

UNCLASSIFIED

10 FEBRUARY, 1961

MP-11126

REPORT S-190

COPY NO. 34

(TITLE -- UNCLASSIFIED)

MASTER

SOME EXPERIENCES IN THE
WELD FABRICATION OF
REFRACTORY METALS
BY

ERNEST G. THOMPSON

FOR PRESENTATION AT THE
MIDWEST WELDING CONFERENCE
ARMOUR RESEARCH INSTITUTE
CHICAGO, ILLINOIS
2 FEBRUARY, 1961

UNCLASSIFIED

4.1 1

THE MARQUARDT CORPORATION
VAN NUYS, CALIFORNIA

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

CONTENTS

<u>Section</u>		<u>Page</u>
I	INTRODUCTION.	1
II	WELDING STUDIES	3
	A. Molybdenum Base Materials	3
	B. Columbium Base Materials.	5
	C. Tantalum Base Materials	6
	D. Tungsten Base Materials	6
III	FABRICATION	7
--	REFERENCES.	9
--	TABLE 1 -- Physical Properties of the Refractory Materials.	10
--	TABLE 2 -- Materials Welding Experience	11
--	TABLE 3 -- Tensile Properties of Welded Specimens of Hydrogen Sintered, 0.5% Ti-Molybdenum Alloy Sheet	12
--	TABLE 4 -- Tensile Properties of Welded Specimens of Arc Cast 0.5% Ti-Molybdenum Alloy Sheet	13
--	TABLE 5 -- Comparison of Interstitial Analyses of Sheet and Weld Bend Transition Temperatures	14
--	TABLE 6 -- Tensile Properties of Welded Specimens of Welded Fansteel 80 and 82 Sheet	15
--	TABLE 7 -- Tensile Properties of Welded Specimens of Hydrogen Sintered, Commercially Pure Tantalum Sheet	16

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

LIST OF FIGURES

	<u>Page</u>	
Figure 1	Oxidation of Molybdenum, Tungsten, Tantalum and Columbium in Flowing Air at 2000°F.	17
Figure 2	Comparative Porosity Count for Sintered, Commercially Pure Molybdenum Welded Under Various Conditions.	18
Figure 3	Visual Weld Appearance for Three Molybdenum-Base Sheet Materials Welded Under Identical Conditions	19
Figure 4	Grain Boundary Contamination in Molybdenum Welds	20
	a. Arc-Cast, Molybdenum-0.5% Titanium Alloy	
	b. Arc-Cast, TZM Alloy	
Figure 5	Weld Macrostructures of Fanssteel 82 Alloy Sheet	21
	a. Welded at 10 ipm	
	b. Welded at 100 ipm	
Figure 6	Weld Porosity in Hydrogen-Sintered Tungsten Sheet	22
Figure 7	Sections of Welded, Arc-Cast, Molybdenum-0.5% Titanium Alloy Sheet Cold Worked as Indicated	23
Figure 8	Manual Repair Welded Molybdenum Cups	24
Figure 9	Welded Molybdenum Cups After Spinning	25
Figure 10	Welded Tantalum Tube	26
Figure 11	Welded Tantalum Assembly	27
Figure 12	Welded Tungsten Emitter Assembly	28
Figure 13	Fabrication Sequence of Welded Molybdenum Pressure and Temperature Sensing Probe	29
Figure 14	Longitudinally Welded Molybdenum Cylinder	30
Figure 15	Circumferentially Welded Molybdenum Hyperjet Exit Nozzle . .	31
Figure 16	Molybdenum Hyperjet Tailpipe Assembled by Machine Fusion Welding	32

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

I.

INTRODUCTION

Information presented in this paper was obtained from contributing engineering studies conducted at The Marquardt Corporation in support of Air Force Contract AF 33(600)-40636.

The discussion of welding fabrication of refractory metals will, in this paper, be restricted to alloys of the four elements: tungsten, molybdenum, tantalum, and columbium. These are all transition elements, columbium and tantalum being elements of group 5b and molybdenum and tungsten, elements of 6b.

Some of the properties which make the refractory metals important are listed in Table 1. Included in this tabulation for comparison is titanium. Only the element, carbon, exceeds the melting point of tungsten. Tantalum has the fourth highest melting point of any metal and molybdenum, the fifth. All four metals have low thermal coefficients of expansion. The thermal conductivities of molybdenum and tungsten are excellent, being exceeded only by those commonly known metals; aluminum, magnesium, copper, silver, and gold. Densities of the refractory metals are high. Only platinum, osmium, and irridium of the precious metals group and rhenium have greater densities than tantalum and tungsten. The specific heats of tantalum and tungsten are very low. Uranium and some members of the precious metals group are the elements having lower specific heat values. In a consideration of moduli only rhenium and again, members of the precious metals group; osmium, ruthenium, irridium, and rhodium are superior to molybdenum and tungsten.

The melting points and densities of this group of metals contribute to a high heat input for fusion. This requirement is tempered by the low specific heat characteristics of the metals. High thermal conductivities and low thermal coefficients of expansion result in good heat impact resistance. High thermal conductivity also assists in rapid quench of the weld, promoting grain refinement.

421 0 4

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

However, when preheat is required for welding molybdenum and tungsten, maintaining a desired temperature becomes a problem with good thermal conductivity. The refractory metals have two other well known characteristics which make them difficult to fabricate by welding. All are reactive to air at slightly elevated temperatures and all except tantalum undergo a ductile-brittle transition.

As shown in Figure 1,¹ the refractory metals oxidize rapidly at high temperatures. Since the oxide of molybdenum becomes volatile at about 1400°F, loss of metal above this temperature occurs at a catastrophic rate. The influences of oxygen and nitrogen on the ductility of molybdenum have been the subject of many reports, among them articles by Wulff² and Rengstorff, et al³. With respect specifically to the effects of these elements on molybdenum weldments, Perry, et al⁴ postulated that Mo-MoO₂ eutectic which forms above 2100°C is responsible for poor weld ductility by forming brittle grain boundary films. Platte^{5,6} has made quantitative studies of the embrittling effects of oxygen and nitrogen on molybdenum welds. More recently, Begley⁷ reported on the embrittlement of columbium welds by oxygen and nitrogen.

An excellent review of the knowledge on ductile-brittle transition in refractory metals has been compiled by Schwartzberg, et al⁸. The actual temperature of transition varies depending on the type of test used for evaluation. Using a slow bend test, it may be stated generally that tungsten has a transition temperature of 400°F or higher, molybdenum undergoes transition in behavior around room temperature and columbium has a transition temperature considerably below room temperature. No transition temperature for tantalum has been found.

The reactive nature of the refractory metals and their pronounced embrittlement by oxygen, nitrogen, and hydrogen in the ppm range require that material to be welded be chemically cleaned, inert shielding gases be of maximum obtainable purity, and inert-gas, arc shielding techniques be highly refined. For those

421 (15)

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

elements and their alloys which have ductile-brittle transition temperatures at or above room temperature, imposition of welding stresses and a weak, extremely brittle, cast structure further require the use of preheat to avoid weld cracking.

Among the refractory metals and alloys whose welding characteristics have been studied are those listed in Table 2. Programs have been primarily concerned with sheet materials, although molybdenum plate, bar, and tubing have also been welded.

Extensive evaluation has been conducted using the gas, tungsten arc welding process employing both manual and machine welding and is reported herein. Design data has been obtained exclusively from machine welded sheet materials. Flash welding, resistance spot welding and brazing, electron beam welding, and high frequency resistance welding processes have also been applied to molybdenum alloys.

II. WELDING STUDIES

A. Molybdenum Base Materials

Experience with molybdenum, especially material processed from arc-cast ingots, is extensive. Early in the refractory metals program, some effort was concentrated on sintered materials, but their generally unfavorable welding characteristics soon led to discontinuance of studies. Some interesting facts were learned about welding the sintered materials, however, and these will be presented.

Both the hydrogen sintered and vacuum sintered, pure molybdenum grades were found unweldable using the inert arc process without filler additions. Excessive weld bead porosity, and centerbead cracks shown in Figure 2b were evidence of the gaseous content of these materials. By the use of a filler wire of arc-cast, molybdenum-0.5% titanium alloy, sufficient deoxidation of the molten metal by carbon and titanium could be obtained to eliminate cracking as shown

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

in Figure 2a. Open pits caused by evolution of gases during welding were still present at the edges of the weld bead however. The maximum degree of quality was obtained by electron beam welding such material. Not only were cracks eliminated, but porosity was greatly reduced as shown in Figure 2c.

The sintered molybdenum-titanium alloy which has a nominal analysis identical to the commercial arc-cast alloy, was found to be weldable. However, it had several markedly different characteristics. During welding the arc gave off a soft, crackling sound and fine blue lines appeared perpendicular to, and at the edges of the weld bead. Since it was expected that the interstitial content of this material was high, the occurrences were assumed to be evidence of de-oxidation of the molten metal during welding. Analyses of parent and weld metals proved this was true, and oxygen content had been reduced from 280 ppm to 220 ppm. The weld profile was also different, the edges of the bead being sharply undercut. Reference to Figure 3 allows a visual comparison of welds made under identical conditions in sintered pure, sintered alloy, and arc-cast, alloy molybdenum sheet all of 0.040 inch thickness. In Figure 3a are shown the open pits caused by gas evolution and the gross weld cracking resulting from the high residual oxygen and nitrogen content of the weld metal in sintered, pure molybdenum. The blue dis-coloration adjoining the weld bead and the undercut condition at the bead edges typical of a weld in the sintered alloy material are shown in Figure 3b. A photograph of the clean, sound weld obtained in the arc-cast alloy grade is shown in Figure 3c.

The sintered alloy was found to be more susceptible to weld center bead cracking and less susceptible to transverse weld cracking than the arc-cast alloy. Welds were also found to have no or negligible porosity. Property data

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

on welded tensile specimens of the sintered, molybdenum-0.5% titanium alloy are reported in Table 3. These specimens were fully recrystallized during application of an oxidation-resistant coating (Chromalloy W2) by the pack cementation process.

Arc-cast, commercially pure molybdenum traces its weldability to deoxidation by carbon during melting and to melting under vacuum. These factors lower the oxygen plus nitrogen content to the order of 15 ppm. No improvement in weldability of arc-cast material has been noted as a result of the titanium alloy addition. Apparently the deoxidation reaction has proceeded to its limits during ingot melting. Tensile properties of welded arc-cast, molybdenum-0.5% titanium alloy are reported in Table 4.

The recently commercialized TZM alloy has proved more difficult to weld than the titanium alloy. Photomicrographs of weld grain boundaries in these two alloys reveal the reason. Figure 4 shows grain boundary contamination in TZM to be greatly in excess of that in molybdenum-0.5% titanium alloy accounting for the increased weld cracking susceptibility of the former. While grain boundary contaminants of the TZM alloy have not been analyzed, it is assumed they are associated with the zirconium addition. Oxygen and nitrogen analyses presented in Table 5 of both TZM and molybdenum-titanium alloys have proved the effects cannot be correlated with a marked difference in ppm of these impurities in the parent material. Welding evaluation of this alloy is limited to a single heat of material. Studies of additional heats are required to verify initial results.

B. Columbium & Base Materials

Both Fansteel 80 and Fansteel 82 alloys have been welded. These alloys are both ductile materials which suffer only slight embrittlement when welded. Weld bead cracking is not encountered unless inert gas protection is poor.

P 3

UNCLASSIFIED

UNCLASSIFIED

Sheet 0.040 inch thick has been welded at speeds of 10 ipm and 100 ipm without filler addition or preheat. Transverse weld macrostructures showing the effect of welding speed on fusion zone grain orientation and weld profile are presented in Figure 5.

Some limited data has been obtained on welded tensile specimens and is presented in Table 6. Strength-wise, these alloys fall well below molybdenum-0.5% titanium alloy.

C. Tantalum - Base Materials

Hydrogen sintered, commercially pure tantalum and both arc-cast and electron-beam melted tantalum-10% tungsten alloy sheet have been machine welded without difficulty. If anything, these alloys are even more ductile than the columbium base alloys mentioned. Fine edge bead porosity has been found in welds in the sintered, pure tantalum. This is a common occurrence and is attributed to the interstitial content of the material. It has been reported by Haslip, et al⁹ that such porosity does not occur in welds in arc-cast, pure tantalum. Because of its low elevated temperature strength, only a few tensile tests were conducted on welded specimens of the pure material. The data is presented in Table 7. The tantalum-10% tungsten alloy appears to have high temperature strength properties competitive with the molybdenum-0.5% titanium alloy but studies have not advanced to the stage of obtaining weld property data.

D. Tungsten - Base Materials

The only available commercial sheet material is processed from hydrogen-sintered, tungsten bars. This product has the high interstitial analysis typical of sintered molybdenum sheet. This factor in addition to its inherently higher ductile-brittle transition temperature makes it much more difficult to weld than molybdenum. Success has been limited to manual welds made in an inert gas, purge chamber and to a few automatically welded panels of 0.020-inch thick

UNCLASSIFIED

UNCLASSIFIED

sheet. The automatic welds were made at speeds of 20, 60, and 80 ipm and preheats of 400-450°F. While a number of welds were produced which were free from cracks, visual inspection revealed the presence of tiny pits in the weld bead surface. Radiographs confirmed the presence of gross weld bead porosity shown in Figure 6.

From the experience gained thus far, it appears that high quality manual welding of tungsten will be more easily accomplished than automatic welding. The chief drawback to automatic welding is preheat temperature requirements which are estimated to be 1000°F. At this temperature, tungsten oxidizes rapidly and complicates inert gas shielding of the weld joint.

III. FABRICATION

Fabrication thus far has been restricted primarily to molybdenum or tantalum components. In addition, a number of simple forming tests have been conducted to demonstrate the elevated temperature ductility of molybdenum welds.

Figure 7 shows sections from a molybdenum weld which were reduced at temperatures of 400-600°F. A pair of cracked molybdenum cups which were successfully repaired by manual welding techniques adding 50 Mo-50 Re or molybdenum-0.5% titanium filler wire is shown in Figure 8. These cups were later spun to the shapes shown in Figure 9. Molybdenum-rhenium welds failed by ductile tearing; molybdenum-titanium weldments cracked. These tests showed molybdenum weldments capable of accepting a surprising amount of working at elevated temperatures before failure.

A tantalum tube fabricated by forming and manually welding sheet 1/16 inch thick is shown in Figure 10. While some oxidation occurred as indicated by discolored areas the weld was free from cracks. The part is now in service. Another tantalum assembly is shown in Figure 11. Fabrication consisted of welding tantalum tubes having wall thicknesses of 0.015-inch and 0.030-inch to a tantalum "test tube" having a 1/8-inch thick wall. The unit brazed to the top of the "test tube" is a copper water cooling system.

UNCLASSIFIED

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

Figure 12 is an example of tungsten hardware. A pair of tungsten emitters were fabricated by forming and manually welding 1/16-inch diameter to 1/8-inch diameter wire.

The sequence of assembly of the most complicated manually welded molybdenum component yet attempted is shown in Figure 13. All welds were made using molybdenum-0.5% titanium filler wire.

Figure 14 is a molybdenum cylinder made from 0.040-inch thick sheet rolled up and machine welded. No filler wire was added to the weld. A molybdenum hyperjet exit nozzle produced from a pair of spun sections by machine welding a circumferential joint is the subject of Figure 15. This assembly was later incorporated into the hyperjet tailpipe of Figure 16. The tailpipe consists of a combustion chamber fabricated from two longitudinally welded cylinders joined by a circumferential weld and then attached by another circumferential weld to the nozzle assembly. Sheet thicknesses vary from 0.040-inch to 0.050-inch. This item represents the most advanced application of welded molybdenum hardware produced by The Marquardt Corporation.

421 711

UNCLASSIFIED

- 8 -

UNCLASSIFIED

REPORT S-190

REFERENCES

1. Michael, A. B., "The Oxidation of Columbium-Base and Tantalum-Base Alloys", Paper presented at the AIME Regional Conference on Reactive Metals, Buffalo, New York (May 27-29, 1958).
2. Wulff, J., "The Influence of Carbon, Oxygen, and Nitrogen on the Ductility of Molybdenum", Massachusetts Institute of Technology Report.
3. Rengstorff, G. W. P., and Fischer, R. B., "Cast Molybdenum of High Purity", Jnl. Metals, 4 (2), 157 (1952).
4. Perry, T. C., Spacil, H. S., and Wulff, J., "Effect of Oxygen on Welding and Brazing Molybdenum", The Welding Journal, 33 (9), Research Suppl., 442-s to 448-s (1954).
5. Platte, W. N., "Influence of Oxygen on Soundness and Ductility of Molybdenum Welds", Ibid., 35 (8), Research Suppl., 369-s to 381-s (1956).
6. Platte, W. N., "Effects of Nitrogen on the Soundness and Ductility of Welds in Molybdenum", Ibid., 36 (6), Research Suppl., 301-s to 306-s (1957).
7. Begley, R. T., "Development of Niobium-Base Alloys", WADC TR 57-344, November, (1957).
8. Schwartzberg, F. R., Ogden, H. R., and Jaffee, R. I., "Ductile-Brittle Transition in the Refractory Metals", DMIC Report No. 114 (1959).
9. Haslip, L. R. and Payne, B. S., "Tungsten-Arc Welding of Tantalum", The Welding Journal, 38 (12), Research Suppl., 1165-1174 (1959).

421 P12

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

TABLE 1

Physical Properties of the Refractory Metals

Element	Melting Point (°F)	Density (g/cc)	Thermal Conductivity (Cal/Cm/Cm ² /sec/°C)	Specific Heat Cal/G/°C	Coefficient of Linear Thermal Expansion Coefficient/°Cx10 ⁻⁶
Tungsten	6152	19.3	0.31	0.034	4.45
Molybdenum	4752	10.2	0.382	0.062	5.35
Tantalum	5425	16.6	0.130	0.036	6.5
Columbium	4379	8.57	0.13	0.065	7.1
Titanium ¹	3300	4.54	—	0.126	8.5

1. Included for comparison

UNCLASSIFIED

TABLE 2

Materials Welding Experience

Base Metal	Production Process	Alloy Designation	Nominal Analysis (Weight Percent)						
			C	Ti	Zr	Ta	W	Cb	Mo
Molybdenum	Hydrogen-sintered	Commercially pure							100
	Vacuum sintered	Commercially pure							100
	Hydrogen sintered	Ti-Mo		0.5					bal.
	Arc cast	Ti-Mo	0.02	0.5					bal.
	Arc cast	TZM	0.02	0.5	0.07				bal.
	Arc cast	Carbon Deoxidized	0.02						bal.
Columbium	Arc cast	Fansteel 80							
	Arc cast	Fansteel 82							
Tantalum	Hydrogen sintered	Commercially pure							
	Arc cast	Ta-10W							
	Electron beam melted	Ta-10W							
Tungsten	Hydrogen sintered	Commerically pure							

441

114

TABLE 3

Tensile Properties of Welded Specimens of Hydrogen-Sintered, Molybdenum-0.5% Titanium Alloy Sheet

Test Temperature (°F)	UTS (ksi)	0.2% YTS (ksi)	Elongation (% in 2-in.)	Failure Location
2000	34.1	20.8	8.8	Parent Metal
2400	20.0	14.2	5.0	Parent Metal
2600	18.6	13.6	6.2	Parent Metal
3000	14.3	11.7	5.8	Parent Metal

Test Conditions

Heating - Resistance

Hold Time - 2 minutes

Oxidation Resistant Coating - Chromalloy W-2

Test Atmosphere - Air

Strain Rate - 0.001 in/in/sec to yield

0.01 in/in/sec to rupture

W21 115

TABLE 4

Tensile Properties of Welded Specimens of Arc-Cast,
Molybdenum-0.5% Titanium Sheet

Test Temperature (°F)	UTS (ksi)	0.2% YTS (ksi)	Elongation (% in 2 in.)	Location of Failure
80 ¹	130.0	119.0	1.0	Weld Fusion Zone
400 ¹	71.0	66.0	1.3	Weld Fusion Zone
2000	44.5	44.5	1.4	Weld Heat Affected Zone
2200	36.6	35.0	1.2	Weld Heat Affected Zone
2400	29.5	18.9	1.9	Parent Metal
2600	21.0	11.6	7.0	Parent Metal
2800	15.7	8.6	6.7	Parent Metal
3000	11.5	6.7	9.4	Parent Metal
3200	8.0	4.2	8.8	Parent Metal

1. Uncoated Specimens

Test Conditions

Heating - Resistance

Hold Time - 2 Minutes

Oxidation Resistant Coating - Durak MG

Test Atmosphere - Air

Strain Rate - 0.001 in/in/sec to yield

0.01 in/in/sec to rupture

UNCLASSIFIED

REPORT S-190

TABLE 5Comparison of Interstitial Analyses of Sheet
and Weld Bend Transition Temperatures

Material	Heat Identity	Oxygen	Nitrogen	Weld Bend Transition Temperature
TZM	BZ	7.7 ppm	3.6 ppm	350 - 400°F
Molybdenum- 0.5% titanium	U	11.0	4.6	225 - 250°F
Molybdenum- 0.5% titanium	J	16.0	5.0	300

421 017

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

TABLE 6

**Tensile Properties of Welded Specimens of Arc-Cast,
Fansteel 80 and Fansteel 82 Sheet**

Material	Temperature (°F)	UTS (ksi)	0.2% YTS (ksi)	Elongation (% in 2 in.)	Location of Failure
Fansteel 82	2000	32.8	27.0	6.2	Parent metal and HAZ
	2400	14.6	9.1	11.5	Parent Metal
	2800	11.9	8.5	12.5	Parent Metal
Fansteel 80	2000 ¹	26.6	24.2	2.0	Weld HAZ
	2400	15.9	12.3	13.5	Parent Metal
	2800	5.6	3.6	16.0	Parent Metal

1. Single test value. All others average of two tests.

Test Conditions

Heating - Resistance

Hold Time - Two minutes

Oxidation Resistant Coating - none

Atmosphere - Welding grade argon

Strain Rate - 0.001 in./in./sec. to yield
0.01 in./in./sec. to rupture

421 018

UNCLASSIFIED

UNCLASSIFIED

REPORT S-190

TABLE 7

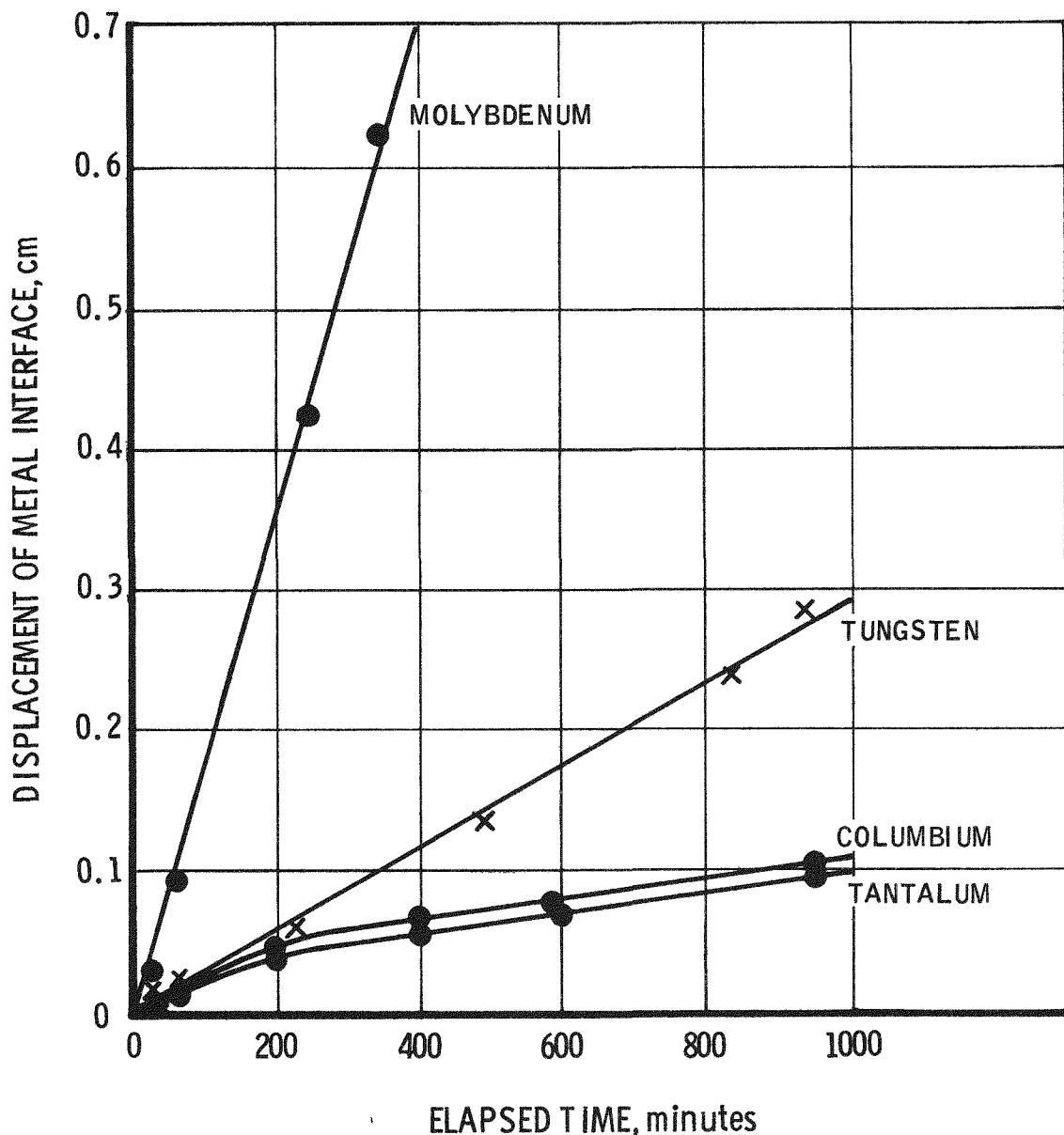
Tensile Properties of Welded Specimens of Hydrogen-Sintered, Commercially Pure, Tantalum Sheet

Temperature (°F)	UTS (ksi)	0.2% YTS (ksi)	Elongation (% in 2 in)	Location of Failure
Room tempera-ture (80°)	45.0 47.0	42.0 41.0	2.0 4.6	Weld Parent Metal
2400	14.5 16.7	4.5 2.4	23.5 28.0	Parent Metal Weld
3000	8.9 9.6	0.6 1.4	53 24	Parent Metal Parent Metal

Test Conditions

Heating - Resistance

Hold Time - 2 minutes


Oxidation Resistant Coating - Chromalloy W-2

Test Atmosphere - Air

Strain Rate - 0.001 in./in./sec. to yield
0.01 in./in./sec. to rupture

421 719

UNCLASSIFIED

OXIDATION OF Mo, Ta, AND Cb IN FLOWING AIR AT 2000°F
(AFTER MICHAELS) (1)

4621 P. 0

UNCLASSIFIED

REPORT S-190

BK3

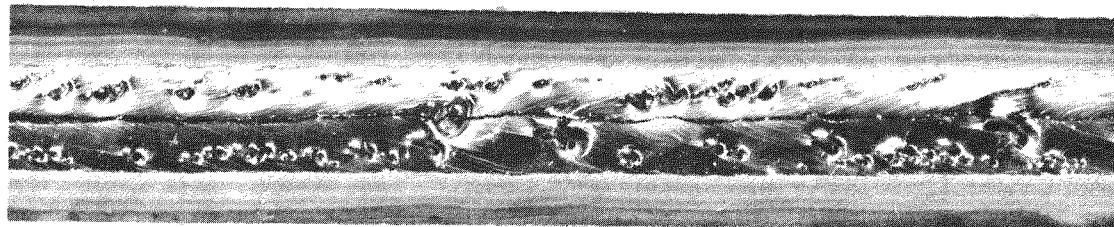
a) HYDROGEN SINTERED, COMMERCIALLY PURE MOLYBDENUM
TUNGSTEN-ARC INERT GAS WELDED WITH MOLYBDENUM - 0.5%
TITANIUM FILLER

BN1

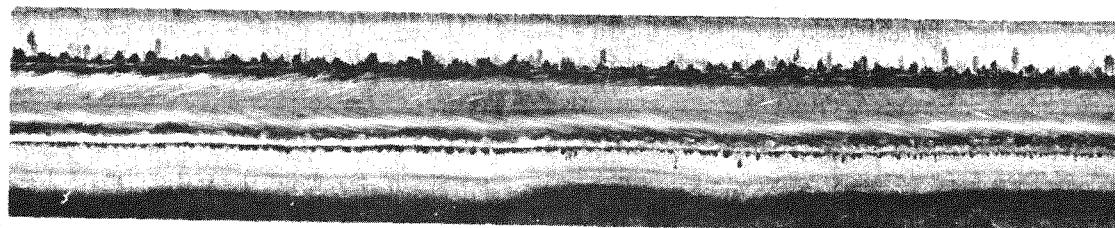
b) VACUUM SINTERED, COMMERCIALLY PURE MOLYBDENUM
TUNGSTEN-ARC, INERT GAS WELDED WITHOUT FILLER

c) VACUUM SINTERED, COMMERCIALLY PURE MOLYBDENUM
ELECTRON BEAM WELDED WITHOUT FILLER

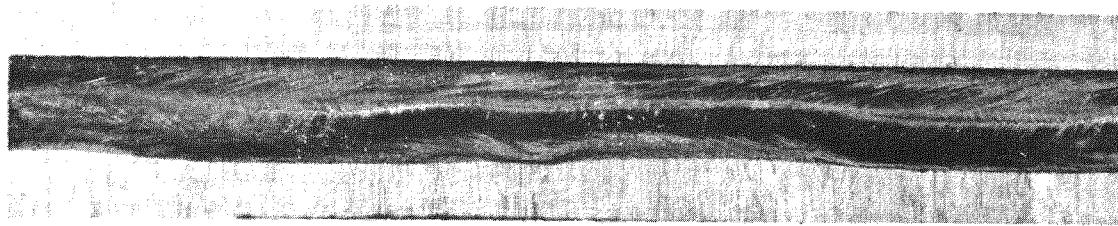
RELATIVE POROSITIES ENCOUNTERED IN WELDING
SINTERED PURE MOLYBDENUM


421 021

UNCLASSIFIED


UNCLASSIFIED

THE MARQUARDT CORPORATION


REPORT S-190

(a) HYDROGEN SINTERED, COMMERCIALLY PURE MOLYBDENUM

(b) HYDROGEN SINTERED, MOLYBDENUM - 0.5% TITANIUM

(c) ARC CAST, MOLYBDENUM - 0.5% TITANIUM

VISUAL WELD APPEARANCE FOR THREE MOLYBDENUM - BASE SHEET MATERIALS
WELDED UNDER IDENTICAL CONDITIONS

421 022

UNCLASSIFIED

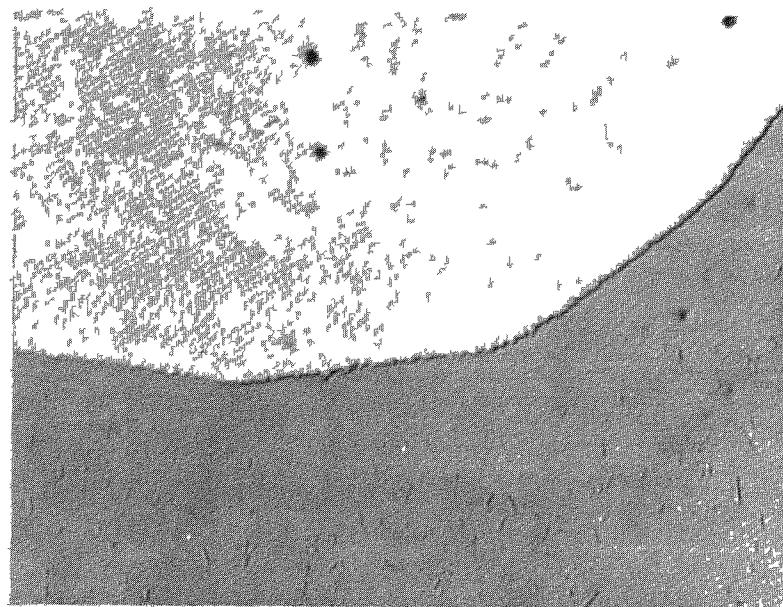

- 19 -

FIGURE 3

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

(a) ARC-CAST, MOLYBDENUM-0.5% TITANIUM ALLOY X2000

(b) ARC-CAST, TZM ALLOY X1000

GRAIN BOUNDARY CONTAMINATION IN MOLYBDENUM WELDS
ELECTROLYTICALLY POLISHED AND ETCHED WITH $\text{NaOH} + \text{K}_3\text{Fe}(\text{CN})_6 + \text{H}_2\text{O}$

421 023

UNCLASSIFIED

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

(a) WELDED AT 10 ipm

(b) WELDED AT 100 ipm

WELD MACROSTRUCTURES OF FANSTEEL 82 ALLOY SHEET X15
MECHANICALLY POLISHED AND ETCHED WITH $\text{HNO}_3 + \text{HF} + \text{GLYCERINE}$

421 224

UNCLASSIFIED

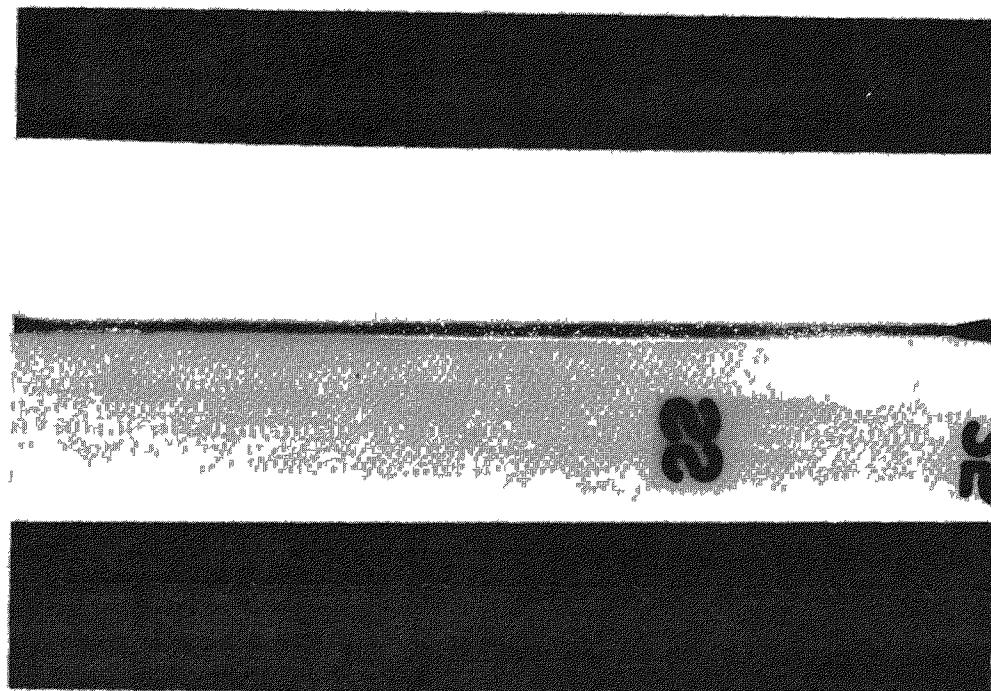

- 21 -

FIGURE 5

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S190

WELD POROSITY IN HYDROGEN-SINTERED TUNGSTEN SHEET

4<1 125

UNCLASSIFIED

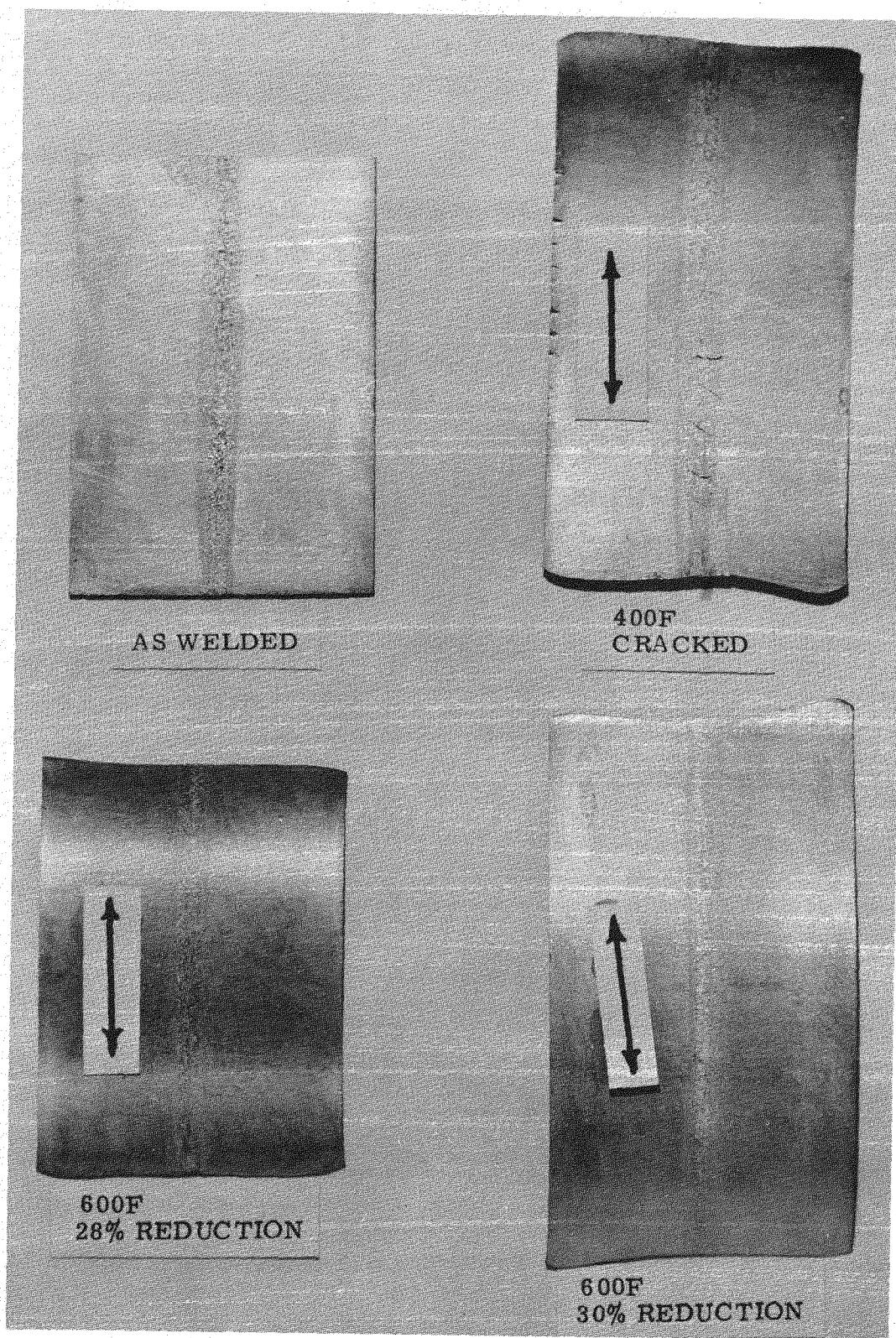

- 22 -

FIGURE 6

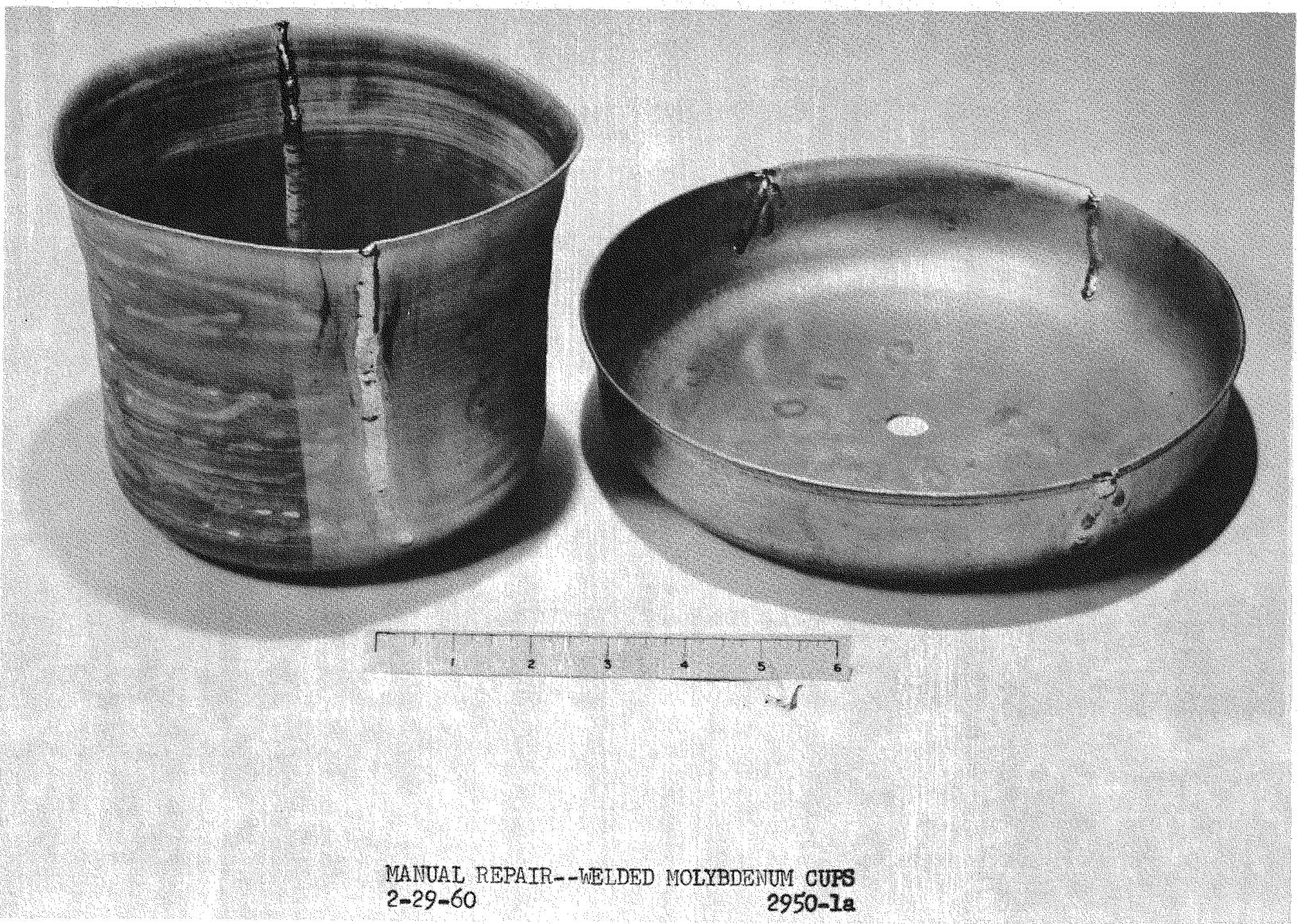
UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

SECTIONS OF WELD U71 WARM ROLLED AT INDICATED
TEMPERATURES AND IN INDICATED DIRECTIONS
2-13-59

2213-1a


421 026

UNCLASSIFIED

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

MANUAL REPAIR--WELDED MOLYBDENUM CUPS
2-29-60 2950-1a

UNCLASSIFIED

- 24 -

421 027

FIGURE 8

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

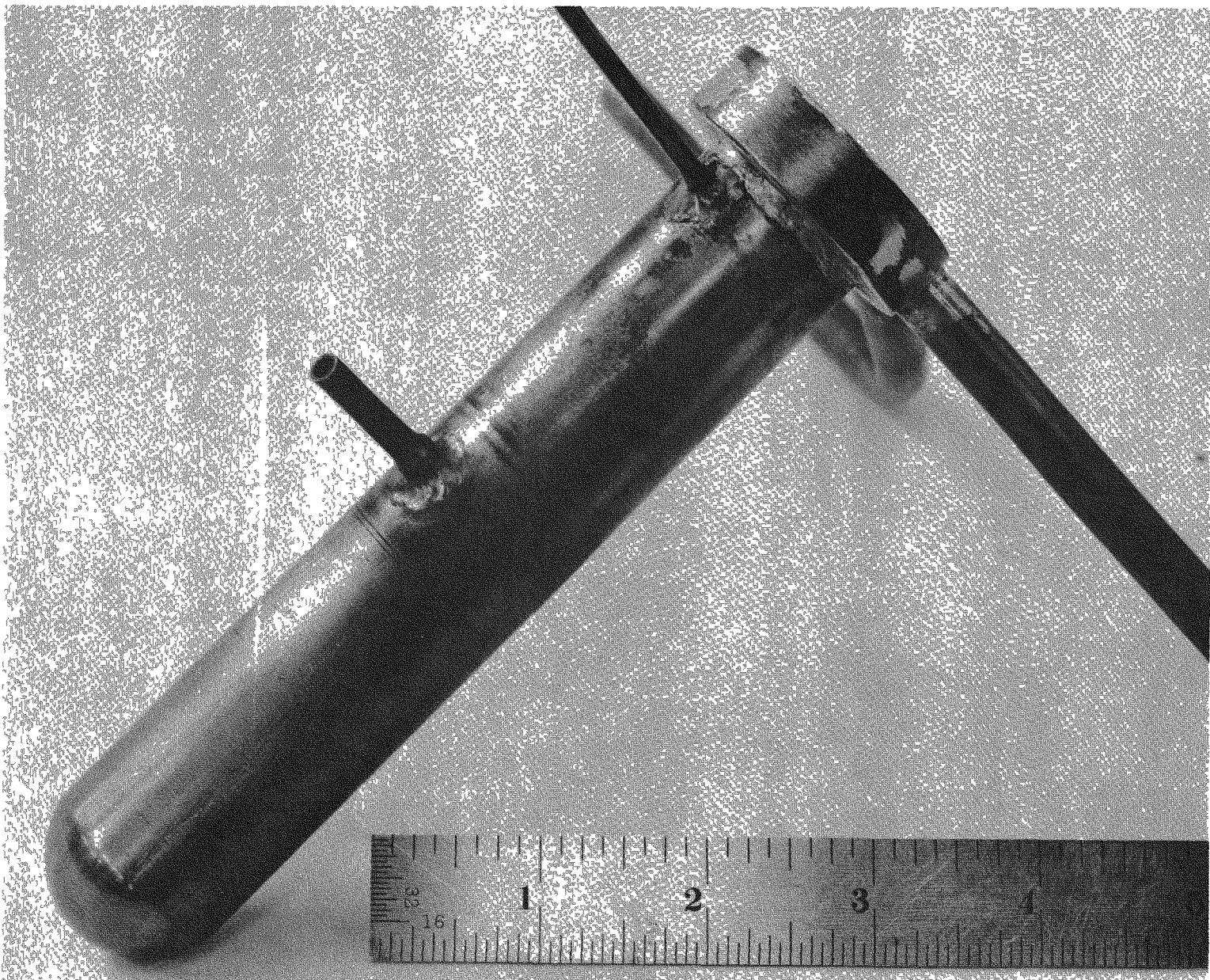
CRACKED MOLYBDENUM-0.5% TITANIUM ALLOY
CUPS--REPAIR WELDED AND MANUALLY SPUN
6-3-60 3207-1a

UNCLASSIFIED

- 25 -

1 2 3
4 5 6
7 8 9
10 11 12

FIGURE 9


FIGURE 10

- 26 -

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

FUSION WELDED TANTALUM ASSEMBLY
5-26-60 3197-1a

UNCLASSIFIED

- 27 -

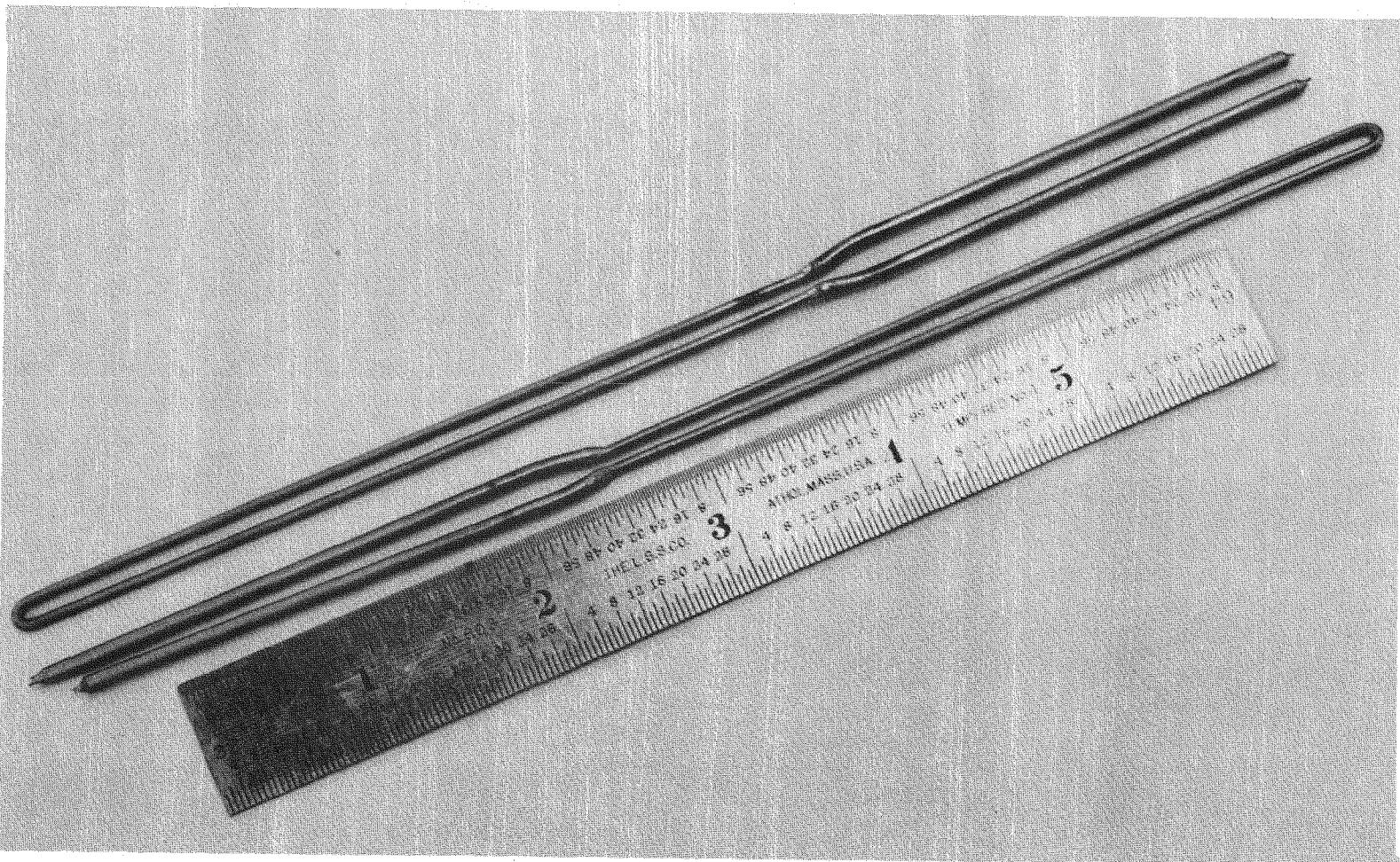

421 050

FIGURE 11

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

WELDED TUNGSTEN EMITTER ASSEMBLY
5-26-60 3197-2a

UNCLASSIFIED

- 28 -

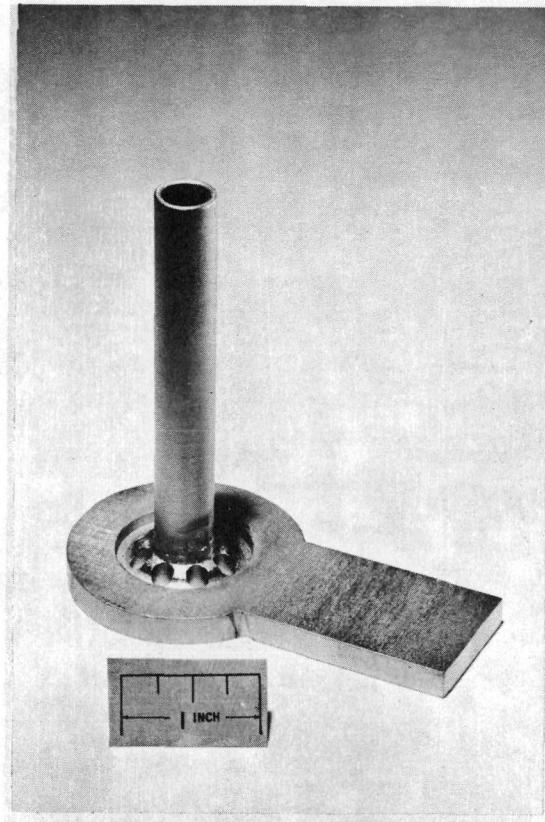
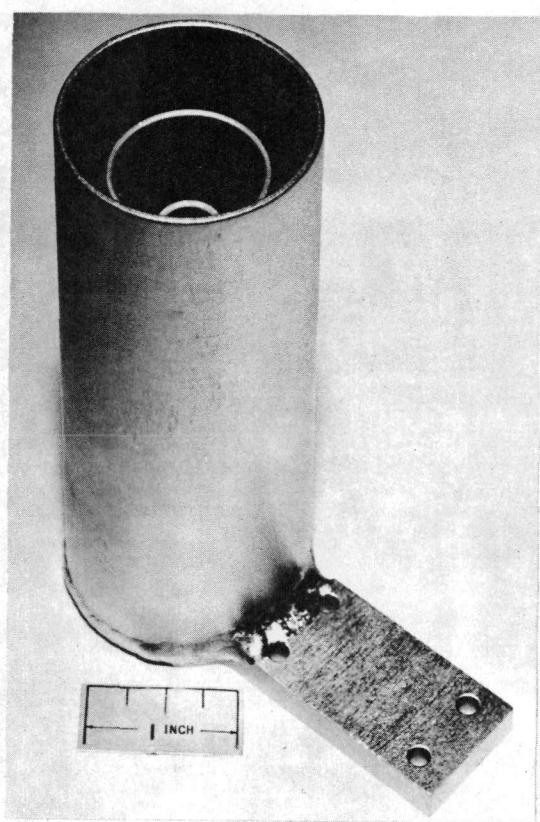

421 031

FIGURE 12

UNCLASSIFIED

THE MARQUARDT CORPORATION


REPORT S-190

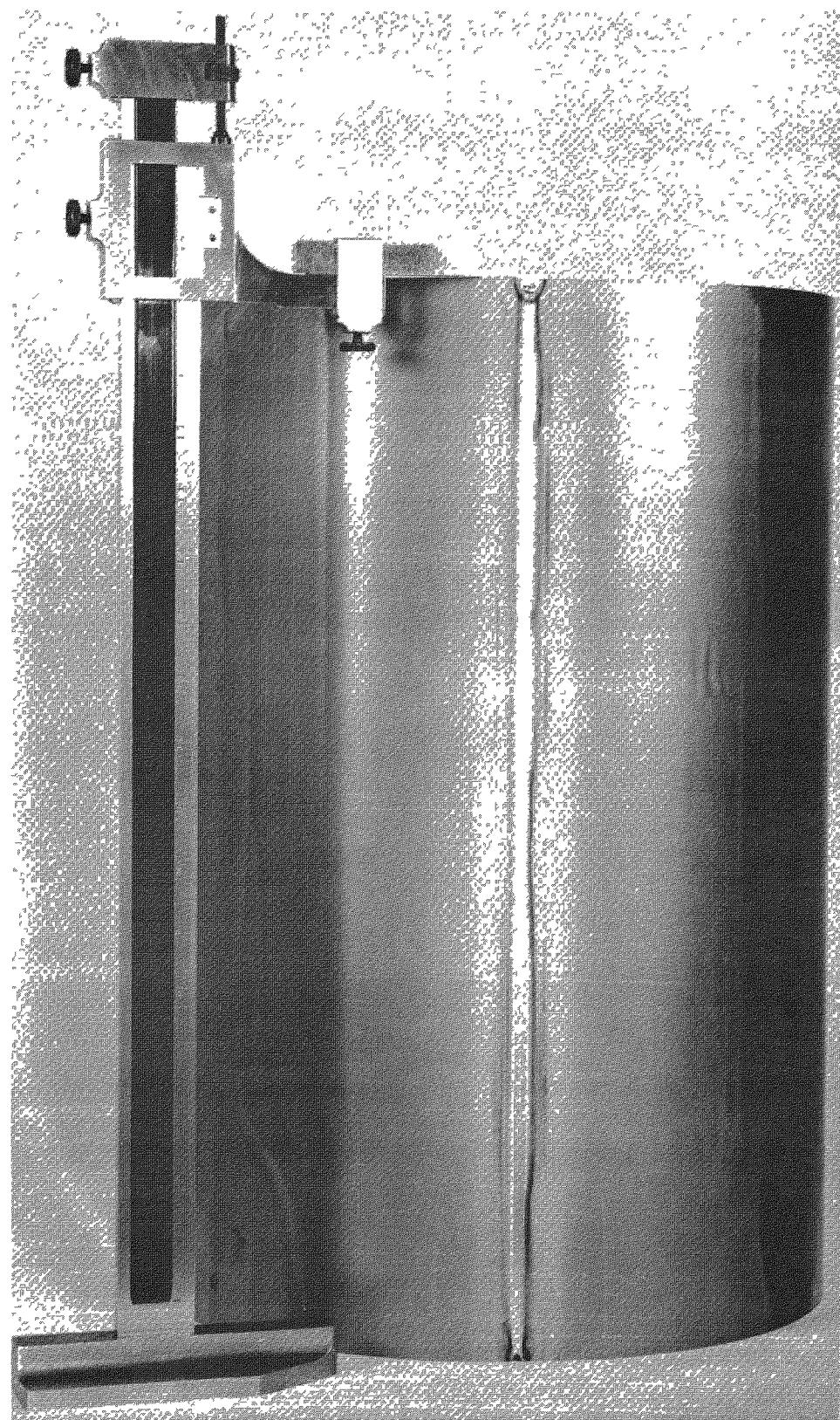
PHASE 1

PHASE 2

PHASE 3

WELD FABRICATION OF MOLYBDENUM - 0.5% TITANIUM
TEMPERATURE AND PRESSURE SENSING PROBE

421 032


UNCLASSIFIED

- 29 -

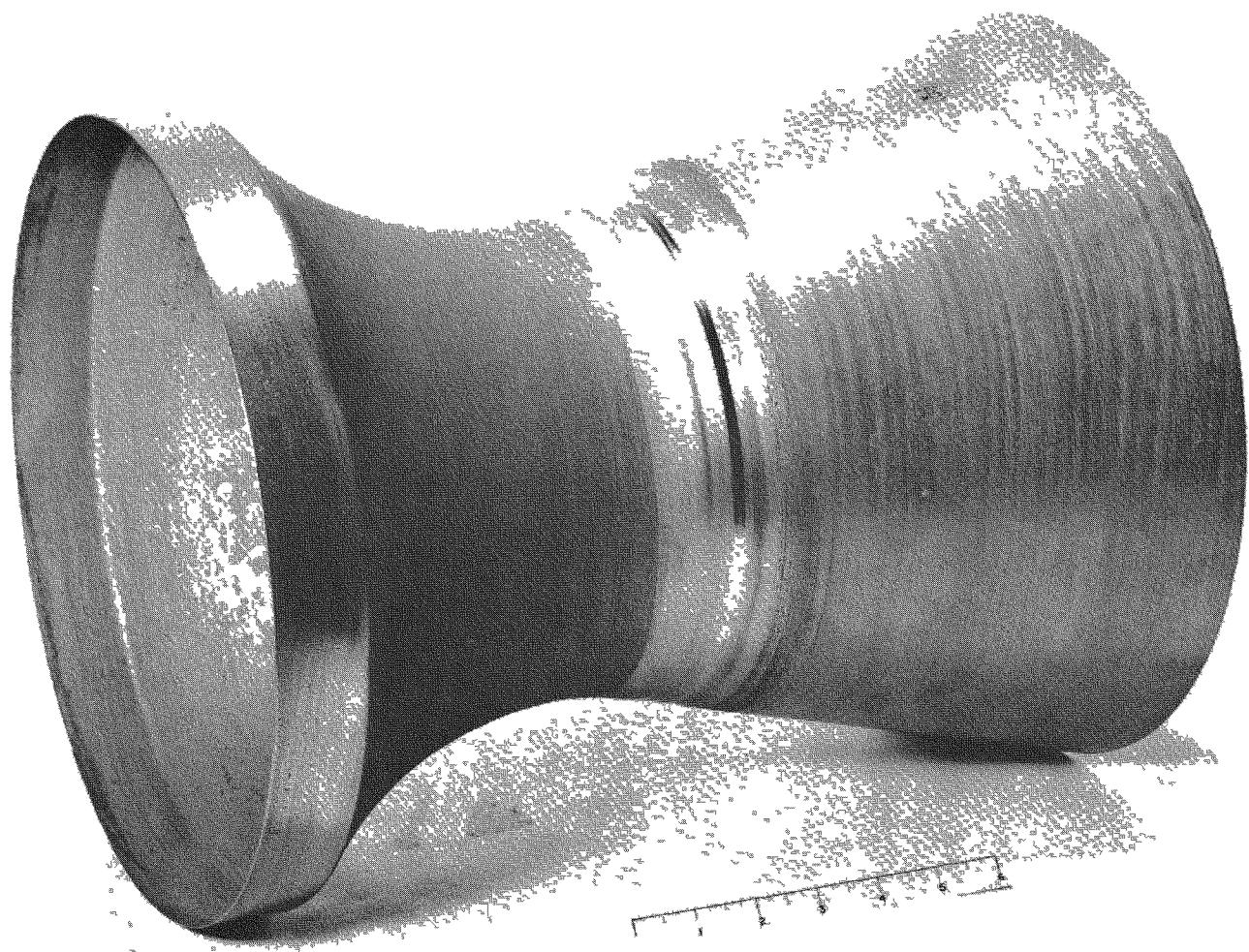
FIGURE 13

UNCLASSIFIED

REPORT S-190

FUSION WELDED MOLYBDENUM CYLINDER
9-23-59 2653-1a

R33


461

UNCLASSIFIED

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

WELDED MOLYBDENUM NOZZLE SECTION
4-4-60
3103-1a

UNCLASSIFIED

- 3a -

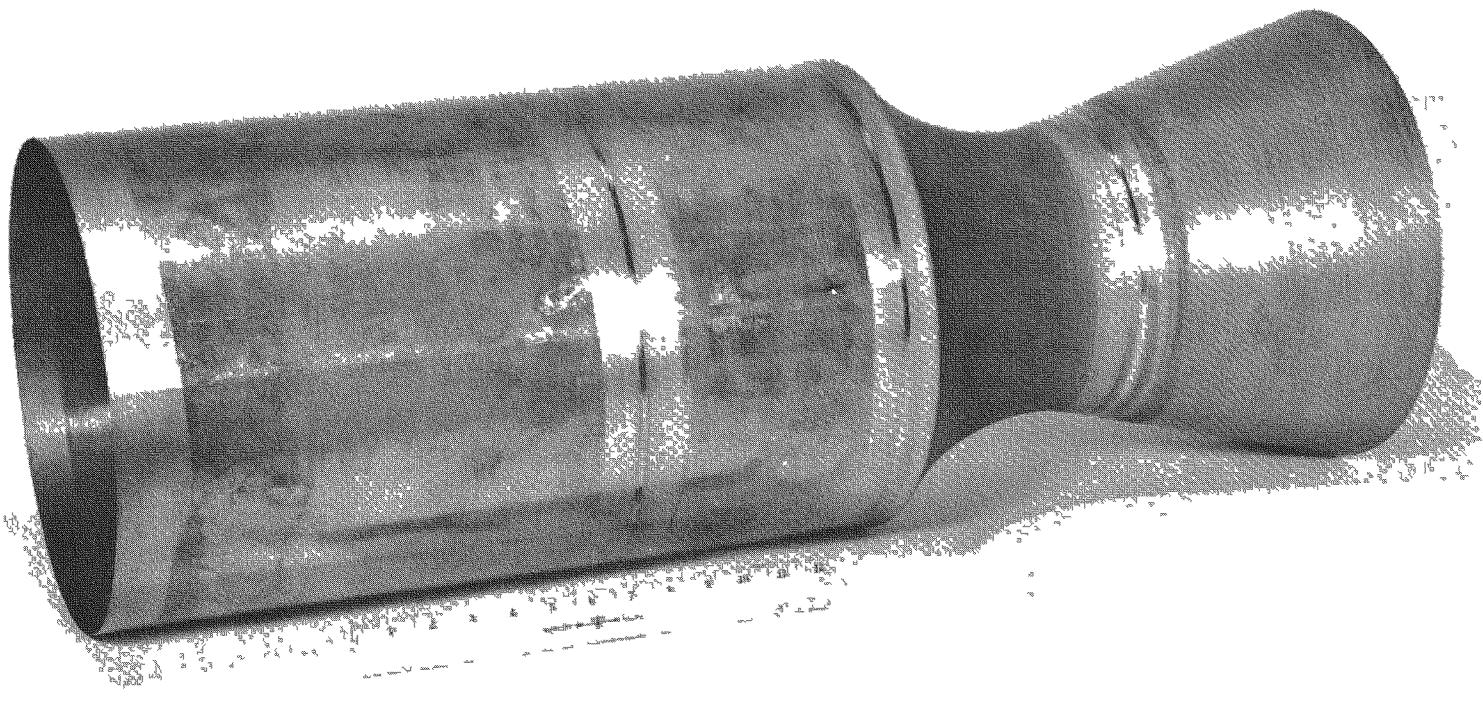

103

FIGURE 15

UNCLASSIFIED

THE MARQUARDT CORPORATION

REPORT S-190

0.5% TITANIUM-MOLYBDENUM WELDED COMBUSTION CHAMBER AND EXIT NOZZLE
5-31-60 3198-1a

UNCLASSIFIED

- 32 -

FIGURE 16