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Introduction

Solving the Boltzﬁann equation for problems of neutron transport in media
with sources 6r boundaries by approximétions, one faceé the appearance of thé
transient solutions in addition to the asymptotic solutions. E. P. Wigner(B) sug-
gested thaf in plane geometfy fér infinitely high order of approximation, i.e.,
for the exact treatment, these functions form the set of solutions which belongs
to the spectrum of the Boltzmann operator. Tﬁe asymptotic solutions belong to ‘
the discrete part and the transients to the continuous part of the spectrum.

K. M. Case, "Aﬁnals of Physics", 9, 1-23 (1960), uttered this idea independently
and proved that these solutions form a complete set.

The analogoﬁs problem for sphericai geometry is still not‘solved. Similarly
to thé two different kinds of éolgtiéns of the equationAf. = Kzf, for which one
has regulaf and singular solutionsiat thé center of the sphere, one also has to
expect both kinds of solutions for the Bolfzmann equation. In part I of this
report the singular solﬁtions are derived. The Boltzmann equation is solved ih
section B by fwo steps; EEEEE;‘a partial differential equation with the deéired
density on the right hand side will be solved. In general, the partiél solution,
found by this way, will not yield the desired dehsity and one has to add a suit-
able solution of the homogeneouszdifferential‘eqpation to obtain the desired
density. This addition leads to a Sonine integral equation. Second, this inte-
gral equation has to be solved; it gives the right additional solution of the
homogeneous partial differential equation to fit the:desircd denaity. In sce-
tion C the uniqueness of the total solution is shown in the sense that a different
choice of the original parfial solution does. not influence the total solution.
There is a further interesting property of these solutiong: they do not involve a

requirement to satisfy a characteristic equation. This fact implies that all those
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terms in the total solution which contain the constant of multiplication ¢ as a
factor do not contribute to the density. Hence in section D it 1s shown that
the densities arising from fhe ofiginally chosen partial sdlution and.from its
~Sonine transform cancel one another. The total density is given by a third term
in the'total-solutiﬁn which originates from the desired density by the Sonine
procedure. Of course it is alséiindependent from the.choice of the fartial solu-
tion of the 1nhomogeneous partlal differential equatlon. The same fact can be
observed for the solutions in plane geometry which belong to the continuous spec-
trum by comparison of equations (86) and (87). This fact permits solutions which
avoid the satisfaction of a characteristic equa£ion.

In section E a partial solution containiﬁg an arbltrary pa%ameter is
givén and in section F three different specific partial solutions are considered.
The partial solution treated in section F1 has the attribute that its density is
easily calculablé and that the Sonine transformation can be performed aﬁalytically.
Hence it is used to writé down the toﬁal singular'solution of the Boltzmann equa-
tion in eduation (35). The ferm of the solution, which ié singﬁlarlat the center

of tho cphore, is

cos dg _ cos(p sinif)

dy o) sinaF

Of course it is invariant against a rotation of the coordinate system around the
center ol the sphere because dg = »p sind? is the invariant distance of a neutron
ray from the center of the sphere.

The partlal solution (under Fl), however, contains two terms which are solu-
‘tions of the homogeneous differential equation. They contain a log p-term and the
Sonine transform confains them with the opposite sign. Therefore they are4removed
from fhe total solution and we .are sure that the total solution does not contain a

singular term proportional to log p.

ay
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A second partial solution (under F2) does not coﬁtainﬁa log p-term from .»
the outset, but it contains still some presumably superfluous terms which satisfy
the homogeneous partial differential equation. "'To calculate the density belonging
to it is not easy and this solution is not persued further.

Finally, a third partial solution (under F3) is chosen, dropping-all
superfluous parts which satisfy the homogeneous. differential equation. The den-
sity belonging to it is the sum of the equations (49) and (53), which are given
in integral form. The total solution, shown in equation (57), would appear rather
lengthy if written down explicitly. Of course it has to be identical with the
solution under F1 in the form of equation (35) or (40) according to the uniqueness
theorem.

In part I1 the solutions of the Boltzmann equation in spherical geometry,
which aré regular at the center of tﬁe sphere, are considered. In section A
the regular solution which satisfies the characteristic equation is given in an
integral ‘form by equation (63). This case distinguishes itself as the only one
in this report for which the Sonine transform must not be applied;. the solution

(63) yields already the desired density (66) after the application of the charac-

teristic equation (5). One can, however, write this solution in the form of equa-

tion (67) in which the first term gives already the whole density and satisfies
the homogeneous differential equation (8),-whereas the second term gives the den-
sity zero and satisfies the inhomogeneous differential equation (59) with the
right hand side (62). This suggests to. construct regular solutions as the dif-
ference of the two singular solutions for k and -k. For instance, one may use
equation. (35) as the total solution for -k, réverse the sign of & in it and ﬁaké;
the difference of both. Then the application of Bessel's integral (36) to this

difference leads quickly to the regular solution (71). It has a-form identical
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with (67) with the only exception that % log LErr s replaced by £. This has
1-= 2
the meaning that the solution (71) yields the desired density 511 KP without the

o
requirement of fulfilling a characteristic equation. Furthermore, the integral form

(72) of this solution shows no hint which excludes its validity over the whole
complex k-plane. To show the invariance of all regular solutioné against a
rotation of the coordinate system around the center of the sphere, it is proved
in section C that they satisfy also the equation Af = R2f.

Finally, the regular solutions in spherical geometry are constructed in
section D by superposition of solutions in plane geometry which belong to
the same k. Of course, this can be done only with solutions which belong to
the discrete and continuous spectrum of the Boltzmann operator in plane geometry
and, for instance, not for complex k-values. The superposition of plane solu-
tions belonging to a.n—value.of the discrete spectrum yields immediately to
that regular solution in spherical geometry which has to fulfill the charac-
teristic equation. The solutions belonging to the continuum in plane geometry
are given in the symbolic form (83) or (85) of a series of a Cauchy principle
value and a Dirac é -function. The superposition of those snlutians to a soln-
Vtion in spherical geometry removes the symbolic form and one obtains for the
regular solution an ordinary function - see equation (100) - which is identical
with (71) obtained in section B as the difference of two singular spherical
solutions for « and -K.

‘No method is given to obtain the singular spherical. solutions.by super-
position of plane solutions. There is also no suggestion how one may find the
spherical solutions for those k-values which are different from the k's of the

spectrum in plane geometry, as a linear combination of solutions with k's be-

longing to it.  Hence a statement about the spectrum of the Boltzmann operator

in spherical geometry and its complete set of eigenfunctions is still missing.
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In.Part IIT the new solutions will be compared with their well-known
representations by a series of spherical harmonics. A simple proof is given
for'the equality of the two regular solutions. In the case of the singular
solutions, however, one has to cross outvall tefﬁs witﬁ negative powers.of :

k as factors in the divergent series of spherical harmonics. Then one obtains

a convergent series which is equal to the new singular solution.
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I. Solutions of .the Boltzmann Equation for Monoenergetic Neutron Transport

in Spherical Geometry which are Singular at the Center of the Sphere.

A. Preliminary remarks. The Boltzmann equation in spherical geometry has

the form
- - +1°
2f 1 - ps 2f ) c
W Pt - 2 [ rlew) w, (1)
20 P 2p 2 ,

"if scattering, absorption and multiplication are assumed to be isotropic. The

constant ¢ of multiplication
1 i 1
e = E(zwzf-za) = E(zs+w:f) = 1 - E(>:aL-w:f),

in which £ = Z5+Z, = I +Z,+ Zf is the total macroscopic cross section,

S

L, is the macroscopic cross_section for pure scattering, £, for capture, Iy for
fission, £, = I, + Zy for absorption by capture without and with fission
together. WV ié the average number of neutrons produced in one fission process.
p = Xr is the dimensionless measure of the distance from the center of the
sphere on a radiusvecpor T and Boo= cos‘j~is the cosine of the angle #‘between
the direction 3 of a neutron and the radiuévector 2. |
Solutions f (p,u) of the Boltzmann equation'will be called "regular" if
they are finite and "singular" if they are infinite at the center of the sphere.
Examples of solutions of both kinds are well known, for instance, in the

form of a spherical harmonics series(l) for the discrete spectrum of the Boltzmann

operator. Such solutions are

o) = T ¥y(0) By, - (2)

(Ls. Davison and J. B. Sykes, "Neutron Transport Theory", p. 146, Oxford Press,
1957; Alvin M. Weinberg and E. P. Wigner, "The Physical Theory of Neutron Chain
Reactors", p. 273, University of Chicago Press, 1958. :



with ‘ »
K 1
V,(p) = ;(2ﬂ+l) G,(- E) £,(-xkp)
and
¢ (-1 = 1, 6 (- = %) -Sw, ;) fore = 1,2
ot kT A I k £-1l'g e

For a regular solution one chooses for f, the functions

I 7 Tpua(-k0)
AN Kp) = 5 _“"‘"",———-Kp—'

and for a singular solution the functions

2 Kp1(xp)
f%I(-Kp) Y - . (%)

T ,\/TQ?

c and k are related by a characteristic equation

c 1 +kK
— log = 1 _ - (5)
2K 1l -x

with a pair of eigenvalues + k for every ¢ > 0, which represent the discrete

spectrum of the Boltzmann operator. The densities (or also the fluxes of velocity

v = 1) which belong to these solutions are proportionél to
+1
P(p) = ff(p,u) du =2yy(p) = «f (-kp),
-1
i.e.,
1 T Ii(-xp) sinh kp .
PH(p) = R\/=- -2 = for the "regular" solution
2 \/-Kp p
and
2 Ki(kp) e P
pll(p) = K\/: 2 = _ for the "singular" solution.
T \/kp P ‘
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A representation as an integral(e) is known at least for the regular solution of’
the discrete spectrum; a new one will be given here (equation 63).

B. The Sonine transformation. The problem will be attacked now by a dif-

ferent method to find other soluticns. To obtain singular solutions, one prescribes

the density P(p) = €7"P and solves the partial differential equation

p .
of 1 -2 3r o TKP
i+ ——— —+ f(pn) = = (6)
20 P du- ~ P

One finds a partial solution fp(p,u) of this equation and has to investigate

whether it is compatible with the condition:
+1
P (o) sffp(-p,u') du' should be £
-1

-Kp

p

In general, however, this will not be the case and one has to add the suitable

solution
fa(en) = e ™ dp\/1 - v3) (1)

of the homogeneous differential equation

' 2 . -

of 1 - pe af

u—H + T ZH, fH(p,u) = 0 (8)
p o) K :

to the original partial solution f p,u) of -the inhomogeneous differential equa-

o
tion to satisfy the equation of compatibility by the sum of both:

+1
- e kP
f [fp(p,u) + g7He ¢(p\/1 - ug)] du = .
. ) o
-1
Hence one has to find the function ¢ in the integral equation
+1 . Kb
- C - R . e- .
[e s B a - &2 p o) (9)
P
-1

[ .
c.
H. Stittgen, Beitraege zur Loesung von Neutronentransport - Problemen in kugel-
foermigen Medien, Diplomarbeit, Technische Hochschule Karlsruhe 1958 (unpublished).
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To have a common denominator of both terms on the right hand side of this equation

and to remember always that the partial solution f_ contains % as a factor, one

b
must introduce another abbreviation instead of Pp(p), namely,
+1
- 1 - &
pPp(p) S pkf fole,n') dut = - Dy () (10)
-1

into the second term on the right hand side of equation (9). Furthermore, the
function P(A/L - u°) is symmetric in respect to a change of the sign of p; this
fact permits writing the equation in the form

1 _
1 -R C
2\/\ cosh pp F(AVL - p2) dap = S Eé P-3 DP(D] . (11)

¢

Dp(p) ie proportional to p times the-density of the chosen partial solution

fp(p,u), a known function of p.
To solve the integral equation one puts p2 = s and chooses a new variable
of integration t = p2(1-p2). Then one has
1 at
o2 = P -t = s-t, pu =\[s-t du = - 2

~\/s(s-t)

and the limites of integration become

t = p2 = sforp = 0 and t = O forgu

1}
]

The integral equation (11) takes the Sonine(3) form

S
/‘cos:)_{st- © S0T) at - e-n\/; } % DL(VE). (12)
. \/ .

(3)N. Sonine, "Acta Mathematica”, 4, 171 (188k).
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Following Sonine, one multiplies this equation on both sides with the factor

_]:fuCOS\/u-Sds
Wo'\/xt_s .

and obtains

[l B 0] N ey ]
u-s g s -t

Sﬂ tE,S

An exchange of the order of integration on the right hand side of this equation

yields

fdt ¢(\/—{ :’S\/—H Cis/ll:tds - ‘o[dt pe/%),

. because

Jf - s cosh\/s . . (lh)‘
Yt ™Ju - s \/s

To release the reader from a study of Sonine's work, the proof of the last equa-

tion will be given here. One introduces a new variable of integration x by putting

s = t+ (u-t) x, ’ x = (s-t)/(u-t)
ds = (u-t} dx
u-s = WJﬁ -t \/i -x, Vs-t =Vu-tVx
with the new limits of integration x = O for s = tand x = 1 fors = u.

This transforms the integral on the left hand side of (14) into
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. 1 .
1 f cos(yVW1 - x) cosh(@x)
- ) dx
™% x(1-x)
with the abbreviation y = u - t. A series development of cos and cosh and
term-by-term integration yields
1

1 5 'M f(.l_x)ﬂ-‘% T
T Am=0 oy (em): Y

) (y/2)R8m) (v/2)%° s
- g_,r%:o('l)z(%) [(1&+m)1]2 = 1+S§l ,(51)2 ﬂgo(-l)Z(z) = 1

q.e.d. The following formulas were used:

[(2+3) [(me3) 1 (28-1)! (2u-1)!

['( g+m+1) ) 22( f-m-1) (z-l).‘. (m-l).' (£+m)!

1
7-L m_l-_
(l'X) 2 xV"2 ax =
0
and

i (-1)* <j) = &1-1)S.= 0.

£=0

The solution of the integral equation (lé) has now the form

T

u u ‘ '
1 cod\u - s
f¢(ﬁ) at = = fds L2 e - 2 Dp(VB) (15)
0 Y \fu - s
and the function Q itself will be given by differentiation in respect to u

T du —2- DP(-\/-s—ﬂ (16)

. 1 4 cos(yfu - s) A5
o - 2 e ) [
u-s :

+1

. c

with —2-DP(VS) = V;ffp s,u') du!
21 .

and u = p°(1l-p2).
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There are other forms of @ which are sometimes more convenient. After a partial
integration on the right hand side of equation (16), one can perform the differen-

tiation d/du:

‘U

a {[.2 sin(x/:)@'ws_' % Dp(\/g)>] ::o

35

EN R

+ 2"0[ sinf/u - s) Z:(G—Ns_ - % Dpé\/§)> ds}
1 a . l 1lim ¢
= 7_r —{251% <l's->O§Dp(\/§))

) g[gg sinh 9] (- S @)

2

+
g |
o

u

a f d /o -AVs
—[ sinffu - s) :1—s<e - E‘DP(\/ED ds.

The second term is zero, because e "9 - % Dp(-\/_ﬁ) is finite. The differentiation

in respect to u yields now

W - 3 [ g s )

; |
1 C - d -R c
+;Of sl -8 3 ok S p () as

The last term of this equation vanishes because 9—(6 _K\/;1 - % Dpé\/a)) is finite,
du

and one obtains a second form of §§
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o = C%/‘T[l-gnpmﬂ

T

™ AJu - s ds

+1
. c lim :
th =D (0 = f ) du'l.
wi > P( ) p._,o(p‘éj P( pyH") N)

In this kind of writing the first term shows a éingu_larity at the center of the

ifeier d of o] o

sphere, whereas theisecond term is regular there for the different specific partial

(0) will be zero for

solutions fo, which will be considered later. Furthermore, Dp

these fp‘s also.

Inserting u = p2(1-p2) = p2 sine'l}lwe have

oy _ L cos(pf1 - p2) e . 8
Bofr - 2) = = Y [l 2DP(Oﬂ . (18)

. 1 02(1'“2) cos(\m) a_ [e"{\/s_ - %o (\/g) ds.
f ds 2 P

LA o (1-p2) - s

One may perform the differentiation in the second term and may introduce another

variable of integration v by s = p2(l-p2) v2 to transform the upper limit of. the
integral into v = 1. Furthermore, one may introduce the dictance
dy = VL - w2 = p sindtof the "neutron-ray" from the center of the sphere as
an abbreviation. Then'one obtains
N (19)
+/ 2
1l os d agvl - _
Hoi-u2) = glay) = = 89 1 _ep o) - L [ay 080NL-VT) | orrdov, Cpug v)
R 2 ® T \i-v2 27 Fo
) o 0]
where
+1
D
S HOIEIEE s S EXCHOR T
2 2 dx dx ko P
+1 +1
= f(x,u") du' + x = fp(x,u') au’
P x

-1 -1
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fp(x,u') is the originally chosen partial solution fp(p,u), in which one has re-
placed p by x and p by p' (a variable of integration here). Hence the solution
f(s)(pzp) of the Boltzmann equation for monoenergetic neutron transport with iso-

tropic scattering and absorption or multiplication in an infinite medium in

spherical geometry, which is singular at the origin, is the sum of a partial solu-

tion fp(p,u) of the inhomogeneous partial differential equation (6) and of the

solution fy(p,u) of the homogeneous equation (8) containing the'Sonine transform"
)
¢(le - u2) given by equation (16) or (18) or (19), which corresponds to the

chosen partial solution fﬁ:

) (o) = f(mu) + e GAf- B). (20)

The choice of the original partial solution fp(p,u) is restricted by the requirement

that 1)

. +1-

c lim

=D (0) = - f d

2 Dol ) 00 {%jﬁ plesn) “]

. Ji o _

£ Db '(d.v) diverges at v = 1 at most as - with @ < =
27p 04 < T T (v T T
~and has no pole in the remaining interval 0= v <1l to guarantee the convergence

is finite, and 2)

of the integral in equation (19). . .
It is sometimes convenient to split the term € MP @(pV1 - u2) into its
two parts: the first, which is produced by the Sonine transformation from the

originally chosen partial solution fp(p,u)

So(f.) = - Lg-me {é.D (0) cos(a/l-uf) - oe(i-QE)d% Cosvpé(l-“e) ~ s 4 (S D @/;i>
0 P T 2 b p' 1 p_z [ pg(l_uz) - s as 2 P

1. c cos 4 cos(dVl - v8) ¢
- gy 1 == 20 0
= -Ze — D.(0) + v — = Dy(dnv) (21)
™ 2 P do V1 - ve 2 PO ’
o - )
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and the second, which is produced by the Sonine transformation of the required
density 1 e~*p
p
2( 2)

‘ p=(1-un NI
- 1 - cos(Af1 - p2 1- - a -
e HP R(p/1 - 12) = Lebe OS(D. ue) | de SoNe=(1-u%) - s LBV
T V1 - pe Vo?(1-48) - s ds

0
- L g-upjeos do Kfl gy 205V - v3)  agu (22)
™ dg . V-2
With this notation the singular solution may be written
(&) (p,1) = £(pm) + 8(e,) + & MO R(IL - 12). (23)

C. The effect of the Sonine—transformation.upon solutions of the homogeneous

partial differential equation (8). Uniqueness of the solution. If one has taken

fortunately that solution F(S)(p,u) of the inhomogeneous partial differential
equation (6) which gives the required density, no need of an application of the
Sonine transformation would arise at all. Every other partial solution fp(p,u)

of the inhomogeneous equation will differ from F(s)(p,u) by a solution
trle,n) = e ™M y(a1 - uR) (72)

of the homogeneous equation (8). It will be shown, theorem I, that the Sonine

transform of such a function is just the opposite of itself

so(fy) = - fy. | (24)

Proof. The Sonine transformation applied to fy in the form of equation (16) con-
tains the double integral
.1 a . cosYu - s -
O = Ba) e

T du
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in which the expression in curly brackets replaces the -corresponding expression in
equation (16) and @y indicates that @y is the transform of fy alone. The Sonine

transform of fy will be

So(ty) = € " gutv) (25)
_where u = p°(1-p2). To -evaluate @u(Yfa) one changes first the interval of inte-

gration over L' in 0 < < 1 this yields for fH of equation (7a)

¢M) = -2 4 dscom-s\/— cosh(u V-)W(V (L -u%) du'.

H

™ &u | Vu - s

One introduces a new variable of integration t = s(1-p'2), p.'\/; = s - t,
du' = - dt/(2vs(s-t)) with the new limits t = s for u'. = Oand t = O for
W' = 1. Then the integral becomes

B/a)

u
f qs SoSVu - s cos\/u - s’ \/; cosh s - t (\/’
T du Vu-s ‘\/; A

L éos\’u - s coshys - t
dt \y(\/ [ d
-_;_r\/u - s s -t

du

- v = Ty

remembering that the last integral over s is 1 by equation (14). After inserticn

of this result into equation (25) one obtains the Sonine transform of fy

Solfyg) = - e Myl - 18) = - fylp,u),

which is in fact the opposite of fH( p,u) itself.

This theorem provides the uniqueness of the solution of the Boltzmann equa=
tion, if a definite density’is given. Two differént, partial solutions, fpl(p,u),

and f'pz( p,) of the inhomogeneous differential equation (6), differ one from
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another just by a solution fy(p,pn) of the homogeneous equation. Hence, if one
writes down that part of the total solution {23) of the Boltzmann equation which

depends on the choice of the original partial solution fp, namely,
fpley) + 8o(£,),

one recognizes that it is independent of this choice: If fpn(p,u) = fpl(p,p) +

fH(p,u) is a second partial solution, the expression

fp2(p,u) + Bo(fp,) = f.pl(p,u-) + :H(p,u) + So(fm) + So(fH)

fp, (oyn) + 8o(£y,)

will be unchanged since Sg(fy) = - fy. Hence the solution f(s)(p,u) is unique.
If F(S)(p,p), which yields fortunately the right density, contains .already
a term fy, which satisfies the homogeneous differential equation (8), in addition

to another term, Fés)(p,u), which satisfies the inhomogeneous equation (6)

F(S)(p,u) = 'Fés)(p,u) + Ty, ' ' (26)

one may apply the Sonine procedure to find fHO. One considers to this aim
F(s)(p,p) as a parlial solution f, and applies the Sonine procedure to obtain the

total solution

() (o) = F()(p,u) + 8o(F(3)) + & HP R(AL - 12)

FéS)(pJH) + fy, +~SO(FSS)) f,so(fﬁo) + € MPR(P/1 - p?)
which is by equation (24)

- 55 (o) + 5p(sLS)) + €7 R(A - 12).
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Because F(S)(p,u) of equation (26) is in this case already the right solution, we

have f(s)(p,u) = F(s)(p,u), and by comparison with equation (26)
S So(Fés)) + e PP R(B/L - 2).

If fy, would be zero fortunately, one obtains the relation

e P Rr(pJ2 - 2) - - so(Fés))-

D. Statement about the density. The method of obtaining this solution does

not contain aﬁy requirement to satisfy a chéracteristic‘equation. This fact must have

the consequence that the density of this part of the solution f(s)(p,p), which

containg ¢ as a factor, vanishes, whereas the remaining part gives the whole den-

sity. The partial solution-fp(p,u) of the inhomogeneous equation (6) is propor-

tional to ¢ and the quantities % DP(O) and £ Dp(VE), depending on fj, by the Sonine
: o2 :

transformation, also contain c as a factor. Hence one has Theorem II: the re-

maining part R(V1 - p?) of #(AV1 - u2) in the form of equation (22)

Ly _ L cos(d1 -u2) 1 PP(IE) . codfoP(14°) - s (a4
R(V1 - pe) = = — + = ds = - — — P
] pVL - u& T . Vpg(l-pd) - s ds .
0
should give thé whole density P(s)(p) of the total singular solution f(s)(p,p),
i.e.,

+1
J e~MP R(p/1 - u°) ap

-1

L 02(1-42) ,

- 2(1-u2) -

_ 2/ 4 cosh u cos(pyl - p°) +j 4g COSVPE(1-p2) - s (C_1_ e—n‘\/s—)
0 TV '.“? 0 N2 (1-p2) - s ds

should be equal to
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+1
p(s)(p) =/ f(s)(p,u) a = 2

p

Proof. (a) The first term of the integral yields the singularity of the density

at the center

o
1
2[ dp cosh pyp —2¥— 2 7 cos(le - u2) - p/'+t cosh\s - t codfu - s

o i - Vice s

N E/u cos\u - s coshys -tds - l
£ TT\/u-s \/s-t p

o

alter Lransformation of the variable of integration p into a new variable s by

o= L \fs - t, du = L1 _d8  with the introduction of the notation
P 2p s - t :
u = s+ p2(1-p2) = 2 + t and use of equation (1k).

(b) The second term of the integral gives the nonsingular part of the
density. One introduces u = pe(l-p.e) as a new variable of integration instead
of u, then one has p = l\/p2 -u G =. - I _du and the limits of inte-

P 20 V2 - u
gration over p will be
u = peforpy = O and u = O forp = 1.

Hence it follows that

1 p2(1-p8) . T
1- - S d -
2/ dp cosh up/ ds.cos (1 }rl ) 5 (— e K s)
0 0 (aV/s] (l-ud) -5 ds
2

1 p ay SO8HVRT - u costh2 u ds cosfu - s <_d_ oF s)
pjo Vo2 - u o mu - s \ds

2

o)
;[ d (e"‘r) cosh\/p - u cosVu - s
po- ] - u Tr\/tT-s
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with the same exchange of the order of integration which was applied to the
double integral (13). The last integral over u from s to p° is equal to 1 accord-

ing to equation (14). Therefore the integration over ds yields

_ 1 e—Kf's' s=p2 - 1 (e-np_l) )

P P
s=0

This is indeed non-singular at the origin. If one adds now the two contributions

(a) and (b) one obtains the total contribution of the R(HVL - p2)-part of @(V1- u2)

to the density

+1
j e M R(IL - ud) aw - €. (27)

21 0
This is in fact the whole density P(s)(p) belonging to the singular solution
f(s)(p,u). If one remembers the representation (23) of f(s)(p,u), one recognizes
that the density belonging to

.fp(p,u) + 8o(fp)

t

must vanish. The following Theorem III will be proved: the denéity which belbngs '

to a partial solution fp(p,u) of the inhomogeneous differential equation is the

opposite of the density which belongs to its Sonine transform

+1 ' +1
[ oo an = - [ soley) e
=1 ’ -l

Proof. Consider the second integral using the form (17) of the Sonine transform

+1 ' +

L
c 1 ' -up d .u cos\u - s
- So(fy) du = = = du € — | ds —————— Dy(V¥8)
OM'p o T au P
< . 1 - Vu - s
and remember that u = p2(L-u2), pu = Vp2 - u, du = - du/(2p/p° - u) and that
)

u = p2 fory = 0, uw = O forpy = 1. Then the integral becomes



OR\
[p]
o]
0
:3'
1
o
S:I
QJIQJ
o
c
1
0
L]

and by partial integration in the interior of the second integral

¢ PP c;osh-V_-u a ‘u d
- T—Tgé du ———p—g—p_—u S[mnva_?D (V_):, -g ds sinju - s (; D 'fs)

2 . .
¢ [f coshVp® - u {cos\u a F ) a
— du DP(O) + —/ ds simu - 5 — Dp(-ﬁ)
o Jy Vo2 - u [ar T au s ds

O) cosh p2 - u cosYu
f \/ - u ™ ‘

+

2 .
o A2 u - )
c ay S08BVe u f14py [Slnj/u PR (-\/—)] " M (_ Dp(-\/'s-)‘ as\ .
™ o Qpe -u s-) ds b 2\lu - s ds

The integral in the first term is 1 according to equation (14); the limit
of the square brackets expression in the second term is supposed to be zero along
the interval 0= u= p2. Then the integral becomes

2
p= Vol u ‘\/ -
c c du coshvp u cosVu s |d D (\/—) ds

= ——DP(O) + —

20 20Jg Vo2 - u mu - s |ds

e (0) o PP [d (_\/_J costh u cos\/u - s
= — D (0) + — ds |— D S du.
2p P 2p o ds P fs \/ -u ™

The last integral over u is 1 again, and the whole expression becomes

2

e =P c
- g—pnp<o>+—[ (W] - = (0)

2
s=0 P
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which is according to the definition (10) of Dp(p)A

+1
= fp(p,u) du q.e.d.
e ‘

Theorem III is a counterpart to Theorem II and provides an independent check of
the statement about the density.

E. General solution of the partial differential equation (6). The general

solution of the inhomogeneous partial differential equation
éf 1- 2 ar e pte
e 2 Tovr(pn) = e

of e (6)
op p o on 2 p

will be derived by the well-known method of Cauchy: the'equivalgnt system of

differential equations ies

dp- _ du aft
u ©oL-pf _f+g“e'*‘p'
. 2 o
From the first equation one obtains PVl - u¢ = Cj (a constant). This equation

may be used to eliminate p from the second equation, which goes over into a linear

differential equation of Tirst order

ar 'y c e"‘cl/VE - B

4+ - - f = -_—
w2 1R
Its solution is
L ’ -
f = exp(- ——EAE——) E:/’ exﬁ (V-K) Cl . i + Co .exp —E£59—~
1 - u2 2 f L - v= 1 -2 V1 ug
1

Cos Mps M are constants.
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Replacing C; now by le -Lu2 one obtains for the constant C,

Cr = exp|———m—

wall -2 u . _ 2
_ BAVL - p e“"f-ifexp (VK)pVi m av
. .

fv2

M1

The general solution of the partial differential equation is given by

Co- = W(Cq)

With‘an arbitrary function W. This yields

Vi - v2. 1 -

c
Vi - 2 2

B 0 S7hL

Vl - v2'

J 2 1 Ve — Y
tlp,u) = e *PUw(p\1 - uo) exp<“op\/l'u)+ f exp (v-x) pV1 p,)’ a

1- V2

The first term in the curly bracket with inclusion of the exp-factor is still an

arbitrary function of @/l - u2; so we denote the whole term by ¢(PV1 - @), Hence

the general solution of equation (&) is

Vi - v2 1 -

Cf(p,u) = 'e‘“"{qs(p'\/l - u2) + gf exp (v-x) V1 - @ G 2}.
2 v

M
One may ‘transform the partial solution, which occurs in it, nemely:

"
_ S ,-up (v-k) pV1L - p2 av

Ctplem) = = g TH exp | =

2 V-2 1.2

il

into a more convenient form, putting

o (1+p) s2 - (1-4) _ \/ -y l+v
= - or S = 2

(1) s° + (1-p) l+p 1-v

dv ds Cp(v-x)V1 - p2 p

_— = and
1 - ve s \/l - V2~ 2

—[(1-K)(1+u) 6 - (Ler)(1-p) %]
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With this transformation of the variable of integration the partial ‘'solution takes

the form
£,(pn) = f(ul)(p,u) = % e HP. / e%[(l"‘)(,lﬂ‘) s - (1) (1) E] Z_S.‘ (?8)
E:E N T :
L+p 1y

\

Different partial solutions can be chosen by giving py different values. Ky is

an arbitrary constant; one can prove, however, that p; could also be an arbitrary

funetion of le - “2;

F. .épegific partidl golutionso.

1. Lettus consider first a partial solufion, for which the density can be
calculated easily. One obtains it putting p; = -1 in equation (28). Tt will
‘turn out that this partial solution contains a term log p, which actually will not
occur in the total solution. In fact, this.term appears in the combination
Vi - p?; hence it is reproduced by the Sonine procedure with the opposite sign
and cancels out of,tﬁé total solution f(s)(p,u). We have no logarithmic singularity

at the center of the sphere. But the analysis is simpler for this partial solution

than for-any other choice and’thp'efficienconf'the Theorem I can beishown easily

also.
(a) Taking'p; = - 1 one obtains the partial solution of equation (6)
1 1
£y(pu) = 3 e'“Fy e&[(l—w)(lm) 6.~ (1+)(1-n) 5] a5 . (29)
. O s )

It is well known that an integral of this type i$ pelated to a series of Bessel-
functions. The development of the integrand in such a series would be invalid at
the lower limit s = O of the integral. Therefore one splits the path of inte-

gration in two parts. The first part froms = O to s = B with



B = (30)
. l+p 1 -x .
can be integrated as it stands:
B ' 1
2e™[ pflamam) s - (e 5 s
2 o s
1 .
- he 1
=%e”pfe§(w ¥ av with s = Bw
5 W
oo
- g e-up/ e-h sinh t at with w = e't
2
0
- = ~Hp
= e Soo(h).
h = pAf(1-k2)(1-p2) is an abbreviation, Soo(h) is the notation for a Lommelfunction

defined in "Higher Transcendental Functions".(u)
In the second part of the integral one develops the integrand in a series

of Besselfunctions(S), and integrates term by term:

1 1
c e-upf o 8- s - (1)) 3] as
B S
1
n, 1L
_ S o Be§(w-w)ﬂ
1 W
5 = () | | '
¢ -pp dw -1 ' :
= = S JI~(n 2 J.(n) | v
2 ¢ fw olt) + & nlh) T
1

(3)a. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, "Higher Transcendental
Functions", II, p..40 formula (25), and p. 84 formula (50), New York (1955).

(5);bid, p. 7 formula (25).
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. 1
Ry (h) log w + T 1y (n) §n~-'£l£li P
c - , =Y 1 % Jop+1(h)
= = el g (n) 1 + 2 s |=-(p)] -2 ¥ =0
: J(h) Log B nﬂnn()[ﬁn o) -2 F

According to page 64, formula (7) of "Higher Transcendental Functions', }Q;(“) the

last series represents another Lommelfunction

2 Jop41(h)
SOO(h) = 2 2 Ten+lr )
n=0 2p + 1

and the difference of both Lommelfunctions

Soolh) = sp(h) = - g Yo(h)

is just (- g) times the Besselfunction of second kind Yqu(h) [called No(h) by
Jahnke-Emde(6)]. By this remark one gets rid of the Lommelfunctions in the repre-

sentation of the partial solution which will be

frylesm) = é e P { gYO(h') - Jo(h) log B + E i Jn(h)[-ﬁl;l- - (-6)“} (31)

with h = pV(l_K’e)(l_HE) and B =‘fm .
’ 1+ 1 -«

(v) We calculate now the density P(_l)(p) which belongs to this partial

solution
+1 +1 1 o 1
P(_l)(p) = / f(_l)(p,u)‘du = g—f K e‘l-lpj e §[(l-n)(.l+u) s - (l’+K)(l'|-l) g:I?
. . 0

-1 -1

(éjJahnke-Emde, "Tafeln hoeherer Funktionen", 5th edition, p. 131 (1952).
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After an exchange of the order of integration one performs first. the integration

over p; this yields

1 -(1-k)p(1-s —(1+k)prss
e ko (e ( )o( ) - 1) - (e ( K)D—s—_l)
Piopyle) = = e™P | ds
o 5 S (1s) Lk < (1e0) )
On replaces in the first part of the integrand the variable of integration s by
s = (1-k) p - x , in the second part by s = -—bi¥8) . Then one obtains
(1-x) p (1+k) p + x
@
-x
. - -1 dx
Po1)(p) = - S e7*P j € — =
p (1-x)p 2k + 3 X
* . © N (L+k)p
c - - - )
=—"€Kp dxe —enpfdxe +er/ 9(-
2kp X . b4 X
(1+x)p (1°k)p (1-x)p
' | (32)
= = e E( [l-HQ] p) - e P Eq( [Z_L-bc] o) +e®P gt el g
2xp 1l -x
-where E,(x) is defined by (see reference (4), page 143)
1o
. -u ) y S i L
Ei(x) = £ qu = -[(Y+logx] +ex2h-_'..,(‘33)
' u ' m=1
x
The expression P(_l)(p) shows that the chosen partial solution f(_l)(p;u) does
) -Kp ’
not give -the desired density" L on account-of the added two terms which contain
. p

the "exponential-integral". If both these terms would be absent, the third term
would give the desired result under the assumption of the characteristic equation
for the discrete spectrum

c 1+ x

2K 1 -x
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(¢) We shall apply now the Sonine transformation. We show first that

¢

D(_l)(o) = 0, using the series (33) for E;(x):
. . . h_(1+k)™ o™
o)+ oyt - g et e § B
‘ - @ p (1-k)™ o
+[J' + Log(l1-4f p),-,e-np -ett - L - !

+ C_Kp log Ltk K}
1l -«

2 ngl(aee - 1] ]

= S {2 [}H log p + log(l+n)] sinh kp +&7P X
2K . m=1 m!
This expression vanished for p — O: D(_l)(o) = 0.

Furthermore, one needs the derivative of D( _l)(p) in the Sonine transform

(19)
gD('_l)(o) = % e"P E,([1+k]p) + e ™*P E1([1-x]p) - €7"P 1log l'f : }
. co (14 )T S )m| m
- % -2 [&,4_ ].og(l+K) D] cosh kp + € -pmg'l hm[(l“") m‘: (l ) J P
(o4

D('_l)(dov») is regular in the interval O <= v = 1 and the series development shows

|

that it diverges like--c¢ log v for v . 0. The Sonine .transformation allows, how-

ever, a much stronger divergence like % with @ <1l. This ensures. the convergence

of the integral and one obtains from equation (19)

. o 1
: g kdgv '
solf(.1)) = - %rr— e -upj dv cos(d<l)\/l : ) . do E ([1+5] dgv) | -
o} Vi - v 3

-kdpVv 1
+e 0 [El( -9 dgv) - log n * :]
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with dy = ML - u2 =. psin19‘.
Hence .the total solution f(s)(p,g)Abf;the Boltzmann' equation (1), which is
1 e o
singular at 9 = 0 and has the density;/’ f(s)(p,p) du = € , may be repre-
P .

-1
sented by .

208 (o,0) = 1 py(mm) + So(r(.1)) + @ HP BRI - )

SeHe| - gYo(h) - J(n) log B + z % (n) [;}{ _ (-B)HJ

1 .
cos(d¥1 - s9) “
R e ML

0]

.,

re 'KdOS[El( [-x) d4gs) - log —u}

1 -x

. 1, )
1 -upf cos dg cos(dVl - s2) ~kdgs -
vLeMP) — 0« — ¢ ds (35)
L do 0 WVl - s
with dy = oVl - u2 (distance of the neutron ray from the origin)
h = pV(l-uz)(l-Ke) = dgVl - k2.
B = L' -p 1l+=x .

1l +p 1 -«

/K/< 1.
This is the desired solution; one sees, however, that in the originally

chosen partial solution f(_l)(p,u) the terms

T 1+ &
- = Ya(h) - Jn(n) 10\/_—
2 ° 0 gl-n

are functions of the variables le - p2 alone and satisfy the homogeneous partial

differential: equation (8). They are of the type fg. Hence the Sonine transform
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will contain these terms with the negative sign. They are superflucus in principle,
but by removing them oné obtains a rather lengthy expression into the Sonine
transform. We shall be contented hére with the removal of the -log p-téerm-which

is easily recognized in the Sonine transform. Using the seriesb development of

Yo(h)
-Tyg(n) = - (p+ log D) Jg(n) + Z____hm<>
2 ° X 2 0 m=1 (m)e 5
Withth = l+—$—+%+ +% mzl
and f = iﬁﬁg(hm-log m). - 0.577216 ...
one finds

- TET Yo(h) - Jo(h)'log\-/li t : = - D) + l‘og dy + log(”l+|c) - log 2_] Jo(h)

oze (l)mhm <>2m

m=1 (m')2

With Bessel's integrallT)

, Jo(h) =

EJ cos(daVL - s°)
- ds
™ Vi - 2

cosh Kaos ' (36)

this expression may be written

— Yo(h) - Jo(h) Log) /%—f—z

1 f
2 cos(dVl - s2) ‘
__f ds -\/—5 [- J - log 4y - log(1l+k) + log 2] cosh kdys
1. 2 - 0. ik

m
O N .
LT Cmy mE 7
m=1 (m;)E o , -

(Mg. n. Watson, "A Treatise on the Theory of Bessel Functions", p. 21 equation (1),
Cambridge University Press (1948).
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Furthermore, using the series development (33) of Ej(x) to express the E, -functions

in the Sonine transform, one finds.

o1 -~/ = ’
lj ds CO?;:O ! ; ° ){ Kdos E ( [l+n] dos) + e Kdos {El ([a- K] dos) - log i ks K} §
0 -8 .

- K

2} cos(agll - @) ‘
j ds _\/____2 [a)+ log dgy + log(l+k) + log s] cosh kdgs
1 -5 . -

e s ¥
m=1

'
e

(38)

m.

oo hml:(lﬂx‘)m + (l-h‘.)m] ag s" }

The log p-part is contained in log do in both expressions but with the opposite
sign. The log p-terms are omitted at all from the total solution, if one writes

the corresponding part of the solution

£ (o) = % eHo (_ g. Yo(h) - Jo(h) 1og\ /;L . :

1 .
1 cos(do\/l - §9) .
- T_rfo ds N {e dos E ( [@+x] dgs)

e ~#dps [El( -4 dgs) - log u]}

1l -«

<
2 m: m )2

@z

2 . cos(doV1 - 52) .
ds (log 2s) cosh kdys
V1 - 82

) ;Ejl . COS(da/l - 52) e‘dOS ?Z'O hm[(l-f-n)m + (l-K)m} dron s
0

1 - 82 m=1 Iﬂ:
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(s)

I

first term of the three terms above will be contained in the other two terms with

The removal of superfluous terms occuring in f. ’(p,u) is not complete because the

the opposite sién.. But fgs)(p,u) contains now only positive powers of p. The

',totalbsolution for k¥ < 1 may be represented
s s s - 2
$ o) = 20 + 2800 + @ PP R(A - D) ()
with fg:s)(p,p.) in the form (39) and with

(o) = Se ’“p{Jo<h> tog it F B fon (g (1)

and finally

O R - WD) = vé"“p {——&d f cos(AgV1 - o) o -ndo g } (42)
- o |

dg YL - s

The notations d_, h, B have the meaning:

0
= 5Vl - ue, h = dﬁVl - K s B 1/ n u i t z . The singularity of f(s)(p,u)
at the center of‘the sphere p = 0 is given by

cos dg - 1 cos(le - )

1
; do T §V57t_;?
No othgr singular term does occur with impopfance ét p = 0.
2. There exists a way to find another partial solution which does not have
a log p-term. One obtaiﬁ; it by insertion of « forlui into the lowér limit of the
integral (28). It is for |k|<1

1 : .
fo(om) - %e-up/‘eg[(l—m)(lﬂi) s - (1) (1¢) 3] 4o (298)

5

e—uo{ J (h) log B + 21 % [B_ - (-B) ]‘- soo(h)} .

T
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This solution does not contain a log p-term from the outset because -the Lommel-
function soo(z),:which is proportional [for the indices (0,0)] to the Weber func-
tionEEo(z) - see.reference (L) page 42 formula (83), page 40 formula (70), and

page 36 formula (37):

. _ , z . . ‘ oz
soo(2) = - ZEq(2) = g[Yo(z).[ Jolz) dz - Jo(z')f Yo (2) dzJ
' ’ ) 0 ) 0
(—l)n z2n+l
- n=0 [1:3:5 ... (2n+1)] 2
is a power series around z = O. The log p-term in the partial solution f(,l)(p,p)
under 1(a) was cauéed just by the lower limit s = O of the iﬁtggral (29). The

disadvantage of the partial solution fy y(p,u) on the other hand is that the den-
SIEevTer ags (k)\Ps

sity is not more easily calculable. Furthermore, it also contains superfluous

terms which depend on V1 - u2 only, nemely,

' 1+ g
- Jo(h) 1og‘\/l £ - Soo(h).
- K

These would be reproduced with the opposite sign by the Sonine transformation. Of

course, if this partial solution would give the desired density fortunately, one
would not have to apply the Sonine transformation at all. It remains a problem to
be _solved which selection of the lower limit p; yields the desired density without

the application of the Sonine transformation.
3. Applying the Sonine transformation, it seems reasonatle to relate the
partial solution not more to the integral (28) and a special choice of M1, but fo:

.

take Jjust the function

fﬁ)(p,u) = %‘e-up Jo(h) 1og) /:]:L_:_‘_i £ L Jnr(lh) EH ) (-B)n] (1)
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for ‘the original partial solution. The- other terms of £(s)(p,p) in equation (k0)
are solutions of the homogeneous partial differential equation because they have
the form fH(p,u) of equation (7). Hence fgf)(p;u) is indeed a partial solution
of the inhomogeneous differential equation (6). An advantage 6f this solution is

that its region of validity can be extended to the whole complex x-plane.

As g check, whiéh is independent of all calculations‘done before, one may

verify that f(s)(p,p) is a solution of equation (6). For this check remember

1+ - K
+
h _° B ) 35—_5, alog—}i'l'u—___l’
s _— & = —_— = .
Pl P o 1 -2 ou - du 1-p?
Then the derivatives involved in the equatlon will be ( §L
h
(s)
of ! co J .
i . . pf(;) + 2 ke 1o‘g\l i “)J (n) + = - (-p)7
dp 2 P 1-w n=l g
aris) h e\, X 5 (n ‘
2 P 1ozl S
J~(h @ J (h 1
, Jo(h) % a0 (1,
1 -2 % 2\p®

Insertion of these expressions into the left hand side of equation (6) yields

r{s) _ w2 als) ~ 0
: P &I . 1-p i1 . f(s) - 1+ 2+ 1 f(s)
II W 1I

3p P du
¢ L -up ﬁ}_l+l'u2(_'uh} Yg
e S A
|
-up
3 S FdM+ §(§+(sw) (ﬂ



The last term should be equal to = 5 . Hence it remains to show that

3,(h) + ;—n (-8)°] 5 (n) = )P (43)

n=1 n

Verification: Put x = l-kp, y = p-x and consequently B \/ e and h=op Vx -y .

Then the left hand side of the equatlon will take the form

J
o

oV xe‘y) +O§ mn/e + (-1)° ﬂn/g J (p\/xe'yz)

n=1 ({*7Y x+y n
(-1) I En+2£ 1
o (_1)4 2L ;D [lxay n/a “/EJ__Elfigl____ , By
i ,ego (en)? (g) (%" + ngl[x-y + (-1)" x+y) 2i(om) (X -y .
£=0

A change of the indices of summation to S = n + 2¢, n = S - 24 yields

3]

S
oo S-4 ) S-2 £
-y e Z(S)(l—%(s‘szz)[l+3{- B R R 1+£]
s=0 S5:2° 40 y vyl v
. E for S even-
with 2
21 §é£ for S odd
cactor 1 - L & s e
The factor 1 - > S 54 ensures that the term £ = 5 occurs-only for even S and
’ ' b . . '

only half as often as the other process; so the sum over § is just a binominal

series



_ _}c_jjo_ (€22} =a_°y=e°(”"“) . q.€e.d.
=0

To recognize that this partial solution islgenerally valid in fhe whole complex

k-plane one may trapsform the series, contained in it, into an integral by ap-

(8)

plication of the formula

1
- Ygh f : - n-l
I (2) = 57— Io(Zt) t(1 - %)  dt. (4k)
2" T(n - 1) T, ,
It yields
P ) [éﬁ - (-a)n}
n=1
1
S 1 n n-1
= X _'('B)JIJ(ht)t(l-te)dt
n=l 2n-l ; [Bn o 0 '

1 o0 | | n | "
: | SIS Y [L<1-t2>] -["h%(l'te)]

1 - t2 n=1 2p
1 tat g (nt) }21_6 (1-t2)  ~HB(1-42)
=2 Jy — €& =€ '
)y 1-dE L .-

" ¢ R X
[ & awhine® -e f

0]

8) ' i ' ’
( G. Petiau, "La Théorie des Fonctions de Bessel, Paris 1955, p. 21, formula (115).
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1 Pli-)(1+p)v . _g(l+n)(l-u)v

=j ‘—1{\’7 Jo(th—v) e? -e
0

h
remembering g = p(1l-k){(1+p) and mB = p(l+x)(1-p). The - sign between the ex-
ponentials ensures the convergence of the integral at v = O; this integral is
convergent in the whole complex k-plane. Inserting it into equation (41), the

(s)

partial solution fyp (p,u) becomes

(s) c -up o\ [l
£ (p,u) =3 ¢ Jo(h) log -

1 O(1-¢) (L+p)v
l:ee( ) (L+u)

-%(l+n)(l-u)V]

+I d_vJO(h'\/l-v) - (45)
v

0
The density which belongs to this partial solution

+1 :

p(3)(p) = [ £(s) (p,u)an = B,(p) + P (p) | (16)
1T i1 b

-1

consists of the following two terms:
+1 ,
=¢ “Hp 2\ /1A

(a) P (p) 5 f e Jo(h) Log T du (47)

1 :
= -2 . % -f (sinh up)JO <p V(l-uz)(l-lﬂg)) lOg\/%ﬁ dp.
0 :

2

The last expression shows that Pa(p) depends on k= and is negative for positive p.

One may represent the log-term by
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and one obtains from the first equation

oe] +1
P(p) =-¢ f e f au [e'“(p*"). - g Hle V)J 7 (pV(1-+2)(1-47))
0 -1

The application of an aid formula to the second integration

o t . 5 sinh .te-(l-xe)pe
e ™ I (pV(1-x7)(1-u2) du =2 5 —— (48)
Ve ~(1-k=)0"
=1
with t = p + v respectively t = p - v, yields
m T —— . B
Pa(p) = -~ & dv -V SinthV2+29V+K202 _ sinhW/v?-Epvmep2 (49)
2 VV2+2DV + I{202 - ,VE._-——_EOV+K2p2 .

The integrand vanishes at the upper 1limit v = o proportional to ig and the
. . . v
expression in the curly brackets contains a factor v, which counterbalances the
corresponding factor v in the denominator of the integrand. The integral exists

for all values of k and p.

Proof of the aid formula (48):

+1
I-= je;“t 3, (pV(1-62)(1-42) au
N |

1
2n )/ 24
b= (1) |p _2)4 on(q,2y 4
enz-Wu:)?(’c‘) (o) | rnyes
10

0

1
=2[coshth(pV1nﬁ)(1u)du
0
Q
X
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1 p r 1
1 gn + 2) I
With _j' pE(1-u8) ap = > 3
0 Rn+£+§)

p2f+l(on 1) 1(n+e)! £!
(n-1)!(2n+28+1) !

the integral I will become

@ )/ 2 2n 24
- -x2 AREE?
IT<2 7 (-1)7(1-k2)"(n+2)! t°"p
n, £=0 n! g1 (on+24+1)!

and @ change of the indices of summation to S = n + £ and £ yields

I-2 % 425 5 (s) (-1)%(1-x2)% (s)gg

—_
oo (8+1)1 400 ¢

' : ' : 28
2s S Evé_———___7§—7§
2 %0 S [1 - (1_K2) (%)2] =D %O 2. (1-k)p ]
S

S=0 (28+1)! =0 (25+1)!

,-\/2 2y 2
4 - (1-
= 2 sinh VY (1% )p q.e.d.

V2 - (1-62)0°

For t = p we have simply

+1 ‘ : |
f e ™, (o\/(l-me)(l-;@)) au - o slahisp (48a)
-1

o

The first part Pa(p) of the density may be represented by some power series of p
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2
Pa(p) = - 2¢p %o ("l)m(l-K )m(2,2+2n+l)1(z+m+n+l)1 92(3+m) (50)

£,myn=0  (2£+1)!m!(4+n)!(24+2m+2n+3) ! ontl
or

n-1
0 [_E—] n-2j-2 n!(2n-2; v 02 .
' ' {(en-2j-2m-4) ! 2 om 2( 3+
=-hepl L L (2n) . (n-25-m-2) (24+L) mT P (3 m);

n=0 j=0 m=0

which show that Pa(p) is proportional p for small p and vaniéhes at p = 0. There-
fore, the corresponding expression % Da(p) = pPa(p) is proportional p2 for small p.
This stronger kind of going to zero at p = O is a benefit of taking a partial solu-
tion, in which the variable § of integration - compare equations (29u, 29) - dues
not meet the essential singularity of the integrand at 6 = O.

(b) The second part of the density is

1 | B(1-¢)(1+u)v  -B(1+k)(1- )«,]
R B et ¥

o\

-1
If one changes the order of integration, one may apply the aid formula (48) in-
- . 1 \ .
serting pV1-v for p and p(l - igi v) respectively p(l - —%ﬁ ¥) ror t. This

yields

1 %(l-ﬁ)v

P (o) = %J av /,2 sinh (p*\/l -[%]V)E - (1-x2)(1-v)

(
o | : o - (%92 - 162y (1)
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—g(lﬂc)v sinh (p\/(l - l; v)2 - (1—52)(l-v)')

V- B L (@)

-€

! ] ..
c -Kp av Je® [2'“'(1'“)" -1 Qp [EK-(lﬁ-n)vJ 1
= B e _V _
o | 2o ox—(1e)v
(1-x)p : (1+e)p = (1-¢)p
c +Kp ( o (cosh u)-1 (cosh u)-L sinh u
= e / du —_— f dur——r——_i + du
2kp u " ——
\ 0 0 0
(l+K)p
+ du sinh u
[ s
5
(1+x)p - '(l-K)p
_e P gy leosh w)-1 gy (cosh u)-1
f u , ‘ u
2kp : 2k p
(l'*'K)Q ‘ -(l-K)p
+ j gy Sinh u’_ /’ 4y Sinh u
u u
2xp 2xp

= —Q—EB EKD {Shi(lﬂ:)p + Shi(l-n)p - [éi;l:.(l+l€)p - (:J”}E.(l—n)p]}
-kp ) B . o o -
-e {Shl(lﬂc)p + Shi(l-k)p + [Chl(lﬂc)p - Chl(l—m)pJ}]

- %p.{sinh <o [Shi(1+n)p + Shi(l-n)é] - cosh kp [Cﬁ(l+rc)p - Eﬁi(l-*‘)p]}: (52)
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- sinh t - © 4 ~X2n+l .
in which Shi x = = dt = —_—
o ‘ neo - (2n+1)(2n+1)!
X
o] 2n
and Chi x = (cosh t)-1 4 - 3 e
o t n-o 2n-(2n)!

Using once more the integral representations for Shi x and Chi x one obtains

Shi(l+k)p + Shi(l-k)p

0

2[(sinh u)cosh(lcu) du and
u

Jo

o

'.Bf (sinh. u)sinh(lcu) an,
u
0]

]

Chi(Ll+k)p - Chi{l-u)p

If one inserts these expressions into the last version (52) of Pb( p} one gets

a short integral representation
p

«Pb(p) -2 j i‘f.(sinh u)sinh(m[p- ])
0

Kp u

This integral is proportional p for small p and

e

p2 similar to E'E_ D (p). Hence certainly .;_ D,(0) = U. Une obtaing altogether

D%)(O) = 15_1%1 [p Pﬁ)(p)] = (Da(o) + Db(o))= 0.

c c
2 2

and

% Dgi)(o) = p P%;)(p) =

[0 0]
/2 Y/
_ _ DJ du e-u sinh u+2pu+K2p2 sinh u2-2pu+n292
u .
) V u2+2 ,:»u.+|-c2p2 Vu2- ’,_’pu+tc292

o

O.

(53)

Dy(p) = p P (p) is proportional

(54)
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u

+ % j; du siph u - sinh(n[p - u]) . ‘ 4» (55)

Hence the Sonine transform (21) is

({8)y c ,HP 1 - cos(ag1-v4) (s){ ) )
s (f =-% ¢ = D a_v)dv (56
0" II 2 T J( ‘/l_vg' T " 0

0
with dg = p l—ue. One has to derive Déi)(p) in respect to p and to insert
dov instead of p in the derivative before inserting it into the integrand of

the last integral.

The total solution, singular at the centre p = O, is now
5 , 5 - ,
£ )(p,u) = +(8)(p,u) + 8 (f( ))+ e™"P R(p\/1-12)
II O\'II
with fgi)(p,u) from equation (41) in the form of a series of Bessel functions
or from equation (45) in an integral representation. Then one has to add the
Sonine transform So(féi)) from equation (56), which is of course a function of
do = pV1-u2. The last terms e HP R(V1-p2), which is caused by the desired

density, remains untouched by the choice of the original partial solution;

according to equation (22) it carries the important singularity at the centre

of the sphere € ~HP R(QV1-u2)

1
1 -ppJeos(Vi-p®) - cos(V1-p2)(1-52) o sAV1-uZs 4o
7 € ) ¢ /i a2

pYl-u 1-8

0
This amount is given irrespective to the value of the constant ¢ of multiplica-
tion, whereas the other two terms f(s)(p,u) +8 (f(é)) contain ¢ as a factor. .
II 0II
Furthermore, the term e ety R(le—pg) gives the whole density, whereas the

densities belonging to fgi) and So(f§§)) cancel one another in consequence of
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the theorem III.

No relation between k ;nd c is imposed upon the solution, i.e. no
characteristic equation is necessary for thesé solutions. They are valid
for ahy value in the complex k-plane.

II. The Solutions which are Regular at the Centre of the Sphere.

A. Regular solutions belbnging to the discrete spectrum.

a(p)  Bf(1-k)(1+p)8 - (L+x)(1-p)L
flo,u) = Sp™F j e 2[ S] a8 (58)
Z B
0

satisfies the differential equation

[0 @n)ale)-(ure) (1-n) 7]

. 2
l-u~ 3 c - a
p.-ég-+._“'_ £+f(p,p) =S e*k (1 + pdd(“) )e
P T 2 p dp
(59)
1. If one puts a = 1, then one has %E = 0 and the exponent in the last
: m .
factor on the right hand side becomes
£ [(1-n)(l+u) - (l+n)(l-u)]= o(n-x)
1 2[(1-n)(1+u)s - (1+6)(1-p) %]
Therefore f(p,u;-k) = S e HP [ @2 as (60)
- 2 . = -
0]
is a partial solution of the differential equation above with the right-hand
. TP -
side % € . This is our previous result in equation (29).
p : )
1+ 4 .
2, If one puts a = i:E y then one has —%&El = 0 again, but the exponent in

the last factor on the right-hand side becomes

P () (1) = (1) (2-n)] = plusx).
2 . :



- 45 -

l+x
o o gl (ms - (1) (1-w)E]
Therefore f(p,u;+k) = =@ HP € as (61)
2 B
0
is a partial solution of the differential equation above with the right-hand
Kp
side & €__ .
2 p
3. Half the difference of the second and the first integral satisfies there-
fore the differential equétion above with the right-hand side
¢ sinh kp | (62)
2 p
It is the solution f(-r)(p,u) which is regular at the centre p = O, in the form
of the following integral, which is valid for [k/ = 1: .
r
gl )(o,u) =3 [f(p,u;rc) - f(p,u;-n)]
3 .
S 1-x of(. o _ l]
o o f as B[ )s - ) (g N (63)
n s :
l .
Whereas the two partial solutions f(p,u;k) and f(p,u;-x) do not satisfy their .
compatibility equations, because their densities
+1 : : . i
- 1+
P(psk) =f £(p,usk)dp = —=— Jo"P El([lﬂ]o)-e “PE) ([1-<] p)+€™Plog T} (k)
2kp -k
-1 :
and
] +1
. _ . . _ ¢ o) _ ke _ -Kp 1+k
P(p;-x) j t(p,p;-k)dp = 2o E ((+c)p) -e ™" By ([1-x)p)+€™"" log 170 b (65)
-1
¢+Kp e-Kp (r)
are not equal to respectively to , their difference T (p,p.) does
o)

it. The terms containing an E,-function drop out of its density P(r)(p) =

—%[P(p;x) - P(p;-m)] , which becomes
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‘ +1
(r) _ (r) _ (e 1+k | sinh kp
P/ (p) fl £\ (p, p)dp (en log = T (66)

The factor in brackets on the right-hand side of this equation must be equal to

1, to give the desired result. This is just the characteristic equation

< log E:E = 1. (5)
2k 1-k

Its two roots k = + k, form the discrete spectrum of the Boltzmann-operator.

0

Here the Sonine-transtormation must not be applied, Levsuse f(r)(p,p) is
fortunately that partial solution which also fulfills the equation of compati-
bility, if the validity of the. characteristic equation is supposed.

It will be shown lafer, however, that there exist regular solutions also,
for every k of the whole complex k-plane.

To proceed in this direction, the regular solution f(r)(p,u) above will
be written.in a form, in which the first term gives the whole density

P(r)(p) = 8inh kP yhereas the second term gives just the density O. If one

p .
puts again S = tl/i:& 1tk the equation (63) for f(r)(p,u) will become
. 1+u L=k

Lo L
l1-p 1=k
(r) C o-hp 7 dt %(t' -8
f (p,]J.) = L e =5 e .
Trp 1k
1-p 1+x

with h = pV(1-k2)(1-p2). .
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The expansion of the integrand in a series of Bessel functions and term by

term integration yields

27 (o,0) = £ e J3,(n) log I

pe.
2

n=1 n -k L+

n n n :
o0
h 2 2 z
Z Jn( ) (l+K.) _ l-K‘.) l+p.) + (_l)n l_u , (67)
1+ l-p
Using the aid formula (48a) one recognizes that the first-term of the curly

bracket gives already the whole density

+1
c 1+k - c 1+k sinh x
e itk Ko == [log === | S2BAKp
p |toe T5c| | €™ Jo(n)aw 2 (Og 1-K) kP
-1
- sinh xp
_—p >

if the characteristic equation (5) .is supposed.
It is easy to show, that the second term of f(r)(p,u), namely the series
from n=1 through n ='a>, has zero-density. This will be proved in the fcllowing

quite independently, Using formula (44) one may write

g? Jy(h) [ L+ 2 I e (ii& 2 + (-1)" l:E)g}
n=1 n l-k ‘(l+n’ l-p Ly
i, 2jl Jo(nt)t at 2(1e) (1) (1-8%) B1-0) (L4n) (1-42)
- e e
o  1-t°
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= (1) (1) (1-42)  ~E(1-¢)(1-p)(1-t2)
+e? -e |

1 [ (141 (1) -E(l-ﬁ)(lju)VJ

- J’ W go(BV1-v){|€ -e

0

B(1-k) (L) -§(1+n><14u>f}

-|e -e (68)

/s

after a transférmation pf the variable of integration to v = } - t2 and after
arranging the terms in such a way that the secand square hracket in tho in-
tegrand can be obtained from the first by exchanging k with -k.

We know, however, already .the density, thch belongs to the second square
bracket by comparison with Pb(p) in equation (51) and (53), it is just

p
-3 Pb(p) = - S gﬂ(sinh u)sinh(n[pfu]) .
kP u
This expression remains unchanged, 1if one réplaces k by -k; it gives the con-
tribution of the filrst square bracket, and the difference of both is zero.

Hence the density O belongs to the series in f(r)(p,u).

B. Regular solutions, belonging to every k in the complex n-plane.' We
start from the singular solution ﬁéf)(p,u) in the form (41) as a sum and in

the form (hS) as an integral. Let us denote it now by

()
T (pyp;-x)
to show that it is a solution of the inhomogeneous partial differential equation
-Kp .
(6) with % (4 on the right-hand side. Reversing the sign of k in this

p
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solution one obtains a solution f%;)(p,pgn) of the partial differential equa-
KD
tion with the same left-hand side as (6), but with % ep on the right-hand

side. Finally .

£ = L]l om0 - fﬁ)(p,w)] (69)

will satisfy this differential equation with the right-hand side

¢ sinh kp
2 o

as a partial solution which is regular at Llhe center of the ephere. It is in

series and in integral representation
n

n
c e-up g) Jn(h) 1+ 1+x 2 _ (_l)n 1l-u 1-x 2
L n=1 n l-p l-g 1+ 1+K

fg)(o, B)

n
(L I\E )y (Lo L)
1-p 14k I1+p 1-x

r D)y - B2 (1)
Ee-upf d_XJO(h\/;,){[an e - B0 mJ
0

i [eg—(l-n)(lm)v Ce” S(lﬂc)(l-u)‘f]

The last expression is identical with the integral in equation (68) to which
the density O belongs. Hence the partial solution f§§)(p,u) does not con-

tribute to the whole desired deneity

sinh xp
o}

and its Sonine transform vanishes
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Ouly the term e MP R(pV1-p®) of f(s)(p,_u) gives a contribution, nemely

Te '“D{R( V1-u2;x) - R(DVl'Hgi"‘)}

l .
- Vi-g2
=M. %{ifﬂsﬂ + 5 cos(do 1-5 ) kA5 45

m e
do Ui 1-32

1 cos dg 1 cos(a)/1-82)
1= - _k —_— o e-KdOS 4as
v TR

. .

S e MR g, (n) | (70)
) cos do

by application of formula (36). The term PR which is singular at p = 0O,

drops out of the solution. The density which corresponds to this part of the

solution is

+1. +1
é—f e [ R(a12P5x) - R0 ] an = . j e MP g (n)ap = Simhkp
P
-1 ' -1

according to equation (48a). Hence the total solution, which 1s regular at the

center of' the sphere and which is valid for arbitrary k's, becomes

f(r)(p,u;n) - %e'“p{R(p 1-p25k) - R(p\/}- 2;-'&)}? f%)(p,u)

n n n n
o] 2 2 2 2
ceelsgmyse ¥ Tal® (l+r< [ (l+u b (<1)7[Lo (1)
2 L4 n=1 n 1-k 14k l-p l+u

in the form containing a series, or
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’ ) 1 . ' . B(1+k)(1+u)v  -2(1-k -wv]
= o HP £ Jo(h) +%J 9% Jd.(ﬁ\/;)' [ez(l ?(l g -e g(.- Himw) J
0

[S(l-n)(lﬂx)v '-§(l+n)(l-u)VH
-le -e
in the form ééntéining én infegral.

k 1s not restricted by a characteristic equation, it can be every x of
the complex k-plane. for that special k, however, which satisfiesAthe
characteristic equation (5), the solution f(r)(p,p.;rc) is identical with the
solution f(r)(p,u), which is represented in equation (67). One has to re-

place % in the first term of f(r)(p,u;n) just by the value which the

characteristic equation

gives.

The discréte spectrum is therefore‘combletely embed&éd in a continuous
manifold of solutions with neighboring x-parameters -in spherical geometry.
The density belonging to a solution is given by the first term in (67) or
(71), whereas the density of the second term is zero.

C. Proof that the regular solutions satisfy the equation Af = KEF.

1. The operator A expressed by our coordinates p and p. Remember the

definition of p = Vx2+y2+z2.and UL = coe J% where é}iS'the angle between the

(72)

direction of the neutron v (with I;I = 1) and the radius vector S. Therefore

-

we have pu = p - V = XV, +»yvy.+ v,

B( pH = v a_p. = Vx _ MX
) - - 2

?_f=?i£+3_f3u¥§é_f+<3-“x> ar
X P IX H3X pp 2



ﬁ_{£_£)£+z«_agf<+ SRR SR éi+,(‘-’x px| 2°¢
= 2 2
) %2 p 03 0 p oxap 0 o 0 ap 'o IR
2 .2 2
_p-x Fo,ox aEf v, X ) ux2 32;6 2v,x H(p2~3X2) o
S T EsEtre T E TS o
P dp  p= 2p = o’ [ amdp 02 o du
v 2uv x p.2 X2‘l 21‘
+[ X . + o1
p2 p5 pll- /3[.1.2
and finally
1 .a_( 2 2y a7 -
A = 2+ 2 [(1-u=) &2
: 02 g op \P ao) au [( WS au] . L (73)

2. It is easy to show that the solution f(r)(p,p.) of equation (63), which

belongs to the discrete spectrum, satisfies the equation Af = Kzf. Denoting

the exponent in its integrand by E for abbreviation

E = exp B(1-)(10)8 - (14) (1]

we have

et

L+
- j d_
' 1

and by applying differentiation under the integral 'sign
1+k
l-x

aelT) _ o(m) S o f E d_g.{% [(m)s - (m).é] - [(1-K)(1+g)s + (1+K)(1_u)§]
1

(l K) (1+p)82 + ﬁ-——)— (l-u)—}

“I

f( Mopu) =

-F'lO
wn
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Partial integration of the L. term yields
p

S =
ar(r) o o(T) 4 E oHP % [(l-n)S + (l+n)é:] E} 1ox
’ S

l+k

1l-x
+ 8 e HP f {c2-l —[(l-K)(l'HJ.)S + (1+x)(1¢u)§J E %
1

(=
>

+
-K

|

'_l

_ K2f(r) + e sinh kp _ E e'-pp .
p . .

_(g_s -)ds

-G %e Sesimhro 2 4P, ) qle. a
p

oD
F‘k“\

3. To show that also the regular solutions f(r)(p,p;-m) of equation (71)

satisfy the equation Af = Kef, it is now sufficient to show that its first

term

-Hp
e Jo(h)

satisfies this equation. Then one recognizes that also the second term in
the series development (67) of f(r)(p,u) satisfies this equation. But this
second term is identical with the correspondiné in the series development
(71) of f(r)(p,u;—n). Hence it is true that also the regular solutions
f(r)(p,u;-n) with continuous k satisfy the equation Af = k°f.

One has therefore to verify finally
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Af = k2F for f=e MP Jo(n)  with h= o V(1-p2)(1-x2)

One finds

o

, a=J _(n)

£+ (1k2) eHP [ 20— 4
dh

d J (h
J(0)
dh

E
= o

£ - (1-k%) ¢ 7HP 3(n) = £ - (1-k2)f = k°f  q.e.d.

D. Representation of the regular solutions in spherical geometry by

superposition of solutions in plane geometry.

1. The solutions belonging to the discrete spectrum. The Boltzmann

equation in plane geometry may be written

+1
)
a—%—cl—+\v(§,n)=% j ¥(E,m')an! ()
| -1

where ¢ is the distance in space on an axis perpendicular to the planes from
-

a chosen origin, and n = cos © is the cosine of the angle between the {-axis

and the direction v of the velocity of a neutron. A solution belonging to

the discrete spectrum is the angular distribution of neutrons

y(gm) = L .8 _x_ e*'“c . _ _ (75)
hr 2 1-xy

To construct a solution in spherical geometry one has to fix the centre of the
sphere and to measure the distance in space by the distance £ of the plane
from the centre of the sphere. If one wants the angular distribution in
spherical geémetry at a chosen point A with the distance p from the centre,
one draws the radius vector ; through A. The angle between this radius vector

!
and the {-direction may be denoted by'ng; then the distance of the plane
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through A from the centre of the sphere is

§=pcos'|9'- (76)

It is a measure for the 'phase,” with which a“plane solution contributes to
the spherical. To get a solution in sphe'.rical geometry with a fixed direction
of the neutron-velocity ?/), one has to superpose plane solutions, which belong
to this fiked direction of velocity, whereas .the normal E of the plane. runs
all over the directions of space. The parameter mn = cos 6 in the plane
solution is the scalar product of the unit vectors in Z; and ;r)-directions.

If one supposes a Cartesian coordinate system with thé z-akis in _;;-direction
and the x,z-plane identical with the :/),;-plane,. the direction of the' E—axis
may be described by the angle ﬂy'l between _() and ; and by the angle @' between -

- =

-
the x,z-plane and {,z-plane. Then the components of a unit vector € along

€ in these Cartesian coordinate systems will be

- f i _ ’
ex'—51n'l9' cos cp, ey—51n\9' sin @' ez-cosﬂ},

and the components of a unit vector v in the fixed direction of the velocity

will be

v=sin'&= l-p.2 v. =0 v=cos¢9=p..
X y z .

Hence the scalar product of both is

. - > / /-
n=cos@=e~v=ucos‘|}+ l—pesin'vacosqf. (77)

Therefore one gives the plane solutions, which shall contribute at a definite
point A with the distance p from the centre of the sphere to a solution in

spherical geometry with a fixed direction of neutron-velocity, the form
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v(¢, ) =\V(pcos 1}1{ L cos S Vi-u2 sin 19'/cosq)_'). (78)

g kP cos 1.9'/

1
- L g% / = > (79)
1-x [u cos +7 +-\/l—p sin ¥ cos (PZI

By superposition of such solutions for all directiomns, i.e. by integration over
. ) /
@' from O to 27 and over 119' from O to T one obtains a solution S(p,p) in

spherical geometry for [ek/< 1

T 2m
. / !
S(p,n) =j sin o/ a+f [ ap' ¥(¢,n)
, v 0
T o . 7
1 ek j . ‘9_, 1}/[ e ~kp cos V v
= -1 sin d do!
bro2 0 l-k(u cos S V1-u2 sin "\}Ucos ¢')

o

T - J
sin."s?/ d#’ € kP cos .

_ ke
K o [(l-n pocos #)2 - k2(1-p2) sin? 49171/2

dv ¢ "RPV

+1

_ ch
= = - T
R 1 \/ 1on?(1ep?) = 2x w4 RS v

The transformation of the variable of integration

/’

v= e -3 [a00ms - (o] f (80)

into a new variable 8 transforms the upper limit v, = 1 into Sl = 1 and the

lower limit Vo = -1 into 52 = lﬂ . The square root in the denominator of

l-k

the integrand becomes

'\/l-ne(l-ug) - %% pv + k2vE = = I:(l—K)(lﬂJ,)S + (l+|c)(l—p,)é—]
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and the differential dv = - =_ [(1-5)(1+p),+ (1+n)(1-u)i§] ds.
2k S

This leads to the remarkably simple expression for

dv 1 -as

V1-k=(1-p2) - 2kpv + keve K s
and the solution takes the form
L N
T o 2[00 - (-]
S(p,u) = 2 e HP f - 88, (81)
4 S
1

which is identical with the regular solution (63) belonging to the discrete

spectrum of the Boltzmann operator in spherical geometry.
s(pyu) = £F)(pu). (82)

2. Superposition of the solutions belonging to the continuous spectrum .

in plane geometry. E. P. Wignerc»showed in his lecture on Mathematical Problems

of Nuclear Reactor Theory that the Boltzmann operator for monoenergetic neutron
trénsport in plane geometry has a continuous spectrum. ‘Ih‘approximations, for’
instaﬁcé bf.the Gauss quadrature or by the sphefical harmbnics method, this con-
‘tinuous spectrum makes itself conspicuous by those eigenValues'of the approximate
characteristic eqﬁétion, which belong to'the transient solutions; 4

The continuous specfrum of the BoltzmannAopefator extends from /vl =1

until /k/ = ® on both sides of the real axis in the complex k-plane. The eigen-

(9S41 P. Wigner at the Meeting on Mathematical Aspects of Reactor Theory in New
York, April 23-24, 1959. It is published in a Colloguium Publication of the
American Mathematical Society under the title, "Nuclear Reactor Theory",
Garrett Birkhoff and E. P. Wigner, editors, p. 89 (1961).
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function belonging .to a specific x-value of this spectrum may be written in a

symbolic form

lim c¥ € -
V(E, nsk) = — L 2 e
€-0 \kn-1 + igx kn-1 - i€x| - (83)
with the coefficients.

e, =-T¢ 43 [K - S log ﬂ] (84a)
1 o e k-l
cn=¢wc-l[x—ﬁlpgﬁiy - (84b)
2 _5 . = k=1 ¢

€ is a small real (positive) quantity; { is the space coordinate and 1 = cos ©
is the cosine of the angle © of direction of the neutrons against the {-axis. in
the supéosed plane geometry‘as in the preceding section 1.

. Inserting the coefficients cq and,c2 the symbolic .eigen=-function takeé the

form

lim l-kn - c K+1 2 Ex2 -k{
V(& n3k) = Tek + - = log 2= 2 e
4 £+0 (L-km)2 + g22 2 (L-kn)2 + £%2

‘ (85)
After multiplication with an arbitrary weight functipn_g(%), which ensures the
convefgenbe of thé integral, the contribution of the'continuous spectfum tova
total solution of>£he Boltzmann equation may be represented by the following in-

tegral over the continuous spectrum
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11 o(1) - '
otyn) = [ BE omtady Ll e 1] iy e (sg)
. N l-kn K n 2 1-

and the corresponding contribution to the density (or flux at velocity v = 1)

by
’ +]1 +1
o(¢) =% f o(t,n) dn = T f Lo et Man . (87)
A E

By comparison of the last two equations one recognizes that only that term of
the angular distriﬁution o(t,n) contfibutes to the density ¢(£), which does
not contain the constant of multiplication ¢ as a fuctor. I owe Dr. E. Indnu
the observation of this fact. The same fact was noticed already at the solu-
tions in spherical geometry'for all k-values which do not satisfy the charac-
teristic equation.

In spherical geometry, however, it is not necessary to write the solution
for a specific k in a symbolic form, as equation (83) is in plane geometry,
and one has not to integrate over at least a.part of the continuous spectrum
to obtain ordinary functions for every single k. ' In spherical geometry the
solutions are already ordinary functions for every single k. Furthermore,
there are'certainly two different kinds of solutions for every |k|, one, which
behaves regular at the origin, and another which is singular at the origin of
the sphere. It will be shown in the following that‘a superposiﬁion of solu-
tions belonging'té the continuous spectrum of the Boltzmann operator in plane'
geometry for a specific k-value (|K| = l), similar to the superposition in the
last section, yields theicorresponding regular solution in spherical geometry.
It is interesting to observe how théhintegration over all space directions

already leads to the elimination of the € for every single specific x.
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We superpose solutions of the kind (83) in the way described to obtain a

solution in spherical geometry

T 2w

‘9- c
S(p,u;k) = L j j 51n19'd19dcp e TPCOSY yim -

by E=0 &ucos'l?m\/l - sm‘l}coscp -1t+igk

K

*
cqK
L (88)
+
nuc0s19"wh;€\/lfpd_ sinq?’c,os(p’ -l-igx
Noticing that ¢, = cI for real k and
/ /
putting a = -1 -+ ku cos1}, b=k \ —u sin'uef as an abbreviation, .one has
T J" i v
" ) af -kPCOS cy
. - s e —_——
8(p,use) = br f sind d"} J a+igk+bcos®’
=T
c¥
__..._'_l..___ ap!'.
a-igk +bcos®’
; N Q' 2du 1-u2
It is transfoimed by u = J? y, 4@ = ==, cosp' = into the form
2 _']_+u2 l+u2
T ' gt oo
'ogl - N
= £_ 1im sim}d-\ﬂ' e KPCOS ' I du 1
em €-0 a+b+igk+(a-b+ifr)ul
0 . - .
c*
1
+ . : -(89)

a+b-igk+(a-b-ifx )u?
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The integrand vanishes for large u sufficiently strong that the path of in-
tegration can be closed by a half circle in the infinite of the ubper half
complex u-plane. The denominator of the first term of the integrand has a

pair of roots uO and ~Uy» in which

.u +a+1£n - 2_g2.£%24+21€xb ;(90)
0 balem ba)2+é2|<2

The second term of the integrand is the complex conjugate of the first and
the roots of its denominator are us and -ug . All 4 roots lie in the 4 corners

of a rectangle symmetric against the real and complex axis of the u—plane.' The

2
0]

. ‘s / . ‘s
because b is positive for O<:4L<=ﬂ} if one chooses furthermore a positive x from

second expression for Y in (90) shows, that the imaginary part of uS is positive,

the continuous spectrum. Then the imaginary part of u.o itself is positive also

and the two roots u.o and -ug lie in the upper half of the complex u-plane, where-

alf

as the other two roots -y, and us lie in the lower/plane. Only the poles at U

and -us contribute to the integral with their residues by application of Cauchy's

theorem to the upper half plane, which is enclosed by the path C of integration:

(a- b+1£n)uo u-uy o wu

m

I

S(pyu;k) = 'f?r lim s1n~9’d1¢ cpcos ¥ fdu
€-0

0]

»*
1 1 1

(a-b-ifk)u* u-u® utu (91)
¢
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/ . .
K .. . '9/ 19’ -Kpcosﬂ' iy ~icy
= — lim | sinvdv e z——zrjzrj——- + Z——;rj;rs—;
2 g0 a-b+igk)u, a-b-ikk uo
0 oo
m I o ‘9" |
-KPCOs v c¥
- & 1in [ sindad 7P 1 . 1 .
&E-0 izae-b2+218Ea-£?K2 “Jég—be—Eiéna-EERQ (92)
0

One may still apply the same transformation of the variable of integration ﬂ;/

into a new variable S

» | o
cosed'= 2+ L [(e-m) (s + (wr1) (1]  (80)

és in the preceding section to perform the second integration. One has to
remember, however, that k=1 holds this time: the path of integration in the
S-plahe starts.for'4}I= O at- S = 1 and ends for t¢’= mTat$S = - %%% on the
other side of the origin. When 49Jiﬁcreases from 0 fo T, cosdildecreases
monotonously from 1 to -1. To maintain this property also on the péth‘of in-
tegration in the complex S-plane, we héve td proceed along the real axisifrom

S=11% 3 =\/Ei£ l-p , then along a half circle with the radius S; around
k=1 1+p

the origin of the S-plane until Sp = =53 and finally from -S; until the end-

point of the path at S = - fii on the real axis. At the points S = + Sy the
k-1 -

expression on the right hand side of equation (80) has an extremum, because

osv’ L () (am) - (1) (135 (93)
dS 2r ) S
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in zero at S = + 57 with

K+1 11

51 = k-1 L+p

and the quantity ae - b2, which occurs in the radicands of the square roots in

the denominators of the integrand

. .~ ” - /
a°-b2 = 1-k2(1-p2) - 2kp cosq@l+ K2005219

N 2
Y {(K—l)(lﬂl)s - (K+l)(}-u)%} (9k)

’ /
is zero just at the same two points S = +87 . We denote the corresponding F-

/ /
values with J& for § = 57 and‘Jt for § =8p = ~5;. Equation (81) yields

1
w

cos#f: % [ﬁ + V(K2-1)<l—p2)] for 8 :
and

, .
cosﬁ% = %-[H - V(N2'1)<1'H2i] for S.= Sp = -8y

Y Ly 2 .
In the interval 1TV=Y the quantity a -b2 is ne ative; this follows from
the first expression of equation (94) for instance by inserting the mean value

/ : . _ o
COSJ% = K of both values at the boundary of the interval; one obtains for this
K

angle (a2-b?} 5 (k2-1)(1-u®). The second expression of equation (94) obtains

"™

indeed negative values for complex values of S. Hence we assume finally

8-t a) for the real S-intervals (l,Sl) and ('SD - %;%)

4 X ’
sl'e b) for the half-circle O=X=T
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This supposition yields on the corresponding parts of the path of integration
1 { +1 - - 1 }
e 5VEEDEAE) (5 + D) (a)
{w V2D @) cosX} (b)

COS‘}J =

e I

R - D7 (a)
a2-12 = .
- (Ke-l)(l-p.z) sinex (b)
/ _kat a
sin'l} d‘l}’ _ kot ’ (=)
a2-1e -
% ax (b)

The path of integration in the complex S-plane looks different for 5 regions

of p~-values. The following table shows it:

region of u corner at positive S corner at negative S

' . . £~
1 k+L lﬁ__/ L=<
1b) =<p=1 0<851< 1 -2t -1 =85<0 A »
1

K- ket - Se 0 S 1
K-1
,/,/_\
2) M= % 4 Sy = 1 So = -1
) K‘,+l SZ=‘1 (0] Sl:
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3) - ;<u<%' :1/’815 % , '\::t—i<82< S Nt
' " ‘ Tk-1 A A w1

L) b= - % s, = %

5a) -l=p=<- % : %< §; <

5b)  m= -1 S; - ®

To obtain the whole integral, which is real, one has to add the integral over the

conjugate complex path.

Then the integral takes the form

. ' L N
K+l 1 S
_ o-kIE x2-1)(1-63) (¢ + 3)
S(p, k) = :-;- e HP J + ‘_1% e (cq+et
L -1 ‘
51
7 -AV(x2-1)(1-p?) cosx _
+ f ax € i(e,-en)) - (95)

0
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With c, + ¢*¥ = - c  and 1(c -c ) = -2 [ -Ai log **1] it becomes
1 1 k-1
[ 1 K+l 1+ . . X
] Tl e-1 1-u 2~/(k2-1)(1 1
- -1)(1-p%) (¢ + 2)
Ko | e 2 t°  dt
o ol ([ VTS b,
(ps1sx) = ( j ) e =
k=1 140
K+l L-p -1
N [K ) % Lo w+1 f pV (82 1)(1-p°) cosk (96)

The first integrand may be represented by a series of modified Bessel-functions

using .the formula

Z
-5 (t +1) ®
e 2T g S(2) + (R Z) ()T (2) (97)
n=1 t

and its integrals give S(p,u;k) the following contributions

™ i {1 A2 e 2

+ L . -

k-1 + (-1)"

| - n/2 } . [a}
2 - ﬁ) (98)

Sf In(5VT:§j15zIt;55. k+1 n/2 ) (n-lrye i+u n/2

K+1 1-p

The second integral yields

o ho [ ¢ 1og f:i}ﬂ (v 1) (1o )) (99)
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and its second part cancels just the term with the factor log ﬁi% of the first
K—

integral. The total integral is now

S(pyusk) = m'“p{g 1 (AV(<2-1) (1-2)
n(D\/(K2 1)(1-p ))[

K+l 1-p

K+l)n/2 ] (E)n/e][(i;‘ﬁ>h/2 . (‘;1)“ i_}i }(100)

n—l

By comparison with equation (71)'one'recognizes that
S(pypsx) = or 2T (p,p50) (101)

is 2T times the total solution f(r)(p,u;n) for the regular case of the Boltzmann
equation in $pheri¢al(geometry.*

To complete this integratipn; one has to justify that the integration through
the "corners," in which the half circle meets the real axis in the S-plane and
a® b2 changeé its sign, does not give a contribution. It will be sufficient to
show this;in one cornef, which may lie at Sli 1.- &e encircle it by‘a quarter of

t . . .
a circle with the radius € and its center at Sl' Hence S may be represented.

O,

along this quarter of a circle by

s A\[FL 1-u (1 + € ela)
K= l 1+
1 k-1 1+1 T Ny 240 ‘8'
and § =\/E:I = (1 -E'el® 4 € e S i
. -
S 4
The quantities, involved in the integral, are by this supposition

/ A o
cos) = %{u + %\/(me-l)(l-ué) (2 +€'2 ema)}

e .
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--i— (n 1)(1-07) % ef® an

sin 39' dJ" -

2.2

8%-b 2 21a

(K -l)(l—u ) €

and the first part of the 1ntegral (92) along the quarter of the circle around

. . /
the corner at = 49'1, will be

f _Kp cos ¥ sin 3 d«Jl

lim
&0 22
(borner) Nfi-b +21€K a-€ k
at Ak :
/2 2 _ 2iq
_ lim g-kp cOS 5 g e '
- €0 2ix }J-
0 ' e -2ie
Vee- VKE— \/
€, &' are arbitrary small constants, if we choose (g’ ) =C-E ( = const. ), we
_'J01n their limits for €—~0. The integral will tend to zero, when g' Ce tends

to zero. The cause of this behavior is that cos«.Q is statlonary in respect to

S at all corners (see equation (93)), in consequence of which the differential
sin o' ad' at the corners is quadratic in g'. Hence one obtains no contribution

to the integral from the neighborhood of the corners.
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ITTI. Comparlson of the New Solutions with their Representatlons

by a Serles of Spherical Harmonlcs

A. Proof of the equality of two solutions of the Boltzmann egquation which yield

the same density. The difference S(p,u) of two solutions of the Boltzmann equation

(1) with the same density satisfies the homogeneous partial differential equation (8).

Therefore it has the form

5(p,u) = e ™P F(p/1-p°)

with some function F of p —ue, about which one knows that it yields the denslty zero:

41 11, 1 . :

5(p, 1) du Jf e M Fp/1- ue) du = 2 jf (cosh pp) F(p/l-p2) ap = oO.
Y .

\

-1

This is a Sonine integral equation again. If we replace zero on the right hand side’

of this equation by a constant C, its solution would be

F(p/1-u2)

1]
Q

1l da /ﬁ cos/u-s JF— ds with u = p2(1-p2)
T ‘du 5 fa-s - a

1
- C !’_/‘ COS(pv(l:p.e)(l—tE) at = c -
m 0 /l-LE ’

One recognizes by this calculation that the expression accompanying C does not diverge.

o |+

Jo(o/l-ue)-

Hence the difference 8(p,u) of both eolutions vanishes together with C = 0, This
means that two solutions of (1) with equal densities are equal. Of course the theorem
ie not applicable to the cohparison of two solutions, which differ by a diverging part.
Such a case appéars in section D of this chapter. .

B. Application of the theorem of equality to two regular solutions of the

Boltzmann equation with the same density. According to the equations (2) and (3)

the development of the regular solution in a series of spherical harmonics is
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#(r)

“(s.5.)

E R
~

(py1)

I,.1(-kp)
f (2441) ©,(- Al P, (1) (102a)

- kP

/— > (2s41) P,(- %) Doy (o0 P,(n)
£=0 K \/_

ko
(102b)
© L (kp)
L (201) Wy (- ) T R0y ).
b= S
Its densily integral becomes
+L (r) ) Il (np) S.Ll.lh Kp ,
f f (pyu) ap = /' w——— (105)
g (s.H.) o

On the other hand, our cbrresponding regular solution is f(r) (p,p;n) in the form
of the equations (71) or {72). It yields by 'the use of the integral (48) the same
density (103). Therefore our regular solution is equai to the sphericai harmonics
series (lOEa). This equality gives two relations, a first between the parts without

the factor c and a second between the parts with the factor c:

1) g § (20+1) P,(- -) P, (1) ;L(ﬁ - eHp Jo(h) (108
= —
2) \/Q—Wzg (26+1) W l("' ~) PZ( ) _Leii_-(fi).
kp

_ © J,(h) 1+n% 1-‘% l+p.% 1-p%
e™ I - < ) -< ) < ) + (- l)n< > , (105a)
n=1 n 1 -K 1 + & 1 -4 L+

1 .
i e-upf 2 5 () {e B (1) v _ o= Bk (1w) v
0 ' )

. (105v)
B(1-0)(L4m) v | o - B1+)(1-w) v}

with h = p/(1-u2)(1-k2). We obtained two equations because c and k are independent
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‘

variables in both representations of the regular solution. A connectiqn between ¢ and
kK, i.e., a characteristic eéuation GL+l(—'%) = 0, would appear spontaneously only by
truncation of the series (lOQa) after the L-th term. The extrapolation to L — o0 in
this characteristic equation can be ma&e or not. If one ferforms the extrapolation,
then the discrete and the continuous specfrum follow at least in the case of plane
geometry. Everybody expects that the spectrum of the Boltzmann-operator depends on
the qualities of the material and does not depend on the geometry as long as one con-
siders only solutions in the infinite space without boundaries and sources. The trun-
cation of the spherical harmonics solution after the L-th térm means in fact the addi-
tion of a source, namely of an error-source term(lo), to the original Boltzmann equa-
tion (1). To this hidden addition one owes the characteristic equation and by extrapo-
lation to L— oo one obtains the hint at the spectrum. But for the untruncated series
(102a) and the solution (71) or (72) the error source does not exist or has lost its
importance - in the view from the extrapolation of finite L - because of the cohver-
gence of the series (102a) for a problem without boundaries. Hence they aré solutions
for every k, for which they are convergent and differentiable in respect to k ;nd [T

.

C. Direct verification of equation (104). Of course a verification of equations

(104) and (105) as a check of the calculations would be df some value. i restrict

myself to the verification of the simpler equation (104) because I found‘only in this
case a suitable aid formula. In absence of a complete aid. formula for a treatment of
(105), nowever, one could use the developments of G. Bauer for a verification of (105)

by steps from pP to ol

similar to that which will be used in section E.
Multiplying both sides of (104) with one of the spherical harmonics and using
their orthonormality relations one obtains

IS : ' I,.2 (kp)
: fl e 55(p 15D (1+2) () an = [Tey(- 1) —’Z/z_p— (106)

- . . .
{leW. Kofink, Oak Ridge National Laboratory report 2358, p. 3 (1957) and Nuovo Cimento
Supplement 2 to Vol. 9, p. 499 (1958).
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The proof of (106) is equivalent to the proof of (104). Eaquation (106) can be derived

from the following extension of the aid-formula (48) bty putting £t = p:

+1
L[ et 5o frda-d) 7, o
. -1 A
gy (5-05) %)

-t o~ I
= Pz(A ’— ) T (107)
/te-(l—ne) p/ N2 [%2—(1-K2) pé]ﬁ
The equation (107) will be proved by complete induction. For £ = 'O it 1s identical
with equation (48). For £ = 1 it is the derivative - 9/t of equation (48). Sup-

posing furthermore the validity of the equation (107) until £, one has finally to show

its validity for £+ 1, The left-hand side is in this case

+1
1 -pt
= h) P a
L [l aym p,, 0 @
-1 -
L 24 +1
- = f e ™Mt I (n) {—— 1 B,(u) - P, (1)} du
i} £+ 1 £ +1
21+l 5 1 +1 ) +1 , :
: + - - 1 -
. 2t 2 _f p W Io(h) Py(n) au - - —/ e M g, (n) P, (1) au
£+1 2t 2Y, £+1 29
es+1 2 [, 8 1 T (x) 2 ty 7 Ip.d (%)
T G B Py y(--) [T L= —
£+ 1 2t x V2 Jx £+ 1 x V2 - fx
with x = JQQ-(l—KE) p2 as abbreviation. This expression should be equal to the

right-hand side of equation (107) for.Z + 1. Hence it remains to show that

(£+1) P, (- %) 1“% (x)

= - (es1) Jx ait fpz(- i)lﬁ*ﬂ - 4By (- D) T, ().
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The right-hand side of this equation is

/- % t2 - x2 -t t
- (24+1) {P£<_x_> . T I£+_é_ (x) + P, <_> g Iz% (x)

il

<l_ z_i) Pé <-_x£> -4 i_ Py <:X_t> B _ZPz-l (-){_t)} Tpd (x)
. {iig.-> P, (%;E> - (zfl) i P, <;;E>} ;ﬂ+%‘5x).

The first curly bracket is zero, whereas the second curly bracket gives the desired

result. It is

= (s1) 7, <‘—XE> I“g (x). q.e.d.

D. Comparison of two singular. solutions. The following theorem will be suggested
and partially verified: if one omits from tﬂe singular solution in its representation
by a series of s?herical harmonics all terms which contain negétive powers of k as
foctors, one obtains the new singular solution (35) or (40). -

Some evidence exists for the validity of this theorem. The density-integral for

“the new solution is

+1 +1 e
p(8)(p) = f (8 (o) au = f e PP R(pfL - 12) ap = e’ . (108)
o

-1 ) :

as it was shown in equation (27). If one develops the right-hand side of the Boltzmann

equation in this case in a power series of «k -

- ue -Kp
ua_1:+_1 M a_f+f(p,u) = & £

0. o U 2- P

. 'n .
‘]:'K+}j K2p-+ “+£-_1LKnpn—l+“_} (109)
p =
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and if one supposes a solution as a power series of k
n=+oo .
f(on) = L <o (pn) (110)
n=-o .
one recognizes that there is no need in f for terms with negative powers of k because

the right-hand side of (109) contains only the non-negative powers of k. The singular

solution of (1) in spherical harmonics

(s) sy 1y Kgip (x0) 5
flgp)(Pm) = = zzlo (20+1) 6,(- ) _% P,(n) (111)

with the modified Bessel functions of the second kind

(o) = TG0y (o) - 3, (o0l (122)

contains, however, in the first term of (112) negative powers of x. This may be seen
in the power series

oo Kpy\2m-4£
(5)

 T(aep) (w0) lZ (113)

’ 1
J2 ko P M Mm-4+3)
The singular solution (lll) in spherical harmonics yields the same density-integral

as the solution (35), namely,

+1 -k
2 K1 (xp) e

(s)
(p, dp = k [— = . L
fl f(s.n.) (P1) & T Je A ‘ (1)

According to the theorem in section A of this chapter both solutions (111) and (35)
should be equal if the series (111) would be convergent. Consequently its divergence
originates in the useless terms which contain k in negative powers. This is the match-
less conclusion which is compatible with the facts that the new solution (35) is con-
vergent, contains only non-negative powers of k and yields the same density. Therefore
one has to cross out all terms in the singular solution (111) which have negative powers

of k as factors. The remainder of the series is supposed to converge and to be egqual



- 75 -

to the new solution (35) and (40).
Using (112) one may write the total solution in spherical harmonics (111) as the
sum of a singular solution with the density-integral (cosh Kp)/p and of a regular

solution with the density-integral (- sinh xp)/p:

(s)
f(s.H.)

(p, lJ-)

. [ oo I P! (Kp)
5/5 {=ZO (- DX(20n) o,(- 1) = p

kP
' ® T,.1 (ko)
} 255 (- 1)%(28+1) 6,(- %) _ﬁéiiir--Pz(u{} . (115)
Because of
Iz+% (ko) _ Ig+% (-xp)
Jee Y

the second series in (115) is just the regular solution (102a) with the opposite 'sign.

(- 1)*

It contains only positive odd powers of « and, using equations (1O4) and (105a), one
easily finds its contributions to the new singular solution (40). To recognize them

in the equation (L40), one writes one part of (40), namely (42), in the following form:

€ PP R(p/L - 12)

1
- cos (4 Jl - s
g “HP [M - if ds —= (49 ° ) {cosh K‘.dOS - sinh KdOS)]
ma ™ /1 - @
0 0 :

_ cos 4 K G 2 s (2¢2a.)t
s o]0 Ky sk [0y (&) 5 () (116)
mdy 2 or £=0  (2£+1)! 2
in which b = d, /1 - k2 = p [(1-42)(1-x<). The second term in the curly brackets

of (116) contains the odd powers of k and is the contribution of (104)
-k e-up J (n)
o 0

to equation (42). The second contribution is the more lengthy expression (105a); it
gives that part of the equation (41) which is odd in k. Hence the identification of

all terms which contain the positive odd powers of k as factors in the series of
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spherical harmonics (111), with the corresponding terms in the new solution (LO) is

simple and complete:

{%art odé in & éf fég?H.)(p,u}}

_ T 5 (- 1)f (aen) oy(- L) Lt (0) gy e
2V 2 =0 < e - -

el ot £ AR G oo ]

= - f(r)(p,u;n) according to equation (71). Negative odd powers of k do not occur

~in (111); thus there is of course nothing to cross out.

Turthermore onec has to compare the parts of the singular solutions (111) and (40)

which are even in k. -The series of spherical harmonics has the

{?art even in k of fgng.)(p,u)}

£4=0

jr' B (- )% (2ee1) oy(- by Tk (05 ) o (u8)
2 K JEE

It is the first series in the curly bracket of (115). A glance at

I
—

Go(- %)

O O BT G X (o RN CE D Rl N

1 c 1
Pz(- =)+ = Wz_l(— ;) for 4 =

shows that (118) contains two parts, one without a factor c and a second with a factor
c:

{?art even in k of f(S - )(p,u)}
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= ‘/f {5 5 (2£+1) Py(- 1) .I_'_(M)_Pz(u)
> |2 #=0 K

kp
© : (xo) (119)
+ S T (24+1) W, (- 1) —’(’Z—f"i)—i Pz(u) .
2 p=1 K

fem

Here the superfluous terms with negative powers of « arise from the introduction of
the power series (113) for the modified Bessel functions into (119). Of course the
rearrangement of the double series in a power series is only a formal way. It leads
nevertheless to something reasonable, namely to the new singular solution (40) after
dropping all terms with negative powers of x. The largest negative power of k in the

£-th term of (119) is « 4.

One has to omit £ expressions in the f-th term, namely
those with K—2£} n'22+2, n'2£+h, cen K—h, k2 as factors. It is sufficient to keep
the terms with the non-negative powers wo, Kg, nh’ «.. in (119).

E. Verification of statement of section D about the even parts in k of the singu-

lar solutions in the two different representations. We consider first the part of

(119) which is independent of c:

kT gi (22+41) Py(- %) M P,(n)
= = .

2V 2
: 1
T [ @ . @ (4r+os+1) P (-=) P ()
_ \/_____{Z (59) s > 2r+s K 2r+s (120)
2p |s=1 2 r=0 ! P(—S-I‘-P%)
1
® © Pon_g (- %) Pop_g (0)
+ X (5B T (brepewy) BEze_ ET Eres :
s=0 m[%] +1 r! [(s-r+3)
Eﬂ is the largest integer < g; e.g., for s = 0 it is {S] = -1, for s = 1lor 2
it is O, for s = 3 or It it is 1 and so on. The first series of (120) contains onl
Y

negative powers of k; hence we omit it. It does not also contribute to the density.

We investigate only the second series of (120) and write down its first four terms
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AT Dy Perls ) Parn)
P 2 r=0

r! M(-r+d)

(4r-1) Por-1(- %)_PEr-l(P-)
r! F( -r%)

+
©
g

=

(121)

Por_o(- &) Pop_p(k)

ri M(-r+3)

- L ‘
e 23T (hres) Por-s(- ) Tor-3(k)
= r!rw-rfg)

+ eee

After the omission of all terms with negative powers of k in (121) these four terms
should be equal to the corresponding four terms in the development of that part of

the new solution (40) which is even in k and does not contain c. This part in (40) is

1 <bos(g/l-u2) \/} cos(b (l¢u2)(l-v2))
e M {——+x dv
4 o/l - ue 0 Ml - v2

sinh (ng)l - ue v)

-1

1 - M 1 1 - ;
0 i 2 2
- 5 -—-—-—-—+p——+p-—<—-(l-n<)/l-u>
T/l - 42 T/l - W2 T gﬁ_u2 (122)

2Ll -8 /2 2. 2]
+ p + -kS) wfl - S+ .,
= G
(11)

G. Bauer has derived three formulas which may be used advantageously for the

comparison of equations (121) and (122):

) ' 2 . 2 . . . 2 . )
e = P 5 (@ Plw) + 9(372) 7, (1) + 132 Polu) + oo 123)
), '

. Béuer, Journal fuer die reine und angewandte Mathematik, Berlin, Vol. 56,
p. 101 (1859). See also E. W. Hobson, the Theory of Spherical and Ellipsoidal
Harmonics, Cambridge University Press, 2nd printing, p. 49 (1955).
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2o 2-1p ._. 9.2 (L) 133 (25 Ve (-
22 2rgwrse 2 (3) Bpl-9 -2 (2) Bt 13- 3 (352) Retw)
(124)
2 _ 4 _ .. lp B ( 3 5 (L3 T(L-3 - 5\2
=3-ZB(u)+7- Pa(p)+11- 2 P.(u)+15° P(u)+.en,
T /l—ue ) (> 3 6(2 ) ) 8(2-h~ 7
(125)
Applying the recursion formula for Legendre polynomials
1
nP () = [§m+l) Poop(n) +m P ()
m om + 1 m+1 Pp-1 ]

these formulas may be extended to arbitrary powers u? as factors of (l—ue)g or

’ _.l.
(1-4%)72, for instance to

.2_ —T—_zz 2P -LP-[ _S'llPl‘ _5 7P T ene
- w/1 - . 1 (w) (u) ook 5(n) 2(n) .

2 7
(126)
Therefore our comparison of the coefficients of (121) and (122) could be continued

to arbitrary large powers of p.

-1

(a) We start with the comparison of the coefficient of p™" in the equations

(121) and (122). We obtain from (121)

1
E % (i FerloB) Forle)
2 r=0 ri C(-r+3)
- {Pom) v 5+ ($F-25) o) + 9 3) (-35+22) ) +

2:2(.2.2.2)

6 1 8 1 16 128
+ r7(l 5:2: 1 @_ 25 i 7 7 ...
2. h 6 8 ne K 5K :

[}...] -+ cee (127)

el

- =[]
Tl - ue 2 A
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using the formula (123). Hence we see that the coefficient of ol in (121) is
identical with the corresponding coefficient in (122) after the omission of all terms
with negative powers of x as factors.

(b) We compare now the corresponding coefficient of p0. We obtain from (121)

¢ % (hr-1) Por-1 (- 2 Poray ()
r=1 )

::lxl

r!: (- r+——)

. ’ L, a2 . 2
DU 1 P 1 .2 (L _5 S5 /e 3\, 1 21
= _{% - P, (u) + 7 n (2> (} - Pz(u) + 11 z <2 : u> (} S + . 4) Pg (1)

/1-3-5%/ 9 .99 kg
—_——— .1. - P LR N
<2-1+-6>< K2+;E 55n> 7(H)+ }

=

n

= ﬁ+i—2 [] -i_l* [] + e (128)

using the formula (125). After the omission of all terms with negative powers of «
the coefficients of o0 in (121) and (122) are equal.

(c) We compare now the corresponding coefficients of p. We obtain from (121)

M2 (hr3) Por-2 (- 2 Por-z (1)

8 r=1 ri (- r+—)

%{ 2Ro(n) - 2 (x3-3) By(w) - =2 (x-10+2 Q P, (1)

352 51,90 P
- —,;) 6(1)

(L1 35 (256328 1716 1007 Po(p) - - ovn
6u.128( -k2 gk 76 ) g
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- g+ 5 - B ppt)+ o(22)” mytu) v 13220 By +27(2 ZZ -1y
Pglu) + -]

- L1-2) [l Po -5 - (L) By(i- 9 2 (5 u)e P () - 15 - § (22 6>2P6(u)

RG] B[] R[] o

using the formulas (123) and (124). After omission of all terms with negative powers
of k the coefficients of p in (121) and (122) are equal.
(d) Finally we compare the corresponding coefficients of p=. We obtain from

(121)

/_‘rr ] Z (4r-5) PE.I“'B (- %) Por. 3 (1)

16 r=2 r! Y T4y ) |

= %g{' 3K2 Pl(u) + 'IE (5K2-5) P (u) + E (15¢° —70+——) P (“)

3 ; ,
¢ 2 (o5x215+ 22 By () v Ll
512 kS K

- (2_.2y .13 . _5 .11 257 - ..
G- - T2 - Te - =t ey el - |

P (1)+ 11 - 5<l 5)P (B)+15- 1<l > 5 P(p)+--J
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ﬂ@‘@ WA lu—ue]l_e ] 1_h [ee] e e - o)

using the formulas (125) and (126). After the omission of all terms with négative
powers of k the coefficients of p° in (121) and (122) are equal.

We turn now to the part of (119) which has the factor c:

o I_(g+d) (xp)
¢ T8 (ern) v,y (<L) TR P
oV 2 4=l - K .
(131)
1 -4-1+2r
P (Pr41) Wy g (=) Pyln) (52) |
4 £=1 r=0 r! [(-2+r+3)
= (terms with negative powers of & only) +
clof_3 7 11
+ 40 P () + P5(n) + Pys) + o ]
2{ L -2 5.4 0 5.6 °
v o[- 222 py(p) - 22 () - "{]
L 16 128
. , | (132)
+ pe <7 . 5 P}(u) + 11 - )4-2 Ps(u) + .o'>
96 2k - 128 '
) n/3 L 7 11 .
b2 (2py(n) - Topg) - Ep(y) - )] s b
<8 1 T2 > 720 >
G. Bauér(le) gives the formula
log (1t) = (log 2).- 1+ —2— Pi(u) - Poln) + =L Bylu) =+ oo (133)
1-2 .23 3 - L

from which one derives the extensions

(lgjLoc. cit.
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'log Lrp | %O (ba+3) Ponyy (1) - - (13
1l -p n=0 (on+l)(2n+2) S . . ‘
W log [RtE o E.[l , & Gerd) Poy (”)] (135)
L-p 2 p=l  (n41)(2n-1)
2 og e 1 @ n(en3)(hne3) Pony (u) (136)
1-p 2 8=1. (n41)(n+2)(2n-1)(2n+1)

and so on, .if one wants to proceed with further steps of the comparison. The part of

the new singular solution (40), which is even in x and contains the factor c, is

_q\m 2m ’
Z_ e-up{mio M<E> + Jo(h) Log |—-E

=1 (m:)2 2 1-up

1

cos(dn /L - 52

+ Lf ds (49 ) 2(log 2s) cosh(kdys)
™ 0 /L - e ' .

- e—dos %D k) [(l+|<)m + (l—n)m] ar snj

m=1 1 ©

18

) Tn(®) [Gfg)% + G:E %] [(li Z (-1)" (l_“ﬂ o (137a)

+ 1
2 n 1w KT}

c ’ j
= - po(log L+ p +plL - g 1 - p,2 - 1 log Lt p
2 1-p m 1-pu

+pej[<_--_3_a+au l_ue_L;s_ﬁlo‘g/l_:_u>
b m b » 1 -u

. .
+ k2 <E Pl P /“—u)] + e . ' (137v)
i L 1 - :
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Applying the aid formulas (124), (126), (134-136) to (13Tb) one finds (1%2) if one
omits the negative powers of k in (132). This procedure could be continued to higher
powers of p, but never completed in this manner. If there exists any justice, how-
ever, the following relation between the siﬁgular solution in spherical harmonics

(111) and the new form (40) should hold:

Omitting all terms with negafive powers of k in the spherical harmonics solu-

tion, (111) and (40) become equal.
Remark. Presumably the same method could be applied to the cylindrical case
.for the construction of a converging singular solution from the corresponding

spherical harmonics series.
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