
MASTER

3/29/61
10.74461

ORNL-3183
UC-25 - Metals, Ceramics, and Materials

THE CALCINATION IN AIR OF BERYLLIUM
OXALATE TRIHYDRATE TO
BERYLLIUM OXIDE

R. L. Hamner
L. A. Harris

OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in USA. Price \$0.50. Available from the

Office of Technical Services
Department of Commerce
Washington 25, D.C.

—**LEGAL NOTICE**—

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ORNL-3183

UC-25 - Metals, Ceramics, and Materials
TID-4500 (16th ed.)

Contract No. W-7405-eng-26

METALLURGY DIVISION

THE CALCINATION IN AIR OF BERYLLIUM OXALATE
TRIHYDRATE TO BERYLLIUM OXIDE

R. L. Hamner and L. A. Harris

DATE ISSUED

OCT 19 1961

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

THE CALCINATION IN AIR OF BERYLLIUM OXALATE
TRIHYDRATE TO BERYLLIUM OXIDE

R. L. Hamner and L. A. Harris

SUMMARY

Variations in sinterability of high-purity BeO powders obtained by calcining $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ led to an investigation of the phase changes occurring during the calcination process.

Studies were made under continuous and equilibrium heating conditions, using differential thermal analysis, thermogravimetric measurement, and room- and high-temperature x-ray analysis. Beryllium oxalate trihydrate decomposed to $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ when heated in air at 50°C, given sufficient time. A liquid phase was observed during decomposition to $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ under rapid heating conditions between 80 and 150°C; this effect was not observed under "equilibrium" heating conditions at 100°C or below.

The monohydrate was observed to decompose between 225 and 250°C. Complete decomposition to BeO was accomplished at 275°C and might occur as low as 250°C. No stable intermediate compounds except $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ were indicated during the calcination process.

INTRODUCTION

This study was undertaken as part of a development program directed toward the definition and control of variables affecting the sinterability of high-purity BeO powders obtained by calcining $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ in air. In preliminary studies, variations in sinterability were observed in BeO powders derived from different batches of the oxalate which could not be explained on the basis of purity, calcining temperature, surface area, or fabrication procedure. A logical first step in investigating this problem was to characterize the starting material with respect to phase changes occurring under varying conditions of time and temperature during calcination in air. The material chosen for study was prepared by the Beryllium Corporation and was identified as single-phase, polycrystalline $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ by x-ray diffraction analysis and by means of a polarizing microscope.

PROCEDURE AND EXPERIMENTAL METHODS

Calcination Studies During Continuous Heating

Initial studies were carried out under continuous heating to simulate calcining conditions which might be encountered in practice. Samples of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$, weighing approx 0.75 g, were calcined at a constant, rapid heating rate to BeO in practically stagnant air. An apparatus was used similar to that developed by the National Bureau of Standards¹ which provided for the simultaneous recording of differential thermal analysis (D.T.A.) and weight change. The samples for these determinations were heated in the same furnace in close proximity to each other and to the D.T.A. standard sample of Al_2O_3 and a Pt vs Pt-10% Rh furnace thermocouple embedded in Al_2O_3 .

Calcination Under "Equilibrium" Heating Conditions

Studies of the calcination process also were made under "equilibrium" heating conditions to determine the existence of other effects which might not be detectable under continuous, constant-rate heating.

Samples of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$, weighing approx 30 g, were placed in porcelain crucibles and heated in practically stagnant air to a series of successively high temperatures until "equilibrium" conditions were attained. "Equilibrium" conditions at a given temperature were said to have been reached when the weight change of the sample over a 24-hr period was less than 0.1%.

Initial heating at 50 to 150°C was accomplished in a drying oven, using a thermometer placed near the samples to measure temperature. At 175°C and above, heating was accomplished in a muffle furnace, with a Chromel-Alumel thermocouple placed near the samples. Weight change was determined by removing samples periodically and weighing as soon as they had cooled to room temperature. Phases present at "equilibrium" were determined by x-ray analysis and by means of a polarizing microscope.

X-Ray Methods

A high-angle x-ray diffractometer using $\text{Cu K}\alpha$ ($\lambda = 1.5418$) radiation was employed in the examination of all samples. High-temperature x-ray examinations were made using a furnace attachment to the x-ray apparatus.

¹Nat. Bur. Standards (U.S.), Tech. News Bull, 37(6), 1953.

Temperatures were determined by a Chromel-Alumel thermocouple placed in contact with the sample, and x-ray patterns were recorded during heating of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ until dissociation to BeO was complete.

PRESENTATION AND DISCUSSION OF RESULTS

Figure 1 shows the D.T.A. curve indicating the phase changes occurring during calcination at the rate of $7^\circ\text{C}/\text{min}$.

An endothermic reaction is indicated, beginning at approx 80°C , which proceeded rapidly to a thermal arrest at approx 130°C and then continued to approx 150°C . During this reaction the sample became liquid and then solidified into a hard mass which was extremely difficult to remove from the sample containers. Larger samples of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$, weighing approx 30 g, when heated at the same rate, were observed to expand upon solidification with sufficient force to break a fused silica or alumina container. The temperatures of liquefaction and solidification were not determined, but the liquid state was noted in the region of the "arrest" on the D.T.A. curve designated as quench point 1. At this point the weight loss corresponded very closely to the theoretical for $\text{BeC}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$ (approx 12%); however, no evidence of a distinct phase corresponding to this composition was found by room-temperature or high-temperature x-ray analysis. The quench sample at this point contained two phases: $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ and $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$. An x-ray pattern for the monohydrate was not reported in the literature; its designation is based on chemical analysis and weight change from decomposition of the trihydrate. The x-ray data for this compound is listed in Table 1.

Single-phase material was obtained at quench point 2 (approx 150°C), where the reaction was practically complete, and at quench point 3 (approx 250°C) according to microscopic examination. X-ray analyses supported by weight loss from the trihydrate showed this material to be $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$. According to these data, then, the first reaction proceeded directly to the monohydrate through the simultaneous loss of two loosely held molecules of H_2O .

UNCLASSIFIED
ORNL-LR-DWG 43191

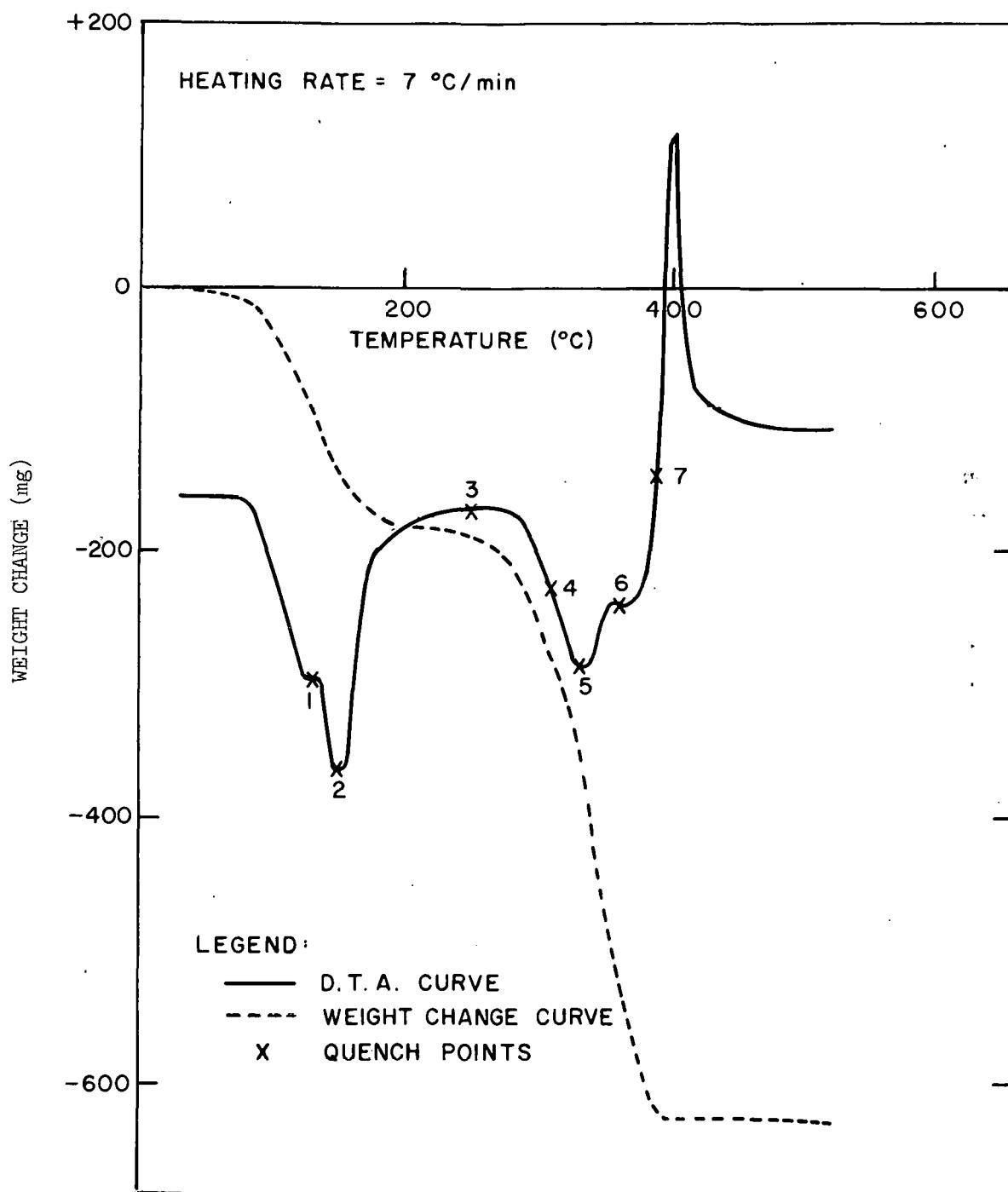


Fig. 1 Differential Thermal Analysis and Weight-Change Curves During Calcination of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to BeO .

Table 1. Powder Diffraction Data for $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$

I	d (Å)
S	7.03
M	6.02
VS	3.97
M	3.82
W	3.55
M	3.43
S	3.07
VW	3.02
VW	2.96
W	2.87
W	2.65
S	2.47
W	2.44
W	2.40
W	2.37
MW	2.28
W	2.26
W	2.21
VW	2.045
VW	1.99

The D.T.A. curve indicated a second endothermic reaction between approx 260 and 340°C. X-ray analysis of samples air-quenched during this reaction (quench points 4 and 5) showed the presence of $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ only. Since the D.T.A. and weight-change curves showed that a reaction was in progress, it was assumed that some reaction products were present that were not detected by x-ray analysis either because of quantity or because of a noncrystalline nature. Chemical analysis of samples decomposed to the same weight loss (approx 54%) as that obtained for the thermogravimetric sample at quench point 5 showed the oxalate radical (C_2O_4) and H_2O to be present in a 1:1 molar ratio, as in the monohydrate. According to weight loss and chemical analysis, one-half of the monohydrate had been decomposed at this point. It was observed that small quantities of CO and CO_2 in the molar ratio of 2.3:1 were present as part of the decomposition products, although the significance of this observation is not understood.

The presence of BeO was first noted at approx 370°C (quench point 6). Line broadening in the x-ray diffraction pattern indicated that this product was apparently in a very finely divided state. The weight-change curve, which showed a continuing weight loss at this point, indicated that complete decomposition to BeO had not occurred.

Complete decomposition to BeO was apparently accomplished at approx 390°C, where D.T.A. revealed a sharp exotherm, marking the end of the calcination process as evidenced by weight change and a very sharp x-ray diffraction pattern for BeO .

In discussing the phase changes which occur during the calcination of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to BeO during continuous heating, it must be noted that temperature relationships are as determined by specific conditions of heating rather than by an exact determination of sample temperature; this is demonstrated by Fig. 2, which shows thermograms of the calcination process during continuous heating at different heating rates: 3 and 7°C/min.

Figure 3 shows a thermogram of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ samples heated under "equilibrium" conditions. It is apparent that the trihydrate is thermally unstable in air and may decompose at temperatures as low as 50°C, given

UNCLASSIFIED

ORNL-LR-DWG 43435

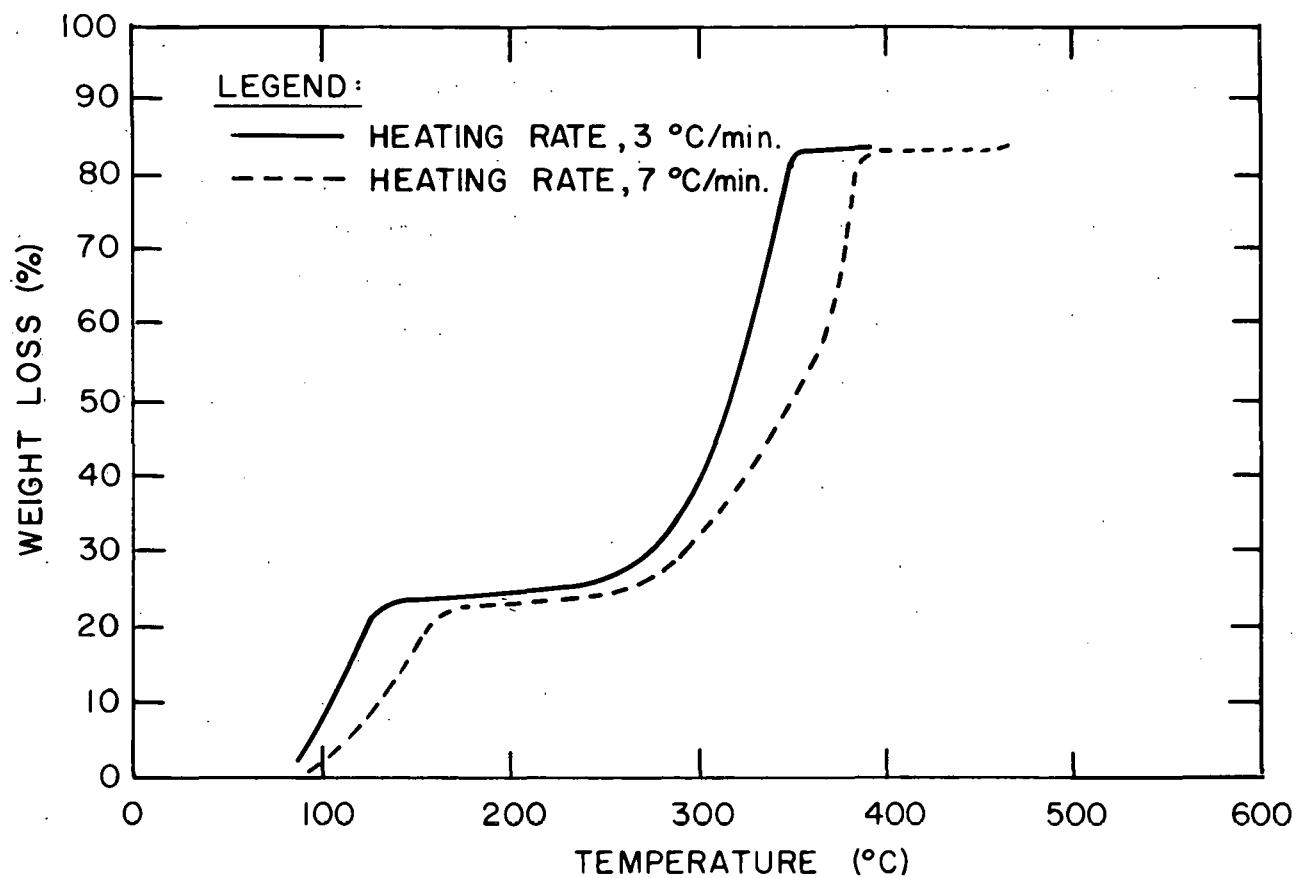


Fig. 2 Continuous Heating Thermograms for Calcination of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to BeO .

UNCLASSIFIED

ORNL-LR-Dwg. 47052

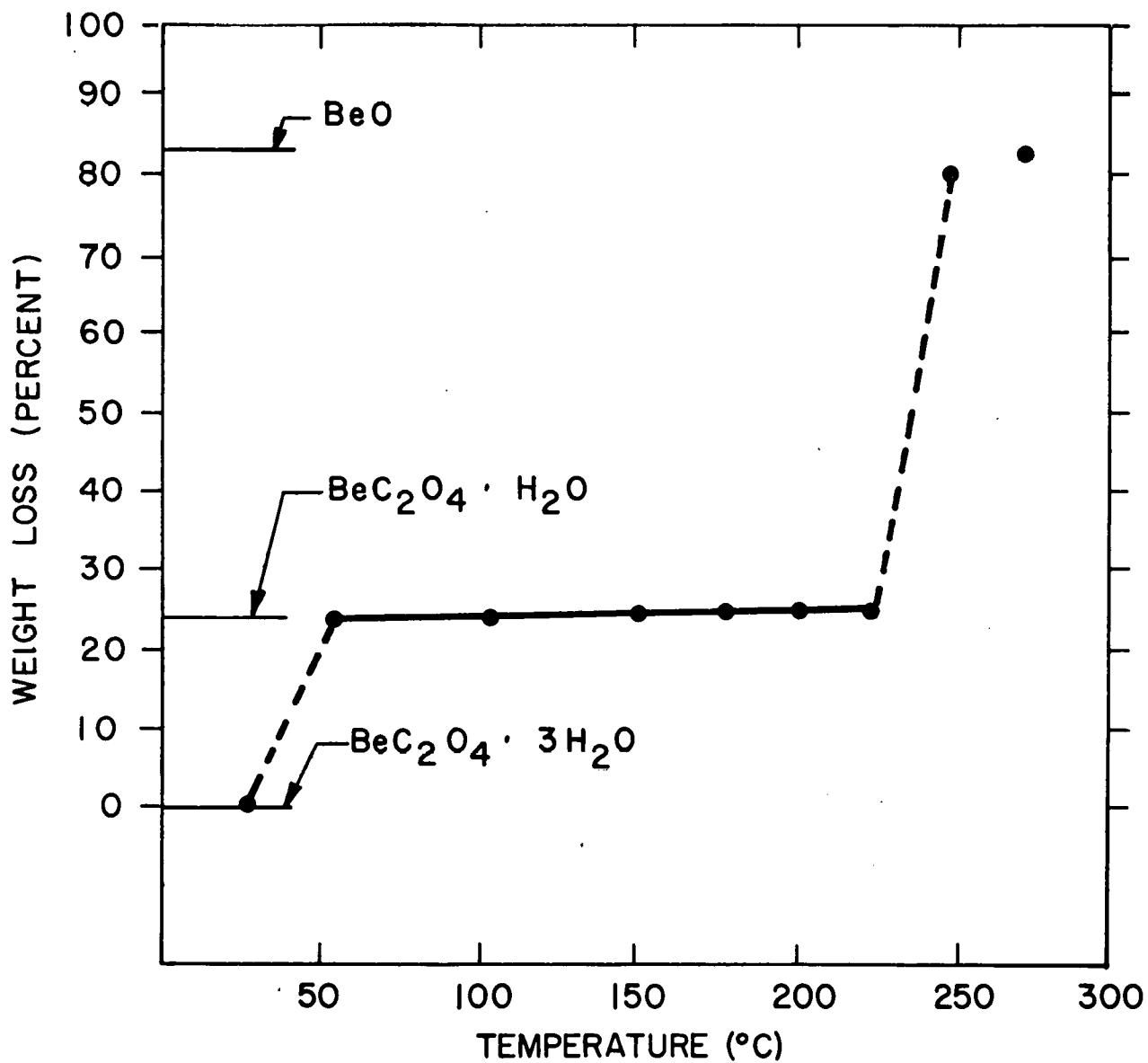


Fig. 3 "Equilibrium" Thermogram for Calcination of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to BeO .

sufficient time. The decomposition behavior of the trihydrate under these conditions was observed to differ significantly from that under continuous heating. When decomposition was allowed to proceed slowly under "equilibrium" heating conditions at 100°C or below, a liquid phase was not observed, and a shrinkage rather than an expansion of the product occurred. Weight change, x-ray analysis, and microscopic examination indicate that $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ is the only phase present between 50 and 225°C. When heated at 250°C, the monohydrate decomposed. In this plot, the weight-loss point shown at 250°C simply represents the weight loss observed on the date of plotting.

Figure 4 shows the time vs weight-loss dissociation characteristics of the monohydrate heated at constant temperatures of 250, 275, and 320°C. The dotted line extension of the 250°C curve denotes a continuing weight loss beyond the time shown. It is very evident that there are distinct changes in dissociation rate with time, dissociation being rapid initially and very slow as it approaches completion. Studies were not conducted to determine the cause of the change in dissociation rate with time, although it is felt that insulation by the products of decomposition and the partial pressure of CO_2 and H_2O in the surrounding atmosphere may be contributing factors.

Figure 5 shows high-temperature x-ray diffraction patterns obtained on heating $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ at successively higher temperatures and is generally descriptive of the calcination process with respect to phase changes occurring during decomposition. Pattern (B) represents the first decomposition step, where a two-phase region composed of the trihydrate and the monohydrate exists until decomposition to the monohydrate is complete. Patterns (C), (D), and (E) are indicative of the thermal stability of the monohydrate. The final decomposition step is represented in pattern (F), where BeO first appears, with considerable line broadening, as the monohydrate is decomposing. Pattern (G) marks the end of the calcination with complete decomposition to BeO . Further calcination in air at higher temperatures results only in an increase in particle size of the BeO powder.

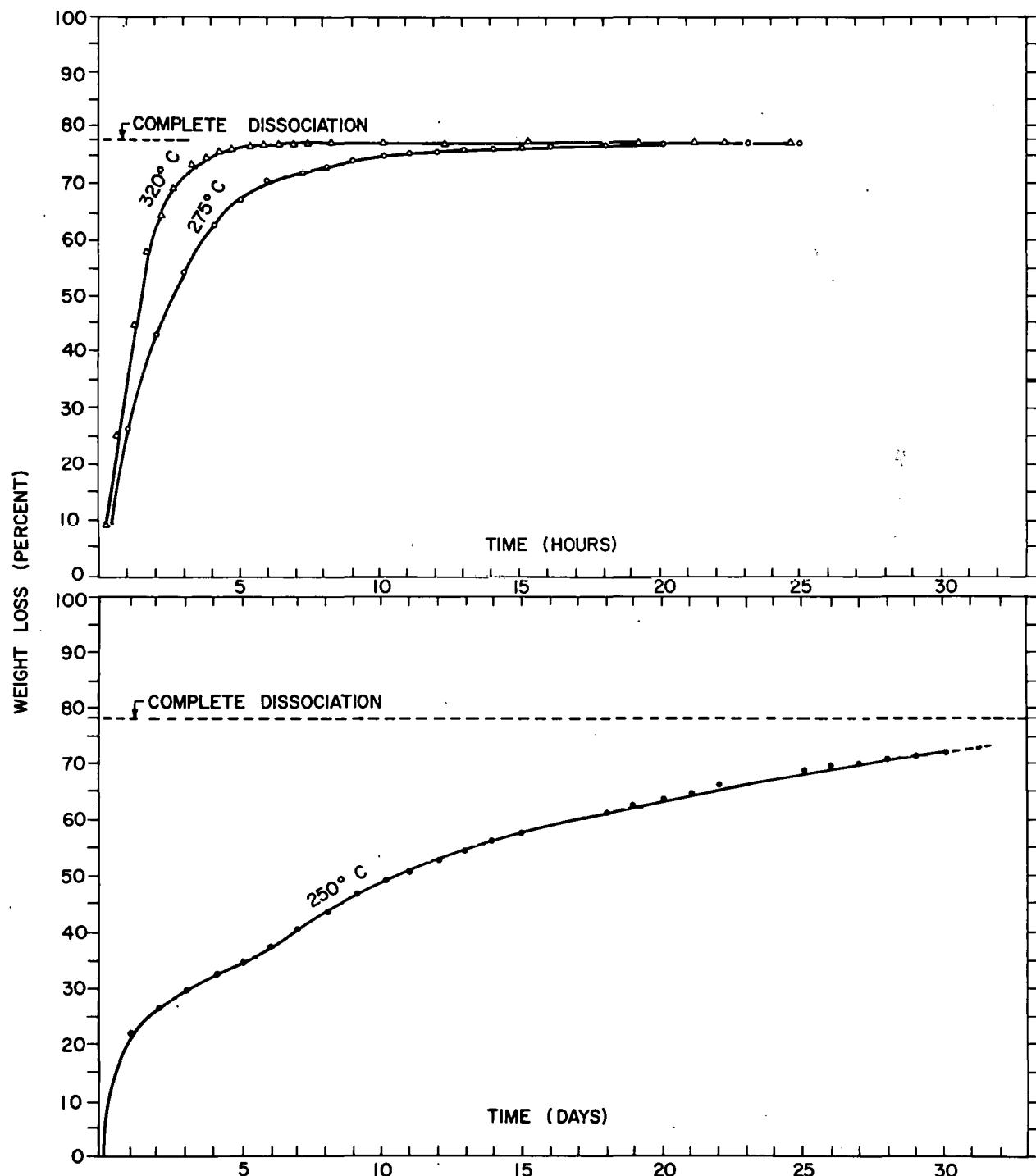


Fig. 4 Time vs Weight-Loss Curves for Dissociation of $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ to BeO .

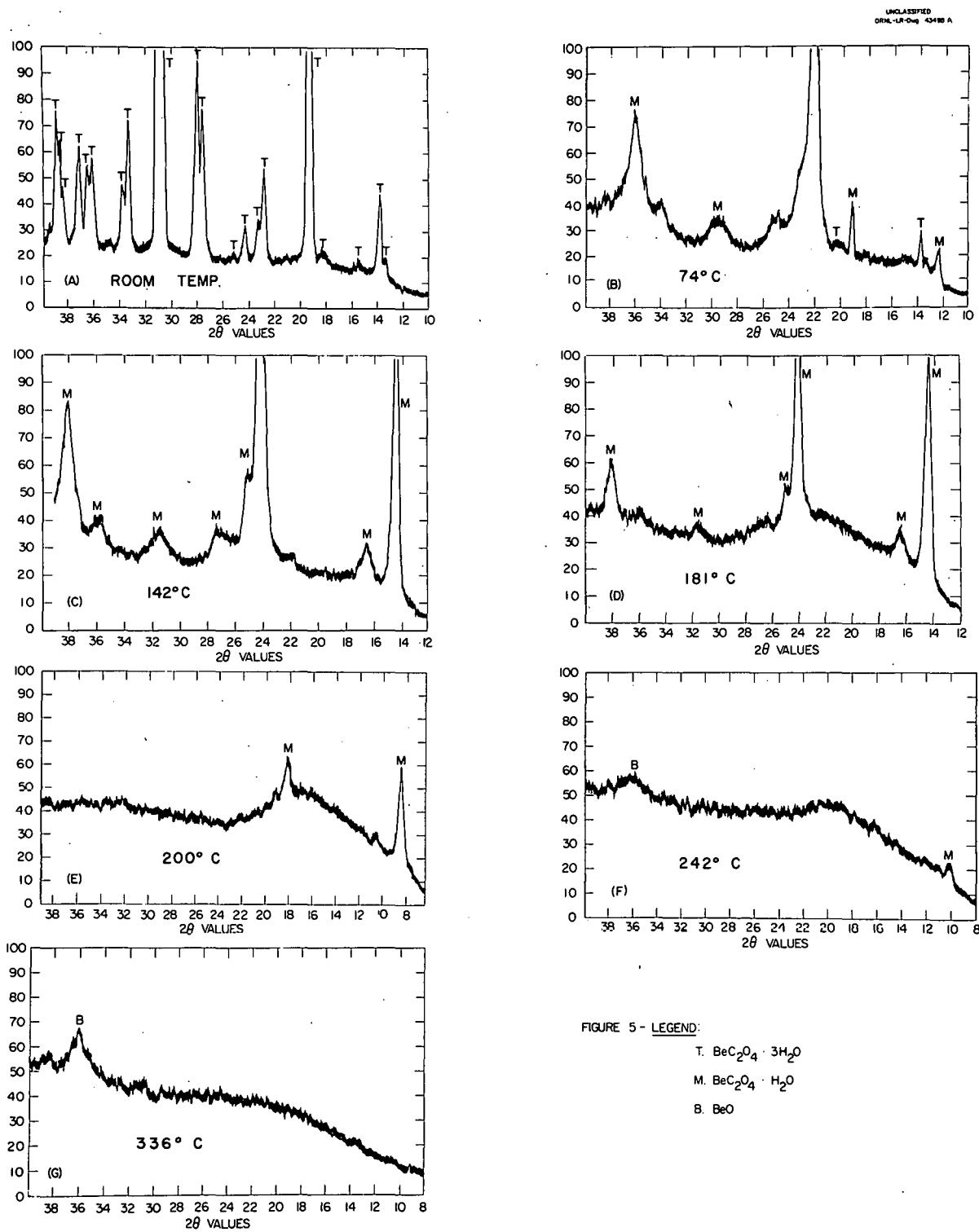


FIGURE 5 - LEGEND:

- T. $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$
- M. $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$
- B. BeO

Fig. 5 High-Temperature X-Ray Patterns Obtained During Calcination of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to BeO .

CONCLUSIONS

1. $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ is relatively unstable in air at low temperatures and may be decomposed to $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ as low as 50°C .
2. The first step in the decomposition of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ is the simultaneous loss of two molecules of water of hydration.
3. The physical dissociation characteristics of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ are dependent upon heating rate.
4. A liquid phase is formed during rapid decomposition of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ which expands forcefully upon solidification.
5. $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ is relatively stable in air compared with $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$, but begins to decompose above 225°C .
6. $\text{BeC}_2\text{O}_4 \cdot \text{H}_2\text{O}$ is the only stable intermediate compound formed during decomposition of $\text{BeC}_2\text{O}_4 \cdot 3\text{H}_2\text{O}$ to BeO .

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ORNL-3183

UC-25 - Metals, Ceramics, and Materials
TID-4500 (16th ed. Rev.)

DISTRIBUTION

1. Biology Library	60. J. A. Lane
2-3. Central Research Library	61. R. S. Livingston
4. Reactor Division Library	62. H. G. MacPherson
5. ORNL-Y-12 Technical Library, Document Reference Section	63. W. D. Manly
6-25. Laboratory Records Department	64. C. J. McHargue
26. Laboratory Records, ORNL-RC	65. A. J. Miller
27. G. M. Adamson, Jr.	66. E. C. Miller
28. D. S. Billington	67. K. Z. Morgan
29. A. L. Boch	68. J. P. Murray (K-25)
30. E. G. Bohlmann	69. M. L. Nelson
31. B. S. Borie	70. P. Patriarca
32. R. B. Briggs	71. D. Phillips
33. J. V. Cathcart	72. H. W. Savage
34. J. E. Cunningham	73. H. E. Seagren
35. D. A. Douglas, Jr.	74. L. D. Shaffer
36. J. H. Frye, Jr.	75. M. J. Skinner
37. J. H. Gillette	76. C. O. Smith
38. W. R. Grimes	77. J. A. Swartout
39-43. R. L. Hamner	78. E. H. Taylor
44. W. O. Harms	79. A. M. Weinberg
45. C. S. Harrill	80. J. C. Wilson
46-50. L. A. Harris	81. C. E. Winters
51-55. M. R. Hill	82. H. L. Yakel, Jr.
56. A. Hollaender	83. A. A. Burr (consultant)
57. A. S. Householder	84. J. R. Johnson (consultant)
58. R. G. Jordan (Y-12)	85. C. S. Smith (consultant)
59. M. T. Kelley	86. R. Smoluchowski (consultant)

EXTERNAL DISTRIBUTION

- 87-88. David F. Cope, ORO
- 89. D. E. Baker, GE Hanford
- 90. Ersel Evans, GE Hanford
- 91. J. L. Gregg, Cornell University
- 92. E. E. Stansbury, University of Tennessee
- 93. Donald K. Stevens, AEC, Washington
- 94. J. Simmons, AEC, Washington
- 95. Nathaniel Stetson, Savannah River Laboratory
- 96-671. Given distribution as shown in TID-4500 (16th ed.) under Metals, Ceramics, and Materials Category (75 copies - OTS).