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Abstract

Several equations are derived which are useful in high-energy
nuclear cascade calculations. Special attention is given to the
motion of the nucleons in the nucleus which gives rise to the rela
tivistic Doppler problem when a high-energy particle is Incident on
the nucleus. The effects of the exclusion principle are Included
in the derived equations.
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Introduction

In nuclear cascade calculations the nucleus is often treated as a

zero-temperature Fermi gas where the nucleons are free to move in any

direction within the bounds of the nucleus. An incident particle passes

through the sea of moving nucleons and interacts with them, giving rise

to the Doppler problem. If the incident particle has high kinetic energy,

then the problem becomes additionally complicated because relativistic

mechanics must be used.

The purpose of this paper is to present the derivation of several

relations which are useful in carrying out high-energy nuclear cascade

calculations by Monte Carlo methods. For convenience, the units are

selected so that c = 1.

Expression for the Cross Section

The cross section for a particle traveling through the sea of moving

nucleons in the nucleus is most conveniently expressed in terms of the

cross section in the frame of reference in which the struck particle is

at rest. This is done because the experimental particle-particle cross

sections are usxially given for the case where the target is at rest.

Thus, we must consider the effect on the cross section as one transforms

from the rest frame of the struck particle, the primed frame, to the

laboratory or unprimed frame of reference.

To simplify this discussion, we will first neglect the exclusion

principle said consider it later by making appropriate changes in the

equations that are derived.
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The following definitions are useful in this discussion:

=  total energy of the incident particle,

= mcmentinn of the incident particle,

m = mass of the incident particle,

E = energy of a nude on,

p  = momentum of a nucleon,

M = mass of a nucleon,

p  = density of incident particles,

-*• 5i
i  = p „ = incident current.

N(p)dp) = nucleons per \init volume in dp,

Ej^ = kinetic energy of the incident particle,
Ra (E^) = microscopic cross section in the rest frame of the struck

particle,

V  = g = velocity of the primed frame relative to the luiprimed

frame,

R  = reactions per unit volxime per unit time.

With the use of the above definitions, the expression for the

reaction rate per imit volume in the primed system can be written as

R' = iT' i (n(M) , (1)

-2-



and it will be noted that it is also the expression for the reaction

rate per unit volume in the unprimed frame since Z^xi^AzAt is invariant

to Lorentz transformations« The quantity ^N(p)dp^ can be transformed
to the unprimed frame by noting that Ax'Ay'Az' = AxZ!yAz(l - so

that the transformation yields ^N(p)di^ = ^N(p)dF^(l - The
remaining qusuitity to be transformed is the incident current which trans

forms like the spatial part of a four-vector. Thus, we have

J, . J + (131./ . iV 3^ .
v2 VyiTv J yi -■ v2

The macroscopic cross section, do, for the incident particle is

obtained by dividing the reaction rate per unit voliune by the incident

current and using the relation (l - = M/E to get

da = Li— -f- N(p) dp , (2)
I J I

where

j'

^  i)
i  o \ M y M

Pil

The kinetic energy, E^, which is needed to determine the cross section,

is obtained from the transformation

E. - P.-p
E • = E' - m = - m
^  JT- v2

V " Pi'P
=  M ™ *

-3-



Introduction of the Exclusion Principle

RIn Eq. 2 the cross section a (E^) Is the total microscopic cross

section, and If more than one type Interaction Is possible, then

In the case where one of the Interactions, the £ one say, results In a

nucleon being ejected, then the energy of the nucleon must be above the

Fermi energy, E^, to have an acceptable Interaction. This means that the

cross section (E/) Is smaller than the measured cross section, <r^(E'),

where the exclusion principle Is not operating.

Letting be the final energy of the nucleon resulting from the £

process, we can then write

7
I

and

-

7
de

de

d€
n

(3)

However, the Integral given In Eq. 3 Is usually difficult to find; therefore,

we will Introduce the cross section Into Eq. 2 In Its Integral form so that

da = 111
IT

M

E

!J=i E^

daJ(E')
d€

n
y

m

de +
n

cr?(E') f
J  k' I

N(?)d5. (5)

j-k+1



It vas assumed in Eq. 5 that the first k of the m possible interactions

had a nucleon present in the final state and the remainder are not

restricted hy the exclusion principle. For J > k, we have

■- ■

The total macroscopic cross section is, of course,

n
m

j=i

il
Ij

iL
E

m

I aj(E^)N(p) dp (6)

The Monte Carlo Procedure

In this section the methods of randomly selecting the distance

between interactions, the momentum of the struck nucleon, and the type of

interaction are described. These methods are based in part on some Monte

Carlo selection techniques described by Butcher and Ifessel.^
In order to simplify the discussion, Eq. 5 will be written in the

standard form for application of a rejection technique:
k  00 m

do = ^ CjQj(p)f(p)dp ^j^^n^^j^^n^'^^n > (T)
J=1 j=k+l

where

tG) =

N =
o

N(p)dp
N

N(p)dp ,

J. C. Butcher and H. Messel, Nuclear Physics 20, (1960).
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Vj(€^) . 1 for Ej, s

=  0 for 0 g € < E-
n  f

for e SO,
■n '

E(.„) =

ill M ofdo )NI t I E J ^ o
Q,(p) = -L^ C,

and Cj is a constant such that

C  § maximum of I I cr^(E ' )NJ  I J I E j k o

The selection procedure for the type interaction and the moment\mi

"5fof the struck particle are "based on Eqo 7 and are given belowo In these

procedures, as a matter of notation, we use

m

s  = y c,
j  •

j=i

1. The type interaction is randomly selected from the m possibilities

by selecting a random number and forming the sequence

C

*If one contribution to the cross section is independent of the momentum
of the nucleons in the nucleus it can be included in the set_^of interactions
k+1 through m without loss of generality by letting C = o (p^) and Qp(p) =



c
2

y  = y - —^
2  1 s

c

y  = y - -g^
3  2

which is terminated when y^ S 0. The type interaction is then

taken as i.

2. The mcanentum P of the struck particle is randomly selected from

the probability density function f(p).

3. A random number R is compared with Q-(P) and if R > Q»(p), then
2  3. "

I and P are rejected and the process is started over. If R S Q«(P)
2  ''

and i > k, then the interaction of type £ is allowed to occur. If

R  S Q«(P) and £ ^ k, then the process is continued in step h.
2  ̂

U. The energy of the nucleon, is randomly selected from the

probability density function (see the following section)

and compared with E„. If E^ < E , then £,7, and E,, are rejected
i  n I n

and the procedure is started over. If E^^ S E^, the complete

process is accepted.

For j > k in the above procedure, the probability of selecting j is

Cj/S and the probability of selecting P and having it accepted contingent

on having selected J is

a

A- » /Q<{p)f(p)4p0^ J-J

where Oj is defined in Eq, 6. Thus, the probability of obtaining both j

and P and having them both accepted is Oj/S.

For J s k the probability of selecting J is again CyS and, given P,

the contingent probability of accepting E^ is
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aj(E') r
=  / V.(g )g.(€ )de

J  ̂

Thus, given j, the probability of selecting ? and and having them

both accepted is

—^ ' Q.(p) —hm f(p)dp

Hence the probability of selecting j, f and E^ and having them all

accepted is Cj/S.

From the above discussion it is clear that the probability^ of getting

an accepted interaction on the first attempt is a/S where cr =\ a. .

k
The manner of selecting the distance between collisions can now be

described. Assuming a particle has just had a collision, a distance X is

randomly selected from the exponential distribution h(x) = Se'^^, where

the true cross section a has been replaced by S. Then steps 1 through i|-

are followed repeatedly until an accepted set of variables is obtained,

as described above, with the provision that if a rejection occurs another

distance X is selected from h(x) after each rejection. The siim of all

X's is then the distance y traveled to the point of the next interaction,

r To demonstrate that the above procedure is correct for selecting the

+■ V»
distance, we note that if there was an acceptance on the n attempt, then

y would be distributed as

_n n-1 -SyS  y e



"th
But the probability of acceptance on the n attempt is

/  \

Thus the distance traveled will be distributed as

„n n-1 -Sy / \n-l
S y e of, _ rrr^-^y

(n-1)! S V S /
n=l

Kinematics of a Collision

In the previous section one of the selection techniques required

that the energy of the nucleon be randomly sampled from the distribution

g.(e ). The purpose of this section is to describe this operation more
j  n

fully in the special case where a i>article collides with a nucleon and

yields a nucleon and another particle in the final state. The description

will be generalized to the case where a particle of mass m^, with momentvim

p and energy E , collides with a second particle described by the set
1  1

(m ^p ,E ) and yields two particles described by the sets (m ,p ,E )
2  2 2 3 3 3

A  —^ fc

and (m ,p ,E ).
4  4 4

We ass\ame that the angular distribution function for ejection of

particle 3 is given in the center-of-mass (C.M.) frame as a function of

the C.M. energy M. Thus, the procedure will be to transform to the C.M.

and obtain the expression for the C.M. energy and assvune the angles of

ejection are randomly selected from the distribution a "(m). The
^  m m -«m m ^

12 3 4

description will be complete when expressions have been derived for p e ,p
3  3 4-^

and E .
4  -9-



If we take the C.M. frame as the primed frame and the laboratory

(L) frame as the unprlmed frame, the transformation to the C.M. frame

is given by

^  _ (Pi«v)^ f \ \ vEp. = p + _i ^ -1 )- r=4=r , 1 = l,2,3,h (8)

and

E  - p -v

E' = , , i = l,2,3,k, (9)
'  y 1 - v®

where v is the velocity of the C.M. relative to'the L frame.

By letting P=p +p,E=E +E, and M = E' + E' and noting that
1 2 1 2 1 2

p' + p' = 0, we can then use Eqs. o and 9 to get
1  2

1  -1 . ̂  . 0 (10)
 ̂ yV̂ 1 - v^ y yi - v^

and

M = ^ (11)
y 1 - v^

Vector multiplication of Eq. 10 with v yields an expression which reduces to

P'v = v^ . (12)

Substitution of Eq. 12 into Eq. 10 finally gives the expression for the

relative velocity as

^  P P + P
V  = — = —i . (IQ)

E  E ^
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From Eq. 11, again with the use of Eq. 12, we get

M

E
= (1 - v2)1/2 = (14)

And now we obtain the expression of the C.M. energy by substituting Eq. 13

into Eq. l4 to get

M = (E^ - p2) (E + E - (p + p )2
1 2 1 2

1/2

2(E E - p 'P ) + + m^
12 1 2 1 2J

1/2

(15)

In the C. M. frame the conservation equations require

P' + P'
3  4

=  0

and

E' + E'
1  2

E' + E'
3  4

=  M.

Thus

E'® = p'^ + m^
2  2 2

+ p'2 + m^ - 2E M ,
1  1 1

which, when it is noted that p'^ = p'^j reduces to
1  2

M' + m^ - m^
E'
1

2M
(16)

so that

E'
2

M - E'
1

(17)
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In a similar manner we get

+ m^ - m^
E' = 2 (18)
®  2M

and

E' = M - E' (19)
4  3

It is advantageous to define a coordinate system to facilitate the

transformation back to the L frame after the angles of ejection of particle

3 are selected. The coordinate system is defined by

, A
p' = p'z
1  1

and V •-

Thus, we have p^ x v = Qp^y, p^-v = p^p and v^ = and the coordinate

unit vectors are easily shown to be

^  - -sij- 120'
p' X V

y  = (21)

z  ̂ (22)

The various terms in Eqs. 20, 21, and 22 must be expressed in terms of

known quantities to be useful in the subsequent development. The evaluation
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of p' X V is relatively simple if we take the cross product of v with p'
1  1

as given in Eq. 8 which shows that p^ x v = p^ x v. The final expression

for this quantity is obtained with the use of Eq. 13 and is given by

P X p

p- X V = p^ X V = ^ ̂  ^ (23)

An acceptable form of p^ can be derived by rearranging Eq. 9 to obtain

p^'V = E^ - yE^ and substituting it into Eq. 8 along with Eq. 13 to get

5^. = p + i- (E - 7E')(p + p ) ^(p + p )E ,
7(1+ 7)E 1 1 2 ' ^ 1 2 1

which reduces to

E  + E' \ / E + E'
p. = l_2 2 1 ? + 1 I p (21,)
^  Ve+m/ ^ \e+m/ 2

when 7 = m/e is used.

The expression for p = p^^ • v/p^ is best derived by starting with the

inverse transformation

E' + p''V
E  - --i
1  7

which can be rearranged to give p'-v = 7E - E' so that
1  1 1

P' -v ,P  = = i, ( 7E - E') . (25)
Pi Pi 1 1
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For completeness^ the remaining quantities that need to he expressed

in terms of known quantities are listed below

a  = (v2 - p2) Vs

p; = (E'2 - mf)2\ Vs-7 2 i = 1,2,3A

(26)

(27)

Now we assume that 0 and ^ are the polar and azimuthal angles of ejec

tion of particle 3 which have been randomly selected from the distribution

^  (^) sind devote the remainder of this section to obtaining an
m m "^m m °
12 3 4

->

expression for p ,p ^ and E .
3  3 4 4

After selecting the angles of particle 3 in the C.M. frame^ the

expression for p' becomes
3

—> ^ ^

p' = p'(sin0 cos't X + sin© sln<l' y + cos© '^)
3  3

= P' (cos© - ̂  sin© cos<t>) + - sin© cos<t> v + —p sin© sin<t> (p' x v) . (28)
11. UC lYlTiP' ap'

By taking the vector product of v with p', as given in Eq. 28^ and using
3

Eqs. 25 and 26^ we get

p' -v = p'
3  3

6  ̂ v^(cos0 - £ sin0 cos4)) —;— + — sin0 cos0
(X ^ p' CK

3

(v^ - 6^)P COS0 + ^ sin0 cos4>
a

P'
3

P COS0 + a slnG cos4) (29)

which can be substituted into the inverse transformation

E

E' + p'.V
3  3
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to get

E' + p'(p COS0 + a sin© cos<t>)
E  = —2 3
3  7

(30)

Finally we have

E  = E - E
4  3

(31)

Equations 1^1-, 28, and 29 can also be substituted into the inverse trans

formation

P  = P' +
3  3

(p'•v)v
3

y 1 - V^
- 1 +

E'v
3

yi -

to get

P
3  3

,  1
o  JL JL ^ ^

p' -|(cos© - ̂  sin© cos<l>) sin© sin<l> (p' x v) +
p' ap'
1  1

1

a
sin© cos't' + 7(1 + y) (^ cos© + (X sin© cos4') V 7 +

E'v
3  }

(32)

in which all terms have been defined above in terms of known quantities.

The remaining expression for p is simply given by
4

P  = P + P - P
4  1 2 3

(33)
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If we assume particle ^l- is a nucleon, then the angles of ejection are

selected as indicated above and E is calculated by Eq. 31• The selected
4

angles are rejected only if E S E„.
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