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Doppler Broadening of the He+ 4686 Line
in Jon Temperature Measurements

January 1957

Abstract

The measurement of the broadening of the He II complex line A 4686 A
has been widely used L to estimate ion temperatures in plasmas. Such broad-
ening has been assumed as a first approximation to arise only from the Doppler
effect. This report attempts to analyze the broadening as a function of both

temperature and magnetic field., All other sources of broadening have been

assumed to be negligible,

Lu; 062



~2-
. +
Fine Structure of He 4686 A

The line He+ 4686 arises from a principal series 4 to 3 transition;

its fine structure has been analyzed extensively both theoretically and ex-
. 2,3,4,5,6 . . .
perimentally . Table I gives the transitions involved, the wave
7

numbers (vacuum) and wave lengths (air) together with the calculated and
observed relative intensities of the various components. The wave length
in air is determined by subtracting 1. 311 A, the correction due to the change

in the index of refraction, from the vacuum wave length.

Table I Fine Structure of He' 4686

Sommeffeld G, W, Series G, W. Serit

Transition Vacuum L(cm-l) Alin Ao) air Intensity Cal. Intensity Cal, (observed)
1 s’p,-4"p 21334564 4685.918 1.0 0.63 —
2 2
N 2 2
.3 P3 -4 S1 21334,623 4685,905 2,0 2.2 } 11. 3
2 2
2 2
I 3 D5 -4 P3 21334.,718 4685, 885 0.12 1.14
2 2
2 2
IIIr 3 D5 -4 F5 21334,961 4685.831 4,6 5.1
2 2 100
2 2 -
Iv 3 D5 -4 F7 21335,083 4685, 805 92.3 1.00
2 2
2 2
- . 40
v 3 P2 4 D_3- 3.9 2
i 2 2 21335,295 4685, 758 | 4.84
2 2
A -4 0, 0,12
vt 3 Dé P2 59 1
2 2

ok 003
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Table I Fine Structure of He+ 4686 (contd,)

1 o Sommerfeld G. W, Series G. W, Series
Transition Vacuum Y(cm ") A(in A ) air Intensity Calc. Intensity Calc. (observed)
VI 32p3 - 4‘2135 64. 6 70,1
i 2 2 21335,538 4685, 705 106.5
VI 32133 - 42F5 35.4 38,3
2 2 -
2 2
VII 3 S1 -4 Pl 21336.156 4685,569 5.1 5.6 4.8
2 2
2 2 l
VII' 3 P1 -4 Sl 21336, 354 4685, 525 1.0 1,1 4.8
2 2
2 2 '
VIII 3 Sl -4 P3 21336, 887 4685,408 10,3 11,1 1.3
2 2 ’
2 2
VIII* 3 Pl -4 D3 21337.026 4685.378 19.6 21.3 21,0
- 2 2

Generally, the agreement between the observed and calculated intensities
is good. Anomalous intensit:ies3 were observed for the lines I' and VII', both of
which were about five times the calculated value. Since both have the common
upper level S%, a possible explanation was that this level was overpopulated by
a factor of five in the discharge. Similar anomalies had been observed by Paschen
and Leo, Apparently, the intensities of the two lines are rather sensitive to dis-
charge conditions,

In the calculation of the broadening of the complex line, theoretical values
- of the intensities only have been used. Only those components whose intensities
compared to 100 are at least 5 are here considered. Statistical equilib'rium has
been assumed to exist among the various upper levels. Experimentally, at suff-

. 8
iciently low pressure, this equilibrium may not always be attained with a con-

sequent increase in intensity of the components originating from the 4P levels.

Lol 00H
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Doppler Broadening
Doppler broadening has been calculated using the formula for the in-

tensity as a function of temperature and wave length shift

where ?\o is the wave length of the unshifted line and AA is the displacement

from A _. For He 4686, this becomes

2
I =1 . -85,052 AN /T
max

where T is the '"temperature' in electron volts (1 ev =1.16 x 104 oK) and
AAX is in angstroms. The theoretical profiles for the composite line at various
temperatures are shown in Figure 1. Half-intensity total widths [  obtained
from these curves as a function of ion temperature are given in Table 2 and

plotted in Figure 2.

Table 2. Total Widths (at half-intensity) of He® 4686

Ion Temperature (ev) [T = Total Width (A)
1 0.22
16 0.77
36 1.11
49 1.29
81 1.63
100 1.80

The broadening due to fine structure is completely masked at temperatures
above 80 ev, and a simple formula may be used to determine the Doppler

broadening.

rooil
1 vt

N Qud
[ =o0.18T°? (T in ev where l ev =

4
1.16 x 107 °K.)



Zeeman Effect

For the purpose of approximating the effect of the magnetic field on
the line profile, the so-called ''mormal Zeeman effect' has been considered
rather than the ""anomalous Zeeman effect' which is actually involved and
which, if used, would have led to an unnecessarily complicated analysis. For
observatien perpendicular to the field, normal Zeeman effect gives rise to a
central undisplaced m component (Am = 0, plane polarized parallel to the
field) and to two 0 components (Am = + 1, plane polarized perpendicular to
the field) displaced from the central component a distance

Ay=4.67x10"°H

where Ay is in wave numbers and H is in gauss. For He 4686 this displace-

ment becomes, in angstroms,
-5
AN =1,012 x 10 H

Actually, several lines are grouped around the three ''mormal' positions
(anomalous Zeeman effect). The individual displacements are small relative

to the normal shift, however, and, for simplicity, are here replaced by a

single line of intensity equal to the sum of the individual intensities ( the summed
intensity of the Am = + 1 components is approximately one-half that of the total
intensity of the undisplaced Am = 0 components and similarly for the Am =-1
components). For observation along the field, the Am = 0 transitions are for-
bidden; Am = 1 1 are circularly polarized. Wave number and wave length dis-

placements as a function of magnetic field are given in Table 3.
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Table 3. Displacement of Am = 1 1 components
from Am = 0 component

Magnetic Field Ay~ AA
. -1
kilogauss Angstroms
10 0.467 0,101
20 0.934 - 0.202
30 1.401 0.303
40 1,868 0.405
50 2.335 0,506

The Am = 0 components could be separated by the use of a polarizer,
but this procedure would result in a loss of over 50% of the intensity in trans-
verse observation. Composite profiles for the Doppler-broadened Zeeman
components for various temperatures have been made and are shown in Figures
3-6 (the a figures refer to transverse observation without polarizer, and the b
pictures to longitudinal observation.,) Figures 7 (a and b) and 8 (a and b) rep-
resent broadening (half-intensity total width [ ) as a function of temperature
with magnetic field as a parameter and as a function of magnetic field with
temperature as a parameter, respectively, for observation in the two directions,
These results are displayed in Tables 4a and 4b, The values obtained at fields
of 15000 gauss and higher are the result of approximations to the Paschen-Back
effect which occurs in such fields.

Table 4a. Calculated total widths [T at half-intensity

for transverse (Am = 0, T 1) observation

of Het 4686 as a function of temperature
and magnetic field. No polarizer,

Magnetic Field Temperature
kilogauss 16 ev 36 ev 49 ev 100 ev
0 0,77 1,11 1.29 1.80
10 0,77 1.11 1,29 1.80
30 - 0.96 1.21 1.38 1.88
50 1.25 1.43 1.58 2,03

con Ldf



Table 4b.

Magnetic Field
kilogauss

0
10
15
20
30
40
50

-7-

Calculated total widths [~ ‘at half-intensity for

longitudinal (Am =

t1) observation of Het 4686

as a function of temperature and magnetic field.

4dev

0.43
0.49
0.63
0.79
1.04
1.24
1.44

9ev

0.60
0.65
0.73
0.84
1.16
1.39
1.58

Temperature
léev 25ev 36ev
0.77 0.94 1.11
0.81 0.98 1.13
0.86 1.01 1.17
0.94 1.07 1,22
1.20 1.29 1,39
1.54 1.59 1,64
1.76 1.89 1.97

Paschen-Back Effect

49ev

1,29
1,31
1,33
1,38
1.52
1.72
2.02

bdev

1.46
1.47
1,48
1.52
1.65
1,83
2.10

100ev

1.80
1.81
1.82
1.87
1.95
2,10
2,30

In the presence of a sufficiently high magnetic field, the spin-orbit

interaction may become relatively slight; 1-s coupling will no longer be valid

and the lines corresponding to the transitions given in Table 1 do not exist as

a consequence of the overlapping of the magnetic levels,

The spin-orbit inter-

action energy may be determined from the fine structure shifts, and, in Table 5,

this shift is related to a corresponding magnetic field in gauss.

Table 5. :Spin-orbit Interaction Energy

Doublet

Separation

A ¥ (cm™1)

1,731

0.577

0,731

0.243

0.122

Lo

H=Ay/4.669 x10 >

033

37000

26900

34100

11300

2600

gauss
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As the most intense components arise from the 4D and 4F levels, it can be
seen from the table that magnetic fields greater than 12000 gauss would give
rise to the Paschen-Back effect. Consequently, an estimated Paschen-Back
pattern was plotted based on the following:

1. The sum of the intensities of all components for field-free trans-
itions equals the sum of the intensities for field transitions between levels
having the same n, 1 values. For example, the transitions for the Paschen-
Back line 3ZD - 4 F have the same summed intensity as the sum of intensi-

2 2 2 2
ties for 32D5 -4 F _, 3 D5 -4 F7, 3 D3 - 42F and similarly for 328 -

2 > 3 o2 2
2 2 2 2 2 2
2 2 2
4 P, 3 P-4 S’ etC.

2., The small, individual displacements of the magnetic components

are ignored and a single line replaces them. Intensities of the Am = +1 and

Am = -1 corﬁponents are assumed equal to one half that of the undiplaced
Am = 0 component as was true for the low field case., Table 6 gives the new
transitions together with wave lengths and assigned intensities. These wave
lengths and intensities were then used to determine composite profiles. In
one instance, T = 36 ev and H = 50,000 gauss, the profile (Am = 0, fl ) was
determined using both Zeeman and Paschen-Back transitions. The results

were nearly identical. (I = 1.43 and 1.45, respectively)

Table 6. Paschen-Back Transitions

Transition A Intensity

2 2

35-4P 4685.46 11.6

2 2 - AN
3’P-4D 4685, 60 66.7 Cod 049
2 2

3 D-4F 4685.77 1.00

2 2

3’ P-4S 4685.78 2.3 (neglected)

2
3 D-4P 4685. 89 1.3 (neglected)
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Effect of Slit Width
A check was made on the "averaging' effect resulting from 0.1 A and‘
0.2 A experimental resolution for scans made at 0.1 A intervals. The error
introduced at these resolutions is significant only at low temperatures where
the line still shows structure. For example, at T =1 ev, resolution 0.2 A,
the "observed" half-width expected was 0.28 A compared to a theoretical
value of 0,22 A (error 27%). However, at 16 ev, resolution 0.2 A, the error

was less than 1%, well within the experimental error.

Addendum
Low Temperature Profiles Viewed along the Magnetic Field
At low ion temperatures, He+4686 shows definite structure when viewed
in a direction parallel (Am = * 1) to the magnetic field for (H = 20, 000 gauss).
Two profiles, indicative of the behavior to be expected for ion temperatures of
4 and 9 ev (Figures 9 and 10, respectively) have consequently been included.
Paschen-Back transitions were used and ''broadenings' have been tabulated

on the figures.
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