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The exact amplitude fo~ scattering of a Schrodinger or Dirac 

particle by a static potential is re-.;vritten in a t-.;..ro-potential 

form by splitting the potential into two parts, one of which 

contributes only to exactly forvJard scattering. Replacement of the 

exact 't·Jave function by a modified plane wave gives a high-energy 

appr .xirna.tion that is shown to be equivalent to the Saxon-Schiff 

approximation in the Schrodinger case. Corrections to the approxi-

mation are obtained in principle from a simplified series expansion 

of the exact wave function having the modified plane -.;~ve as leading 

term. The approximate amplitude reduces at small scattering angles 

to a well-knovm result; at large angles, it reduces to Schiff's 

stationary-phase approximation in the Dirac case but not, as shown 

by the example of a Gaussian potential, in the Schrodinger case. 
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I. I~"TRODUCTION 

Elastic scattering of a high-energy particle by a static potential 

can be calculated either by partial-'t·Jave analysis, if the potential 

has spherical symmetryj or by the Born approximation, if the 

potential is sufficiently l\reak; or by a less familiar high-energy 

approximation; if the scattering angle is sufficiently ·small. The 

·-·last of these methods Has initiated by Noliere, 1 but has been 

developed and expo~ded primarily by Glauber. 2 Briefly, it consists 

in approximating the unlmown e;x:act wave function by a plane wave 

modified in phase to take account of the snift in de Brogli0 't-tave-
I 

length while the particle is passing through the potential. Its 

virtue is its applicability to potentials so strong that the Born 

approximation is useless. Its vreakness is the restriction to small 

angles: although most of the scattering at high energies is nearly 

fon·rard, the large-angle scattering is often crucial for the 

interpretation of an experiment. 

lJl extension of the high-energy approximation to large angles 

was made. by Schiff, 3 who SUl'lll'ned the infinite Born series after 

approximating each term by the method of stationary phase. For both 

SchrOdinger and Dirac particles, Schiff obtained a large-angle 

scattering amplitude that differs from the Born approximation by 

phase modification of both the initial and final plane Haves. He 

also recovered by the same method the small-angle approximation 

(in which only the initial plane vrave is modified in phase), but 

.. 
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obtained no results for intermediate angles. This gap 1-1as remedied by 

Saxon and Schiff4 in a paper dealing only 1-Iith the Schrodinger equation. 

The exact scattering amplitude· v~s recast in a form that reduces to the 

. small-angle approximation if the exact 't·Iave function is replaced by a 

plane vrave. The high-energy approximation. consists in replacing it 

instead by a plane wave modified in phase. ·Beside providing a ~~11-

defined (although someHhat cumbersome) approximation for all angles, 

this ne1-1 approach to the problem was used to rederive the simplified 

smail-angle and large-angle formulas and to revise their estimated 

re.nges of validity. 

The present paper develops a t1-1o-potential formulation of the 

. high-energy approY~~ation for both the Scpxodinger and Dirac equations. 

The scattering potential (assumed real, although this is not essential 

to the.method) is split into tHo parts, one of which is chosen to be 

the potential occurring in the wave equation satisfied by a modified 

plane ·t-rave o Since this part contributes only to exactly forvrard 

scattering, the rew~ining part provides a compact rearrangement of the 

exact scattering amplitude for nonzero angles. The eY.act 'tvave function 

is then replaced by a modified plane vrave as a high-energy approximation. 

Although an approximation of this kind for all angles has not been 

given previously in the.Dirac case, our procedure is related to earlier 

~rork ·on the Schrodinger scattering problem in t"'·ro 'tvays. Lippmann5 
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proposed a tHo-potential formalism and used it to obtain an integral 

,equation for the wave function, but his splitting of the potential is 

different from ours. Secondly, our form of the high-energy approximation 

>·rill.be shotm in Sec. III to be equivalent to Saxon and Schiff's, although 

the conclusions that we draw from it are at variance 'tvith theirs. 

Specifically, for 180° scattering from a Gaussian potential, we shall 

find in Sec. V the Schiff large-angle formula multiplied by~·' plus 

additional terms that are small in a wide range of parameters (not 

including the range of validity of the Born approximation). The 

discrepancy is attributed to the ·method by 't-Jhich Saxon and Schiff 

estirr~te the size of discarded termso For large-angle Dirac scattering, 

on the other hand, 't-J"e recover the Schiff large-angle formula with no 

factor ~ , its absence being due to the linearity of the Dirac 

.Ha~~tonian L~ space. derivatives. 
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II. THO-POTENTIAL FORH OF TI-<.E SCATTERING .t\J1PLITUDE 

The exact amplitude for scattering of a Schrodinger particle 

by a scalar potential will first be ~earranged in a form that is 

characteristic of two-potential theory and has certain advantages 

at..high energieso In order to simplify the derivation,ll the potential 

V(r) ~~11 be assumed to vanish outside a bounded region. If the -
particle has energy E = f12k2/2m , its -vrave £:unction satisfies 

J 

1mere U(r) = (2m/n2) V(r). Solutions having the asymptotic form of - -
a plane wave plus outgoing or incoming spherical -vraves ~~11 be 

+ - . 
denoted by t or 'f ,ll respect-ivelyo The exact scattering 

al"Jl.olitude f is given by the 1·rell-kn01m exp._-ressions6 . .' 

'fiT·} {/!f J ~") = (f-f J U fo +) 

('ff- .I U fo) 

·t-rhere the plane ·Haves 95 satisfy 

) 

The subscripts on the wave functions specify "t.fnether the plane i·Ja.Ve 

(or pla11e--r·:ave part of the asymptotic form) has the initial wave 

vector k or the final wave vector kf o Each of these vectors has 
-o -

A A 
magnitude k and direction given by the unit vector ~0 or !f . The 

(2.1) 

(2o2a) 

(2o2b) 

(2.3) 
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'momentwn transfer~= ~0 - J:r has magnitude q ;: 2k sin(G/2), where 9 

is the scattering angleo 

A. high-energy approximation to 'f'o +is the modified plane ~mve2 

) 

't.ffiere 

0<) 

S .. (!::) = - (J.Af
1 J·u (,r·- f:"s) J..s 

I 

.The phase modification [ takes account, to first order·in U/1<:2, 
0 . 

of the shift in de Broglie v.ra.velength i·ihen the particle is inside 

the potential. By observing that 

J 

it is e.asily verified that the modified plane i·mve satisfies the 

differential equation 

J 

. where 

To express the scattering amplitude in terms of ')(
0
+, He apply 

Green 1 s theorem to Xo +- f.. and ( t-- ¢f}'3!-, the star denoting 

(2 .. 5) 

(2 .. 6) 

(2 .. 7) 

(2 .. 8) 

(2.J.O) 
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complex conjugation: 

The righ~ side is proportional to a transition current through 

the surface of a large sphere; r,.;re shall first shoH that this 

current vanishes as the radius of the SDhere becomes iniiniteo . . ' 

+'' The quantities 3 
0 

(_::) a.11d X
0 

C:) - ¢ (r) vanish unless r lies 
o- -

either in the potential or in a semi-infinite cylinder such that 
A 

a strai~~t line proceeding from r in the direction - ~0 pierces 

the potentia,L This second region -.;fill be called the for~re.rd 

/"" 

cylinder -vri.th axis in the direction l;:
0 

Thus the surface 

integral redu.ces to an integral over the area oi· intersection 

of the fo~·Iard cylinder ':·l'ith the sphereo As the radius of the 

sphere tends to infinity, this area remains bou.11ded because 

the potential vanishes outside a bOCL!ded region, but 

( ff-- ¢f)* and its gradient decrease as the reciprocal radius; 

hence the surface integral .tends to zero. 

·., "":"···- -·. : 

(2.11) 
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If Eqs. (2 .. 1), (2.)), and (2.8) are substituted in the volume 

·integral in Eq .. {2.11), 1~e obtain (for real U) 

By usc of Eqs. (2.2b) and (2.9), this equation becomes 

Eq. (2.13) has a form characteristic· of scattering by tHo 

potentials: the first term is the scattering by US alone and ~he 

second term is the scattering by u
1 

as modified by the presence 

of US • A similar division of the amplitude is familiar7 in scattering 

problems v.rhere tv10 physically distinct forces are acting, particularly 

Hhen the scattering produced by one of them alone can be calculated 

exactly. In the present situation a single potential has been 

divided into tHo parts in a convenient but artificial 1-:ray by . 

introducing X.,+; the separate parts are ·not real, and they differ 

from zero t:b.roughout both the potential region and the for':·Iard 

cylinder.. Because of these peculiarities, i·re sD.all have to discuss 

the existence of the separate terms of Eq. (2.13); also, 1-re have 

felt it desirable to derive this equation by an elementary procedure 

! 

I 
l 
' I 
I 

I 
I 

(2.12) 
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for 'Hhich the conditions of validity are more evident than for 
7 . . . 

the operator method. Our method can be used also Hhen the t1.ro 

potentials both have fL~ite range, for·the surface integral in 

Eq., (2 .. 11) then vanishes .because of cancellation bet-vreen the tHo 

terms in the integrand. i:!ith a different choice of outgoing or 

incoming spherical -vaves, the same procedure is convenient for 

deriving other identities bet..reen different forms of the 

scattering amplitude; for inst~nce, replacement of x:- fo by 

w+- dJ in Eq. (2oll) shows the equivalence of Eqs. (2o2a) 
\o /<> 

and (2 .. 2b)., 

As mentioned, both u
8 

a~d u
1 

are nonzero throughout the 

forv;ard cylinder., This implies that each .term of Eqo (2ol3) is 

an integral that appears to oscillate rather than converge, although 

the sum of the t-vw terms is v1ell defined .. For exactly forr,Jard or 

b~.clm::~:ril Rcattering, tr.is appearance is illusory as each term can 

actually be sho~m. to converge separately., A.t all other angles, it 

~·r.i.il be conve:r...ient ·to define the integrals separately by adding 

a small positive imaginary part to the component of momentum 

A 
transfer along· the direction !o" That is, if the z axis is chosen 

along this direction, 'tfe replace qz by qz + i E and take the limit 

of each integral as € goes to zero. The use of this Abelian 

definition of the integrals caro.not change their ... sum, vi'nich is well 

def:i,ned in any case; from a ppysical point of vievi, one may like 

.... -"";---;-·-' . -. 1,' •• 
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·.to th~~ of the convergence factor exp(- E z) as a device for 

representing the attenuation of the geometrical shadm-1 by 

"diffraction effects. 

x+ describes a particle >-rhose direction of motion 
0 

Because 

is unchar~ed as it passes through the potential, Us may be 

eA-pected to contribute on,ly to exactly ·forward sea ttering, 't-Thile 

u_ produces scattering through finite angles. The idea of splitting 
L 

the potential into tHo parts of this kind has. been discussed by 

Lippmann,5·but his division o:r'·the potential is different and 

less explicit than the one given by Eqs. (2.9) and (2.10) • 

. One 1 s qualitative vie-vr of the contributions of US and u1 to 

the scattering process is confirmed by the folloHing exact result: 

I 
8 > 0 

Since the scattering amplitude is a continuous function of e , this 

discontinuity L~ the first term of Eq. (2ol3) must of course be 

accompanied by a compensating discontinuity in the second term. 

In order to prove Eq .. (2.14), 1-:e consider first; the rr..atrix element 

ltlhen the scattering is fort-rard, q vanishes and the volurr.e integral 

ca·n be re•·rritten as an integral over the surface of a large sphere: 

f) = 0 

(2.14) 

(2.15) 

(2.16) 
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Because i ~ is nonzaro only on the intersection of the 
0 

sphere Hith the fonro.rd cylinder,· only its component along the 
I 

axis of the cyli."'lder contributes to the integral ·t-rhen the sphere 

has infinite radius. H01·rever, this a."d.al component is proportional 

to U(~:) by Eqo (2. 7) and therefore vanishes at large distances. 

· For nonzero angles, it is convenient to integ-..cate by parts 1-rith 

respect to z in Eq. (2ol5): 
C>O 

;.. ( 6 ~ + ,.: 6)- I !! d.. X. J "()- .P. X f (A 1x )< + .i. 1 ~ a ) 

The bo~~dary term vanishes because the convergence factor is zero 

at .the upper lL~it and the factor '7 2.e:;q) i b is zero at the· lO"A.'Br 
0 

limito In the second term, the quantity E may be set equal to zero 

(1·Jhen 9 > 0), for the integration is limited to the potential regiono 

The Laplacian operator can be transferred to the factor exp iqor by --
a..~ application of Green's theorem, the surface integral vanishing 

because the potential is bounded in space. Since the qu~"'ltity q2/2k~ 

is unity, Eq. (2.17) becomes, in conjunction Hith Eq. (2.16), 

e =- o ) 

f))>O 
) 

(2ol7) 

(2.18) 
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(A Q~fied proof of both parts of Eqo (2ol8) may be obtained by 

observing that the 1i~it as E ~0 of (2k)-1 (q + i E )-1 q2 is 
z 

0 for g·:: Oand 1 for G > Oo) Because U::. u5 + u
1

, Eqo (2ol4) folloHS 

directlyo Finally,_ 't·;a can re~·rrite Eqo (2ol3) as 

exact scattering aJnplitude, Eqo (2o2b), in a form that is expected 

to be useful at high energies.. T~is expectation is supported by a 

comparison of the results of replacing <f i- by the plane .·Have rpf · 

in the t1-10 expressionso Eqo (2o2b) gives the Born approXimation,-

Hhile Eqo (2ol9) becomes 

J.:.") ~ 
) -

by virtue of Eq .. (2o18).. The last equation is a well-lmovm 

approximation for high-e!:.ergy scattering valid •o.t small angles .. 2 

The use of a better approximate 't·ia.Ve function in Eqo (2 .. 19) will be 

discussed in Seco Vo 

-·~·------.-. ---.. -·---.,.--

(2ol9) 

(2o20) 

·-----~~-~~--
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III. DERIVATION OF THE S.i>.XON-SCEIFF A?·lPLITUDE 

Saxon and Schiff4 have reHritten the exact scattering amplitude in 

ai!other form that is useful for obtaining high-energy approxi.r.1ations. He 

shall noH shol·r that the tl·ro-potential ~orm of· the amplitude, Eq. (2.13), 

is closely related to the S~~on-Schiff form and incidentally provides a 

substantially simpler Hay of deriving it. than that given originally by 

Saxon and Schiff. Secondly, He. shall sho..r tlie equivalence of the high-

ei!ergy approxiinations obtained vr.nen .... & .£>- is replaced by a modified plane 
I J. 

uave Xf- in these tHO forms of the amplitude. 

The Saxon-Schiff amplitude is 

"" 
+ (.i. /:J.-k) f J..! V (!:') p:cp ;. ~./c J] t/· J At:" cf/1:/) <fse ~ ( !:., J 

-: 
) 

l·lhere r 1 = (x, y, zl) ai!d 

To obtain this result from Eq. (2.13), He first substitute Us = U - u1 

"' \Jith the z axis parallel to j:
0 

, integration by parts Hith respect to. z 
. 

and .use of Eq. (2. 7) change the second term of Eq. (3.,3) to 

oO 'l"'+""' 

+ f(~x d~ Cvl.~xr ~~ .. (~)] J J~" cfo(!:./) <fs-c~ (;::_") I . 
c- ?. ':: - .o>Q 

. Of> 

+ (..: 1 "-"') f J.:: { " ' [ u (.:: ) _,_~ r AE:J.:: J] } [ .t ~' f. I .:: 'J <f ,. * C.::' J 

.(3.1) 

(3.2) 

(3.4) 
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Since the asymptotic form of f sc is an incomi."lg spherical Have, 

--~ ,00 (.::.1 ) 'fsc"(:_1 ) varies as (l/z 1 ) e:xp(2ikz') at large positiv~ z' for 

fixed x and y. Hence the integral over z 1 exis:t.s and tends to zero as 

z -> + oo • Since \1 2 exp(i 3 
0

) vanishes at l~rge negative z, the 

first term of Eq. (3.4) clearly vanishes at both limits. Green's t.l-J.eorem 

app~ied to the second term noH. yields Eq. C3.1), the surface integral in 

Green's theorem having a vanishing integrand because U vanishes -at 

large distances. 

If d.J - • ... ~ b d" ". ' 1 - "'\/ - . , 1 ,.,..t T f ~s rep~aceu y a mo lLlea pane wave ~f., ~neon y P~-

of this demonstration that needs ch-ang.ing is the reason ~-lhy the boundarY 

·term vanishes at the upper limit. H:<1.en 

·in Sec. IV, it 1·rill be seen that 

X - is defined in more detail 
f 

- ¢." vanis.l-J.es at large positive 
..t. 

0 

z for fixed x and y UP~ess the scattering angle is 180 • In this 

exceptio~al case, the integral over z 1 m~st be defined in the Abelian 

· sense, and the convergence factor then causes the boundary term to 

vanish at the upper limit. 



-.lS-

IV. ITER..U..TIOllr SCEENE 

In order to make use of Eq. (2.19)' the ·unknOi'ffi exact 1-Ja.Ve function 

'-f"f-: must be replaced by an approximate Have function or, more systemati­

cally , by the leading term or terms of a series expansion. For example, 

Eq. ( 2. 20) resulted from replacing f' f- by' the leading term of its B om 

series. At high energies, a better choice should be the modified plane 

-vrave %.., -, vlhich is a good approxi.rn.ation to· cJ., in the potential region 
~ . . T f 

provided that kR >> 1, U << k
2

, and (U/k2) (UR/k) << L 
4 

(The potential is 

assumed to be smooth and to occupy a region of dimension R .. ). Postpon:i.:r'lg 

until Sec.V a further discussion of this approximation, we consider here 

the problem of expanding 'f f in a ·series having X f as its leading 

term .. 

For convenience of notation vre shall actually ~-rork Hith 'f 
0
+ instead 

. 8 
of t.f f- ; one can be ·obtained from' the other by -gse of the relation 

.) 

·-;mere -f refers to the -vrave vector -l<f • Sirl'ilarly, X and /(...,..are 

related by 

The phase modification is nonzero if r lies in the potential or in the 

A 

bach.\·rard cylinder Hii;-h axis in the direction -!f (a semi-infinite cylinder 
A 

such that a straight line proceeding from.r in the direction k~ pierces 
-~ 

the uotential). 

(4o2) 

(4 .. 3) 

\ 
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Sa..~ on and Schiff
4 

obtained a series for · ..:..y : -v7i th + X 
0 

as leading 

term by iterating an integral equation for 1f 
0

7 
• He shall i.."lstead obtain 

an integral equation for the exact Green's function and substitute its 

+ ' iteration series in a suitable expression for f
0 

, to be derived in the 

next parag~aph. Although o~r procedure is more complicated, the results 

are in one respect si~pler. , , 
. -t . 

\\lhereas Saxon and Schiff applied Green 1 s theorem to ~ 
0 

. and an 
+. . 

approxima:te Green 1 s function, we shall apply it to '?( and the exact 
0 . 

Green 1 s function, vrhich ·satisfies 

From Green's theorem and Eq.(2.,8), it i'ollovrs that 

_n_(rJ:: fJI~ [G-+C!:~::) y 1
X<>+(::/J.- X.,+(~/) ;! 1 

G+C;:'
1
!")] 

I J.._..-' ·G- + ( r/ r-) U (~) X+ ( r-') 
-J- L o -

(4o4) 

(4.5) 

(4 .. 6) 

Eq. (4 .. 6) shcn·JS that the surface integral _n satisfies the same Schrodinger 

equation as Lh + • H01vever, it is not obvious that ..D... has the asymptotic To . 

form of a plane vmve plus outgoing spherical -vraves (the asymptotic form of 

the integral cannot be obtaine.d ·by simply substitut;.i:ng for G +its asymptotic 

form, since the integration L"l Eq. (4Q6) .extends over both the potential 

region and the fortvard cylinder). To sho'l-r .that fL. is indeed + '-f' 0 ' 't'le 

observe that the same procedure, applied to ¢
0 

instead of X+ , leads to 
0 
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· 9 r 
the CheH-Goldberger equation for 'f 

0 
, uith no difficulties about 

the asymptotic form: 

(4.?) 

. But.the surface integrals (4.5) and (4. 7) are equal, for x: -~0 and its 

gradient are zero on the surface of a large sphere exce.pt at its intersec-
+ . 

tion Hith the fort-J:ard cylinder, l·Jhile G (r 1 ,:r,) decreases at large r 1 as - -
l/r 1 • Finally, by the reciprocity property of the Green 1 s function, 

Eq. (4.6) becomes 

· This equation bears the same relation to Saxon and Schiff 1 s integral 

equation for + 'f 
0 

as does the CheH-Goldberger equ.ation to the Sch•-Jinger 

integral equation for lf 
0
+ • 

+ 
The iteration series to be substituted for G in Eq. (4.9) is chosen 

to have as ito first term. t.he ::tpproxima.te high-energy Green 1 s function 

proposed by Saxon and Schiff4: 

Hhere 
;' 

j' = r - r 

.. G-.:>+ (j) = ( '+ rr f ) - I .ll.)( r A A f 
f 

$([,!::')= (:>.Ar' { U(r.-fs)J.s 
0 

(4olO) 

(4.11) 

I 
I 

.I 
I 
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The.approx:i.mate Green 1 s function satisfies the differential equation 

Hith 

~.Jhen Green• s theorem is applied .to G +.and F,..·, the surface integral vanishes 

and we obtain the integral equatiqn 

+ Iteration of this equation gives a·~eries for G that can be substituted 

in Eq. (4o9) to yield the desired series axpansion of Lr0+ 

The series obtained ·by iterating Saxon and Schiff 1 s integral equation 

differs from this in only one respect: the factor u1(~1 ) that precedes 

·'X + (r 1 ) in all terms but the first of Eq. (4.15) is replaced by the more 
0 -

. complicated \·l(E_1 , r (1'1.)) of Eq. (4ol3). This replacement does not chanp;e t.l-le 

values of the individual terms of the series; by a proof that begins Hith 

the application of. Green 1 s the or em to F + and X 
0
+ , one can show that 

(4.14) 
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Before turning to other questions, vre should like to mention a further 

use for Eq. (4.9): it provides an altzrnative derivation of the exact 

scattering amplitude in the form of Eq. (3.3). He observe that the argument 

of ~ 
0
+ in Eq. (4.9) occurs in the integrand only as an argument of the 

exact Greeri 1 s function. As a result, a fa"lliliar integ;ral occurs Hhen Eq. 

(4.9) is substituted in Eq. (2.2a) and the order of integration is reversed 

in the second term: 

( ftJ u x.+) - ·j ~~ UL (:::) xo+ (~) 

X f tt.:;.1 '(f ~(~I) u (!:') G -r (;:' ,!:. ) 

Now the solution of the Schrodinger equation hav.L~ the asymptotic form of 

a plane Have. ¢f plus incoming spherical t-!aves is 

By Eq. (3.2)" and the identity 

) 

it-follows that 

'T'his identification o! the integral shov1s Eq .. (4.17) to be the same 

as Eq. (3.3). 

(4.18) 

(4 .. 19) f. 

! 
l 
j, 
I 

i 
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V. SH.U~L-ANGLE AND LA.:.qGE-ANGLE .APPROXE-i.\TIOl\iS 

\{hen l& - is replaced in Eq. (2.19) by the approximate high-energy 
J f 

HaVe function Xf -, we obtain an approximate scattering a:;1plitude 

$=0 
) 

e > o . 

In spite of its ,very different appearance, this expression is equivalent, 

as sho-vm already in Sec .• III, to tl!.e high-energy approxi.'"!lation given by 

Saxon and Schiff". 4. They have discussed its accuracy, as -vrell as the ranges 

of energy and angle in "t-rhich it reduces to the simplified small-angle 

approximation, Eq. (2o20), or to Schiff's large-angle formula, (l'f-, U ')(.
0

;-- ).
3 

To dis~uss these questions again -vrould surely be superfluous if 

Saxon and Schiff had not found it necessa1~ to w~ke order-of-mag~itude 

estimates (follo~viilg their Eq. (32), for example) of some rather 
. 

complicated integrals containing rapidly oscillating factors in their 

integrands. Such esti..11ates are very difficult to make Hith certainty; for 

instance, the relative magnitudes of tHo functions are no guide to the 

relative magnitudas of their Fourier traJ."lsforms, except for the lo1·;-

frequency components. In vie-.;·r of this, i·re have thought it "t·rorth-v;hile tci 

see what conditions of validity can be established by taking the form (5ol) 

of f 1 as an alternative starting point and abstaining from order-of-

magnitude estL'"!lates of the kind just mentionedo 

The conclusions that v.re have reached by this route are very limited. 

The first is that f 1 reduces to the small-angle approxi.'"!lation for scattering 

" t 
I 

t 

.I 
I 
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angles 9 ~. 1/&-q,· ··,; that is, for such small a..."lgle s, it is irrunaterial Hhether 

r f- is approximated in Eq. (2.19) by a modified or unmodified pla..'Yle ~·!3.Ve • 

For reasons to be eJ..."'Pl9-ined pres·ently, 1-Je ·are not able to extend .this 
__ =!,. . 

conclusion to the· vrider range of angles, G << (k.~) 2
, given by Saxon and 

" . 
Schiff. For angles near 180 , ·our attempt to recover the Schiff large-angle 

formula vrill serve only to underline the hazards of making order-of-

. magnitude estimates. An effort to avoid them in a particular case, by an 

appro:;;..imate saddle-point integration, l·rill be found to suggest that the 

Schiff large-angle formula should be multiplied by i .a..'Yld its range of 

validity restricted to avoid over1~p viith that of the Born approximation. 

(For a Dirac particle, on the other hand, the Schiff large-angle formula 

wi~ be obtained 1nthout difficulty in Sec. VI.) 

For small scattering angles, it is.convenient fu~st to rearl~ange 
I, 

Eq. (5.1) in the form 

'l'he first term is tht:: fanulia:t small-o.ngle formula of Eq. (? .. 20); the 

second term is a correction Hhose relative order of magnitude 1·!e uish to 

estimate. (The second term is i:rell-defined, ".-rith one exception, because the 

integrand vanishes except in the potential region and in the intersection 
0 

of the forvrard and baclorard cylinders; at G = 180 , these cylinders 

coincide, b~t convergence can be restored by adding a small positive 

imaginary part to qz as in Sec. II. ) He suppose· .that the potential is 

----._ ......... _ .... ..,...,. ... , ........ ~ .... R .. ~-· -· - -- .. . ... . -· -·~......,..,.,...--._....,,.-. -------· 
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.swooth and occupies a region of dL~ension R, that k~ >> 1 and U << k2, and 

that UR/k is not large compared to unity. Th~n the only factor in either 

integrand that can oscillate rapidly in a distance R is exp(iq •r ) .• If --
G ;S 1/kR, tr..:is factor too is slo1-<ly varying, and a· straightfoniard ~stimate 

of orders of magnitude gives roug~~y UR3 for the first term of Eq. (5.2) 

and u2R3/k2 for the second term. Thus the second.term is of relative order 

2 U/k and can be neglected. But if. Q >> 1/kR, the integrand of each term 

contains the rapidly oscillating factor exp(iq•r), and order-of-magnitude 
. --. 

estimates, 1mether of the individual terms or of their ratio, become 

·· unreliable. 

At large scattering angles, this difficulty of estimating high-

frequency Fourier components is aggravated •. Reflection from a one-

dimensional ·barrier 't·lill illustrate hoH one can be deceived by apparent 

orders of magnitude; the same hazards 't·iill then be encountered in a 

discussion of 180° scattering from a Gaussian potential L~ three dL~ensions. 
. . 10 

~he reflection amplitude from a one-dimensional barrler lS 

This can be re1·1l'itten in the two-potential formalism ·as 

"~-mere 

' ff (t-)- ~·x p c~ ~·-A e) 

. ~ 

= [X_(.- (e)] J 
.J 

-....,-----

. 
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(:J..Af' f::c. U (t:/) J..:c' 
J 

-"" 
olz.. 

)Z.X f (.A. $"" ) 
J..~l.. 

As expected, the first term of' Eq. (5Q4) is easily shmm to vanisho 

Replacement of' f' f'- in the se~ond term by X f'- gives a high-energy 

~pproxi.rnation analogous to EqQ (5 .1):. 

·· The i...T'ltegral can be re1vritten ·in t~·:ro ways by substituting the identities 

In each case, 't-Ie integrate the first term by parts to obtain 

.P.. gla."lce at Eq. (5.lla) suggests that the second term is 
. 

2 
of order U cJk 

compared to the first and can be neglected at high energies, leavi..1'1g 

( X f-, U X 
0

+- ) o.a expected by ane.loEY vri th the Schiff' large-angle formula 

in three dimensions .. A f'alle.cy :i.n this argument is that u2 usually varies 

more rapidly than U and consequently has larger high-frequency components. 

Moraover, a cont~adictory conclusion is reached by estimating the second 

(5.9) 

(5.llb) 
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term of Eq. (5.llb) to be of order 1/~ compared to the first.· 

He shall try to resolve this dilerr~·na by considering a Gaussian potential, 

U = U0 eA~(-z
2/a2). The integrand of E~. (5olla) has no singularities for 

finite complex z, but the quantity 
-t. 

1m. [ (:;(/ t ')( 
0 
+ ] = 2. ..: .t.. ,._ - ;.. ( u. /k~~ ... r (- <-"/a.') H' 

has a saddle point at 
. , 

[ h (.2A 2./Uo) ]~ 
) 

If the integration contour is shifted from the real axis to the line 

z =X+ iy , then the real part of Eq. (5ol2) has a sufficiently sharp 
0 

r.~~urn as x goes through zero that the variation of the rerrzining terms 

of the integrand can be neglected, provided that y << ka2• Instead of 
. 0 

recording the· rather cumbersome result of the saddle-point integration, I·Je 

observe only that u2/4k2 has the same value as U/2 at the saddle point; 

(5"13) 

thus, in this approximation, IV?. simply recover t.he ;t;irst term of Eq. (,5.llb) o 

A better approximation should result from applying the same procedure 

to Eq. (5 .llb), because dU/dz : ~2zU/a2 varies less .rapidly tha.."l u2 
o Indeed, 

-only z need be replaced by its value at the saddle point to obtain a small 

correction term: 

(5ol4) 

' 

I 
~.,..;.. .. =···.-,..-= ... -. .. ,..,..,.. --=-=-...,..,....,~~=-=-~~--=-----:7:-:-:---:--~----:-'--:-~---::-~~~--:-,-:-. ~-:-----_[ 
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If.~he saddle point is. defined more carefully by adding ln U to Eq. (5ol2), 

the algebra becomes more complicated but the saddle point is shifted by a 

negligible amount to approximately iy
0 

- i(2k)-1 • 

An objection to this saddle~point approximation is that the real part 

of Eq. (5.12) does not continue to decrease 'trith further increase of I xl 

but oscillates and reaches a local maximunl (never as large as the one at 

the saddle point) whenever \x\ 

if y
0 
~ -rr a, i.e. if U0 /k2 ;?:; 

is an integ;ra~ multiple of Tfa 2 /y 
0 

• Hoi-reVer, 

-4 10 , the heights of'these ~~bsidiary 

maxi~a decrease rapidly from one to the neA~• Even at the first and largest 

of them, the exponential of the re~ part is small compared to. its value at 

the saddle point, and the exponential of the imaginary part is oscillating 

·rapidly. Consequently, .~~ believe that the value of the integral comes 

almost entirely from the saddle point. 

Since the high-energy approxi.'llation requires ka >> 1 and 

factor ~ , because the second Born approximation for a Gaussian potential 

is large compared.to the first in this range. 

The factor ~ dpes not seem to be a peculiarity of the one-dimensional 

case. In three dimensions, the approximate 'amplitude for 180° scattering is 
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· .\s in one dimension, v1e avoid terms explicitly. quadratic in U by substitut-

ing an identity similar to Eq. (5 olOb) : 

-1fuen the first term is integrated by parts·, the surface integral vanishes 

by the reasoriing applied earlier to Eq. (2ol6), and the volume integral is 

· .. ·just one-half the Schiff large-angle forrr.ulao If the .;;econd term is 
~ . . 

evaluated for a Gaussian poteptial, U = U0 exp(-r2/a2), Eq. (5ol5) becomes 

4- rr -f, = J J. ~ .ll. " f ( 2. ~ I~ -c. + :2. _.: r-., ) . 

x [ ~ u- t.,: (k"-.-z.r' -a.v- .lA a.-'~"('K.7..+"J·-a..l.) s-o] 
The integrations over x and y can be carried out exactly, a convenient 

variable being t : expf(x2+ y2)/a2] • The first two terms present no 

difficulties; the third term, which is defL~ed in the Abelian sense by the 

convergence factor exp(- E z), is first integrated by parts with respect 

to z and then 1ri.th re.spect to t. The result. _is 
o:t . .. 

-'irrf, = -rra.7.. J J.~ ~xr (-;..,:-k_~+ l·Ar.,) .;_ U(::.) 
- oQ 

In this last equation, but not in Eq. (5-ol7), u. and ~ 
0 

are functions of 

2 2 
z alone: U(z) stands for U0 exp(-z /a ) ~~d S

0 
is related to it by 

Eq .. 
. -2 

(5o7). The terms in (ka) come from the third term of Eq. (5ol?). 

As in the earlier discussion of .the reflection a.rnplitude, ·-v:e estirnate 

the relative importance of the sloldy varying factors by evaluating them 

(5.17) 

4~..,..----"""----~--"' ....... -....,__...,.~....,....,.._,,..,....,_~----------.,..-. -,.-.,.,. .. -_, . -~-.:::-... :----:-~--:----,--;..----~--------
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at the same saddle point, z = iy0 • A~ittedly, the variation of 

[1 ~ exp(-2i S"0 )] is not slow· near the saddl~ point, ·but its value remains 

very close to unity. The term in (k~2)-1z is then of.relative ord~r y0 /ka2, 

and the square bracket containing this term is effectively unity. The last 

term in Eq. (,5.18) is of relative order (ka)-2 S"0 ~ (ky
0
)-

1 << 1. 

We conclude that only the first term of Eq. (.5.17) is important, again 

provided that y0 

One Hould like to knou whether Eq. (.5.19) is correct for potentials 

other than a Gaussian, in a suitabl:e range of parameters, and l.fnether it 
0 . 

can be extended to scatter~g angles .other than 180 • The assumption of a 

·. Gaussian potential was not used in obtaining this expression directly from 

the first tern of Eq. (.5.16), and 1-1e speculate that this term 't·Iill in 

· general have substantially larger high-frequency components than the secor~ 

term because it contains the square of the z-derivative of the potential. 

P. .. s in 'the Gaussian case, the effect of its more rapid va:dation 1·.rill be 

compensated by its quadratic dependence on U
0 

't·ihen U
0 

becomes sufficiently 

small that the Born approximation is valid. T~e first term leads directly 

to the right-hand side of Eq. (.5.-19) also at scattering angles other than 
. 0 

180 provided that 'X:f- is approximated by y)f exp(-i S'
0
). He have not 

() 

been able to estimate reliably the range of angles about 180 in which no 

serious error is .caused by this· approximation. 

(.5.19) 
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VI. DIRAC SCATTERING 

In order to describe high-energy potential scattering of· 

phys~cal electrons, one must use the Dirac equation to satisfy 

the requirements of special relativity. We s..l-J.all find that the 

tHo-potential formalism developed earlier for the Schrodinger 

equation can be applied also to the single-particle Dirac equation 

vnth only minor changes. Aside· from the complications of spin, the 

resulting high-energy approximation is in fact s~~pler in the Dirac 

case; far 180° scattering, in particular, we shall recover the 

Schiff largc-o.ngle formula9 l·ri th no factor t and 1·rith no additive 

terms. These simplifications occur because the Dirac Hamiltonian 

is linear rather than quadratic in space derivativ.es. 

Tne Dirac equation for a particle in a scalar potential V(E) is
11 

1'1here 

- -H = 0 

If no potential is present, the plane-~1ave solutions Hi.. th positive 

ener3Y vrl.ll be denoted by 

. ' ... ~ 

( E/1:\c.)~- ){c 2. 

~ c /1\ 
.) 

~· ·-· 

(6ol) 

(6 .. 2) 

(6.3) 
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The four-component spinors ui satisfy the orthogonality relations 

t 
-'A·. 

A 
)-(. :. 

J 
( E /v... c..'l..) ~. . = 

"'J 

.v. ... + a )4 - · - r .. 
~~ ·i - .4 a 

) 

The exact a111plitude for scattering from an initial state lrith 
\: 

wave vector _!;0 and spin s 0 (spinor ui with i = s 0 ) to a final state 

'td th ..!:f and sf is given by 

- 't-lf f (~f JS;J- j f3o J .r..):. (ff) U l}Jo+) 

U(~) = (A~/~ 4 ) V(~) 
. 2 

The differential cross section jf} must of course be averaged over 

initial spins if the beam is unpolarized and summed over final spins 

if the spin direction is not observed. 

To split the potential into ti.;o parts, we again use a plane 

vmve modified by_a phase factor that corrects for the change of 

waveleneth in the potential region: 

) 

00 -

t (t~)- 1 f U(!-~o s )Js 
0 

The only differences .from the Schrodinger case are that the plane 

vmves are nov1 spinors and that· $
0 

is no'tv proportio:1al to '( = E/mc 2• 

The origin of the factor '( becomes obvious 't-Ihen the relativistic 

(6.4) 

(6.5) 
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expression for the 'Have number is e)..-pand~d to first order in V. The 

Dirac equation satisfied by the modified plane wave is 

r E - H - V ( r)] -v -r = o t.. 0 s - f\-0 • j 

To express the scattering ~plitude in tHo-potential form, -vre 

again integrate the transition current bet-vreen ( tJ' f- - ¢f) and 
+ . . ·. 

( ?C0 - ¢
0

) over the surfac~ of a large sphere: 

+ Th~ surface integral vanishes because the factor (·X 
0 

- ¢
0

) limits 

the integration to the intersection of the fort-Jard cylinder Hith the 

sphere, -vtnile. ( + f- - ¢f) decreases asymptotically as 1/r o By 

substituting Eqs.(6.1) and (6o8) in the volume integral and using 

Eq.(6 .. 6), vre obtain 

where 

Us = (~...-.1-tiz..) Vs -

UL ::; u·- Us 

} 

.J 

As in Sec. ·II, the two terms ·of Eq. (6oll) can be defined 

separately in the Abelian sense. The first term again contributes 

. ··~-.-.-·-· .,.~·· •· '!t ,. -·.-:-· .. --- r ; •' • 

(6 .. 12) 

(6.13) 
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only to exactly forivard scattering: 

e = o 
) 

) 6) > 0 -

. (Even at zero angle, it must be remembered that ¢f and ¢
0 

may 

· describe different spin states.) To prove Eq. (6.14), we first write 

.. , out the matrix element ·in detail:· 

In the case of forward scatter;i."lg, the spinor product is proportional 
' 

to the incident current density if the initial and final spin states 

are the .same, and vanishes other-tvise: 

Use .of Eq. (6.4) .and the .second of Eqs. (6. 7) leads at once to 

= (,0 U.'/C +j Tf ~ o 
·CJ = 0 • 

) 

Since this proof makes no demands on the spatial dependence of ¢f , 

we observe. for future reference that also 

J 

'\··· 

(6.14) 

(6.18) 
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For nonzero angles, we perform an integration by parts lri.th 

respect to z 'in Eq. (6.15): 
. ' 

' ' -1 t 
( ff J u; X/).== ·.- :1. k"(1~ +;.. ~) . M'f. ~ '"'- 0 

. . +-

·{ JJ J.xJ'J A~<p(..:1•"+ .-.b'if) [-'-"rc"b··-<~)3! .. ·r·~·l __ (6.l9l 

~ ;. t c~;,.r' f J.,o ...... , (..: *·:::: l Y ( u ..:,..r .. •.) } 
The boundary term vanishes at the upper limit becauGe of the 

convergence. factor and at the lo·Her limit because of the factor 

y exp(i $; 
0
). Integration of the se~ond term by parts transfers 

the gradient operator to the factor exp(iq•r), the surface integral 
' --

vanishing because the potential vanishes at large distances. The 

second half of Eq. (6.14) no-vJ follo-vrs from·the identity 

·t 
~j ~ Mo • b = 0 -

Alternatively, the two parts of Eq. (6 .. 14) can be proved in a 

The exact scattering amplitude can no-v1 be -vrritten as 

U X+) 
L o 

CJ:O 
J 

e > o . 

··::· . -"":""·· ... . - ··. ..\>.,.'' 

(6 .. 20) 

(6 .. 22) 

.......... 
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As in the Schrodinger case, replacement· of f f- by ¢! gives the 

familiar approximation 

J 

where w~ have used Eq. (6el4). A better replacement for the exact 

· wave function is the modif~eq. plane 1-vave 

J 

The parameters are assumed to satisfy the same conditions as in the 

Schrodinger case, with U replaced by yu ; in addition, we assume 

that 4 >> 1. Because of Eqo (6ol8), the resulting high-energy 

approximation is simpler at 0° than in the Schrodinger case: 

e = o , 

) 
C) > 0 

For small ooo.ttaring angles 9 ~ J./kR, it is again immaterial 

.whether a modified or unmodified plane 1-rave is used as the approximate 

. 1vave function, and -~~ are again unable to eA.-te:r..d this conclusion to 

(6.23) 

(6o24) 

the l·l'ider range of angles G << (kR)-! o9 Vle first r~arrange Eq. (6o26) 

in the form 

<( 71 f, = (ft) u 'Xo+) + ( ')(f-- ft UL 'Xo +) 
J } (6o27) 

u· 
1.. - u - :t"k . c. ~. v S" - - 0 

.. ·i ·.·· ... · .. 
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If 6' UR/k is not large compared to unity, the integrals contain no 

.rapidly oscillating factors, and their orders of magnitude can be 

safely estimated. On evaluating the matrix elements of ~ , the terms 

in o< x and· o<.Y are found to be at most of order G relative to 

· (¢f,U 'X 
0 
~ ) • 'VJhen ·the re~ining terms of u1 are combined in the form 

\!" 

U (1 + c v-1 o< ) , 't.ffiere v is the speed of the particle, their z 

.. contribution is at most of order .1/0 relative to (¢f, U X
0
+ ), and 

only of order e2; 0 if the spin state is unchanged. 
0 . 

A.t a scattering angle of 180 , Eq .. (6 .. 26) 1-1ill be shown to reduce 

to the Schiff large-angle formula9 'tdth no approximations: 

8 = t800.. 
) 

We consider first the matrix element 

(X-U ?C+)=- -'l.iA ..u/o<..v.o·f~r .~ .. ,o(4'1·!:+;..S_:f)'V.R.xr A.a- . (6 .. 29) fJ S " · c. ::T"':" - I ! _ .:>. 

The phase modification f -f is equal to ~ 
0

' for G ::: 1R0° j in contrast 

· with Eq. (,5.16), we have . 

( .. ~ ) n Jl..VD -4 r - 2..' V .J4.Xi> (J. .A r-.. ) ~~J ~dD V rl ¢o - I -
0 

'l'h.us., Eq. (6.29) ·has the same structure for 180 scattering as 
I 

Eq. (6.1.5), and the same steps that vrere used earlier to prove the 

second half of Eq. ( 6.14) no-vr lead to 

( ?(~ u -x:+) = 0 
. -1- J .s .o ) (6.31) 

(·. 

-----·--~--~ .. ~-----......----~~~~--......----........,...--,...--~-..,.._ .. -. ----:.~ .. ---,..-----;----...--~--~ 
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Eq. (6~28) follo't'lS irr.mediately, and its derivation clearly remains 

valid in a range of angles about 180° provided that ?(f- is 

approximated by 95r e:>..-p (¢-~S" ) • As in the Schroding.er case, we are 
. 0 

unable to estimate reliably the accuracy of this approximation • 

. I 
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