55 1,185 11.3
HZS 7,52 11.7 9.61 1.410 13.5

-
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Comparison of these k, values with those calculated

1
from the measurements of Sommermeyer on air and argon shows

that the corresponding k, values are about 10% low for air

1
and about 25% low for argon.

The explanation for this discrepancy may possibly be
found in some recent experimental workll’zo in which the
so-called practical range of electrons was studied in the
kev energy region. It was established that, for electrons
of energy less than about 7 kev, the practical range ex-
pressed in mass per unit area depends only on A/Z (the ratio
of atomic mass to atomic number) and thus varies only
slightly with atomic number for elements above hydrogen.
(Six elements varying in atomic number from carbon to gold
were studied.)

Now, in this region of energy the range is approxi-
mately inversely proportional to the energy loss rate so
that we are led to posit the relation, kz/kH = (Z/A)/(Z/A)H.
Assuming, as before, that kK, = 22.0 cmz/mg, we have then
k, = (22.0/0.992) (Z/A) for the various substances. Values
of k2 thus computed appear in the third column of Table 1.
Comparison with the k values for air and argon computed from

the measurements of Sommermeyer shows that the k, values are

2
too high by about 26% and 28%, respectively.
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The reason for this discrepancy is not difficult to
fathom: the Z/A relation is valid only up to about 7 kev,
but an appreciable fraction of the tritium beta enmission
lies above 7 kev. Becaguse of the uncertainty in the experi-
mental values of Sommermeyer and because of the uncertainty
in the method of calculation of the k values therefrom, it
does not seem worthwhile to attempt to "blend'" the k1 and
k2 calculations in a physically meaningful manner to arrive
at agreement with the values calculated from Sommermeyer's
data. We are therefore led to the expedient compromise of
taking as k the mean of the k1 and k2 values for a given
substance. These expedient k values, which we shall use in
all future calculations, are displayed in the fourth column
of Table 1.

In passing, it may be of interest to note that the k
values of compounds and mixtures are calculated by means of
atomic mass ratios applied to the constituent atoms. Using
methane as an illustration, we see that

k.. = B¢ k, + Ay x

CH
4 Acq Ach

q
4 4

This procedure is based on the assumption that the energy
loss rate of a compound is additively made up of the energy

loss rates of its constituent elements. Measurements with

protons21 show that this assumption is valid down to proton




energies of roughly 200 kev. The corresponding electron
energy is about 0.1 kev., Therefore the assumption should be
sufficiently valid for tritium beta particles.

Comparison of these expedient k values with those calcu-
lated for air and argon from Sommermeyer's data shows agree-
ment in the case of argon, but about 8% difference in the
case of air. Considering the many uncertainties inherent
in our calculations (not to mention possible experimental
errors), we regard the agreement as satisfactory.

With this, the task of assigning numerical values to the
parameters of the formal development is essentially complete.
All that remains is to multiply the k values in column four
by the gas density in mg/ml at 25°C, 760 mm Hg as given in
column five in order to find the |1 values at 25°C, 760 mm Hg
for the twelve gases listed. These p values are displayed
in the sixth column of Table 1.

For a mixture of gases, it is easy to show that the
effective linear absorption coefficient is given by Zi
Wy vi, where Ui is the mole fraction of constituent i.

Isotopes of gases can also be treated simply. Since
the energy loss rate expressed in energy per unit mass per
unit area is proportional to f(Z)/A, it is clear that its
variation among isotopes of a given element depends inversely

on the variation of A. Hence, for a given element, k varies



inversely as the isotopic mass. However, p = kp and p varies
directly as A. Therefore, we conclude that the linear ab-
sorption coefficients of all isotopes of a given element are
identical. Taking tritium as an example, we see that its k
value is (22.0/3) (cmz/mg), but its p value is the saﬁe as
that of protium,

Finally, some cautionary comments: the y values given
in Table 1 have been calculated from data of unknown accu-
racy by an involved series of assumptions required to effect
the extrapolation into an energy region of a lower order of
magnitude., It would indeed be surprising if they were not
in error by a fair amount,.

Furthermore, even if the yu values were accurate, con-
siderable error might be found in the case of gases of high
atomic number. The reason is that our basic premise--that
the point-source energy absorption function is a pure expo-
nential--might nbt be valid at high atomic numbers.
Sommermeyer finds that 835 beta particles in argon exhibit
only a slight departure from exponential, but in gold give
a peaked absorption function. (Air and hydrogen give rather
exact exponential functions.) From this we conclude that
835 beta particles in krypton and xenon may give significantly

nonexponential absorption functions. However, this con-

clusion does not necessarily follow for tritium beta particles,
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35

which are an order of magnitude less energetic than S beta

particles. Furthermore, consider the fact that in the case
of P32 beta particles (which are an order of magnitude more
energetic than 835 beta particles), no substance studied
gives an exponential absorption function. In view of these
relations, we tentatively surmise that the point-source
absorption functions of tritium beta particles in krypton

and xenon probably do not depart significantly from pure

exponentials.
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Chapter 5

COMPARISON WITH AN EXPERIMENT

We now have at hand all of the information--tentative
though some of it may be--required to compute the fraction
of the tritium emission energy absorbed by any kind of gas
enclosed in a spherical vessel of any wall material. How-
ever, in view of the many assumptions inherent in the calcu-
lation, an experimental test is strongly indicated.

Apparently, only one piece of experimental work along
these lines has been carried out. This is the work of
Dorfman22 who studied the absorption of tritium beta par-
ticles in hydrogen, helium, and oxygen by measuring the ioni-
zation current generated in spherical glass bulb ionization
chambers with silvered walls. The reported measurements were
carried out in an ionization chamber of 5.70 cm internal
diameter (~ 100 ml volume) at H2 gas pressures varying from
about 10 to 630 mm Hg. Data for He were taken with fewer

points over a comparable range. The O2 data will not be




considered here because, as the author pointed out, the
precision is poor.

The principle of the method for determining the
spherical-vessel absorption function is to measure the
ionization currents (at saturation voltage) as a function
of gas pressure and divide these currents by the current
measured at '"saturation" pressure; that is, at a practically
infinite pressure so that essentially all of the beta energy
is absorbed. This procedure thus gives the fraction absorbed
as a function of pressure for a particular gas at a given
temperature in a given vessel.

From the previously developed theory, let us compute
the pressure of hydrogen gas at 25°C in a 5.7 cm diameter
silvered bulb required for 99% energy absorption. At large
values of o, the expressions may be considerably simplified
so that we may, to a good approximation, write:

F=G+B=1 - _§.+ 0.16 (—E—)
2q 2a

Putting F = 0.99 and solving for a, we obtain g = 126. This
implies that, in a 5.7 cm diameter bulb, the pressure is
12.2 atm. Similarly, putting F = 0.97, we find that the
pressure is 4.1 atm. It is therefore clear that, in a 100 ml
bulb, relatively large pressures of hydrogen gas are required

for essentially complete energy absorption,
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The saturation pressure chosen for the aforementioned
experiment appears, in the light of our calculations, to
have been too low. Unfortunately, neither the raw data nor

the saturation pressure used in computing the published

curves is available at the present time.23 However, the
author indicates23 that the saturation pressure was taken
at about the end of the curve in graph #KH—9A3057.24 This

would indicate a saturation pressure of roughly 900 mm Hg
of hydrogen gas at 250C. Using this value, we calculate
from the theory that F = 0.90 for hydrogen in a 100 ml
silvered bulb. This suggests that the values published in
reference 22 of the fractional energy absorption should be
multiplied by about 0.90.

Because of the use of too low a saturation pressure,
the plot of log (1 - F'), where F' is the incorrectly large
absorption fraction, versus gas pressure led to a straight
line over the major portion of the pressure range. This led
to the incorrect assumption that (neglecting backscattering)
the spherical-vessel absorption function could be repre-
sented by an exponential function. If any other saturation
pressure (except in the neighborhood of the one chosen) had
been used, no portion of the curve would have approximated

a straight line on a semilogarithmic plot.




Moreover, the starting equation and attendant nomen-
clature in reference 22 refer to particle attenuation in
absorbers and nqt to energy absorption. It is a coincidence
that both may be expressed as an exponential function though,
albeit with numerically different absorption coefficients.

Dorfman attributes the marked depgrture of the data
from linearity on the semilogarithmic plot for pressures
less than about 250 mm Hg to backscattering. Our later
analysis shows that only about one-half of this deviation
is due to backscattering; the remainder is a geometrical
effect characteristic of a spherical absorption geometry.
Thus, the experimenter's procedure of reading the pressure-
for-half-absorption from his straight line appears incorrect
on two counts: F' is about 11% too large, and using the
straight line considerably overcorrects for backscattering.
But, oddly enough, the errors approximately compensate so that
our procedure gives approximately the same result.

The experimenter's procedure for calculating the mass
absorption coefficients from the pressure-for-half-absorption
values appears to be incorrect since it presupposes that the
spherical-vessel absorption function is a pure exponential,
There seems to be no valid way to calculate absorption coef-
ficients from observed data without carrying through an

analysis of the type presented in this report. However,
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surprisingly Dorfman's method of caiculating k values from
his data gives, because of compensating errors, approxi-
mately the same numerical results as does our analysis.

The solid line in Fig. 5 represents the theoretical
energy absorption function for hydrogen gas at 25°C in a
silvered spherical bulb of 5.7 ¢m inside diameter. Since
w o= 1.81 cm_l, o is obtained by multiplying the pressure in
mm Hg by 0.0136. Referring to the backscattering curve for
silver given in Fig. 4, we see that the contribution to the
total ionization due to backscattering is 51% of the total
at 10 mm Hg of hydrogen, 27% at 60 mm Hg, and 2.5% at 760
mm Hg.

Dorfman's data for hydrogen and helium are also plotted
in Fig. 5. For reasons explained above, the published values
for the energy absorption function have all been multiplied
by 0.90. The data points have been read, as accurately as
possible, from the published graphs. Nevertheless, some
error is undoubtedly introduced by this procedure.

Except for pressures under 30 mm Hg, the agreement
between experiment and theory for hydrogen is within + 3%.
We interpret this as a verification of the theory for the
case of hydrogen., Moreover, the agreement shows that our
numerical assignments for b, P and p for hydrogen gas

enclosed in a silvered vessel cannot be grossly in error.
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silvered bulb as a function of pressure,.



For the case of helium gas the agreement is not as satis-
factory. Dorfman's data seem to indicate that . for helium -
is identical to yu for hydrogen, whereas our scheme of numer-
ical assignment puts y for He about 7% lower than py for H2'
But, because of the uncertainty inherent in our semitheoret-
ical estimate of y, precise agreement could hardly be ex-
pected. However, it should also be borne in mind that,
because of the effect of trace amounts of impurities, helium

. 25 . . . .. . ;
is well-known to give erratic results in ionization experi

ments.




Chapter 6

GLASS BULBS

The case of the glass wall is of great practical
importance since many studies of radiolysis, isotope ex~
change rates, and labeling are carried out in spherical
glass reaction chambers.

Figure 6 exhibits the backscattering function B(a) for
a spherical vessel of borosilicate glass, taking b = 0.045.
Comparison with B(a) for silver (Fig. 4) shows that the
shape is essentially the same, but the ordinates in the case
of glass are only about one-fourth as large as the corres-
ponding ordinates in the case of silver.

The calculated absorption function F = G + B for
spherical glass bulbs is displayed in Fig. 7. Numerical
values are given in Table 2.

Since a2ctual glass reaction chambers are usually made
from round-bottom standard flasks, the geometry is not truly

spherical. In most cases, however, the nonspherical portion
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TABLE 2

ABSORPTION FUNCTIONS FOR BOROSILICATE GLASS BULBS

a G B F
0.1 0.0364 0, 0095 0.0459
0.2 0.0712 0.0152 0, 0864
0.3 0, 1040 00,0191 0,1231
0.4 0,.1352 0,0216 0, 1568
0.5 0, 1649 00,0233 0, 1882
0.6 0.1931 0.0243 0.2174
0.7 0.2199 0, 0249 0.2448
0.8 0, 2454 0.0252 0, 2705
0.9 0, 2696 0,0252 0.2949
1.0 0. 2927 0.0251 0.3179
1.1 0.3147 0, 0249 0,.3397
1.2 0, 3357 0, 0246 0,3603
1.3 0.3557 00,0243 0.3800
1.4 0.3748 0, 0239 0,.3987
1.5 0.3930 0.0234 0,.4165
1.6 0.4105 0,0230 0,4335
1.7 0.4271 0,0226 0, 4496
1.8 0. 4430 0.0221 0.4651
1.9 0. 4582 0.0217 0.4799
2.0 0.4727 00,0212 0, 4940
2.1 0. 4867 0.0208 0, 5074
2.2 0. 5000 0,0203 0. 5203
2.3 0.5128 0.0199 0., 5327
2.4 0. 5251 0,.0195 0. 5446
2.5 0. 5368 0.0191 0, 5559
2.6 0. 5481 0.0187 0, 5668
2,7 0. 5589 00,0183 0, 5772
2.8 0.5694 00,0179 0. 5873
2,9 0, 5794 0.0175 0. 5969
3.0 0. 5890 00,0172 00,6062
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TABLE 2 (Continued)

G

0. 5982
0.6071
0.6157
0.6239
0.6319

0. 6396
0.6469
0.6541
0.6609
0,6676

0.6740
0.6802
0.6862
0.6920
0.6976

0.7030
0,7082
0.7133
0.7183
0.7230

0.7321
0.7407
0,7488
0.7564
0.7636

0.7705
0.7769
0.7831
0.7889
0.,7944

0, 7997
0.8047
0.8094
0.8140
0.8183

B

0.0168
0.0165
0.0162
0.0159
0.0156

0.0153
0.0150
0.0147
0.0144
0.0142

0.0139
0.0137
0.0134
0.0132
0.0130

0.0127
0.0125
0.0123
0.0121
0.0119

0.0116
0.0112
0.0109
0.0106
0.0103

0. 00998
0.00971
0.00945
0.00920
0.00897

0.00875
0.00854
0,00834
0.00814
0. 00796

53 -

F

0.6151
0.6236
0.6319
0.6398
0.6475

0.6548
0.6619
0,6688
0.6754
0,6817

0.6879
0.6939
0.6996
0.7052
0,7105

0.7157
0.7208
0.7257
0.7304
0.7350

0,7437
0.7519
0.7597
0.7670
0.7739

0,7804
0.7866
0.7925
0.7981
0.8034

0.8084
0.8132
0.8178
0.8221
0.38263
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10. 25
10. 50
10.75
11,00
11. 25

11.50
11.75
12.00
12,25
12,50

12.75
13.00
13.25
13. 50
13.75

14.00
14,25
14, 50
14.75
15.00

15.25
15.50
15.75
16.00
16. 25

TABLE 2 (Continued)

G

0.,8225
0.8265
0.8303
0.8339
0.8374

0.8408
0.8440
0.8471
0.8501
0.8530

0.8564
0.8597
0.8629
0.8659
0.8688

0.8715
0.8742
0.8767
0.8792
0. 8815

0.8838
0.8860
0. 8881
0.8901
0.8921

0.8940
0.8958
0.8975
0.8992
0.9009

0.9025
0.9040
0.9055
0.9070
0.9084

B

0,00778
0.00761
0.00745
0.00729
0.00714

0. 00700
0, 00686
0.00673
0. 00660
0.00647

0, 00633
0.00618
0. 00605
0.00592
0.00579

0. 00567
0. 00556
0, 00545
0. 00534
0, 00524

0.00514
0. 00505
0.00496
0.00487
0.00478

0.00470
0.00462
0.00454
0, 00447
0.00440

0,00433
0. 00426
0.00419
0.00413
0.00407
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F

0.8303
0.8341
0.8377
0.8412
0.8446

0.8478
0.8509
0.8539
0.8567
0.8595

0.8628
0.8659
0. 8689
0.8718
0.8746

0.8772
0.8797
0,8822
0,.8845
0.8868

0.8889
0.8910
0.8930
0.8950
0.8968

0. 8987
0.9004
0.9021
0.9037
0.9053

0.9068
0.9083
0.9097
0.9111
0.9125



16, 50
16.75
17.00
17.25
17.50

17.75
18,00
18.25
18, 50
18.75

19,00
19,25
19. 50
19.75
20.00

TABLE 2 (Continued)

G

0.9098
0.9111
0.9124
0.9136
0.9148

0.9160
0.9172
0.9183
0.9194
0.9205

0.9215
0.9225
0.9235
0.9244
0.9254

B

0. 00401
0.00395
0.00389
0.00384
0.00379

0.00373
0.00368
0.00363
0.00359
0.00354

0.00349
0.00345
0.00341
0.00336
0.00332

55 -

F

0.9138
0.9150
0.9163
0.9175
0.9186

0.9198
0.9209
0.9219
0.9230
0.9240

0.9250
0.9259
0.9269
0.9278
0.9287



(composed of the neck and possible tubulation ports) com-
prises less than 10% of the total reaction volume. A
question therefore arises as to what effective spherical
diameter should be used in calculating a.

Since an exact mathematical analysis for nonspherical
geometries seems to be practically impossible, we can only
proffer a rough rule of thumb: if the nonspherical portion
of the total reaction volume amounts to about 10% or less,
use the actual inside diameter of the spherical portion in
calculating a. This procedure introduces only slight error
(in the direction of too large a value for F) in the esti-
mation of the fraction of the total emitted beta energy
that is absorbed by the gas.

In order to obtain a rough estimate of the error inher-
ent in this artifice, consider the mathematically tractable
case of two spheres connected by a fill tube of negligible
volume and filled with the same tritium and gas mixture. If
the volume of the smaller sphere is 10% of the total volume,
a simple calculation shows that the F for the system is about
95% of the F for the larger sphere if a < < 1. The energy
absorption fractions are practically identical if o > > 1,
Thus, depending on the value of a, the error introduced by
taking F for the system to be identical with F for the

larger sphere varies from zero to 5%. In the range of most

- 56 -




interest, the error introduced is in the neighborhood of

1 to 2%. 1If the volume of the smaller sphere were only 1%
of the reaction volume, the error introduced for o < < 1
would be less than 1%.

In all of the analysis presented in this report, homo-
geneous distribution of the tritium has been taken for granted.
Under certain experimental conditions, however, it is possi-
ble that an appreciable portion of the tritium could be
sorbed onto the wall. This effect would change the energy
absorption function F through a change in both G and B.
However, given sufficient information concerning the amount
and depth of the sorbed tritium, it should be possible to

calculate a correction for this effect.
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