DATE:

SUBJECT:

TO:

FROM:

OAK RIDGE NATIONAL LABORATORY Bxternal Trapemitial

Operated by Authorized
UNION CARBIDE NUCLEAR COMPANY
Division of Union Carbide Corporation 0 R N L

= CENTRAL FILES NUMBER

Post Office Box X

Oak Ridge, Tennessee
61-7-20

/
July 12, 1961 COPY NO. <7 ;7

The Relativistic Doppler Problem

Distribution

C. D. Zerby, R. B. Curtis, and H. W. Bertini

Abstract

Several equations are derived which are useful in high-energy
nuclear cascade calculations, Special attention is given to the
motion of the nucleons in the nucleus which gives rise to the rela-
tivistic Doppler problem when a high-energy particle is incident on
the nucleus. The effects of the exclusion principle are included
in the derived equations.
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Introduction

In nuclear cascade calculations the nucleus is often treated as a
zero-temperature Fermi gas where the nucleons are free to move in any
direction within the bounds of the nucleus. An incident particle passes
through the sea of moving nucleons and interacts with them, giving rise
to the Doppler problem. If the incident particle has high kinetic energy,
then the problem becomes additionally complicated because relativistic
mechanics must be used.

The purpose of this paper is to present the derivation of several
relations which are useful in carrying out high-energy nuclear cascade
calculations by Monte Carlo methods. For convenience, the units are

selected so that ¢ = 1.

Expression for the Cross Section

The cross section for a particle traveling through the sea of moving
nucleons in the nucleus is most conveniently expressed in terms of the
cross section in the frame of reference in which the struck particle is
at rest. This 1s done because the experimental particle-particle cross
sections are usually given for the case where the target is at rest.
Thus, we must consider the effect on the cross section as one transforms
from the rest frame of the struck particle, the primed frame, to the
laboratory or unprimed frame of reference.

To simplify this discussion, we will first neglect the exclusion
principle and consider it later by making appropriate changes in the

equations that are derived.



The following definitions are useful in this discussion:

Ei = total energy of the incident particle,
5& = momentum of the incident particle,

m = mass of the incident particle,

E = energy of a nucleon,

5 = momentum of a nucleon,

M = mass of a nucleon,

p = density of incident particles,

3 = p -%%— = incident current,

-, = -
<ﬁ(p)dé> = nucleons per unit volume in dp,

Ek = kinetic energy of the incident particle,
oR(Ei) = microscopic cross section in the rest frame of the struck

particle,
-

-

v o= % = . velocity of the primed frame relative to the unprimed
freme,

R = reactions per unit volume per unit time.

With the use of the above definitions, the expression for the

reaction rate per unit volume in the primed system can be written as

R = 3] oN(mY (¥(@)ap ) )



and it will be noted that it is also the expression for the reaction
rate per unit volume in the unprimed frame since AxfyAzAt is invariant

g
to Lorentz transformations. The quantity (N(f)dﬁ) can be transformed
to the unprimed frame by noting that Ax'Ay'Az' = xpyhz (L - v2)'1/2 SO
that the transformation yields (N(E)dia')' = (N(S)d{o’ (1 - v2)/2, mhe
remaining quantity to be transformed is the incident current which trans-

forms like the spatial part of a four-vector. Thus, we have

o= T4 (3-9)¥ 1

Jn

The macroscopic cross section, dg, for the incident particle is

obtained by dividing the reaction rate per unit volume by the incident

current and using the relation (1 - va)l/a = M/E to get
aw - L Rey L) 6 (2)
|-.> I k E ’
where N ' -
S, (3, °3)P B 13 PR
I'j”'l 4 i p2 . M M .
> -
FR | 2y

The kinetic energy, El'{, which is needed to determine the cross section,

is obtained from the transformation

B - -
B - Erom o L TP
- -
BB -pyP
- M - m



Introduction of the Exclusion Principle

In Eq. 2 the cross section UR(Ei) is the total microscopic cross

section, and if more than one type interaction is possible, then

o"(g) = Z"?(Eﬁ) :
J

In the case where one of the interactions, the zth one say, results in a
nucleon being ejected, then the energy of the nucleon must be above the
Fermi energy, Ef, to have an acceptable interaction. This means that the
cross section o? (Ei) is smaller than the measured cross section, UEM(EQ),
where the exclusion principle is not operating.

Letting € be the final energy of the nucleon resulting from the zth

process, we can then write

/ dcrf;(El'{)

Rems

o (Br) = \—-—d-e-r;—--—/ de, (3)
Ee

and
dr, (E')

oy (E ) d€n . (L)
J \
(o]

However, the integral given in Eq. 3 is usually difficult to find; therefore,

we will introduce the cross section into Eq. 2 in its integral form so that

r 1
» l

S Rmy) i |

do’, (E! |

J k R/, > oo
%Z de > den + ZI Oj(Ek) !L N(P)dp' (5)
!J=l B n /(. j=k+l ;

. |

-~

do

]



It was assumed in Eq. 5 that the first k of the m possible interactions
had a nucleon present in the final state and the remainder are not

restricted by the exclusion principle. For J > k, we have
Ry - Mg
oy () = oy (B .

The total macroscopic cross section is, of course,

m m

_ _ *'l M Ry vy >y =

o = z oy = % + z oJ(Ek)N(p) dp . (6)
J=1 J=1

The Monte Carlo Procedure

In this section the methods of randomly selecting the distance
between interactions, the momentum of the struck nucleon, and the type of
interaction are described. These methods are based in part on some Monte
Carlo selection techniques described by Butcher and Messel.l

In order to simplify the discussion, Eq. 5 will be written in the

standard form for application of a rejection techniéue:
k o m
- -, - - -, -
6 - ) co@E@E | vi(ee (e, +) ca@e@aE , (1
=1 J=k+1

o

where
- N(-b)d-»
o}
N, = JN(E)di»’ ,
1

J. C. Butcher and H. Messel, Nuclear Physics 20, 45 (1960).

..5_



V.(e.) = 1 forE, s ¢

J'n T n
= O for O = en < Ef
R 1]
daj(Ek)
de for € z 0,
gle,) = 2
GJRM(Ei)
f -‘l
g e,
- J
QJ (5’) - Cj )

and C, is a constant such that

J

CJ 2 maximum of {—%;{ -%— o?M(Ev)N
J

The selection procedure for the type interaction and the momentum
of the struck particle are based on Eq. 7 and are given below.* In these

procedures, as a matter of notation, we use

m
Yo,
J=1

1. The type interaction is randomly selected from the m possibilities

by selecting a random number Rl and forming the sequence

—T
1 1 S .

*If one contribution to the cross section 5 ) is independent of the momentum
of the nucleons in the nucleus it can be included in the set_of interactions
k+1 through m without loss of generality by letting Cp = cp(pi) and Qp(p) = 1.

-6-



y =y - 2
2 1 S
C
_ _ 3
Vs Yo S

which is terminated when Y, £ 0, The type interaction is then
taken as £.

2, The momentum 3 of the struck particle is randomly selected from
the probability density function f£(p).

3. A random number R2 is compared with Qj(f) and if R2 > Qz(ﬁ), then
£ and P are rejected and the process is started over. If R2§ Qz(f)
and £ > k, then the interaction of type £ is allowed to occur. If
R2 s Qz(ﬁ) and £ £ k, then the process is continued in step k.

k. The energy of the nicleon, En’ is randomly selected from the
probebility density function gz(en) (see the following section)
and compared with E,. If E < E., then Z, B, and E_ are rejected
and the procedure 1s started over. If En 2 £ the complete
process is accepted.

For j > k in the above procedure, the probability of selecting J is

CJ/S and the probability of selecting P and having it accepted contingent

on having selected J is
o ) - -, -
- [o, @@
J

where aJ is defined in Eq. 6. Thus, the probability of obtaining both j
and P and having them both accepted is oJ/S°
For j S k the probability of selecting j is again cj/s and, given B,

the contingent probability of accepting En is

-7=



00

R

o, (E!) -
—%ﬁ_ET - ¢/~ Vjien)gj(en)den :
o, (Ek)

Thus, given j, the probability of selecting P ana En and having them

both accepted is

(o]

J f - OR(E}'; ->) -
= [ Q,(p) —s—— f(p)dp .
% I oMy

Hence the probability of selecting J, P and En and having them all
accepted is oj/S°

From the above discussion it is clear that the probabilit% of getting

j

an accepted interaction on the first attempt is o/S where o =;E; o

The manner of selecting the distance between collisions can now be
described. Assuming a particle has just had a collision, a distance X is
randomly selected from the exponential distribution h(x) = Se'sx, where
the true cross section o has been replaced by S. Then steps 1 through U4
are followed repeatedly until an accepted set of variables is obtained,
as described above, with the provision that if a rejection occurs another
distance X is selected from h(x) after each rejection. The sum of all
X's is then the distance y traveled to the point of the next interaction.

r To demonstrate that the above procedure is correct for selecting the
distance, we note that if there was an acceptance on the nth attempt, then
y would be distributed as

n n-1 e~Sy

S ¥y
(n-1):

8-



But the probability of acceptance on the nth attempt is

\ n-1l
3(:-2) »

Thus the distance traveled will be distributed as

<]

; g yn-l e-Sy o <1 g >n-l eV
= (n-1)! S \ S - ’

Kinematics of a Collision

In the previous section one of the selection techniques required
that the energy of the nucleon be randomly sampled from the distribution
gj(en). The purpose of this section is to describe this operation more
fully in the special case where a particle collides with a nucleon and
yields a nucleon and another particle in the final state. The description
will be generalized to the case where a particle of mass ml, with momentum
5; and energy El, collides with a second particle described by the set
(m ,p ,E ) and yilelds two particles described by the sets (m ,5 ,E )

272 2 373 3
-
and (m sP LB )°
474" 4

We assume that the angular distribution function for ejection of
particle 3 is given in the center-of-mess (C.M.) frame as a function of
the C.M. energy M. Thus, the procedure will be to transform to the C.M.
and obtain the expression for the C.M. energy and assume the angles of

ejection are randomly selected from the distribution o m"(M). The

12 34

description will be complete when expressions have been derived for 3;,33,§4

and E .
4 -9-



If we take the C.M. frame as the primed frame and the laboratory
(L) frame as the unprimed frame, the transformation to the C.M. frame

is given by

N N (p, -V)v
Bl = B+ — 1 - =t—, 1=1,23, (8)
v 1 l - v

and

E; - i?ie?r'
Ei = , 1= 1)2)3)u: (9)

J1-v2

where ; is the velocity of the C.M. relative to the L frame.

By letting P=p +p,E=E +E, and M= E' + E' and noting that
1 2 1 2 1 2

Bi + D' = 0, we can then use Eqs. 8 and 9 to get
2
P+ (P V)V < > VE = 0 (10)
and
3-»
M z (11)
\/ 1 - V2

Vector multiplication of Eq. 10 with v ylelds an expression which reduces to

BY = vE . (12)

Substitution of Eq. 12 into Eq. 10 finally gives the expression for the

relative velocity as

-
v =

= -2 . (13)

- ->
-
P p+D
E

-10-



From Eq. 11, again with the use of Eq. 12, we get

L (14)

And now we obtaln the expression of the C.M. energy by substituting Eq. 13

into Eq. 1k to get

=
1

/2 - ];/e\

(E2 - P2)l = [(E1 + E2)2 - (5; + p2)2

i}

[E(E E =D p)+m2+ 2} /2 (
1 TRyR T E TR ’ 15)

In the C. M. frame the conservation equations require

- -> = g
L 1 - LA ! - 0
pl p2 p3 p4
and
E'+E' = E'+E' = M,
1 2 3 4
Thus
E'a — pv2 + m2 - Me -+ p'2 + m2 - 2E M s
2 2 2 1 1 1

which, when it is noted that pie = p'2, reduces to
2

M2 + m? - n?
Ei = 1 2 ) (16)
2M

so that

=
1]

M - E; (17)

-11-



In a similar manner we get

M2 + m® - m?
E' = i (18)

and

E' = M-E (19)

It is advantageous to define a coordinate system to facilitate the
transformation back to the L frame after the angles of ejection of particle

3 are selected. The coordinate systen is defined by

P = p!?
1 1
and Vo= &+ B€
Thus, we have ;; xV = Opi?} ;;-V = piB and vZ = 02 + B2, and the coordinate
unit vectors are easily shown to be
- B;'
A _ v 1 ’
x = D (20)
1
A ﬂ; x v
y = op’ (21)
1
;.
A
R (22)
1

The various terms in Eqs. 20, 21, and 22 must be expressed in terms of

known quantities to be useful in the subsequent development. The evaluation

-12-



of 3' b'4 v is relatively simple if we take the cross product of ¥ with 3'
P, ' 1
> - -> ->
as given in Eq. 8 which shows that p:'L X V= pl x v. The final expression
for this quantity is obtained with the use of Eq. 13 and is given by
P xD
X
-b' L d _ - -3 _ 1 2
LXV = P XV o= = (23)
An acceptable form of S; can be derived by rearranging Eq. 9 to obtain

’13’1-?,—’ = E_ - yE! and substituting it into Eq. 8 along with Eq. 13 to get

-5 -> 1- - - 1 - -
L + — B - YE! + - — + B
R A, ppe (E D +p) 7, +P)E

which reduces to

E +E'
E+M E+M

when y = M/E is used.
The expression for B = ;-c;1 ;r’/p:'l is best derived by starting with the

inverse transformation

-
E'+p'-v
E = !
1 4
which can be rearranged to give Bi;; = 7El - E:'L so that
- -
Yoy 1
1
= = = E - E' .
B o7 5! (78 -E) (25)



For completeness, the remaining gquantities that need to be expressed
in terms of known quantities are listed below

o = (v2 - p2) Y2 (26)

Il

o= mE-m Y2, i-1234 . (D)

Now we assume that 6 and ¢ are the polar and azimuthal angles of ejec-
tion of particle 3 which have been randomly selected from the distribution

O m -m m (M) and devote the remainder of this section to obtaining an
12 34

- -
expression for p ,E ,p , and E .
3 374 4

After selecting the angles of particle 3 in the C.M. frame, the

-
expression for p' becomes
3

-

p' = p'(sind cos® X + sind sin® § + cos6 %)
3 3
._)l
b = )
=p' | (cosB - B sino cost) —=— & L sing cost v + —ET sind sind (p' x ;)J. (28)
3L a P 0] apl 1

By taking the vector product of ; with 5;, as given in Egq. 28, and using

Egs. 25 and 26, we get o L
- B pl'V V2 :’

R
p'*v = p'| (cos® - = sind cos®) ——— + — siné cos¢
3 3 a b a

_ n2
= p' |B cosb + Lijﬁ—E—l sinf cos¢ J
3L

= p'|B cos6 + & sinb coséd } , (29)
al

which can be substituted into the inverse transformation

El

> -
p -V
E — 3 3

+
3 V4

~1h-



to get

E' + p'(B cos® +a sinb coso)
3 3

B = - (30)

Finally we have

E =E-E . - (31)
4 3

Equations 1k, 28, and 29 can also be substituted into the inverse trans-

formation
- - (g'-;)v 1 E'?
e B () 2
3 3 V2 l-V2 1-v2
to get .
pl
5. = p' <{(cosb - =2 sind cos?®) —+ ’lT sing sin® (§| % ;) "
1 1
1 1 . E'V
= ai ) : 3
[ 3 sinb cos + —7zif:f;7— (B cos® + a sin® cos¢)J v:} + E

(32)
in which all terms have been defined above in terms of known quantities.

The remaining expression for ; is simply given by
4

- - - -
P = p +Dp -7 . (33)
4 1 2 3

-15-



If we assume particle 4 is a nucleon, then the angles of ejection are
selected as indicated above and E; is calculated by Eq. 31. The selected

angles are rejected only if E s Ef.
4

-16-
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