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Introduction . 

Solving t h e  Boltzmann equation f o r  problems of neutron t ranspor t  i n  media 

with sources o r  boundaries by approximations, one faces  the  appearance of t h e  

t r a n s i e n t  solutions in addi t ion t o  t h e  asymptotic solut ions .  E.  P. ~ i ~ n e r ( ~ )  sug- 

gested t h a t  i n  plane geometry f o r  i n f i n i t e l y  high order  of approximation, i .e . ,  

f o r  the  exact  treatment, these functions form the  s e t  of solut ions  which belongs 

t o  t h e  spectrum of the  Boltzmann operator.  The asymptotic solut ions  belong t o  

t h e  d i s c r e t e  p a r t  and t h e  t r a n s i e n t s  t o  the  continuous p a r t  of t h e  spectrum. 

K .  M. Case, "Annals of Physics", a 1-23 (1960), u t t e red  t h i s  idea  independently 

and proved t h a t  these solut ions  form a complete s e t .  

The analogous problem f o r  spher ical  geometry i s  s t i l l  not  solved. Similar ly  

t o  t h e  two d i f f e r e n t  kinds of solut ions  of the  equation A f  = ~ ~ f ,  f o r  which one 

has regular  and s ingular  solut ions  a t  the  cen te r  of t h e  sphere, one a l s o  has t o  

expect both kinds of solut ions  f o r  the  Boltmann equation. I n  p a r t  I of t h i s  

repor t  the  s ingular  solut ions  a r e  derived. The Boltmann equation i s  solved i n  

s e c t  i o n  B by two s teps .  F i r s t ,  a  p a r t i a l  d i f f e r e n t i a l  equation with the  des i red 

densi ty  on the  r i g h t  hand side w i l l  be solved. I n  general, t h e  p a r t i a l  solution,  

found by t h i s  way, w i l l  not yie ld  the  des i red densi ty  and one has t o  add a s u i t -  

able  solut ion of t h e  homogeneousdifferential,equation t o  obtain the  des i red 

densi ty .  This addi t ion leads  t o  a Sonine i n t e g r a l  equation. Second, t h i s  i n t e -  

g r a l  equation has t o  be solved; it gives t h e  r i g h t  add i t iona l  solut ion of t h e  

ho~~~ogeneous p a r t i a l  d i f f e r e n t i a l  equation t o  f i t  t h e .  des i rcd dcnoity. I n  acc- 

t i o n  C t h e  uniqueness of the  t o t a l  solut ion i s  shown i n  the  sense t h a t  a d i f f e r e n t  

choice of t h e  o r i g i n a l  p a r t i a l  solut ion does not influence . . the  t o t a l  solut ion.  

There i s  a f u r t h e r  i n t e r e s t i n g  property of these  solut ions:  they do not  involve. a 

requirement to s a t i s f y a  c h a r a c t e r i s t i c  equation. This f a c t . i m p l i e s  t h a t  a l l  those 



terms i n  t h e  t o t a l  solut ion which contain t h e  constant of mul t ip l ica t ion c  a s  a  . . 

f a c t o r  do not contr ibute  t o  t h e  density.  Hence i n  sec t ion  D it is  shown t h a t  

t h e  d e n s i t i e s  a r i s i n g  from t h e  o r i g i n a l l y  chosen p a r t i a l  solut ion and from i t s  

Sonine transform cancel one another.  The t o t a l  densi ty  i s  given by a  t h i r d  term 

i n  t h e  t o t a l .  solut ion which o r ig ina tes  from t h e  des i red densi ty  by t h e  Sonine 

procedure. Of course it i s  a l s o  independent from the  choice of the  p a r t i a l  solu- 

t i o n  of the  inhomogeneous p a r t i a l  d i f f e r e n t i a l  equation. The same f a c t  can be 

observed f o r  the  so lu t ions  i n  plane geometry which belong t o  t h e  continuous spec- 
, , 

tm by comparison of equations (86) and (87). This f a c t  permits solut ions  which 

avoid t h e  s a t i s f a c t i o n  of a  c h a r a c t e r i s t i c  equation. 

I n  s e c t  i o n  E a  p a r t i a l  solut ion containing an a r b i t r a r y  parameter i s  

given and i n  s e c t  i o n  F th ree  d i f f e r e n t  spec i f i c  p a r t i a l  solut ions  a r e  considered. 

The p a r t i a l  so lu t ion  t r e a t e d  i n  sect ion F1 has the  a t t r i b u t e  t h a t  i t s  densi ty  i s  

e a s i l y  calculable  and t h a t  t h e  Sonine transformation can be performed ana ly t i ca l ly .  

Hence it i s  used t o  wr i t e  down t h e  t o t a l  s ingular  solut ion of the  Boltzmann equa- 

t i o n  i n  equation (35) .  The term of t h e  soluti6n, 'which i s  s ingular  a t  t h e  center  
. . .. 

of tho  sphoro, &c 

cos do C O S ( ~  sin$) - -  - 
do p s i n $  

Of course i t . i s  invar ian t  a g a i n s t . a  ro ta t ion  of t h e  coordinate system around t h e  

c e n t e r  o r  t h e  sphere because Q = p s i n  9' i s  t h e  invar iant  d is tance of a  neutron 

ray  from the  cen te r  of t h e  sphere. 

The p a r t i a l  so lu t ion  (under F l ) ,  however,. contains two terms which a r e  solu- 

t i o n s  of t h e  homogeneous d i f f e r e n t i a l  equation. They contain a  1og.p-term and t h e  

Sonine transform contains  them with t h e  opposite sign. Therefore they a r e  removed 

from t h e  t o t a l  so lu t ion  and we.are  sure t h a t  t h e  t o t a l  solut ion does not contain a  

s ingu la r  term propor t ional  t o  l o g  p. 



A second p a r t i a l  solut ion (under ~ 2 )  does not contain a l o g  p-term from . 
the  outset ,  but it contains s t i l l  some presumably superfluous terms which s a t i s f y  

the  homogeneous p a r t i a l  d i f f e r e n t i a l  equation. To ca lcu la te  t h e  densi ty  belonging 

t o  it i s  not easy and t h i s  solut ion i s  not persued fu r the r .  

Finally,  a t h i r d  p a r t i a l  solut ion (under F3) i s  chosen, dropping a l l  

superfluous p a r t s  which s a t i s f y  the  homogeneous d i f f e r e n t i a l  equation. The den- 

s i t y  belonging t o  it i s  the  sum of t h e  equations (49) and (53), which a r e  given 

i n  i n t e g r a l  form. The t o t a l  solution,  shown i n  equation (57), would appear ra the r  

lengthy i f  w r i t t e n  down e x p l i c i t l y .  Of course it has t o  be i d e n t i c a l  with the  

snhi t ion under F1 i n  the  form of equation (35) o r  (40) according t o  t h e  uniqueness 

theorem. 

I n  pa r t  I1 the  solut ions  of t h e  Boltzmann equation i n  spher ical  geometry, 

which a r e  regular a t  t h e  center  of t h e  sphere, a r e  considered. I n  s e c t  i o n  A 

the  regular solut ion which s a t i s f i e s  t h e  c h a r a c t e r i s t i c  equation i s  given i n  an 

integralsform by equation (63).  This case dis t inguishes  i t s e l f  a s  the  only one 

i n  t h i s  repor t  f o r  which the  Sonine transform must not be applied;  the  solut ion 

(63) y ie lds  already the  des i red densi ty  (66) a f t e r  t h e  appl icat ion of t h e  charac- 

t e r i s t i c  equation ( 5 ) .  One can, however, wri te  t h i s  solut ion i n  t h e  form of equa -  

t i o n  (67) i n  which the  f i r s t  term gives already the  whole densi ty  an'd s a t i s f i e s  

t h e  homogeneous d i f f e r e n t i a l  equation (8), .whereas the  second term gives the  den- 

s i t y  zero and s a t i s f i e s  the  inhomogeneous d i f f e r e n t i a l  equation ( 59) with the  

r i g h t  hand s ide  (62).  This suggests t o  const ruct  regular  solut ions  a s  t h e  d i f -  

ference of t h e  two s ingular  solut ions  f o r  K and - K .  For instance, one may use 

equation (35) a s  the  t o t a l  solut ion f o r  -K, reverse the  sign of K i n  it and take 

the  di f ference of both. Then t h e  appl icat ion of , B e s s e l t s  i n t e g r a l  (36) t o  t h i s  

d i f ference leads  quickly t o  t h e  regular  solut ion (71) .  It has a .form i d e n t i c a l  



C 
wi th  (67) with t h e  only exception t h a t  l o g  - + i s  replaced by E. This. has 

1 - K 2 
t h e  meaning t h a t  t h e  so lu t ion  (71) y ie lds  t h e  des i red densi ty  Si" without the  

P 
requirement of f u l f i l l i n g  a c h a r a c t e r i s t i c  equation. Furthermore, , the  i n t e g r a l  f  orm 

(72) of t h i s  solut ion shows no' h i n t  which excludes i t s  v a l i d i t y  over t h e  whole 

complex K-plane. To show the  invariance of a l l  regular  solut ions  agains t  a 

r o t a t i o n  of the  coordinate system around the  cen te r  of the  sphere, it i s  proved 

i n  s e c t i o n  C t h a t  they s a t i s f y  a l s o  t h e  equation Af = ~ 2 f .  

Final ly ,  t h e  regular  solut ions  i n  spher ical  geometry a r e  constructed i n  

s e c t i o n  D by superposit ion of solut ions  i n  plane geometry which belong t o  

t h e  same K .  Of course, t h i s  c a n  be done only with solut ions  which belong t o  

t h e  d i s c r e t e  and continuous spectrum of the  Boltzmann operator i n  plane geometry 

and, f o r  instance, not f o r  complex K-values. The superposit ion of plane solu- 

t i o n s  belonging t o  a K-value of the  d i s c r e t e  spectrum y ie lds  immediately t o  

t h a t  regular  solut ion i n  spher ical  geometry which has t o  f u l f i l l  t h e  charac- 

t e r i s t i c  equation. The solut ions  belonging t o  t h e  continuum i n  plane geometry 

a r e  given i n  the  symbolic form (83) o r  (85) of a s e r i e s  of a Cauchy pr inciple  

value and a Dirac &-function.  The s u p e r p o s i t i ~ n  of those s n l l ~ t ~ i n n s  t o  a sn l i l -  

t i o n  i n  spher ical  geometry removes the  symb'olic form and one obta ins  f o r  the  

regu la r  solut ion an ordinary function - see equation (100) - which i s  i d e n t i c a l  

wi th  (71) obtained i n  s e c t i o n  B a s  t h e  di f ference of two s ingular  spher ical  

sq lu t ions  f o r  K and - K .  

,No method i s  given t o  obta in  t h e  s ingular  spher ica l . so lu t ions .by  super- 

pos i t ion  of plane solut ions .  There i s  a l s o  no suggestion how one.may f i n d  t h e  

. spher ical  solut ions  f o r  those K-values which a r e  d i f f e r e n t  from t h e  K ' S  of t h e  

spectrum i n  plane geometry, a s  a l i n e a r  combination of solut ions  with K ' S  be- 

longing t o  it: Hence a statement about the  spectrum of t h e  Boltzmann operator 

i n  spher ical  geometry and i t s  complete s e t  of eigenfunctions i s  s t i l l  missing. 



1 n . P a r t  I11 the  new s o l u t i o n s ~ w i l l  be compared wit.h their .wel1-gown 

representa t ions  by a s e r i e s  of spher ica l  harmonics. A simple proof i s  given 

f o r  t h e  equa l i ty  of t h e  two regular  solut ions .  I n  t h e  case of t h e  s ingu la r  
. . 

solutions,  however, one has t o  cross  out  a l l  terms with negative powers of 

K a s  f a c t o r s  i n  the  divergent s e r i e s  of spher ica l  harmonics. Then one obta ins  

a convergent s e r i e s  which i s  equal t o  t h e  new s ingu la r  solut ion.  



I. Solut ions  of . the  Boltzmann Equation f o r  Monoenergetic Neutron Transport  

i n  Spher ica l  Geometry which a r e  Singular  a t  t h e  Center of the  Sphere. 

A .  prel iminary remarks. The Boltzmann equation i n  spher ica l  geometry has 

t h e  form 

i f  sca t t e r ing ,  absorpt ion and mul t ip l i ca t ion  a r e  assumed t o  be i so t rop ic .  The 

constant  c  of mul t ip l i ca t ion  

i n  which C = Cs + Ca = Cs + Cc + Cf i s ' t h e  t o t a l  macroscopic c ross  section,  

Cs i s  t h e  macroscopic c ross  sect ion f o r  pure scat ter ing,  Cc f o r  capture, Cf f o r  

f i s s i o n ,  Ca = Cc + Cf f o r  absorption by capture without and with f i s s i o n  

toge the r .  V i s  t h e  average number of neutrons produced i n  one f i s s i o n  process. 

p  = Cr i s  the  dimensionless measure of the  d is tance  from the  cen te r  of t h e  

sphere on a  radiusvector  and p  = cos 4 i s  the  cosine of the  angle 8 between 

+ 
t h e  d i r e c t i o n  R of a  neutron and the  radiusvector ?. 

Solut ions  f  (P ,p )  of t h e  Boltzmann equation w i l l  be c a l l e d  "regular" i f  

they a r e  f i n i t e  and "s ingular"  i f  they a r e  i n f i n i t e  a t  the  cen te r  of the  sphere. 

Examples of so lu t ions  of both kinds a r e  well  k n o q  f o r  instance, i n  t h e  

form of a  spher ica l  harmonics series( ') f o r  the  d i s c r e t e  s p c c t r ~ ~ m  of the  Boltnmann 

opera to r .  Such so lu t ions  a r e  

( l ) ~ .  Davison and J. B. Sykes, "Neutron Transport Theory", p .  146, Oxford Press, 
1957; Alvin M .  Weinberg and E .  P. Wigner, "The Physical  Theory of Neutron Chain 
Reactors", p .  273, Univers i ty  of Chicago Press, 1958. 



with 

K 1 
. u ~ ( P )  = ; ( ~ + 1 )  Ge(- -) K fe(-Kp) 

and 

For a  regular  solut ion one chooses f o r  f e  the  funct ions  

and f o r  a ' s i n g u l a r  solut ion the  funct ions  

c  and K a r e  r e la ted  by a c h a r a c t e r i s t i c  equation 

C 1 + K  
- log  - = 1 
2K 1 - K 

with a  p a i r  of eigenvalues + K f o r  every c  > 0, which represent  the  d i s c r e t e  

spectrum of the  Boltzmann operator.  The d e n s i t i e s  ( o r  a l s o  the  f luxes  of ve loc i ty  

,v = 1) which belong t o  these  solut ions  a r e  proportional  t o  

I+( - K O )  s i r ~ h  ~p - - - f o r  the  "regular" solut ion 
qG P 

and 

2  K ~ ( K P )  -"P 
P " ( ~ )  = -g- - = -,  f o r  the  "singular" solut ion.  

P 



A represen ta t ion  a s  an i n t e g r a l ( 2 )  i s  known a t  l e a s t  f o r  the  regular  solut ion o f '  

t h e  d i s c r e t e  spectrum; a  new one w i l l  be given 'here  (equation 63) . 

B .  The Sonine t ransformat ion.  The problem w i l l  be a,ttacked now by a  d i f -  

f  e r e n t  method t o  f i n d  o t h e r  so lu t i cns .  To obta in  s ingu la r  solutions,  one p resc r ibes  

e - K P  t h e  dens i ty  ~ ( p )  = - and solves  t h e  p a r t i a l  d i f f e r e n t i a l  equation 
P 

One f i n d s  a  p a r t i a l  so lu t ion  f  ( p, p)  of t h i s  equation and has t o  inves t iga te  
P  

whether it i s  compatible with the  condit ion:  

I n  general ,  however, t h i s  w i l l  not be t h e  case and one has t o  add the  s u i t a b l e  
. . .  . . 

s o l u t i o n  

of  t h e  homogeneous d i f f e r e n t i a l  equation 

t o  t h e  o r i g i n a l  p a r t i a l  so lut ion f  ( p, p) of .the inhomogeneous d i f f e r e n t i a l  equa- P 

t i o n  t o  s a t i s f y  t h e  equation of compat ib i l i ty  by t h e  sum of both: 

Hence one has t o  f i n d  t h e  funct ion @ i n  the  i n t e g r a l  equation 

( 2 )  
H.  S t i t t g e n ,  Bei t raege zur Loesung von Neutronentransport - P roblemen i n  kugel- 
foermigen Medien, Diplomarbeit, Technische Hochschule Karlsruhe 1958 (unpublished).  



To have a common denominator of both terms on the  r i g h t  hand s ide  of t h i s , e q u a t i o n  

and t o  remember always t h a t  the  p a r t i a l  so lut ion f  conta ins  2 a s  a f ac to r ,  one 
P 2 

must introduce another abbreviation ins tead  of pp(p), namely, 

i n t o  the  second term on the  ' r igh t  hand s ide  of equation ( 9 ) .  Furthermore, t h e  

funct ion @(d-) i s  symmetric i n  respect  t o  a change of the  s i g n  of p; t h i s  

f a c t  permits wri t ing the  equation i n  the  form 

Dp(p) i s  propor t ional  t o  p times the  -dens i ty  of t h e  chosen p a r t i a l  so lut ion 

f  (p, p), a  known funct ion of p. P 

To sdlve the  integral. equation one puts  p2 = s and chooses a new var iab le  

of in tegra t ion ,  t = p2(1-p2). Then one has 

and t h c   limit^ of in tegra t ion  become 

The i n t e g r a l  equation (11) takes  the  ~ o n i n e ( 3 )  form 

S 

( 3 ) ~ .  Sonine, "Acta ~athernat ica" ,  5 171 (1884). 



Following Sonine; one m u l t i p l i e s  . th i s  equation on both s ides  with the  f a c t o r  

and ob ta ins  

An exchange of t h e  order  of in tegra t ion  on the  r i g h t  hand s ide  of t h i s  equation 

y i e l d s  

u L =  S 

0 t 0 
t 

because . 

To re lease  the  reader from a study of Sonine 's  work, the  proof of the  l a s t  equa- 

t i o n  w i l l  be given here.  One introduces a new var iab le  of in tegra t ion  x by pu t t ing  

s = t + ( u - t )  x, x = . (s - t ) / ( l .b t . )  

wi th  t h e  new l i m i t s  of in tegra t ion  x = 0 f o r  s = t and x = 1 f o r  s = u. 

Th i s  transforms t h e  i n t e g r a l  on the  l e f t  hand s ide  of (14)  i n t o  



with  the  abbreviation y  = v u  - t .  A s e r i e s  development of cos and cosh and 

term-by-term in tegra t ion  y i e l d s  

1 
- C 

' Tr a,m=o (2.8): (2x1): 0 

q . e  .d.  The following formulas were used: 

1 
1 J ( 1 - 4  

r( a++) r(m++) a-+ xm-z dx = - .I1 (2&-1) ! (2111-1) 1 - 
22( &-m-1) o T( a + ~ + l )  ( J - 1 ) :  ( I I L - ~ ) :  (J+III)! 

and 

The solut iun of the  i n t e g r a l  equation (1'2) has now t h e  form 

and t h e  function @ i t s e l f  w i l l  be given by d i f f e r e n t i a t i o n  i n  respect  t o  u 

+1  
wi th  ~ ~ ( 6 )  = [ f p G ,  p ) dp 

2  

and u  = p2(1-p2) .  



There a r e  o ther  forms of # which a r e  sometimes more convenient. After  a p a r t i a l  

i n t e g r a t i o n  on t h e  r i g h t  hand s ide  of equation (16), one can perform the  di f feren-  

t i a t i o n  d/du: 

u 
d 

+ 2 s i n s  -(e -6 - 5 ~ ~ 6 ) )  as) 
0 a. s 2 ' 

l i m  
- L-fi  s i n ( ~ u ~ ) ]  (e - K C -  ' 2 ~ ~ 6 ) )  

The second term i s  zero, because e-"l; - ~~(6)  i s  f i n i t e .  The d i f fe ren t i a t ion  
2 

i n  respect  t o  u y i e l d s  now 

The l a s t  term of t h i s  equation vanishes because L(e -4 - i s  f i n i t e ,  
du 2 

and one obta ins  a second form of 6 



I n  t h i s  kind of wri t ing the  f i r s t  term shows a  s ingu la r i ty  a t  t h e  center  of t h e  

sphere, whereas the.second term i s  regular  the re  f o r  the  d i f f e r e n t  spec i f i c  p a r t i a l  

solut ions  fp, which w i l l  be considered l a t e r .  Furthermore, ~ ~ ( 0 )  w i l l  be - zero f o r  

these f p l s  a l s o .  

Inse r t ing  u  = p2(1-p2) = p2 s i n 2 f w e  have 

One may perform t h e ' d i f f e r e n t i a t i o n  i n  t h e  second term and may introduce another 

var iable  of in tegrat ion v  by s  = p2(1-p2) v2 t o  transform t h e  upper l i m i t  of. the  

i n t e g r a l  i n t o  v = 1. Ful-thelnlore, one may introduce the  dic tsnce 

dU = - p2 = s i n a o f  the  "neutron-ray" from t h e  center  of t h e  sphere a s  

an abbreviation.  Then one obtains 

1 
( 19 )  

1 cos do [l - DP(0q - $ s d v  0  d a  
c o S ( d O G )  

where 

c  d  ~ ( x )  c D1(x)  - - = 
2  2  dx 



f p ( x , p l )  i s  the o r i g i n a l l y  chosen p a r t i a l  solut ion fp(p,p),  i n  which one has re-  

placed p  by x  and p  by p '  ( a  var iable  of in tegrat ion here) .  Hence the  solut ion 

f ( ' ) (p ,p )  of the  Boltzmann equation f o r  monoenergetic neutron t ranspor t  wiCh iso-  

t r o p i c  sca t t e r ing  and absorption o r  multiplication i n  an i n f i n i t e  medium i n  

spher ica l  geometry, which i s  s ingular  a t  t h e  origin,  i s  the  sum of a  p a r t i a l  solu- 
' 

t i o n  f  (p ,p)  of t h e  inhomogeneous p a r t i a l  d i f f e r e n t i a l  equation (6)  and of the  
P  

so lu t ion  fH(pJp)  of t h e  homogeneous equation (8) containing the."sonine transform" 

g ( p Y 3 )  given b y  equation (16) o r  (18) o r  (19), which corresponds t o  the  

chosen p a r t i a l  so lu t ion  f p  : 

The choice of t h e  o r i g i n a l  p a r t i a l  solut ion fp(p,fi) i s  r e s t r i c t e d  by t h e  requirement 

t h a t  1 )  

C 1 
i s  f i n i t e , ,  and 2 )  5 Dp ' (d0v) diverges a t  v  = 1. a.t, mnst. a.s - 1 with Cr < - 

( l - ~ ) ~  2 
and has no pole i n , t h e  remaining i n t e r v a l  0 . 5  v  4 1 t o  guarantee the  convergence . . 

of t h e  i n t e g r a l  i n  equatfon (19) .  

It i s  sometimes convenient t o  s p l i t  t h e  term - ( )  i n t o  i t s  

two p a r t s :  the  f i r s t ,  which i s  produced by t h e  Sonine transformation from t h e  

o r i g i n a l l y  chosen p a r t i a l  solut ion fp(  p, p) 

- 1 cos do 
- - -e-pp {i ~ ~ ( 0 )  cos(dd-) c  ' 

-rr ' 4  



and the second, which is produced by the Sonine transformation of the required 

density & e -lrp 
P 

With this notation the singular solution may be w~itten 

C. The effect of the Sonine-transformation. upon solutions of 'the homogeneous 

partial differential equation (8). Uniqueness of the solution. If one has taken 

fortuna.tely that solution F( S) ( p, p)  of the inhomogeneous partial differential . 

equation (6) which gives the required density, no need of an application of the 

Sonine transformation would arise at all. Every other partia1,solution fp(p,?) 

of the inhomogeneous equatibn will differ from F( S) (p, p) by a solution 

of the homogeneous equation (8). It will be shown, theorem I, that the Sonine 

transform of such a function is just the opposite of itself 

Proof. The Sonine transformation applied to f~ in the form of equation (16) con- 

tains the double integral 



i n  which t h e  expression i n  cur ly  brackets  replaces  the  .corresponding expression i n  

equation (16) and $H i n d i c a t e s  t h a t  $H i s  the  transform of f H  alone.  The Sonine 

transform of f~ w i l l  be 

. where u = p2(1-p2). To .evaluate $H(7/;) one changes f i r s t  t h e  i n t e r v a l  of i n t e -  

g r a t i o n  over p 1  i n  0 f p '  5 l j  t h i s  y i e l d s  f o r  f H  of equation (7a)  

One . in t roduces  a new var iab le  of ' i n t egra t ion  t = 1 - p 2 )  , p = s - t, 
I 

dp '  = - d t / ( & m )  with t h e  new l i m i t s  t =: s f o r  p = . 0 alld t = 0 f o r  

p1 = 1. Then t h e  . i n t e g r a l  becomes 

remembering t h a t  t h e  l a s t  i n t e g r a l  over s i s  1 by equation ( 1 4 ) .  Af te r  i n s e r t i c n  
. . . . 

of t h i s  r e s u l t  i n t o  equation (25) one obta ins  the  Sonine transform of f H  

which i s  i n  f a c t  t h e  opposite of fH(p, p)  i t s e l f .  

This  theorem provides the  uniqueness nf t h e  solut ion of '  t he  Boltzmann equa- 

t ion ,  i f  . a d e f i n i t e  . .  density. '  i s  given. Two d i f f e r e n t .  p a r t i a l  solutions,  f ( p, p)  
. . 

p1  

and fp2( p, p) of t h e  inhomogeneous d i f f e r e n t i a l  equation ( 6), d i f f e r  one from 



another j u s t  by a  solut ion fH(p, p) of t h e  homogeneous. equation.  Hence, i f  one a 

wri tes  down t h a t  p a r t  of the  t o t a l  solut ion (23) of the  Boltzmann equation which 

depends on t h e  choice of the  o r i g i n a l  p a r t i a l  so lut ion fp, namely, 

one recognizes t h a t  it i s  independent of t h i s  choice: I f  f  (p,p) = fpl(p,P) + 
p2 

fH(pJ p) i s  a  second p a r t i a l  solution,  the  expression 

w i l l  be unchanged since s O ( f H )  = - f H .  Hence the  solut ion f  ( P)  i s  unique. 

I f  F( S )  ( p, p), which y i e l d s  fo r tuna te ly  the  r i g h t  density, conta ins  a l ready 

a  t e r n  f% whj.ch s a t i s f i e s  the homogeneous d i f f e r e n t i a l  equation (8)) i n  addi t ion 

t o  another term, F( ' )(p,p),  which s a t i s f i e s ,  the  inhomogeneous equation (6) 
0  

one may apply the  Sonine procedure t o  f i n d  f  q,. One considers t o  t h i s  aim 

d s ) ( p ,  P)  a s  a  par-Llal solut ion f p  ~ n d  app l i e s  the  Sonlne procedure t o  obta in  the  

t o t a l  so lu t ion  

which i s  by equation (24) '  



Because F(')(p, p) of equation (26) i s  i n  t h i s  case already the  r i g h t  solution,  we 

have f  ( ~ ) ( p ,  p) = F( ")(p,  p), and by comparison with equation (26) 

I f  f~~ would be zero for tunate ly ,  one obta ins  t h e  r e l a t i o n  

D. Statement about t h e  density,  The method of obtaining t h i a  so lu t ion  does 

n o t  conta in  any requirement to s a t i s f y  a c h a r a c t e r i s t i c  .equation. This f a c t  must have 

t h e  consequence t h a t  t h e  densi ty  of t h i s  p e r t  of the  solut ion f ( ~ ) ( ~ , ~ ) ,  which 

conta ins  c a s  ' a  fac tor ,  vanishes, whereas t h e  remaining p a r t  gives the  whole den- 

s i t y .  The p a r t i a l  solut ion fp(p, p) of the  inhomogeneous equation (6 )  i s  propor- 

t i o n a l  t o  c and t h e  q u a n t i t i e s  2 ~ ~ ( 0 )  and C D (G), depending on f p  by the  Sonine 
2 , . 2  P 

transformation, a l s o  contain c a6 a f a c t o r .  Hence one has Theorem 11: the re-  

maining p a r t  ~ ( p f i ~ )  f  ( )  i n  the  form of equation (22) 

should give the  while dens i ty  ~ ( ' ) ( p )  of t h e  t o t a l  s ingular  solution f( ' )(p,p),  

should be equal t o  



Proof. ( a )  The f i r s t  term of the  i n t e g r a l  y i e l d s  t h e  s i n g u l a r i t y  of the  densi ty  

a t  the  center  

afl;er Lransformatlon of the  var iable  of' i n tegra t ion  p i n t o  a  new var iab le  s by 

p = , d - with the  in t roduct ion of the  nota t ion 
P 

u  = s  + p2(1-p2) use o f  equation (14) .  

(b)  The second term of the  i n t e g r a l  gives t h e  nonsingular p a r t  of the  

densi ty .  One introduces u  = $(I-$) a s  a  new var iab le  of in tegra t ion  ins tead 

1 
of p, then one has p  = Lq= dp = - - du 

and the  l i m i t s  of' i n t e -  
P 2~ $2_, 

grat ion over p  w i l l  be 

Hence it folLows t h a t  



with  t h e  same exchange of t h e  order of in tegra t ion  which was appl ied  t o  the  

double i n t e g r a l  ( 1 3 ) .  The l a s t  i n t e g r a l  over u  from s  t o  p2 i s  equal t o  1 accord- 

ing  t o  equation ( 1 4 ) .  Therefore the  in tegra t ion  over ds  y i e l d s  . 

i This i s  indeed non-singular a t  the  o r i g i n .  I f  one adds now t h e  two contr ibut ions  

( a )  and ( h )  one ob ta ins  t h e  t o t a l  contr ibut ion of the  R(dl-)-part of # ( d g )  
, t o  t h e  densi ty  

This  i s  i n  f a c t  t h e  whole dens i ty  P ( s ) ( ~ )  belonging t o  the  s ingular  solut lon 

f ( ( p, p)  . I f  one remembers t h e  representa t ion (23) of f  ( ') ( p, p), one recognizes 
. . 

t h a t  t h e  densi ty  belonging t o  

f p ( P , ~ )  + So(fp) 
! 

must vanish.  The following Theorem I11 w i l l  be proved: the  densi ty  which belongs. 

t o  R p a r t i a l  so lu t ion  fp (p ,p )  of the  inhomogeneous d i f f e r e n t i a l  equation i s  the  

opposite of the  dens i ty  which belongs t o  i t s  Sonine transform 

+1 I, . fp(p,l.i) d l .  = - $ s.(fp) dp. 

' -1 

Proof.  Consider t h e  second i n t e g r a l  using the  form (17) of the  Sonine transform 

and remember t h a t  u  = p2(1-p2), bp = 1- dp = - d u / ( = ~ d F )  and t h a t  

u  = p2 f o r  p  = 0, u  = 0  f o r  p  = 1. Then the  i n t e g r a l  becomes 



and by p a r t i a l  in tegra t ion  i n  the  i n t e r i o r  of the  second i n t e g r a l  

The i n t e g r a l  i n  the  f i r s t  term i s  1 according t o  equation (14);  the  l i m i t  

of the  square brackets expression i n  the  second term i s  supposed t o  be zero along 

t h e  i n t e r v a l  0 C: u  5 p2. Then the  i n t e g r a l  becomes . 

The l a s t  i n t e g r a l  over u  i s  1 again, and t h e  whole expression becomes 



which i s  according t o  t h e  d e f i n i t i o n  (10) of D ~ ( ~ )  

Theorem I11 i s  a counterpart  t o  Theorem I1 and provides an independent check of 

t h e  statement about t h e  densi ty .  

E. General s o l u t i o n  o f  t h e  p a r t i a l  d i f f e r e n t i a l  equation (6). The general 

s o l u t i o n  of the  inhomogeneous p a r t i a l  di.f f e r e n t i a l  equation 

w i l l  be derived by t h e  well-known method of Cauchg: the '  equivalent system of 

d i f f e r e n t i a l  equations: i~ 

From t h e  f i r s t  equation 6ne obta ins  dl - v2 = C 1  ( a  constant) .  This equation 

may be used t o  e l iminate  p from the  second equation, which g o e s o v e r  i n t o  a l i n e a r  

d i f f e r e n t i a l  equation of f i r s t  order 

I t s  s0lul;lun i s  
/ 

f = exp * -  + c2 .exp 1 clpO 1 q, 
C2, pO, p1 a re  constants .  . 



Replacing Cl now by p p  -1 p2 one obta ins  f o r  t h e  constant  C 2  

The general  solut ion of t h e  p a r t i a l  d i f f e r e n t i a l  equation i s  given by 

wi th  an a r b i t r a r y  function W. This y i e l d s  . 

The f i r s t  term i n  the  cur ly  bracket  with inclus ion of t h e  exp-factor i s  s t i l l  an 

a r b i t r a r y f u n c t i o n  of d- so we denote the  whole term by Hence 

the  general  solut ion of equation (6)  i s  

One mny'tre.nsform the  p a r t i a l  solution,  which occurs i n  it, namely: 

i n t o  a more convenient form,' pu t t ing  . , 

dv d s - - -  . p(V-K)7/1 - 1.12 
- and ' k l - K ) ( l + p )  s - ( l + ~ ) ( l - p )  

1 - v2 s - = 2  S 



With t h i s  transformation of the  va r iab le  of in tegra t ion  the  p a r t i a l ' s o l u t i o n  takes  

t h e  form 

Di f fe ren t  p a r t i a l  solut ions  can be chosen by giving p1 d i f f e r e n t  values. p1 i s  

an a r b i t r a r y  constant;  one, can prove, however, t h a t  p1 could a l s o  be an a r b i t r a r y  

funct ion of p v  
. . .  

F. . s p e c i f i c  p a r t i a l  colutiono. 

1. Let us consider f i r s t  a  p a r t i a l  solut ion,  f o r  which the  densi ty  can be 

ca lcu la ted  eas i ly .  One . obta ins  . .  it pu t t ing  . . p1 = -1 i n  equation (28).  It w i l l  

t u r n  o u t  t h a t  t h i s  p a r t i a l  so lu t ion  c 0 n t a i n s . a  term l o g  p, which a c t u a l l y  w i l l  not 

occur i n  t h e  t o t a l  solut ion.  I n  fac t ,  t h i s  term appears i n  the  combination . . 

d z  hence it i s  reproduced by t h e  Sonine procedure with the  opposite sign 
. . 

and cancels out of the  t o t a l  solut ion f ( s ) ( p , p ) .  We have no log?rithmic s ingu la r i ty  

a t  t h e  cen te r  of t h e  sphere. But the  analys is  i s  simpler f o r  t h i s  p a r t i a l  solut ion 

than f o r . a n y  o ther  choice and- the  eff ic iency of t h e  Theorem I can be shown e a s i l y  

a l s o .  

( a )  Taking p1 = - 1 one obta ins  the  p a r t i a l  solut ion of equation (6 )  

It i s  wel l  known t h a t  an i n t e g r a l  of t h i s  type i s  . re la ted  . t o  a  s e r i e s  of Bessel- 

funct ions .  The development of the  integrand i n  such a  s e r i e s  would be inva l id  a t  

t h e  lower l i m i t  s = 0 of t h e  in tegra l .  . .  . . .  Therefore one s p l i t s  the  path of i n t e -  . . . . 

gra t ion  i n  two 'par ts .  The f i r s t  pa r t  from s  = 0 t o  s  = B with 



can be in tegrated a s  it stands: 

-h s inh t 
2 

with s = Bw 

-t 
with w = e 

h = d(-) i s  an,  abbreviation, SO0(h) i s  t h e  nota t ion f o r  a Lomelfunction 

defined in "Higher Transcendental F'unctions". (4) 

In  the  second p a r t  of the  in tegra l  one develops t h e  integrand i n  a s e r i e s  

of Besselfunctions(5),  and in tegra tes  term by term: 

( 4 ) ~ .  Erdelyi, W .  Maenus, F. Oberhettl.nger, F. G. Tricorni, "Higher ~ r a n s c e n d e n t a l  
~ u n c t i o n s " ,  II, p .40  formula (25), and p.  84 formula (50), New York (1955). 

(5lIbid. p. 7 formula (25) . 



According t o  page 64, formula (7)  of "Higher Transcendental Functions", 3(4) t h e  

East  s e r i e s  represents  another Lommelfunction 

and t h e  di f ference of both Lommelfunctions 

i s  j u s t  ( -  I )  times t h e  Besselfunction of second kind y0(h) [called ~ ~ ( h )  by 
2 

. By t h i s  remark one ge t s  r i d  of the  Lommelfunctions i n  t h e  repre- 

sen ta t ion  of the  p a r t i a l  solut ion which w i l l  be 

wi th  h = p 7 / ( 1 - ~ ~ ) ( 1 - p ~ )  and 8 = 
1 +.,L l - K 

( b )  We c a l c u l a t e  now t h e  densi ty  P ( p )  which belongs t o  t h i s  p a r t i a l  
(-1) 

so lu t ion  

, . ( 6, Jahnke-~mde, "Tafeln hoeherer Funktionen", .5t.h. edit ion,  , p. 131 (1952). 



After an exchange of the order of integration one performs first. the integration 

over p; this yields 

(p) = e-"P/ ds P(-l) . . 

0 (1-s) [l + K -. (1-K) s] 

On replaces in the first part of the integrand the variable of integration s by 

(14%). p - X. s = , in the second part by s = . (1+~) p . Then one obtains 
(1-K) p (1+K) p + X 

a3 

03 

- e -X - 2 [eKP dx- - 
2~ P X 

(~+K)P 

where El(x) is defined by (see reference (4), page. 143) . 

The expression P ( p) shows that the chosen partial solution f ( -1) ( p, p) does 
(-1) 

-KP 
not give the desired density - on account of the added two terms which contain 

P 
the "exponential-integral". If both these terms would be absent, the third term 

would give the desired result under the assumption of the characteristic equation 

for the discrete spectrum 

C 1 + K  - log - = 1. 
2K 1 - K  



( c )  We ' s h a l l  apply now the  Sonine transformat.ion. We show f . i r s t  t h a t  

D ( - ~ ) ( o )  = 0, using t h e  s e r i e s  (33)  f o r  El(x): 

p + log(l+.)] s inh ~p 
m= 1 m! 

This  expression vanished f o r  p + 0: D( -1)(0) = 0. 

Furthermore, one needs the  de r iva t ive  of D ( p )  i n  t h e  Sonine transform 
(-1)  

(19) 

C I - D(-l)(dov) i s  regular  i n  t h e  i n t e r v a l  0 c v z  1 and t h e  s e r i e s  development shows 

t h a t  it diverges l i k e . - c  lo;: v f o r  v + O .  The Soni.lie .tra.nsformation allows, how- 

ever, a much stronger divergence l i k e  l. with a -= l. This ensures. the  convergence 7 
of t h e  in tegra l  and one obta ins  from equatipn (19) 



Hence. the  ' t o t a l  solut ion f  ( ')( p) p l  bf the  Boltzmann equation ' ( l ) ,  which i s  

e - K  P 
s ingular  a t  7 = 0 and has the  densi ty  f ( s ) ( p ,  p)  dp = - may be repre- 

P 
sented by 

wi th  do = p S 2  (dis tance  of the  neutron ray from the  o r i g i n )  

This i s  the  des i red  solution;  one sees, however, t h a t  i n  t h e  o r i g i n a l l y  

chosen p a r t i a l  so lut ion f  ( -1) ( p, p)  the  terms 

- TT' 1 + K  - - Yo(h) - ~ o ( h )  104- 
2 1 - K 

a r e  functions of the  var iables  $3- alone and s a t i s f y  t h e  homogeneous p a r t i a l  

d i f f e r e n t i a l  equation (8).  They a r e  of the  ' type  f ~ .  Hence the  Sonine transform 



w i l l  contain these  terms with the  negative sign.  They a r e  superfludus i n  pr inciple ,  

but  by removing them one obta ins  a r a t h e r  lengthy expression i n t o  the  Sonine 

transform. We s h a l l  be contented here with the  removal of the  . log  p-tkrm.which 

i s  e a s i l y  recognized i n  the  Sonine transform. Using the  s e r i e s  development of 

yo( h)  

- 'l yo(h) = - (f + l o g  $) J0(h) + 

2 

lim (%-log lo) - 0.577PlG 1 . .  and 8 a - 
one f i n d s  

With Bessel  ' s i n t e g r a l  ( 7 )  

t h i s  expression may be wr i t t en  

1 

= :j ds 
lL-7 

[- f - log  dg - l o g ( l + r )  + l o g  21 cosh KQS 

0 

( 7 ) ~ .  N .  Watson, "A Trea t i se  on the  Theory of Best;el Functions", p. 21 equation (11, 
Cambridge Universi ty Press  (1948). 



Furthermore, using the  . se r i es  development (33) of El(x) t o  express .the El-functions 

i n  the  S.onine transform, one f inds .  

- - cos(dd-) (r8 + log  do + l o g ( l + r )  + l o g  3 cosh r Q s  
1T-X 

0 

The log  p-part i s  contained i n  log do i n  both expressions but wikh t h e  opposite 

sign.  The log  p-terms a r e  omitted a t  a l l  from the  t o t a l  solution, i f  one wri tes  

the  corresponding p a r t  of the  ~ o l u t i o n  . 

+ . El( [l-.I d0s) - log  [ "I)) 1 - K 

( l o g  2s)  cosh KdOs 



The removal of superfluous terms occuring i n  f i s ) ( p , p )  i s  - not.cornplete because the  

f i r s t  term of t h e  t h r e e  terms above w i l l  be contained i n  t h e ' o t h e r  two terms with 

t h e  opposi te  s ign.  But f i S ) ( p ,  p) contains now only pos i t ive  .powers of p. The 

t o t a l  so lu t ion  f o r  K < 1 may be represented 

wi th  f!S)(p, p) i n  t h e  form ( 3 9 )  and with 

and f i n a l l y  

The no ta t ions  d  h, 6 have the  meaning: 
0' . . . . 

do = $7, h = d O d K 2 ,  ,p = -/r% l + p  1 . The s i n g u l a r i t y  of f ( s ) ( p y p )  

a t  t h e  c e n t e r  of ' the  sphere p  = 0 i s  given by 

No o t h e r  s ingular  term does occur with impo<tance a t  p  = 0.  

2 .  There e x i s t s  a  way t o  f i n d  another p a r t i a l  so lut ion which does not have 

a l o g  p-term. One ob ta ids  it by inse r t ion  of K f o r  p1 i n t o  t h e  lower l i m i t  of the  

i n t e g r a l  (28) .  It i s  f o r  1 K J  c 1 



This  solut ion does not contain a  l o g  p-term from t h e  ou t se t  because the  Lommel- 

function sO0( z), which i s  proportional  [ f o r  the  indices  (0, 0 ) ]  t o  the  Weber func- 

t i o n E o (  z )  - see .  reference ( 4 )  page 42 formula (83),  page 40 formula (TO),  and 

page 36 formula (37) :  

-it: power s e r i e s  nrolmrl. e = 0 .  The log  p-term i n  t h e  p a r t i a l  so lut ion f  (-1) ( p, p) 

under l (a)  was caused jus t  by the  lower l i m i t  s  = 0 of the  i n t e g r a l  (29) .  The 

disadvantage of the  p a r t i a l  so lut ion f (  , I ( ~ ,  p )  on the  o the r  hand i s  t h a t  the  den- 

s i t y  i s  not more e a s i l y  ca lculable .  Furthermore, it a l s o  contains ,~uper f luous  

terms which depend on p7/- only, namely, 

These would be reproduced with t h e  opposite sign by the  Sonine transformation.. Of 

course, i f  t h i s  p a r t i a l  so lut ion would give the  des i red  densi ty  for tunate ly ,  one 

would not have t o  apply the  Sonine transformation a t  a l l .  It remains a  problem t o  

be solved which se lec t ion  of the  lower l i m i t  y i e l d s  the  des i red  densi ty  without 

t h e  applice'tion of t h e  Sonine trancformation. 

3 .  Applying the  Sonine transformation, it seems reasonable t o  r e l a t e  t h e  

p a r t i a l  so lut ion not more t o  the  i n t e g r a l  (28) and a  spec ia l  choice of' pl, but t o  

t ake  j u s t  the  function 



f o r  .the o r i g i n a l  p a r t i a l  so lut ion.  The- o the r  terms of f  ( ~ ) ( p ,  p) i n  equation (40) 

a r e  so lu t ions  of t h e  homogeneous p a r t i a l  d i f f e r e n t i a l  equation because they have 

t h e  form fH(p, p)  of equation ( 7 ) .  Heme f$?)(p ,p)  i s  indeed a  p a r t i a l  so lut ion 

of t h e  inhomogeneous d i f f e r e n t i a l  equation ( 6 ) .  An advantage of t h i s  solut ion i s  

t h a t  i t s  region of v a l i d i t y  can be extended t o  t h e  whole complex K-plane.  

As a check, which i s  independent of a l l  ca lcu la t ions  done before, one may 

v e r i f y  t h a t  f!:)(p,p) i s  a  so lu t ion  of equation (6 ) .  For t h i s  check remember 

Then t h e  de r iva t ives  involved i n  the  equation w i l l  be I t =  j3;1 

I n s e r t i o n  of these  expressions i n t o  the  l e f t  hand s ide  of equation (6 )  y i ~ l d s  



c e+p 
The l a s t  term should be equal t o  2 - . Hence it rema.ins t o  show t h a t  

P 

2 2 Verif ica t ion:  Put x = 1 - ~ p ,  y = p-r and consequently @ =p and h = p7/x-y. 
X+Y 

Then the  l e f t  hand s ide  of the  equation w i l l  take  t h e  form 
. . 

One can include the f i r s t  s e r i e s  inl;o the  second double ser ies ,  obtaining 

A change of the  indices  of summation t o  S = n +' 2a, n = S - 21 y i e l d s  

S f o r  s even 
with 

S-1 
2 f o r  S odd 

S 
The f a c t o r  1 - ensures t h a t  the  term !4 = 7 o c c u r s o n l y  f o r  even S and 

2 s,2a 

only half  a s  of ten a s  t h e  other  process; so t h e  sum over S i s  jus t  a binominal 

s e r i e s  



a s . s-a- 
- - h d s .  r ( J )  (1-;) = F o S  r jl + +  X - - 

s=o s !  2S .e=o s=o s !  2S y -  y X I  

To recognize t h a t  t h i s  p a r t i a l  solut ion i s  generally v a l i d  i n  the  whole complex 

K-plane one may transform t h e  series,  contained i n  it, i n t o  an i n t e g r a l  by ap- 

(S) p l i c a t i o n  of t h e  formula 

1 

It y i e l d s  . . 

(8) 
G.  Petiau,  'La ~ h 4 o r i e  des Fonctions de ~ e s s e l : '  P a r i s  1955, p. 21, fo rmula  (115). 



h 
remembering = p(1-~)(l+p) and W = p(l+~)(l-p). The - sign between the ex- 

ponential~ ensures the convergence of the integral at v = 0;  this integral is 

convergent in the whole complex K-plane. Inserting it into equation (41), the 

( partial solution f I;) ( p, p) becomes 

[ .  

The density which belongs to thri.s pa.rtia.1 solution 

consists of the following two terms: 

The last expression shows that depends on r2 and is negative for positive p. 

One may represent the log-term by 



and one obta ins  from t h e  f i r s t  equation 

The app l ica t ion  of an a i d  formula t o  t h e  second integrat ion 

w i t h  t = p + v respec t ive ly  t = p - v, y ie lds  

The integrand vanishes a t  t h e  upper l i m i t  v  = co proportional t o  I 7 and the 
expression i n  t h e  cur ly  brackets  contains a f a c t o r  v, which counterbalances the  

corresponding f a c t o r  v i n  t h e  denominator of the  integrand. The i n t e g r a l  e x i s t s  

f o r  a l l  values of K and 0. 

Proof of t h e  a i d  formula (48) : 



L 

a 1 r ( n + ' F ) ~ !  
With 1 ~ ~ ~ ( 1 - p ~ )  = - 3 2  R ~ + J + ~ )  

t h e  i n t e g r a l  I w i l l  become 

an& a cl.~ange of the  indices  oi' summation t o  S = n  + and .l y i e l d s  

For t = p  we have simply 

e p 0  p ( - K 2 ) ( - 2 )  ] dp = 2  Sinh Kp . 
K P 

(48a) 

The f i r s t  pa r t  of the  density may be represented by some power s e r i e s  of p  



which show t h a t  P ( p )  i s  propor t ional  p  f o r  small p and vanishes a t  p  = 0 .  There- 
a 

fore,  t h e  corresponding expression 2 Da( P) = p) i s  propor t ional  p2 f o r  small p. 
2  

This  s t ronger  kind of going t o  zero a t  p  = 0 i s  a benef i t  of taking a p a r t i a l  solu- 

t ion ,  i n  which t h e  va r iab le  S of in~l;egl-ation - compare equa'clonE (24a, 2'9) - dues 

not  meet t h e  e s s e n t i a l  s i n g u l a r i t y  of t h e  integrand a t  6 = 0. 

(b) The second p a r t  of t h e  densi ty  i s  

I f  one changes t h e  order  of in tegrat ion,  one may apply .I;llt: aid fonllula (48) in -  

1-K 1 +* . s e r t i n g  p 6 v  f o r  p and p ( l  - - v)  respect ively  p(1 - - 
2  

v j  r'ar t.  his 
2  

y i e l d s  . . 

1 
slnh p 

41 - [ 9 ] v ) 2  - (1-K2)(1-v) 



-g(l+n)v sinh ( ~ $ 1  - % v ) ~  - (1-K2)(1-vj ), 

(cosh u)-1 (cosh u)-1 - e 
u - - . ( Y P d u  u 

2l-i P 

= c isinh n p  [shi(l+n)p + ~hi(1-r)p] - cosh n p  [~(l+r)p - ( p  
K P 



co 2n+l s i n h t d &  c . X  
i n  which Shi x = 

n=O ( 2n+1) (2n+l) ! 

- co 2n 
X 

and Chi x = 
n= 0 2n.(2n)! . 

Using once more t h e  i n t e g r a l  representa t ions  f o r  Shi x and CX x one obta ins  

P 
~ h i ( l + . ) p  + ~ h i ( 1 - r ) p  = 2 (sinh U ) E O S ~ ( K U )  dll and 

u 

If  one i n s e r t s  these  expressions i n t o  t h e  l a s t  version (52) of Pb(p) one g e t s  

a shor t  i n t e g r a l  representa t ion 

p b ( p )  = / % (sinh u) sinh(tc [p-u] ) . 
K P  O 

This  i n t e g r a l  i s  propor t ional  p f o r  small p and I+,(p) = p pb(p) i s  proportional 
2 

p2 s imi la r  t o  2 Da(p). Hence c e r t a i n l y  u,,(u) = U. Une 6btbiiiS alZ6geTher 
2 2 

C D(")(o)  - l i m  
2 =I Pa 

and 



- s inh  u sinh(x[p - u] ) )  . 
U 

Hence the  Sonine transform (21) i s  

w i L h  Q = p-. One has t o  der ive  ~ ( ~ ) ( p )  i n  respect  t o  p and t o  i n s e r t  
I1 

d0v ins tead of p i n  t h e  de r iva t ive  before i n s e r t i n g  it i n t o  t h e  integrand of 

t h e  l a s t  i n t e g r a l .  

The t o t a l  solution,  s ingular  a t  the  cen t re  p = 0, i s  now 

with f ( s ) ( p , p )  from equation (41) i n  t h e  form of a s e r i e s  of Bessel  funct ions  
I1 

o r  from equation (45) i n  an i n t e g r a l  representa t ion.  Then one W s  t o  add t h e  

Sonine transform s0(f$.f)) from equation ( 5 6 ) ,  which i s  of course a funct ion of 

d = . The l a s t  terms e-pp  pa), which i s  caused by t h e  des i red  
0 

density, remains untouched by t h e  choice of the  o r i g i n a l  p a r t i a l  so lut ion;  

according t o  equation (22) it c a r r i e s  t h e  important s i n g u l a r i t y  a t  t h e  cen t re  

of the  sphere e R(p$-p2) 

This .mount i s  given i r r espec t ive  t o  the  value of t h e  constant  c of mul t ip l i ca -  

t ion ,  whereas t h e  o the r  two terms f ( ' ) (p ,p)  + S ( f ( ~ ) )  contain c a s  a f a c t o r .  
I1 0 .  I1 

Furthermore, the  term e ~(p-) g ives  the  whole density, whereas the  

d e n s i t i e s  belonging t o  f(') and S ( f ( ~ ) )  carlcel one another i n  consequence of 
I1 0 I1 



t h e  theorem 111. 

No r e l a t i o n  between K and c i s  imposed upon t h e  solution, i . e .  no 

c h a r a c t e r i s t i c  equation i s  necessary f o r  these  solut ions .  They a r e  val id  

f o r  any value i n  t h e  complex K-plane. 

11. The Solut ions  which are  Regular a t  t h e  Centre of t h e  Sphere. 

A. Regular so lu t ions  b.elonging t o  the  d i s c r e t e  spectrum. . , 

a ( p )  E [ ( l - r ) ( l + p ) ~  - ( l + x )  (l-lr);] - 
E 

0 

s a t i s f i e s  t h e  d i f f e r e n t i a l  equation 

1. If one pu t s  a = 1, then one has d8 = 0 an& t h e  exponent in the l a s t  
d~ 

f a c t o r  on the  r i g h t  hand s ide  becomes 

( l -K)( l+p)  - (l+IC)(l-p) = p ( p - K )  I 
~ [ ( l - K ) ( l + p ) s  - ( l + ~ ) ( l - P )  $1 

Therefore f (  p, p; - K )  
-3 

i s  a p a r t i a l  so lu t ion  of t h e  d i f f e r e n t i a l  equation above with t h e  rigill;-hand 
-KP 

C s ide  - e- . This i s  our previous r e s u l t  i n  equation ( 2 9 ) .  
2 P 

1+K 
l-K , then one has 2. If one puts  a = - da P) 

= 0 again, but  t h e  exponent i n  
d~ . 

t h e  l a s t  f a c t o r  on t h e  right-hand s ide  becomes 



I + K  - 
l - ~  Q [ ( l -K)  ( i + p ) s  - (I+K) (1-p);] 

Therefore f  ( p, y ; + ~ )  = C €?-llp J e 2  dS 
2 3 

i s  a  p a r t i a l  so lut ion of the  d i f f e r e n t i a l  equation above with the  right-hand 

C 
K P 

s ide  - . 
2 P 

3. Half t h e  d i f ference  of the  second and the  f i r s t  i n t e g r a l  s a t i s f i e s  the re -  

f o r e  the  d i f f e r e n t i a l  equation above with t h e  right-hand s ide  

c s inh K P  . - 
2 P 

It i s  t h e  solut ion f!')(p,p) which i s  regu la r  a t  the  cen t re  p = 0, i n  t h e  form 

of t h e  following in tegra l ,  which i s  v a l i d  f o r  I k/ -= 1: . * 

Whereas the  two p a r t i a l  so lut ions  f  ( p, p; K )  and f ( p, y; - K )  do not  s a t i s f y  t h e i r  - 

compat ib i l i ty  equations, because t h e i r  d e n s i t i e s  

+1 

pip;.) = Jl f (  p,p;x)dp = 2- p) -dK%( [l-+)+eiKplog 
2~ P 

and 

+K P -KP 
a r e  not equal t o  - ' respect ively  t o  e- , t h e i r  d i f ference  f(')( p, p)  does 

P P 

it. The terms containing an El-function drop out of i t s  dens i ty  P(')(P) = 

- ~ ( p ;  - K )  , which becomes I 



The f a c t o r  i n  brackets  on t h e  right-hand s ide  of t h i s  equation must be equal t o  

I., t n  g ive  the  des i red  result'. This i s  jus t  the  c h a r a c t e r i s t i c  equation 

I t s  two r o o t s  K = + K form t h e . d i s c r e t e  spectrum of t h e  Boltmann-operator. 
0 

Here 'the So n i n  e-tran~iorm&tP6ii  i i iUSt  not be applf ed, ~.J I I~ ( :HLLS~ J?l r, (p,  j ~ )  i s  

fo r tuna te ly  t h a t  p a r t i a l  so lu t ion  which a l s o  f u l f i l l s  t h e  equation of compati- 

b i l i t y ,  if t h e  v a l i d i t y  of the .  c h a r a c t e r i s t i c  equation i s  supposed. 

It w i l l  be shown l a t e r ,  however, t h a t  the re  e x i s t  regular  solut ions  also, 

f o r  every K of t h e  whole complex K-plane. 

To proceed i n  t h i s  d i rect ion,  t h e  regular  solut ion f ( r ) ( p , p )  above w i l l  

be w r i t t e n  i n  a form, i n  which the  f i r s t  term gives  t h e  whole density 

P ( ~ ) ( ~ )  = sinh KP, whereas t h e  second term gives j u s t  t h e  densi ty  0 .  I f  one 

p u t s  again = t v= t h e  equation (63) f o r  f ( r )  (p, p) w i l l  become 
1+p L-K 

with h = pV(1-K2) (1-P2). 



The expansion of t h e  integrand i n  a s e r i e s  of Bessel  funct ions  and term by 

term in tegra t ion  y i e l d s  

f( ')(p,p) = e-pp  ~ ~ ( h )  l o g  { 1-K 

Using the  a i d  formula (48a) one recognizes t h a t  t h e  f i r s t - t e rm of  t h e  cur ly  

bracket  g ives  already t h e  whole densi ty  

- - s inh K P  
Y 

P 

i f  the  c h a r a c t e r i s t i c  equation. (5 )  . i s  supposed.- 

It i s  easy t o  show, t h a t  the  second term of f( ')(p,p), namely t h e  s e r i e s  

from n=i  through n = '  coy has zero-density. This  w i l l  be '  proved i n  t h e  following 

q u i t e  independently. Using formula (44) one may wr i t e  



a f t e r  a transformation of t h e  var iable  of in tegrat ion t o  v = 1 - t2 and a f t e r  

ar ranging t h e  t e r n s  i n  such a way that  thk secnnii S Q I I R T P  hrwcket i n  tho i n  

tegrand can be obtained.from t h e  f i r s t  by exchanging K with - K .  

We know, however, a l ready . the  density, which belongs t o  t h e  second square 

bracket  by comparison wi th  P ~ ( ~ )  i n  e q ~ t i o n  (51) and (53)) it i s  jus t  

1 I % (sinh ~)s inh(~[p- . t ]  ) . - 7 P,(p) = - - 
K P 

0 

This  expression remains unchanged, i f  one replaces K by - K ;  it gives t h e  con- 

t r i b u t i o n  of the  f i r s t  sqil.ase. bracket, and t h e  di f ference of both i s  zero. 

Hence t h e  densi ty  0 belongs t o  t h e  s e r i e s  i n  f ( r ) ( p ,  p,) . 
B. Regular solutions,  belonging t o  every K i n  t h e  complex K-plane. We 

s t a r t  from the  s ingu la r  so lu t ion  fk)(p,,,P) i n  t h e  form (41) a s  a sum and i n  

t h e  form (45) a s  an in tegra l .  Let us denote it now by 

t o  show t h a t  it i s  a solut ion of the  inhomogeneous p a r t i a l  d i f f e r e n t i a l  equation 
-KP 

(6 )  with 2 e on t h e  right-hand s ide .  Reversing the  sign of K i n  t h i s  
2 P  
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Oilly t h e  term e -pP ~(p-) of f(')(p,?) gives a contribution, namely 

cos do 
by app l ica t ion  of formula (36). The. term - 

d, 
, which i s  s ingular  a t  p = 0, 

drops out of the  solut ion.  The densi ty  which corresponds t o  t h i s  pa r t  of t h e  

so lu t ion  i s  

+I. +1 tl e - " [ R ( p G ; n )  - R ( p G 2 ; - a ) ]  dp = !I 2 I e -p"o(h)dp = s inh K P  

-1 P 

according t o  equation (48a).  Hence the  t o t a l  solution, which i s  regular  a t  t h e  

c e n t e r  of t h e  sphere and which i s  va l id  f o r  a r b i t r a r y  K ' S ,  becomes 

i n  t h e  form containing a se r ies ,  o r  



i n  the  form containing an in tegra l .  

K i s  not r e s t r i c t e d  by a c h a r a c t e r i s t i c  equation, it can be every K of 

the  complex K-plane. For t h a t  spec ia l  K, however, which s a t i s f i e s  the  
. . 

c h a r a c t e r i s t i c  equation ( 5 ) ,  the  solut ion f ( ' ) (p ,p ; r )  i s  i d e n t i c a i  with t h e  

solut ion f ( r ) ( p , p ) ,  which i s  represented i n  equation (67) .  One has t o  re-  

place X i n  the  f i rs t  term of f ( ' ) ( p , p ; ~ )  jus t  by the  value which t h c  
2 

c h a r a c t e r i s t i c  equation 

gives .  

The d i s c r e t e  spectrum i s  therefore  completely embeddkd i n  a continuous 

manifold of solut ions  with neighboring K-parameters . in  spher ica l  geometry. 

The densi ty  belonging t o  a solut ion i s  given by the  f i r s t  term i n  '(67) o r  

(71), whereas t h e  densi ty  of t h e  second term i s  zero. 

C .  Proof t h a t  t h e  regular  so lu t ions  s a t i s f y  the  equation Af = ~ ~ f .  

1. The operator A expressed by our coordinates p and p. Remember the  

fief i n i t i o n  of p = 7/- and p = COE 3 ~ h c r c  3 i s  t h e  angle between the 
+ * 

d i r e c t i o n  qf t h e  neutron v (wikh Ivl = 1 )  and t h e  rad ius  vector  ;. Therefore 

-% + 
we have pp = p - v = xv, +-y-v' . + zv, 

Y 



and f i n a l l y  

2. It i s  Basy to show t h a t  the solut ion f ( r ) (p ,  P) of equation ( 6 3 ) ,  which 

belongs t o  the d iscre te  spectrum, s a t i s f i e s  the equation Af = ~ ' f .  Denoting 

the  exponent i n  i t s  integrand by E f o r  abbreviation 

E = exp 9 [(l-K) ( l + p ) ~  - (I+K) ( l -~);]  

we have 

and by applying d i f fe ren t ia t ion  under the in tegra l ' s ign  
1 + ~  - 



P a r t i a l  in tegra t ion  of the  A - term y i e l d s  
P 

= ~ ~ f ( ' )  + c s inh  K P  c -pp . 2 
p . - I i  P 

- - ~ ~ f ( ~ )  + c s inh  K P  - c 'lnh K p  = K* f ( r ) ( s p )  q. e. d. 
*. . 

P P 

f 

3. To show t h a t  a l s o  the  regu la r  so lu t ions  f  ( ) of equation (71) 

s a t i s f y  t h e  equation Af = ~~f~ it i s  now s u f f i c i e n t  t o  show t h a t  i t s  f i r s t  

term - 

s a t i s f i e s  t h i s  equation.  Then one recognizes that a l s o  t h e  second term i n  

the  s e r i e s  development (67) of f ( l ) ( p , p )  s a t i s f i e s  t h i s  equation. But t h i s  

second term i s  i d e n t i c a l  with the  corresponding i n  t h e  s e r i e s  development 

(71) of f(')(p, p; - K )  . Hence it i s  t r u e  t h a t  a l s o  t h e  regu la r  solut ions  

f r ( p y p ; - ~ )  w i t h  c o n t i n u o u s  K s a t i s f y  t h e  e q u a t i o n a f .  x2f. 

One has the re fo re  t o  ve r i fy  f i n a l l y  



2 -PP N = K f  f o r  f  = e J0(h) With h = pd(l-y2)(1-~2) 

One f i n d s  

= f - (1-,c2) e-PP J (h)  = f  - ( l - ~ ' ~ ) f  = ~~f q:e.d. 
0 

D. Representation of t h e  regular  solut ions  i n  spher ical  geometry by 

superposi t ion of so lu t ions  i n  plane geometry. 

1. The solut ions  belonging t o  t h e  d i s c r e t e  spectrum. The Boltzmann 

equation i n  plane geometry may be wr i t t en  
+1 

a$((, 71) 

-1 

where ( i s  t h e  d i s tance  i n  space on an a x i s  perpendicular t o  t h e  planes from 
+ 

a chosen origin,  and 7 = cos 8 i s  the  cosine of t h e  angle between t h e  (-axis : 

' + 
and t h e  d i rec t ion  v of t h e  ve loc i ty  of a neutron. A solut ion belonging t o  

t h e  d i s c r e t e  spectrum i s  t h e  angular d i s t r i b u t i o n  of neutrons 

To const ruct  a so lu t ion  i n  spher ical  geometry one has t o  f i x  t h e  centre  of the  

sphere and t o  measure t h e  dis tance i n  space by t h e  dis tance ( of t h e  plane 

from t h e  centre  of the  sphere. I f  one wants the  angular d i s t r i b u t i o n  i n  . 

spher ica l  geometry a t  a chosen point  A with t h e  dis tance p from t h e  centre, 
+ 

one draws t h e  radius  vector  p through A. The angle between t h i s  radius  vector  

and t h e  ( -di rect ion may be denoted by a'; then the  dis tance of the  plane 



through A from the  centre  of the  sphere i s  

5 = p cos 3 ' .  ( 76) 

It i s  a measure f o r  the  "phase, I' with which a plane solut ion contr ibutes  t o  

the  spherical .  To ge t  a solut ion i n  spher ical  geometry with a f ixed  d i rec t ion  
+ 

of t h e  neutron-velocity v, one has t o  superpose plane solutions,  which belong 
+ 

t o  t h i s  f  iked d i rec t ion  of velocity,  whereas the  normal 5 of t h e  plane runs 

a l l  over the  d i rec t ions  of space. The parameter q = cos Q i n  t h e  plane 
+ + 

solut ion i s  the  sca la r  product of the  u n i t  vectors  i n  5: and v-directions.  

+ 
I f  one' supposes a Cartesian coordinate system with the  z-axis i n  p-direction 

+ + + 
and t h e  x,z-plane i d e n t i c a l  with the  v,p-plane, t h e  d i rec t ion  of t h e  5-axis 

+ + 
may be described by the  angle J' between ( and z and by the  angle cp' between 

+ + + 
the  x,z-plane and 5,z-plane. Then t h e  components of a u n i t  vector  e along 
+ 
5 i n  these  Cartesian coordinate systems w i l l  be . 

e = s i n  $" cos cp I 
x .  I 

e = s i n  J' s i n  cpl ,  e = c0s.Q: 
Y Z 

4 '  

and the  components of a un i t  vector v i n  the  f ixed d i rec t ion  of t h e  ve loc i ty  

w i l l  be 

v x = s i n  2 = 6 2  v = 0 = CoS ,P= p.  
Y Z 

Hence t h e  sca la r  product of both i s  

Therefore one gives t h e  plane solutions,  which s h a l l  contr ibute  a t  a d e f i n i t e  

point  A with the  dis tance p from t h e  centre  of t h e  sphere t o  a solut ion i n  

spher ical  geometry with a fixed d i rec t ion  of neutron-velocity, t h e  form 



*(c, 7) =I(PCOS QI. P cos a ' + m  s i n  ~ ' c o s c ~ ~ J .  ( 78) 

1 CK e -Kp C O S  '8' 
- - 4ii 

1-a [P cos $1 +m s i n  4' cos p j  

B y  superposit ion of such solut ions  f o r  a l l  d i rect ions ,  i . e .  by in tegrat ion over 

p '  from 0 t o  211 and over #'from 0 t o  T one obta ins  a solut ion S(P,P) i n  

spher ica l  geometry f o r  / K /  -= 1 

7-r 2rr 
- 1 -lcp cos 9' 
- s i n P ' d 4 '  I. dpl  

l - ~ ( p  cos a'+- sifi ,$'cos q f )  

7 
sin.  3' e 

- K P  cos Q' 
= y J  [ ( l - n  p cos 8 '12 - ~ 2 ( 1 - ~ 2 )  s in2 $ 9 ' ~ ~  

0 

The transformation of t h e  va r iab le  of in tegra t ion  

i n t o  a new varia'ble S transforms the  upper l i m i t  vl = 1 In to  S1 = 1 and the 

l+lc lower l i m i t  v2 = -1 i n t o  Sg  = - . The square root i n  t h e  denominator of 
1-K . 

t h e  integrand becomes 



and t h e  d i f f e r e n t i a l  dv = - 1 [ ( l - ~ ) ( l + p , )  .+ ( l + ~ ) ( l - p , & ]  dS. 
2 K s2 

This leads  t o  t h e  remarkably simple expression f o r  

and the  solut ion takes  the  form 

1+K - 
~ ( p ,  p,) = C. e -pP 

4 TK F e  
I. 

' 

which i s  i d e n t i c a l  wi.l;h .the regular solut ion (-63) belonging t o  the  d i s c r e t e  

spectrum .of the  Boltzmann operator i n  spher ical  geometry. 

, 2. Superposition of the  solut ions  belonging t o  the  continuous spectrum 

i n  plane geometry. E. P. wigner(9 showed i n  h i s  l e c t u r e  on Mathematical Problems 

of Nuclear Reactor Theory t h a t  t h e  Boltzmann operator f o r  monoenergetic neutron 

t ranspor t  i n  plane geometry has a continuous spectrum. I n  approximations, f o r  

instance by the  Gauss quadrature o r  by t h e  spher ical  harmonics method, t h i s  con- 

tinuous spectrum makes i t s e l f  conspicuous by those eigenvalues' of t h e  approximate 

c h a r a c t e r i s t i c  equation, which belong t o  t h e  t r a n s i e n t  solut ions .  

The continuous spectrum of the  Boltzmann operator extends from / K /  = 1 

u n t i l  / K /  = a, on both s ides  of t h e  r e a l  a x i s  i n  t h e  complex K-plane. The eigen- 

(9)E. P. Wigner a t  the  Meeting on Mathematical Aspects of Reactor Theory i n  New 
York, Apri l  23-24, 1959. It is published i n  a Colloquium Publication of the  
American Mathematical Society under t h e  t i t l e ,  " ~ u c l e a r  Reactor Theory", 
Gar re t t  Birkhoff and E.  P. Wigner, ed i to r s ,  p. 89 (1961). 



function belonging to a specific U-value of this spectrum may be written in a 

symbolic form 

+ 2 

( 83) KY-1 + i & ~  

trfth the coefficients 

is a small real (positive) qpanti'ty; [ is the space coordinate and 7 = cos Q 

is the.cosine of the angle Q of direction of the neutrons against the (-axis.in 

the supposed plane geometry as in the preceding section 1. 

Inserting the coefficients cl and c the symbolic , eigen-f unction takes the 
2 

After multiplication with an arbitrary weight function g - ,  which ensures the (:I 
convergence of the integral, the contribution of the continuous spectrum to a 

. . .  

total solution of the ~dltzmann equation may be represented by the following in- 

tegral over the continuous spectrum 
. . 



and the  corresponding contr ibut ion t o  the  densi ty  ( o r  f l u x  a t  ve loc i ty  v  = 1 )  

by 

By comparison of t h e  l a s t  two equations one recognizes t h a t  only that term of 

the  angular d i s t r i b u t i o n  @(( ,q)  contr ibutes  t o  the  dens i ty  @ ( ( ) ,  which does 

not contain the  constant  of mul t ip l ica t ion c  a s  a  fac ' tor .  I owc D r .  E .  Inoni'i - 
the  observation of t h i s  f a c t .  The same f a c t  was noticed already a t  t h e  solu- 

t i o n s  i n  spher ica l  geometry f o r  a l l ,  K-values which do s a t i s f y  the  charac- 
. . 

t e r i s t i c  equation. 

In  spher ica l  geometry, however, it i s  not necessary t o  wri te  t h e  solut ion 

f o r  a  spec i f i c  K i n  a  symbolic form, a s  equation (83) i s  i n  plane geometry, , 

and one has not t o  in tegra te  over a t  l e a s t  a  p a r t  of the  continuous spectrum 

t o  obtain ordinary funct ions  f o r  every s ing le  K .  I n  spher ica l  geometry t h e  

soluti.ons a r e  already ordinary funct ions  f o r  every s ing le  K .  Furthermore, 

the re  a r e  c e r t a i n l y  two d i f f e r e n t  kinds of solut ions  f o r  every I K I ,  one, which 

behaves regular  a t  t h e  or ig in ,  and another which i s  s ingular  a t  t h e  o r ig in  of 

t h e  sphere. It w i l l  be shown i n  t h e  following t h a t  a  superposit ion of solu- 

t i o n s  belonging t o  the  continuous spectrum of the  Boltzmann operator  i n  plane 

geometry f o r  a  spec i f i c  K-value ( I K I  1 l ) ,  s imi la r  t o  the  superpositivri i n  the  

l a s t  section,  y i e l d s  the  corresponding regular  solut ion i n  spher ica l  geometry. 

It i s  i n t e r e s t i n g  t o  observe how the  . in tegra t ion over a l l  space d i r e c t i o n s  

already l eads  t o  the  el imination of t h e  6 f o r  every s ing le  s p e c i f i c  K .  



We superpose so lu t ions  of the  kind ( 8 3 )  i n  t h e  way described t o  obta in  a 

so lu t ion  i n  spher ica l  geometry 

J 
Noticing t h a t  c = c* f o r  r e a l  K 'and 

2 1 

p u t t i n g ,  a = -1 + ~p cosa, '  b = a - \ G 2  sin-$'a, an abbreviation,  . one has 

'1 c* 
+ .1 d q ' .  

a-i€K+bcosq' 

It i s  .I;ra.nsfokmed by u = 2ciu , d q l = -  1-u2 , cosq'  = - In to  the  form 
2 l+u2 l+u2 



The integrand vanishes f o r  l a rge  u s u f f i c i e n t l y  strong that the  path  of in-  

t eg ra t ion  can be closed by a half  c i r c l e  t h e  i n f i n i t e  of the  upper hal f  

complex u-plane. The denominator of t h e  f i r s t  term of the  integrand has a 

p a i r  of r o o t s  u and -u0, i n  which , 
0 

The second term of t h e  integrand i s  the  complex conjugate of t h e  f i r s t  and 

the  roo t s  of i t s  denominator a r e  u* and -u* . A l l  4 roo t s  l i e  i n  t h e  4 corners 
0 0 

of a rec tangle  symmetric agains t  t h e  r e a l  and complex a x i s  of t h e  u-plane. The 

second expression f o r  u i n  (90) shows, t h a t  the  imaginary p a r t  of u2 i s  posi t ive ,  
0 0 

because b i s  pos i t ive  f o r  o -=# /~T ,  i f  one chooses furthermore a p o s i t i v e  K from 

the  continuous spectrum. Then the  imaginary p a r t  of u i t s e l f  i s  pos i t ive  a l s o  
0 

and t h e  two roo t s  u and -u* l i e  i n  t h e  upper hal f  of the  complex u-plane, where- 
0 0 .  

a s  t h e  o the r  two roo t s  -u and u* l i e  i n  the  lowerfp"1'Le. Only t h e  poles a t  u 
0 0 0 

and -u* contr ibute  t o  the  i n t e g r a l  with t h e i r  res idues  by appl ica t ion of Cauchy's 
0 

theorem t o  t h e  upper hal f  plane, which i s  enclosed by' the  path  C of in tegra t ion :  
c .  

T 
K 

S(P,P;K) = - 1, J s i n  
4-rr €-a 



K C 1 
c* 

= - l i m  + 1 
2 2 7/a -b -2Uaa-6 

0 

one may s t i l l  apply t h e  same transformation of the  va r iab le ,o f  in tegrat ion 9' 
i n t o  a  new var iable  S  

as i n  the  preceding sect ion t o  perform the  second in tegra t ion .  One has t o  

remember, however, t h a t  K 21 holds t h i s  time: the  path  of in tegra t ion  i n  the  

I I K +1 S-plane s t a r t s  f o r  8 = 0 a t  S  = 1 and ends f o r  5 = ~r a t  S  = - - on the  
K -1 

I I 
o t h e r  s ide  of t h e  o r ig in .  When a increases from 0 t o  r, cos& decreases 

monotonously from 1 t o  -1. TO' maintain t h i s  property a l s o  on t h e  path' of in-  

t e g r a t i o n  i n  the  complex S-plane, we have t o  proceed along the  r e a l  a x i s  from 

, then along a hal f  c i r c l e  with t h e  radius  S1 around 

t h e  o r i g i n  of t h e  $-plane u n t i l S 2  = -sl and f i n a l l y  from -S1 u n t i l  the ,end-  

point  of the  pa th  a t  S  = - * on t h e  r e a l  axis .  A t  t h e  points  S  = + S1 the  
K -1 

expression on t h e  r i g h t  hand s ide  of equation (80) has an extremum, because 



i n  zem a t  S = + S1 with 

and the  quant i ty  a2 - b2, which occurs i n  t h e  radicands of the  square roo t s  i n  

the  denominators of t h e  integrand 

I 
i s  zero jus t  a t  t h e  same two points  S = +S1 . We denote t h e  corresponding 4- 

values with d f o r  S = S1 and 9/ f u r  S = 32 = -Sp Equation (81) y ie lds  
2 

I 
c o s t  = L [p +7/(s2- l ) ( l -p2)]  f o r  Y = s 

K 1 

and 

cos4'= [ p  -7/( K2-1) (1-p')] f o r  s = ~2 = -sl 

I /  
I n  the  i n t e r v a l  #=-A 8 t h e  quant i ty  a2-b2 i s  negative; t h i s  follows from 

1 2 

the  f i r s t  expression of eq.uati'on (94) f o r  instance by i n s e r t i n g  the, mean value 
I . . 

c o s t  = of Lu,l;h values a t  the  boundary of the  interva.1.; one obta ins  f o r  t h i h  
K 

angle (a2-b2) = - ( ~ ~ - l ) ( l - p ~ ) .  The second expression of equation (94) ob ta ins  
3= a, 

indeednegative values f o r  complex values o f  S. Hence we assume f i n a l l y  

S1.t a )  f o r t h e  r e a l S - i n t e r v a l s  (1,s ) and (-EL, -2) 
1 

i X  
S ' e  b)  f o r  the  h a l f - c i r c l e  O I X S I T  
1 



This  supposit ion y i e l d s  on t h e  corresponding p a r t s  of the  path of in tegra t ion  

The pa-Lh uf in tegra t ion  i n  t h e  complex S-plane looks d i f f e r e n t  f o r  5 regions 

of p-values. The following t a b l e  shows it: 

region of p corner a t  p ~ s l , ~ i v e  S corner a t  negative S 

1 
O<Sl-= 1 ~ + 1  l b )  ; < p < 1  - -< -1 -=S2<0 

It -1 -- K + i  t-J=Th -1 52 0 51 

s 2 = - 1  p,+l Kn S z = - L  0 sl=l 

-- 



To obtain the  whole in tegral ,  which i s  real ,  one has t o  add the  i n t e g r a l  over the  

. . 
conjugate complex path. . . !? 

Then t h e  i n t e g r a l  takes  t h e  form 



With cl + c* = - ITC and i ( c l  - c*) = -2 [K - 5 log  e] it becomes 
1 1 ' 2  K -1 

The f i r s t  integrand may be represented by a s e r i e s  of modified Bessel-functions 

using . the formula 

z 
- 2 ( t  + L )  03 

e t = I ( z )  + C ( t n  + ?;)(-1)"1~(i) 1 
0 n= 1 t 

and i t s  i n t e g r a l s  give s ( ~ , P ; K )  the  following contr ibut ions  

The second i n t e g r a l  y i e l d s  



K+1 
and i t s  second p a r t  cancels j u s t  the  term with the  f a c t o r  log  - of t h e  f i r s t  

K -1 

i n t e g r a l .  The t o t a l  i n t e g r a l  i s  now 

By comparison with equation (71) one 'recognizes t h a t  

i s   IT times the  t o t a l  solut ion f ( r ) ( p , p ; ~ )  for the  regular  case of t h e  Boltmann 

equation i n  spherical .  geometry. - 

To complete ' th is  in tegra t ion ,  one has t o  - j u s t i f y  t h a t  the  in tegra t ion  through 

t h e  "corners, " i n  which the  hal f  c i r c l e  meets t h e  r e a l  a x i s  i n  the  S-plane and 

a2-b2 changes i t s  sign, does not  give a contri 'bution. It w i l l  be s u f f i c i e n t  t o  

show t h i s  i n  one corner, which may l i e  a t  lli 1. We enc i rc le  it by a quar te r  of 

a c i r c l e  wi th  the  radius  6' and i t s  center  a t  sl. Hence s may be represented 

along t h i s  quar te r  of a c i r c l e  by A 

s =I-(,. + &  
K-1 1+p 

l -f-(, - E leis + El' e2iCl + and S = - - . . .).  ~ + 1  1-p 
/ 

51 
- I 

4 
The quan t i t i e s ,  involved i n  the  in tegra l ,  a r e  by t h i s  supposit ion 



. . 

and t h e  f i r s t  p a r t  of t h e  ' i n t e g r a l  ' (92)  along the  quar te r  of the  c i r c l e  around 

the '  corner '  a t  d' = , w i l l  be 

2 
E, 5' a r e  a r b i t r a r y  small constants;  i f  we choose ( 6 ' )  = C . E ( C  = const . ) ,  we 

' j o i n  t h e i r  l i m i t s  f o r  E +O. The i n t e g r a l  w i l l  tend t o  zero, when E ' = 6 tends 

t o  zero.  The cause of t h i s  behavior i s  t h a t  cos 9' i s  s t a t ionary  i n  respect  t o  

S a t  a l l  corners ( see  equation (93)), i n  consequence of which the  d i r re i -en t i a l  

s i n  A' d4' a t  t h e  corners  i s  quadratic i n  E ' .  Hence one obta ins  no contribuEiOn 

t o  t h e  i n t e g r a l  from t h e  neighborhood of the  corners.  



111. Comparison o f ' t h e  New Solut ions  with t h e i r  Representations 

by a  S e r i e s  of Spher ica l  Harmonics 

A. Proof of the  equa l i ty  of two solut ions  of t h e  ~ o l t z m a n n  equation which y i e l d  

the  same densi ty .  The di f ference  6(p ,p)  of two solut ions  of t h e  Boltzmann equation 

(1 )  with t h e  same densi ty  s a t i s f i e s  the  homogeneous p a r t i a l  d i f f e r e n t i a l  equation (8).  

Therefore it has the  form 

~ ( P , P )  = e-pp F ( P ~ )  
. . 

with some function F of p m ,  about which one knows t h a t  it y i e l d s  t h e  d e n s i t y  zer.u: 

This i s  a  Sonine i n t e g r a l  equation again.  I f  we replace zero on the  r i g h t  hand s ide  

of t h i s  equation by a  constant  C, i t s  solut ion would be 

~ ( ~ 1 -  = c . 1 d [ ~ 0 ~ 6 6  ds with u  = q2(1-p2) 
T 0 6  du 

One recognizes by t h i s  ca lcu la t ion  t h a t  the  expression accompanying C does not diverge. 

Hewe t h e  ddiference 6(p, p) of both ~ o l u t i o n s  vanishes together  wjth C = 0 ,  This 

means t h a t  two solut ions  of (1)  with equal d e n s i t i e s  a r e  equal. Of course the  theorern 

i~ not appl icable  t o  t h e  campa,r.i.son of two solutions,  which d i f f e r  by a  diverging p a r t .  

Such a case appears i n  sect ion D of t h i s  chapter.  

B. l igplication of t h e  theorem of equa l i ty  t o  two regu la r  solut ions  of  the  -. . 

Boltzmann equation with t h e  same density. According t o  the  equations (2)  and ( 3 )  

the  development of  t h e  r egu la r  so lu t ion  i n  a  s e r i e s  o f  spher ica l  harmonics i s  



I t s  de~isf.l;y i n t e g r a l  beccsrtiem 

11 ( K P )  s inh K P  
( B p )  all 2 . XF -2- - .,.-- - 

-1 2 2  JG P 

On t h e  o ther  hand, our corresponding regular  solut ion i s  f  ( r)  ( p, p; K )  i n  the  form 

of t h e  equations (71) o r  (72) .  It y i e l d s  by 'the use of t h e  i n t e g r a l  (48) t h e  same 

dens i ty  (103).  Therefore our regular  solut ion i s  equal t o  t h e  spher ical  harmonics 

s e r i e s  (102a). This equa l i ty  gives two relations, ,  a  f i r s t  between the  p a r t s  without 

t h e  f a c t o r  c and a second between the  p a r t s  with t h e  f a c t o r  c: 

wi th  h = pJ=. We obtained two equations because c and K a r e  independent 



var iab les  i n  both representa t ions  of t h e  regu la r  solut ion.  A connection between c and 

K,  i . e . ,  a c h a r a c t e r i s t i c  equation G ~ + ~ (  - I) =< 0, would appear spontaneously only by 
K 

t runcat ion of the  s e r i e s  (102a) a f t e r  the  L-th term. The ext rapola t ion t o  .L -.a i n  

t h i s  c h a r a c t e r i s t i c  equation can be made o r  not .  I f  one performs t h e  extrapolation,  

then t h e  d i s c r e t e  and t h e  continuous spectrum follow a t  l e a s t  i n  the  case of plane 

geometry. Everybody expects t h a t  t h e  spectrum of the  Boltzmann-operator depends on 

t h e  q u a l i t i e s  of the  mate r i a l  and does not depend on t h e  geometry a s  long a s  one con- 

s i d e r s  only solut ions  i n  the  i n f i n i t e  space without boundaries and sources. The t run-  

ca t ion  of the  spher ica l  harmonics solut ion a f t e r  t h e  L-th term means i n  f a c t  t h e  addi-  

t i o n  of a source, namely of an error-source term(lO),  t o  the  o r i g i n a l  Boltzmann equa- 

t i o n  ( 1 ) .  To t h i s  hidden addi t ion one owes the  c h a r a c t e r i s t i c  equation and by extrapo- 

l a t i o n  t o  L + a  one obta ins  the  h i n t  a t  t h e  spectrum. But f o r  t h e  untruncated s e r i e s  

(102a) and the  solut ion (71) o r  (72) the  e r r o r  source does not e x i s t  o r  has l o s t  i t s  

importance - i n  the  view from the  ext rapola t ion of f i n i t e  L - because of t h e  conver- 

gence of t h e  s e r i e s  (102a) f o r  a problem without boundaries. Hence they a r e  so lu t ions  

f o r  every K,  f o r  which they a r e  convergent and d i f f e r e n t i a b l e  i n  respect  t o  K and p. 

C. Direct  v e r i f i c a t i o n  of equation (104). Of course a v e r i f i c a t i o n  o f  equations 

(104) and (105) a s  a check of the  ca lcu la t ions  would be of some value.  I r e s t r i c t  

myself t o  the  v e r i f i c a t i o n  of t h e  simpler equation (104) because I found only i n  t h i s  

case a su i t ab le  a i d  formula. In  absence of a complete a i d  formula f o r  a treatment of 

( 1 0 5 ) ~  however, one could use the  developments of G .  Bauer f o r  a v e r i f i c a t i o n  of (105) 

by s t eps  from pn t o  pn+l s imi la r  t o  t h a t  which w i l l  be used i n  sect ion E .  

Multiplying both s ides  of (104) with one of t h e  spher ica l  harmonics and using 

t h e i r  orthonormality re la t ions ,  one obta ins  

'lO)W. Kof ink, Oak Ridge National Laboratory repor t  2358, p. 3 (1957) and Nuovo Cimento 
Supplement 2 t o  Vol. 9, p. 499 (1958). 



The proof of (106) i s  equivalent t o  t h e  proof of (104). Equation (106) can be derived 

from t h e  following extension of the  aid-formula (48) by pu t t ing  t = p: 

The equation (lo"() w i l l  be proved by complete induction. For & = 0 it i s  Iden t ica l  

wi th  equation (48) .  For & = 1 it i s  t h e  de r iva t ive  - a/dt of equation (48) .  Sup- 

posing furthermore t h e  v a l i d i t y  of t h e  equation (107) u n t i l  &, one has f i n a l l y  t o  show 

i t s  v a l i d i t y  f o r  + 1. The lef t -hand s ide  i s  i n  t h i s  case 

wi th  x = , / t2-(1-x2) p2 a s  abbreviation.  This expression should be equal t o  t h e  

r ight-hand side of equation (107) f o r  .k? + 1. Hence it remains t o  show t h a t  



The right-hand s ide  of t h i s  equation i s  

The f i r s t  cu r ly  bracket  i s  zero, whereas t h e  second cur ly  bracket  g ives  the  des i red  

r e s u l t .  It i s  

D. Comparison of  two s ingu la r .  so lut ions .  The following theorem w i l l  be suggested 

and p a r t i a l l y  v e r i f i e d :  i f  one omits from t h e  s ingular  solut ion i n  i t s  representa t ion 

by a s e r i e s  of spher ica l  harmonics a l l  terms which contain negative powers of K a s  

f ac to r s ,  one obta ins  t h e  new s ingular  solut ion (35) o r  (40). 

Some evidence e x i s t s  f o r  t h e  v a l i d i t y  of t h i s  theorem. The dens i ty - in tegra l  f o r  

' t h e  new solut ion i s  

a s  it was shown i n  equation (27). I f  one develops the  right-hand s ide  of t h e  Boltzmann 

equation i n  t h i s  case i n  a power s e r i e s  of K 

a f  1 - p2- c e-KP p - + - E + f , )  = - - 
a. P acl 2 .  P 



and i f  one supposes a so lu t ion  a s  a power s e r i e s  of K 

one recognizes t h a t  t h e r e  i s  no need in  f f o r  terms with negative powers of K because 

t h e  right-hand s ide  of '(109)' contains only the  non-negative powers of K . The s ingular  

so lu t ion  of (1) i n  spher ica l  harmonics 

wi th  t h e  modified Bessel f lmctions of t h e  second kind 

contains,  however, i n  t h e  f i r s t  term of (112) negative powers of K.  This may be seen 

i n  t h e  power s e r i e s  

The s ingu la r  so lu t ion  (111) i n  spher ical  harmonics y i e l d s  the  same densi ty- integral  

as t h e  solut ion ( 3 5 ) ,  namely, 

According t o  t h e  theorem i n  sect ion A of t h i s  chapter both solut ions  (111) and (35) 

should be equal i f  t h e  s e r i e s  (111) would be convergent. Consequently i t s  divergence 

o r i g i n a t e s  i n  t h e  use less  terms which contain K i n  negative powers. This i s  t h e  match- 

l e s s  conclusion which i s  compatible with t h e  f a c t s  t h a t  the  new solut ion (35) i s  con- 

vergent, contains only non-negative powers of K and y i e l d s  t h e  same density.  Therefore 

one has t o  cross  out a l l  terms i n  the  s ingular  solution (111) which have negative powers 

of K as fac to rs .  The remainder of t h e  s e r i e s  i s  supposed t o  converge and t o  be equal 



t o  t h e  new solut ion (35) and (40) .  

Using (112) one may wri te  t h e  t o t a l  solut ion i n  spher ica l  harmonics (111) a s  t h e  

sum of a  s ingular  solut ion with the  dens i ty - in tegra l  (cosh ~ p ) / p  and of a  regular  

solut ion with the  densi ty- in tegra l  ( - s inh ~ p ) / p  : 

t h c  second s e r i e s  i n  (115)  i s  jus t  ,the regular  solut ion (102a) with t h e  opposite -sign.  

It conta ins  only pos i t ive  odd powers of K and, using equations (104) and (105a), one 

e a s i l y  f inds  i t s  contr ibut ions  t o  t h e  new s ingu la r  solut ion (40) .  To recognize them 

i n  t h e  equation (40), one wr i t e s  one p a r t  of (40), namely (42), i n  t h e  following form: 

e - p p R ( p / l T )  = e-w cos ( d o J 3 )  (cash K ~ ~ S  - s i n h ' ~ a  
jlz7 

cos do K a! (2s2do) a 
- - - {  - - ( h )  + K 2  

2 m a=o (2a+1): 

i n  which h  = do ,/- = pJ-. The second term i n  the  cur ly  brackets  

of (116) contains the  odd powers of K and i s  the  contr ibut ion of (104) 

t o  equation ( 4 2 ) .  The second contr ibut ion i s  the  more lengthy expression (105a); it 

gives  t h a t  p a r t  of t h e  equation (41) which i s  odd i n  K . Hence the  i d e n t i f i c a t i o n  of 

a l l  t e r ~ n s  'which contain t h e  pos i t ive  odd powers of' K a s  f a c t o r s  i n  the  s e r i e s  of 



s p h e r i c a l  harmonics (lll), with  the  corresponding terms i n  t h e  new solution (40) i s  

simple and complete: 

odd i n  K of f (s.H.) 

= - f ( r ) ( n , u ; r )  according t o  equation (71). Negative odd powers of K do not occur 

i n  (111) ; thus t h e r e  is  of course nothing t o  cross out. 

Furthermore one h s ~  t o  compare t h e  p a r t s  of t h e  s ingular  so.l.11,tions (111) and (40) 

which a r e  even. i n  K . The s e r i e s  of spher ical  harmonics. has t h e  

p a r t  even i n  K of f[s!H.)(p,p)} { 

It i s  t h e  f i r s t  s e ~ i e s  i n  t h e  cur ly  .bracket of (115). A glance a t  . 

1 c 
= pa( - F) + ; wJm1(- 3 f o r  a r 1, 

K 

shows t h a t  (118) contains two parts ,  one without a f a c t o r  c and a second with a f a c t o r  

C : 

( P a r t  even i n  K of f 
(s.H.) 



Here t h e  superfluous terms with negative powers of K a r i s e  from t h e  introduction of 

t h e  power s e r i e s  (113) f o r  t h e  modified Bessel funct ions  i n t o  (119) .. Of course the  

rearrangement of t h e  double s e r i e s  i n  a power s e r i e s  i s  only a formal way. It leads  

nevertheless t o  something reasonable, namely t o  t h e  new s ingular  solut ion (40) a f t e r  

dropping a l l  terms with negative powers of K .  The l a r g e s t  negative power of K i n  t h e  

I - t h  term of (119) i s  K - ~ ' .  One has t o  omit a expressions i n  the  a - t h  term, namely 

those with K - ~ ' ,  K - ~ ' + ~ ,  K - ~ ' + ~  , . . . K - ~ ,  K - ~  a s  f a c t o r s .  It i s  s u f f i c i e n t  t o  keep 

0 2 4  t h e  terms with the aon-negative powers K , K , I< , . . . i n  (119). 

. Verif ica t ion of statement of sec t ion  D about t h e  even p a r t s  i n  K of  the  singu- 

l a r  solut ions  i n  the  two d i f f e r e n t  representa t ions .  We consider f i r s t  the  p a r t  of 

(119) which i s  independent of c:  

s [E] i s  the  l a r g e s t  in teger  < -; e.g., f o r  s = 0 it i s  [g] = - 1, f o r  s = 1 o r  2 
2 

it i s  0, f o r  s = 3 o r  4 it i s  1 and so on. The f i r s t  s e r i e s  of (120) contains only 

negative powers of K ;  hence we omit it. It does not a l s o  contr ibute  t o  t h e  density.  

We invest igate  only the  second s e r i e s  of (420) and wri te  down i t s  f i r s t  four  terms 



A f t e r  t h e  omission of a l l  terms with negative powers of K i n  (121) these  four  terms 

should be equal t o  t h e  corresponding four  terms i n  the  development of t h a t  p a r t  of 

t h e  new solut ion (40) which i s  even i n  K and does not contain c .  This p a r t  i n  (40) is  

G.  Bauer (11) has derived th ree  f o k r r ~ a s  which may be used advantageously f o r  the  

comparison of equations (121) and (1.22): 

""G . ~ a u e r ,  Journal f ue r  d i e  reine und angewandte Mathematik, Berlin,  Vol. 56, 
p. 101 (1859). See a l s o  E. W. Hobson, t h e  Theory of Spherical  and E l l ipso ida l  
Harmonics, Cambridge Univers i ty  Press, 2nd pr int ing,  p. 49 (1955). 



( 125 

Applying t h e  recursion formula f o r  Legendre polynomials 

2 + these  formulas may be extended t o  a r b i t r a r y  powers pn a s  f a c t o r s  of (I-. ) o r  
1 

(1-i2)-q, f o r  instance t o  

(126) 

Therefore our comparison of the  coef f i c ien t s  of (121) and (122) could be continued 

t o  a r b i t r a r y  l a rge  powers of p. 

( a )  We s t a r t  with t h e  comparison of t h e  coef f i c ien t  of p - l  i n  t h e  equations 

(121) and (122). We obtain from (121) 



using t h e  formula (123). Hence we see t h a t  t h e  coef f i c ien t  of p-l i n  (121) i s  

i d e n t i c a l  with t h e  corresponding coef f i c ien t  i n  (122) a f t e r  t h e  omission of a l l  terms 

wi th  negative powers of K a s  f ac to rs .  

0 
( b )  We compare now t h e  corresponding coef f i c ien t  of p . We obtain from (121) 

using t h e  formula (125). After  t h e  omission of a l l  terms with negative powers of K 

t h e  c o e f f i c i e n t s  of p0 i n  (121) and (122) a r e  equal. 

( c )  We compare now t h e  correspvrlilfr~g coef f i c ien t s  of p. We obtain from (121) 

1 



using t h e  formulas (123) and (124). Af ter  omission of a l l  terms with negative powers 

of K t h e  c o e f f i c i e n t s  of p i n  (121) and (122) a r e  equal .  

3 
( d )  F ina l ly  we compare the  corresponding c o e f f i c i e n t s  of pL. We ob-Lairs f i - o m  

(121) 



using t h e  formulas (125) and (126). After  t h e  omission of a l l  terms wi th 'negat ive  

powers of K t h e  c o e f f i c i e n t s  of p2 i n  (121) and (122) a r e  equal. 
' 

We t u r n  now t o  t h e  p a r t  of (119) which has the  f a c t o r  c :  

= ( terms with negative powers of K only) + 

G. ~ a u e r ( ' ~ )  g ives  t h e  formula 

. 5  
l o g  (1+") = ( log  2) . -  1 + - p l ( v ) - -  p2(v) + - pj(,L) - + * * *  

1 . 2  
( 133 

2 . 3  3 . 4  

f  *om which one der ives  t h e  extensions 

( 1 2 ) ~ o c .  c i t  . 



and so on, , i f  one wants t o  proceed with f u r t h e r  s t eps  of t h e  comparison. The p a r t  of 

t h e  new s ingular  so lu t ion  (40), which i s  even i n  K and contains the  f a c t o r  c, i s  



Applying %he a i d  formulas (124), (126), (134-136) t o  (137b) one f i n d s  (132) i f  one 

omits t h e  negative powers of K i n  (132). This procedure could be continued t o  higher 

powers of p, but  never completed i n  t h i s  manner. I f  the re  e x i s t s  any jus t ice ,  how- 

ever, the following r e l a t i o n  between t h e  s ingular  solut ion i n  spher ical  harmonics 

(111) and t h e  new form (40) should hold: 

Omitting a l l  terms with negative powers of K i n  t h e  spher ical  harmonics solu- 

t ion ,  (111) and (40) become equal. 

Remark. Presumably the  same method could be applied t o  t h e  cy l indr ica l  case 

f o r  t h e  construction of a converging s ingular  solut ion from t h e  corresponding 

spher ica l  harmonics se r ies .  
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