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Theory of High-Energy Potential Scattering
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Institute for Atomic Research and Department of Physics

Iowa State University, Ames, Towa

The exact amplitude for scattering of a Schrodinger or Dirac
particle by a static potential is rewritten in a two-potential
form by splitting the potential into two parts, one of which
contributes only to exactly forward scattering. Replacement of the
exact wave function by a modified plane wave gives a high-energy
approximation that is shown to be equivalent to the Saxon-Schiff
approximation in the Schrodinger case. Corrections to the approxi-
mation are obtained in principle from a simplified series expansion
of the exact wave function having the modified plane wave as leading
term. The approximate amplitude reduces at small scattering angles
to a well-known result; at large angles, it reduces to Schiff's
stationary-phase approximation in the Dirac case but not, as shown

by the example of a Gaussian potential, in the Schrddinger case.
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I. INTRODUCTION

Elastic scattering of a high-energy particie by‘a static potential
can be calculated either by partial-wave anélysis, if the potential
has spherical symmetry; or by the Born approximation, if the-
potential is sufficiently weak; or by a less familiar high-erergy

approximatioﬁ; if thé scattering angle is sufficiently 'small. The

~:last of these methods was initiated by Moliére{l but has been

developed and expounded primarily by Glauber.2 Briefly, it consists
in approximating the unknomm exact wave function by a plane wave
modified in phase to take account of the shift in de Broglic wave-

length while the particle is pa%sing through the potential. Its

virtue is its applicability to potentials so strong that the Born

approximation is uséless. Its weakness is the restriction to small
angles: althougﬁ most of the scattering at high energies is nearly
forward, the large-angle scattering is often crucial for the
interpretation of an experiment.

&n extension of the high-energy approximation to large angles
was made by Schiff,3 who summed the infinite Born series after
approximating each term by the method of stationary phase.\For both
Schrodinger and Dirac particles, Schiff obtaineé a large-angle
scattering amplitude that differs from the Born approximation by
phase modification of both the initial and final plane waves. He
also recovered by the same method the small-angle approximation

(in which only the initial plane wave is modified in phase), but
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cbtained no results for intermediate angles. This gap was remedlea by -

‘Saxon and Schufh in a paper dealing only Ulth tke Schrddinger equation.

The exact scattering amplitude was recast in a form that reduces to the

small-angle approximation if the exact wave function is replaced by a

plane wave. The high-energy approximation consists in replacing it
instead by a plane wave modified in phase. Beside providing a well-
défined (although‘somewhat cumbersome) approximation for all angles,
this new approach to the problem was used to rederive the simplified
small-angle and large-angle formulas and to revise their estimated
renges of validity. "

The present paper develops a two~potentiai formulation of the

. high-energy approximation for both the Schrodinger and Dirac equations.

The scattering potential (assumed real, although this is not essential

to the methed) is split into two parts, one of which is chosen to be

~ the potential occurring in the wave equation satisfied by a modified

plane wave. Since this part conﬁribﬁtes only to exactly forward
scattering, the remaining part provides a compact rearrangement of the
exact scattering amplitude for nonzero angles. The exact wave function
is then replaced by a modified plane wave as a high-energy approximation.
Although an approximation of this kind for all angles has not been
given preﬁiously'in the Dirac case, our procedure is related to earlier

work on the Schrddinger scattering problem in two ways. Lippmann
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proposed a two;potential formalism and used it to obtain an integral

.equation for the wave function, but his splitting of the potential is

different from ours. Secondly, our fprm of the high—energy approximation
wili'be shovm in Sec. III to be equivalent to Saxon and Schiff's, although
the conclusions that we draw from it ere at vari#nce with theirs.
Specifically, for lé0° scattering from a Gaussian potenﬁial, we shall
find in Sec. V the Schiff large-angle formula multiplied by % , plus
additional terms thaf are small in a wide range of parameters (not
including the range of validity of the Born approximation). The
discrepancy is attributed to the method by which Saxon and Schiff

estimate the size of discarded terms. For large-angle Dirac scattering,

on the other hand, we recover the Schiff large-angle formu}a with no

factor 3 , its absence being due to the linearity of the Dirac

.Hamiltonien in space. derivatives.




II. TWO-POTENTIAL FORM OF THE SCATTERING AMPLITUDE

The exact amplitude for scattering of a Séhrédinger particlé
by a scalar potential will first be rearranged in a form that is
characteristic of two-potential theory and has certain advantages
at high energies. In order to simplify the derivation; the potential
V(E) will be assumed to vanish outside a bounded region. If the
particle has energy E = h2%2/2n , its ﬁave function satisfies

(v & -U) ] ¢(r)=0

where U(x) = (ém/ﬁz) V(r). Solutions having the asymptotic form of
; a plane wave plus outgoing or incoming spherical waves will bé
denoted by *fqu %f', respec?;'ively° The exact scattering

6

amplitude f is given by the well-known expressions
+
P - : [
_‘(ﬁ-f(ﬁ_f)fo)- (ﬁgjl_lu‘])o >
I- .

= Ll)al- "U‘Po‘) J

where the plane waves § satisfy
(vr+&*) P(z) =0 -

The subscripts on the wave functions specify whether the plane wave.
(or plane-tave part of the asympfotic form) has the initial wave

vector k  or the final wave vector kp o Each of these vectors hes

magnitude k and direction given by the unit vector ﬁo or'gf o The

(2.1)

(2.2a)

(2.2b)

(2.3)




" momentum transfer q = k, - kf has magnitude q = 2k sin(9/2), where ©

is the scattering angle.

A ‘high-energy appfoximation to «//0+ is the modified plane wave?

K0+ 0 o A0

where

P () = exp LA C )

S(r)= - <1A)"fu({~— {;SJ 4

/

The phase modification § , takes account, to first order in U/k2,

of the shift in de Broglie wavélength when the particle is inside

the potential. By o‘bs’erving that

k

A—_

v S5 (c)= - (&) V()

.
o -

it is easily verified that the modified plane wave satisfies the

differential equation

(v s’ - U (o) ] X ()= 0 |

. where

UL = - ,z,yr‘c—g S, ) Al 2xp A S,

To express the scattering amplitude in terms of 'X; s We apply

Green's theorem to Xo+— 4, and (té:- ¢f)~'; ‘, the star denoting

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

- (2.9)

(2.10)




complex conjugation:

f Lo (-4, ) v‘(xf— 2) = (-9 )0t (¢ - cpf)* 1IN

= fag-[(«@lc@)’“ T (K= ,) = (- £) 7 (¢~ 7)1

The right side is proporticnal to a transition current through
the surface of a large'sphere; we shall first show that this
current vanishes as the radius of the sphere becomes infinite.
The quantities SQ(E) and 7&?5) - ¢o(£) vanish unless r lies
either in the potentizl or in a semi-infinite cylinder such that

A

a straight line proceeding from r in the direction °,¥o pierces
the potential. This second region will be called the forward

. ’~
cylinder with axis in the direction x, . Thus the surface
integral reduces to an integral over the area of intersection
of the forward cylinder with the sphere. As the radius of the
spnere tends to infinity, this erea remains bounded because
the'potential vanishes outside a bounded region, but
(<f£—- ¢f)* and its gradient decrease as the rebiprocal radius;

hence the surface integral tends to zero.

(2.11)




If Eqs. (2.1), (2.3), and (2.8) are substituted in the volume

integral in Eq. (2.11), we obtain (for real U)

(47 9,), U %F) = (4, V0S=0)

By use of Egs. (2.20) and (2.9), this equation becomes

oy 8= (g0 ) e 0%,

Eq. {2.13) has 2 form cheracteristic' of scattering by two
potentials: the first term is the scattering by US alone and ?he
second term is the scattering by UL as modified by the presence
of US o A similar division of the amplitude is i“amiliar7 in scattering
problems where two physically distinct forces are acting, particularly
when the scattering produced_by one of them aione can be calculated
exactlyo' In the present situgtion a single potential.has been
divided ;nto two parts in a coﬁvenient but artificizl way by .
introducing 'k;+; the separate parts are not real, and they differ
from zero throughout both the potential regibn and the forward
cylinder. Because of these péculiarities, we shell heve to discuss

the existence of the separate terms of Eg. (2.13); also, we have

felt it desirable to derive this equation by an elementary procedure

(2.12)

(2.13)
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for which the conditions of validity are more evident than for

7 Our method can be'used 2lso when the two

the operator method.
potentials both have finite range, for'théAsurface integral in
'qu (2.11) theh vanishe5~because of éancellation between the two
‘terms in the integrand. With a different choice of outgoing or
incoming spherical waves, the same procedure is convenient for
de;iving other identities between different forms of the
scattering amplitude; for instance, replacement of 'X:— 700 by

%ﬁ+‘ff% in Eq. (2.11) shows %he cquivalence of Eqs. (2.22)
‘and (2.20).

As mentioned, both U and U. are nonzero throughout the

S L
forwerd cylinder. This implies that each term of Eq. (2.13) is

an integral that appears to oscillate rather then converge, although

the sum of the two terms is well defined. For4exéctly forward or
baclarnard scaitering3 this appearance is illusory as each term can
actually be shown.to converge separately. At all other angles, it
will be convenient to define the integrals separately by adding

2 small positive imaginary part to the component of momentum

. . LA . . ‘ -
transfer along the direction Koo That is, if the z axis is chosén

along this direction, we replace q, by q, + 1e and take the limit

of each integral aé‘ € goes to zero. The use of this Abelian

definition of the integrals cannot change theirmsum; which is well

- defined in any case; from a physical point of view, one may like
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" to think of the convergence factor exp(- ¢ z) as a device for

representing the attenuation of the geometrical shadow by

‘diffraction effects.

+ . . . . .
Because ?fo describes a particle whose direction of motion

~is unchanged as it passes through the potential, US may be

expected to contribute only to exactly forward scattering, while

UL produces’scattering through finite angles. The idea of splitting
the potential into two parts of this kind has been discussed by'
Lippmann,s-but his division of ‘the potential is diff;rent and

less explicit than the one given by Egs. (205) and (2.10).

. One's qualitative view of the cohtributions of US and UL to

the scattering process is confirmed by the following exact result:
. ] ,
(45, Us %7 ) = (f,0%7) , o=o
f,°08 % ) = B

o .0 >0
Since the scattering amplitude is a continuous function of 6 , this

/

/

discentinuity in the first term of Zq. (2.13) must of course be
accompanied by a compensating discontinuity in the second term.

In order to prove Eq. (2.1hL), we consider first the matrix element

(f, V. %) = = [4g (onpigr) ¥hanp £ 5,(c)

vWhen the scattering is forward, q vanishes and the volume integral

can be rewritten as an integral over the surface of a large sphere:

(‘f)o )Uz_'){:t) = —fcij 2K p AS;(:) = 0 §=o0 |

(2.1L)

(2.15)
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Eééause SZ exp 1 Sg is nonzero only on the intersection of the
sphere with the forward cylinder, only its component along the

axis of the cylinder contfibut;s to the integral when the sphere
has infinite radius. .However, this axial component is proportional
to ﬁ(a) by Eq. (éo7) and therefore vanishes at large distances.

For nonzero angles, it is convenient to integrate by parts with

respect to 2z in Eq. (2.15):
(Fp, 0% ) = i (que sl [[axay anp (ipx+ 115%)

X I_,AXP(AZ%% - éZ) VZ,Q,\('I) £ gé(\:: )] (2.17)
. Z= - o0

- (3_&)'-1‘(32_-(-16)-' [J: Zxp (« ab-:) Vz (U 2xp A'S-o) L

-

The boundary term vanishes because the convergence factor is zero
at.ihe upper limit and the factor §72exp i S; is zero at the lower
limit. In the second term, the guantity €& may be set equal to zero
(when @ > 0), for the integration is limited to the potentvial region.
The Laplacian operafor can be transferred to the factor exp ig«z. by
an application of Green's theorem, the surface integral vanishing

because the potential is bounded in space, Since the quantity q‘/2kqZ

is unity, Eq. (2.17) becomes, in conjunction with Eq. (2.16),

j’ °© ‘ , 6 =9

L, uxs) | oo

(5Ff) L&- ?C°+;> =

(2.18)
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A unified proof of both parts of Eq. (2.18) may be obtained by

. observing that the limit as € — 0 of (2k)'l(qo~+ ie )t q2 is
0 for =0 and 1 for 6 >0.) Because U = Ug+ UL s Eq. (2.1}) follows

directly. Finally, we can rewrite Eq. (2.13) as

(‘f‘,)'u X°+) + ('Q‘DO—JUI_ ko+) , & =0

F-‘“Tf <éf»f°>.:A‘

Eq. (2.19) is a rearrangement (without approximation) of the
exact scattering amplitude, Eq. (2.2b), in a form that is expected

to be useful at high energies. This expectation is supported by a

comparison of the results of replacing LP%- by the plane wave ¢f'

in the two expressions. Eq. (2.2b) givés the Born approximation,

waile Eq. (2.19) becomes

-y f (4 k)= (9, U K])

by virtue of Eg. (2.18). The last equation is a well-known

gpproximation for highe-energy scattering velid-at small anglesu2

‘The use of a better approximate wave function in Eq., (2.19) will be

discussed in Sec. Vo

(L?_L-)UL,)Co‘f) | / & >9.

(2.19)

(2.20)
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III. DERIVATION OF THE SAXON-SCHIFF AMPLITUDE

. Saxon and Schiffh have rewritten thé exact.scattering amplitude in
another form that is useful for obtaining high—energy approxinations. Ve
shall now show that the two-potential form of the amplitude, Eg. (2.13),
is closely related to the Saxon-Schiff form and incidentally provides a
substantielly simpler way of deriving‘it.than that given originally by
Saxon and Schiff. Secéndly, we shall show the equivalence of the h;gh-
energy approximations obtained when ﬁuf- is replaced by a modified plane
wave ?<f_ in these two forms of the arplitude.

The Saxon-Schiff amplitude is

—emf kg h) = (F,,UXT) #

» (3.1)
2 / -y 2 P s
o /2 [2r UG) famp asitel] 92 [ 4/ (D .5 ()
vhere r' = (%, y, 2') and
Ve (£) = oy (2) = 2 (0) . - (3.2)
To obtain this result from Eq. (2.13), we first substitute US =U -0y ¢
—qw i (g ko) = (F,UXF) = (4, (VPep i 8D 4D (3.3)
With the z axis parallel to go 5 integration by parts with respect to.z
- and use of Eq. (2.7) change the second term of Eq. k3°3) to
+ff4k 4y (v axp <5,(c)] Ji%' 4 ()t () |
' & = =@ (30)4)

ERAS Y (2 T P g FER XS IR A -0




Since the asymptotic form of s 1s en inéommg spherical wave,

¢o(£‘) %SC*(E') varies as (1/z') exp(2ikz') at large positive z! for
fixed x and y. Hence the integral over z! exists and tends to zero as

2 —> +o00 , Since ¢ 2 exp(i § ) vanishes at large negative z, the
first term of Eq. (3.4) clearly vanishes at both limits. Green's theorem
é.ppi‘!.ied to the second tem now. yields Eq. (391), the surface integral in
Green's theorem ha.ving;7 2 vanishing integrahd because U vanishes -at

large distances.

If ¢ . is replaced by a modified plane wave X . , the only part

of this demonstration that needs changing is the reason why the boundary

term vanishes at the upper limit. When ’,‘Cf' is defined in more detail

'in Sec. IV, it will be seen that }‘éf' - @ vanishes at large positive

’ o
z for fixed x and y unless the scattering angle is 180 . In this

excepticnal case, the integral over z' must be defined in the Abelian

- sense, and the convergence factor then causes tne boundary term to

vanish at the upper limit.




_.15 -

IV. ITERATION SCHEME

*. In order to make use of Eq. (2.19), the unknowm exact wave.function
¥y ¢ must be replaced by an approximate wave .Tfunc.tion or, more sy;stemati—
.cally 5 by *'che} leading term or térmé of a series expansion. For example,
Eq. (2.20) resulted from replacing “f’ f- by the leading term of its Born

series. At high energies, a better choice should be the modified plane

weve %f > wnich 1s a'good approximation to’ t{' f- in the ﬁotential region
provided that KR 1, U< k2, and (U/k2) (UR/k) << l.b (The potential is
assumed to be smooth and to occupy a region o;‘ dimension R.,-)_,Postponj.ng
until Sec.V a further discussion of this approximation, wé consider here
the problem of expanding f- in a'series having X f- as its leading
term, .

For conveniencie of notation we shall actually work with t{./o+ instead

H

of f- ; one can be obtained from the other by use of the relation

P4
(L.1)

J

- C <4
‘{’g. (I)'z C“{’-jc (;':)]
-where -~f refers to the wave vector -}:{f o 4Simj.larly, X' and ’)<+ are

related by
X = Dx, )] = ep Uipyr - 5,07 (k.2)

<
o-v

3.,

P YO ARG P EL )

The phase modification is nonzero if r lies in the potential or in the
. . . . A F ' . . 3 . . -
backward cylinder with axis in the direction ~ko (a semi-infinite cylinder

such that 2 straight line prddeeding from r in the direction i\cf pierces

the potential).
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Saxon and Sc’:h:i.i‘fl'I obtained a series for 'QP(: with 7<&+ as leading
term by iterating an integral equation for tka+ . We shall instead obtain
an integral equation.fof the exact Greén‘s function and substitute ité

iteration serieé in 2 suitable expressicn for 42f','to be derived in the
ngit pafagraph. Although cur prccedure is more complicated, the fesults
are in one reépect simpler

Whereas Saxon and Schiff applied Green's theorem to q&éf and an
a‘proximate Green's function, ﬁe shall apply it to ?(ék.and the exacti

- Creen's function, which satisfies
(0*+ & - U)] 6T, x) = =S (-x') . o
From Green's theorem and 2q9.(2.8), it follows that
acr)= [as” (6% () ¥R ) - XD 9 67 g)] (1.5)
Kio) - _( 4e” GT (e e) U L) () . - (Lo6)

o (Lo 6) shows that the surface integral Sat“sfles the same Schrodinger
equation as ‘%o . However, it is nct obvicus that . has the asymptotic
form of a plane wave plus outgoing spheri cal waves (the asymptotic form of
the integral cannot be obtained by simply substituting for G+’its asymptotic
fo*m, since the integraticn in Zg. (L.6) extends over both the potential
‘reglon and the forward cyllnder) To show .that Ji. is indeed qzo we

observe that the same procedure, applled to ¢ 1nstead of ?( s leads to
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+

the Chew-Goldberger eduation9 for Yo with no difficulties about

the asymptotic form:
- s ’ ’ . o / :
¢ () = f&{ .EG-+(§,:) V- 4, (x) - A (;: ) )Z/ ¢* (e .‘I)] (4e7)

= 4(c) - [ac’ G (e, e V() 4 l) . (L..8)

. But.the surface integrals (L4.5) and (L.7) are equal, for 7¥éf - ¢o and its

gradient are zero on the surface of a large sphere except at its intersec-

. <1 . . + . '
tion with the forward cylinder, while G (r',r) decreases at large r' as
- 2 ‘

) 1/r'. Finally, by the reciprocity property of the Green's function,

Eq. (L.6) becomes

$1(5) = w ) - fart 6T ) UL X () he?)
‘This equation bears the same relation to Saxon and Schiff's integral
equation for 4/;P as does the Chew-Goldberger equetion to the Schwinger
intégral equation for c%é* o
The iteration series to be substituted for G in Eq. (L.9) is chosen
to have asz ito first”term the approximate high-energy Green;s function
'prOposed by Saxon and Schiffb:
Fflr,e’) = G (p) axp < 8C,cl) (1.20)
where .
g = r-x
6T ) = (wmp ) axp iRs (bo11)

. ¢
See’)= - (&) [ Ulr-Fs)ds .

-y a-

P N T



- The approximate Green's function satisfiés the differential equation

Lo%« &7 -0 + W(g, )] File, )= - §(e-r") (L.12)
with |

W(I)g)= -'MTI_‘—; SC )] O anp [0 8¢, e )] = Grag) ULlD) . (4.13)

R 4 - S ) .
When Green's theorem is applied to G "and F ., the surface integral vanishes

and.we obtain the integral equation
-+ + . " y72R B ,
G o) = Frloc) = [ar” FH e )W ("2 ) 6P (") . (Lo2l)

. o s . . . o ..
veration of this equation gives a-series for G that can be substituted

in EQ. (L.9) to yield the desired series expansion of ¢/ % :

GF (o) = K = (4 FH (o) U () % ()
) . f | _ (L.15)
wagiar” BT e )W) B A U)K ) -

The series obtained by iterating Saxon and Schiff's integral equation
‘differs from this in only one respect: the factor UL(;j) that precedes
xSt (') in all terms but the first of Eq. (4.15) is replaced by the more
. corplicated W(E‘,.f("J) of Eqe {L.13). This replacement does not changé the
values of the individueal terms of the series; by a §roof thet begins with

- - + + Y, 3,
the application of Green's theorem to F and ?Co , one can show that

Jar Fre ) Uy - Wi e v ) = o ) (4.16)
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Before turning to other questions, we sﬁould like to mention a further
use for Eq. (L.9): it provides an alternative derivation of the exact
scatiering amplitude in the form of Eq. (3.3). We observe that the argument
of %/6* in 2q. (4e9) occurs in the integran@ only as an argument of the
exact Green's function. As a result, 2 familiar integral occurs when Eg.

(L.9) is substituted in Eq. (2.2a) and the order of integration is reversed

in the second term:

. . » N B + N . i
—erd Gy ka)= (8, 0%7) = far Ute) % (e) |
‘ . ) ) ) . ()4017)
X [de’ 4,5 uE) 67 ¢ ) .
qu‘the solution of the Schradinger equation having the agymptotic form of
a vlene wave'¢f plus incoming spherical waves is
- - . / - , ’ 4 . . L
¢ ) = (o) = far CTleg) VD gpe) . )
- By Eq. (3.2) and the identity |
L o . ,
[e )™= 67 )
it .follows that
Yoo lr) = = [ar G V) 47 (L.29)

This identification of the integral shows Eq. (L.17) to be the same

~as Eq. (3.3).
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V. SMALL-ANGLE AND LARGE-ANGLE APPROXIMATIONS

When 7”5- is replaced in Eq. (2.19) by the approximate high-energy

wave function Qéf s Wwe obtain an approximate scattering amplitude

’ AT - -+ -
(‘fo,u;(o)'*_(”\/c )ULXO)) 6—01 (Sol)

- ?YT:f‘(éf ,é;) = ’ . :
| U, x.") 6 >0 .

(x,~

In spite of its very different appearance, this expression is equivalent,

2 J

as shown already in Sec. III, to the high-energy approximation given by -

L

Sexon and Schiff.” They have discussed its accuracy, as well as the ranges
of energy and angle in which it reduces to the simplified small-angle

. . - . . +
approximation, Eq. (2.20), or to Schiff's large-angle formla, (X ,IJ;K() Yo

To discuss these questions again would surely be supérfluous if
Saxon and Schiff had nof found'it hecessaaj to meke order-of-magnitude
estimates (following their Eq. (32), for example) of some rather
complicated integrals containing répidly oscillating factors in theiﬁ
. ihtegrands. Such estimates are very difficult to make with certainty; for
instance, the relative magnitudes of two functions are no guide to the
relative magnitudes of their Fourier {ransforms, excepf for the low-
frequency components. In view of this, we have thought it worthwhile to
see vhat conditions of validity can be established by teking the form (5.1)
of f; as an alternative sterting point and abstaining from order-of-
magnitude estimates of the kind just mentioned.

The conclusions that we have reached by this route are very limited.

The first is that fl reduces to the small-angle approximation for scatierin

-t
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angles & £ 1/kR; that is, for such small angles, it is immaterial whether
¥ ¢~ is approxinated in Eq. (2.19) by 2 modified or unmodified plane wave.
For reasons to be explained presently, we -are nét able to extend .this
. 1
conclusion to the wider range of angles, 6 << (KR) =, given by Saxon and
Schifff For angles near lSOo,AOur attempt to reéover the Schiff largé—angle
formule will éérve only to underline the hazards of making order-of=-
.maghitude estimateé. An effort to avoid themiin a pafticular‘case, by an
approximate saddle-poinﬁ integraﬁion, will be found to.sﬁggest that the

v

Schiif large-angle formula should be multiplied by % and its range of
validity reétricted to avoid overlap with that of the Born approximation.
(For a Dirac particle, on the other hand, the Schiff large-angle formulé
will be obtained without difficulty in Sec. VI.)

For small scattering angles, it is.convenient first to rearrange

Eq. (5.1) in the form

-, (kg k) = (4, U X5)+ ("’(}.‘ Pe, Y x.) . (5.2)

The first term is the familiar smell-angle formula of Eq. (2.20); the
second term 1s a correction whose relative crder of magnitude we wish to
estimate. (The'second.term is well-defined, ﬁith one exception, because the
integrénd vanishes except in the potential region and in the intersection
of the forward end backward cylinders; at © = 1800, these cylinders
coincide, bgt convergence can be restored by adding a small positive

imaginary part to q, as in Sec. II.) We suppose-that the potential is

e A i b L2
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.smooth and occupies a region of dimension R, that kR > 1 and U << k2, and

that UR/k is not large compared to unity. Then the only factor in either
integrand that can oscillate rapidly in a distance R is exp(iqer). If
8 £ 1/kR, this factor too is slowly varying, and a straightforward estimate

3 for the first term of Eq. (5.2)

of orders of magnitude givgs réughly UR
and U2R3/k2 for the second tefm7 Thus the second term is of relative order
U/k2 end can be néglected. But if-@ >> 1/kR, the integrand of each term
contains the rapidly oscillating factor exp(i%fz), and order-of-magnitude
estimates, whether of the individual terms or of thgir ratio, become

" unreliable.

At large scattering angles, this difficulty of estimating highe
frequency Fourief components is aggravated. Reflection from a2 one-
dimensional barrier will illustrate how one can be deceived by appareﬁt
'ordérs of megnitude; the same hazards will then be encountered in a
discussion of 180° scattering from a Gaussian potential in three dimensions.

. . . . .. 10
The reflection amplitude from a one-dimensional barrier is

Feik) (9,0 07) L (5:3)
This can be rewritten in the two-potential formalism as
: . : ' - ’ L o ’ ol-l
2ikr = (9, U X, ) + ("\I"QL‘ , Ul X, ) ) o
where ‘
‘igf"(%) = axp (~ikz) B - (5.5)

X, (¢) = XXPCAA%+ 15;(%)] = C’)CJL_(%)] " , : .(506)

O

——
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S.(x) = - ) [ UG)a (5.7)
UL (%): — &x7p (—,Lé‘o) __4: RXp (AZS;) . . (5.8)
AR

As expected, the first term of Eq. (5.L) is easily showm to vanish.

Replacement of 4’f- in the second term by '}Cf- gives a high-cnergy

approximation analogoué to Eq. (5.1):.
. _ - + " . . A .
2K = (XJLI UL')(O) = -—fdlx. zxr(:b.«f(% +AS°)EL 2K P L5, (5.9)

The integral can be rewritten in two ways by substituting the identities

2xp (;;fa_)._i\g&,axfiso = .?‘__ i%;,_ aKp (2*'5.;) + (f?-: go) 2xp (2&&) (5.102a)

= _‘1(: i_g; 2xp (ZLS‘,)-(- i—i; (;iizso)xx?(?—i{o)_ (5.100)

In each case, we integrate the first term by pa%ts to obtain

ke = (x] LU= (W/eR) ] KT (5.112)

" & glance at Eq. (5.lla) suggests that the second term is of order Uo/k2
compered to the first and can be neglected at high'energies, leaving

( }jf-, 4] }(&+ ) ac expected by analégy with the Schiff large-angle formula
in threc dimeneions. A fallacy in this argument is that 02 usually varies

more rapidly than U and consequently has larger high-frequency components.

Moreover, a contradictory conclusion is reached by estimating the second
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term of Eq. (5.11b) to be of order 1/kR compared to the first.-
We shall try to resolve this dilemma by considering a Gaussian potential,
U =0, exp(-zz/az). The integrand of Eq. (5.11a) has no singularities for

finite complex z, but the quantity

Zz
b COG S xS = ek s AR s C) 427

. has a saddle point at
t

2= ial tn (M‘/UJ]? = A (5.13)

U(X»ao) = 247 .

If the integration contour is shifted from the real axis to the line

2 = X+ 1y, then the real part of Eq. (5.12) has a sufficiently sharp

maximum as x goes through zerc that the variation of the remaining terms

of the integrand can be neglected, prbvided that v, K kaz. Instead of

recording the rather cumbersome resuit of the saddle-point integration, we

observe only that Uz/hk2 has the same value as U/2 at the saddle point;

thus, in this approximation, we simnly recover the first teim of Eg. (5.11b).
'A better approximation should result from applying the same procedure

to 2q. (5.11b), because dU/dz = ;gzU/a2 varies less rapidly than 2, Indeed,

.only z need be replaced by its value at the saddle point to obtain a émall

correction term:

‘1/2.!& r 2/’. ';: (’x‘.}-)(.)l’(o") [( * (;kaz)-l‘a"] . ' (59124)

e e ——,y =
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.L

If the saddle point is defined more carefully by adding 1n U to Eq. (S 12),
the algebra becomes more complicated but the saddle point is shifted by a
negligible amount to approximately iy, - i(2k)- .

An objection to this saddle-point approximation is that the real part
of Eq. (5.12) does not continue to decrease ﬁith further increase of |x|
out oscillates and reaches a local maximum (never as large as the one at
the saddle p01nt) waenever |x| is an integral mltiple of wa /yO . However,
ify, £ 7wa, i.e. if Uo/k > 10 L‘, the heights of ‘these subsidiary
maxima decrease rapidly from one to the next; Even at the first and largest
i of them,.the exponential of the real part is small compared to its value at
the saddle point, and the exponentizl of the imeginary part is oscillating
A'rapidiy. ConseqnentlyQAwe believe that the value of fhe integral comes
almost entirely from the saddle point.

) Since the high-energy epproximation requires ka >> 1 and
‘4(Uo/k25(an/k) << 1, we find that r, is half as large as the analogue of
‘the Schiff large-angle formula in the range of parameters 1o'h < Uo/k2

<L (ka)_% No iﬁconsistency'with the B&rn epproximation -arises from the
factor é s because the second Born anproxzmat1on for a Gaussian Doteptlal
:13 la¢ge compared to the flrst in this renge.
“The factor % does not seem to be a peculiarity of the one-dimensional

case. In three dimensions, the approximate ‘amplitude for 180° scattering is

- wrf, (R k)= (7 0% < - far axp (ide 05 Pianp <5, | (59
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"As in one dimension, we avoid terms explicitly. quadratic in U by substitut-

ing an identity similar to Eq. (5.10b):

AXP £ ;)V’-,;xr /.So = -i—“-_ Vlgx‘? 'J_,LSO + -;:A (VZZ’) 2xp 1*3: (5.16)

"When the first term is.integrated by parts, the surfece integral vanishes
by the reasoning applied earlier to Eq. (2916), and the4v61ume integral is
”fjuqt ohg-half the Schiff large-angle formula. If the second term is

evaluated for a Gaussian potential, U = Uy exp(-rz/az), Eq. (5.15) becomes
— Tr = . ’ .
| & 'Jtl f&: .QK? (154’{-&4— lAS:,)_ (5‘17)
. 2! __."f'v.:._zg']
X;[‘-',:U"S'_‘*(k“.) %‘U 24 a (x+7 a) ° .
The integrations over x and y can be carried oui exactly, a convenient
variable being t = exp[;(x2+-y2)/a2} . The first two terms present no
difficultiesjvthe third term, which is defined in the Abelian sense by the
convergence factor exp(~ ¢ z),'is first integrated by parts with respect
to z and then with respect to t. The result. is

-y, = Ta® fa(%: ,?axf (1x4<e+11§a) 4 U (=)
-7 (5.18)

X {0 cchat) e —ha) ]G 5V [1-anp a5 + uQ«)’z} o

In this last equation, but not in Eq. (5.17), U ané §, ere functions of
z 2lone: U(z) stands for U, exp(-z2/a2) and 55 is related to it by
'EQs. (5.7). The terms in'(ka)“2 come from the third term of Eq. (5.17).

As in the earliér discussion of .the reflection amplitude, we estimate

ﬁhe relative importance of the slowly varying factors by evaluating them
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at.the same saddle point, z Z'iy;‘. Admittedly, the variation of

[; ; exp(-Zi Sgi] is not slow near the saddlé point, but its value remains
.very close to unity. The term in (kgz)-lz is then of.relative order yo/kaz,
énd the square braqket containing this term is effecti?ely unity. The last
term in Eq. (5.18) is of relative order (ka)“2 50 = (kyo)-l<Q< 1.

We conclude that only the first term of Eq. (5.17) is important, again

provided that y, £ T a :

—a4mf, (ke Ao ) = L (XJ[; Uxt) . (5.19)

One wou;dllike to know whether Eq. (5.19) is correct for potentials
other than a Gaussian,‘in & sulteble range of parameters, and whether it
can be extended to scattering angles other than 180°. The'assumption>of'a
-.Qaussian potential ﬁas not used in obtaining this expression directly from
“the firsﬁ term of Eq. (5.16), and we spesculate that this term will in
- general have substantially lérger high-freguency comporients than the second
'Aterm because it contains the square of the z-derivative of the potential,
As in ‘the Gaussian case, the effect of its more rapid variation will be
compensated by its quadratic dependence on Uo vhen U, becomes sufficiently
.smail that the Born approximation is valid. The first term leads directly
to the right-hand side of Eq. (5.19) also at scattering angles other than
180° provided that 9<f- is approximated by ¢f exp(-i So)° Ye have not
'been able to estimate ;eliably the range of angles about 1800 in which no

serious error is caused by this approximation.
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VI. DIRAC SCATITERING

In order to describe high-energy potential scattering of
phys;cal electrons, one must uge the Dirac equation to satisfy
the requirements of special relativity. We shall find that the
Atwo-.potential formalism develoged earlier for the Schrodinger
'equation can be gpplied also to the single-particle Dirac eguation
with only minor changes. Aside from the complications of spin, the
resulting high;energy apporoximation is in fact simpler in the Dirac
case; far 180° scattering, in particular, we shall recover the
Schiff lergec-angle formila? with no factor 2 and with no additive
terms. These simplifications occur because the Dirac Hamiltonian
. is linear rather than quadraﬁic in space derivé.ti\{es.

The Dirac equation for a particle in a scalar poten;cial V(r) is

.YE—Ho'— V(__l")] LILo(:_')-;o) (6.1)
where
H°= A.#C ::(-V -— ﬂmcz . (692)
.If.‘ no potential is present, the plane-wave solutions with positive
energy will be denoted by
) = t i" 7 (603)

(L) = #p ) axplihr) |

,(E/F‘)L“.' ey
me /K

&*
.

"

<
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The four-component spinors uj satisfy the orthogonality relations

T - z |
A -MJ. = <E/l~\¢-) S’A-a. = 3/ ;. J ' (6.4)

A AJ

K e o (6.5)
o Bug 4

The exact amplitude for scattering from an initial state with
wave vector k, and spin s, (spinof u; with 1 = s;) to a final state

with .lff and Sp is given by
- 4T § («{}})S__j_ y Bols.).z (‘P§)u‘}’°+) = <‘P3L-, U cf,,)) (6.6)
Ulr)= (am/x") Vi) .

The differential cross seétion ]f)z must of course be averaged over
initial spins if the beam is unpolarized and summed over final spins
if the spin direction is not observed. |
To split the pptential into two parts, we again use a plane
wave modified by a phase factor that corrects for the change of
wavelength in the potential region:
X (o) = 4 (0) axp [:5.(£)] (6.7)

oo

S.(r)= - Y (24)”" IU(.':-*’EO'S)“

[~}

‘The only differences from the Schrodinger case are that the plane
waves are now spinors and that § o is now proporticnal to Y= E/mcze

The origin of the factor X becomes obvious when the relativistic
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expression for the wave number is expanded to first order in V. The

Difac equation satisfied by the modified plane wave is

TE-H- V. (D)1 X =00

J

VS (f)'z -ik e exp (—150):{.2 2xp i, = Ke .Y S, . (6.9)

aa—

To express the scattering a.rr;pli"éude in two-potential form, we
again integrate the transition current between (Y f- - ¢f) and

( ’X: - 8,) over the surface of a large sphere:

: - T + . l - T +
fas - (47- )= (k7= )= Jar T[4~ 9) o« - 4.)] . (639)
The surface integral vanishes because the factor ( X : - ¢O) limits
'~ the integratibn to the intersection of the forward cylinder with the
sphere, while (Y.~ - ¢f) decreases asymptotically as 1/r . By
;,sﬁbs’cituting Eqs.{6.1) and (6.8) in the volume integral and using

EqQ.(6.6), we obtain

S 2o RSP s W
where
Ug= (am/5°) Vs = 24, x-T 4, (6.12)
VU, = U-Ug . S - (6.13)

As in Sec. 1I, the two terms of Eq. (6.11) can be defined

separately in the Abelian sense. The first term again contributes
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only to exactly forward scattering:

' +

(c{)fjux°) J 8-:0,/
o , O >0 .

(¢, UsxT) = (6.11)

. (Even at zero angle, it must be remembered that ¢f and @ may
* describe different spin states.) To prove Eq. (6.1L), we first write

' out the matrix element in detail:’

(‘&“ U\f Xo‘*): —QAA‘(‘_ AR T: “ --(d‘:: (er A%f)y axp R S‘c ) (6915)

In the case of forward scattering, the spinor product is proportional

‘to the incident current density if the initial and final spin states

are the same, and vanishes otherwise:
ko s TCh) 2 om (1) = - & 50 50) (6.16
Use of Eq. (6oh)_and'the.sec6nd of Egs. (6.7) leads at once to

(l.ﬁff"()s 7(;”) = r 5(%)&;) fo(: U »xr{g‘:
A (6.17)

)

= ({,ux") o=o0.

Since this proof makes no demands on the spatial dependence of ¢f B

~ we observe. for future reference that also

q
18

(%, Ugx0) = (27, 0kT) oze. (6.18)
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For nonzero angles, we perform an integration by parts with

respect to z ‘in :.sq. (6 15):

Mf,U Ko ) Sk (’Le**é)—'. T
.{ jf Axda *"‘P (.ul X + "%‘a?) [}LKT (Al%t-éa)y,u'f,i{o] (6.19)

- xY(zA)-' /4*" M}’(*% ) v (UAxr « 5' ) }

. The boundary term vanishes a;o the upper limit because of the

| convergencé. factor and at the lower 1imit because of the factor

V exp (:1. 'Y ) Integration of the second term by parts transfers

- the gradient operator to the factor ~exp(19: °r), the surface integral
vanishing because the poterntiel vanisheé at large distences. The

second half of Eq. (6.1k) now follows from the identity
My s Ke) ) (6.20)

Alternatively, the two parts of Eq. (6.1llL) can be proved in a
unified way by obsorving that

| -3 (Jf,s‘,) (R/k.)
Aim  u

+ LA .Y
. + € 2 + A€ = , 6.21
A g (gree2) (g, ) =1, Ceso. (e

The exact scattering amplitude can now be wuritten as

vC‘Pf/UXo"-).-‘- (4}-/ UL ‘X"o+) ) 0= p
-4rf = ' : (6.22)

(k{'é')'u,_.xo*) | . 8 »o0 .
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As in the Schrodlnger case, replacement of \ff by ¢f gives the

familiar approximation
—emf o= (4, UXT) (6.23)

where we have used Eq. (6.1l). A better replacement for the exact

" wave function is the modified plane wave

v

x,: (£) = ¢, () axp [-35.,()] (621

(e) = -y (k) f Urefee)as o 0 )

The parameters are aseumed to satisfy the same conditions as in the
.SchrSdinger case, with U replaced by grU 3 in addition, we assume
that y >> 1. Because of Eq. (6.18), the resuliing high-energy

approximation is simpler at 0° then in the Schrodinger cases

(‘Pf)UX+) , 9=°, (6.26)
(%_j_)u X.f-) 2 @)O

For small scattering angles @ = 1/kR, it is again immaterial

- "#T?Ll

whether a modified or unmodified plane wave is used as the approximate

- wave function, and we are again unable to extend this conclusicn to

; s
" the wider range of angles 6 << (kKR) © .9 We first rearrange Eq. (6.26)

ln the form .
v - _ . N
-y f, = («{’f,U%o)-:-(’ch-%f,UL?‘o ),  (6e21)
U.= U-.l-/&‘_f'ygo .

L

[
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it XUR/k is not large compared to unity, the intégfals contain no
.rapidly OSCillatiﬁg factors, ahd their orders of magnitude can be
o safel& estimated. On evaluating the matrix elements of « , the terms
1n < and’ are found 10 be at most of order © relative to
‘~c.(¢f,U "Yo+ }. When the 'reméining terms of Uy are combined in the form |
.U(l re vt Mz), where v is the speed of the particle, their
. contribution is at most of order 1/y relative to (¢f, U X o+ ), and
only of order 92/5' if the spin state is unchanged.

At 2 scattering angle of 180°, Eq. (6.26) Wwill be shown to reduce
9

to the Schiff large-angle formula” with no approximations:

—ewd, = (%, ux,") & =180 . (6.28)
We consider first the matrix element

(%, U 5<:)= —3ik, “JLT;’S - [4r spqEe 48 )Vaxp 48, . (6.29)

The phase modification § £ is equal to & o' for & = 180 ; in contrast

" . with Eq. (5.16), we have .
(xp JLS“,)V:&.XPA'S‘O: 'IZ-YM? (248, ) . (6.30)
Thus, Eq. (6.29) has the same structure for 180" scattering as

/ B
Eq. (6.15), and the same steps that were used earlier to prove the

second half of Eq. (6.1L) now lead to

. "<.X%-./ Us 7‘:) =° O =180 . (6.31)




Eq. (6.28) follows immediately, and its derivation clearly remains
valid in a range of angles about 180° provided that }ff' is
approximated by g, exp @& o) . As in the Schrddinger case, we are

unable to estimate reliably the accuracy of this approximation.

. e g e 0 e e
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