

R
UNCLASSIFIED

K-1487

*325
70.20*

60
AEC RESEARCH AND DEVELOPMENT REPORT

MASTER

BOILING OF FREON-114 IN A THREE-FOOT STRAIGHT TUBE EVAPORATOR

AUTHOR:

Charles F. Allen

**UNION CARBIDE NUCLEAR COMPANY
DIVISION OF UNION CARBIDE CORPORATION**

Operating

- OAK RIDGE GASEOUS DIFFUSION PLANT
- OAK RIDGE Y-12 PLANT
- OAK RIDGE NATIONAL LABORATORY
- PADUCAH GASEOUS DIFFUSION PLANT

for the Atomic Energy Commission

Under U. S. Government Contract W7405 eng 26

UNCLASSIFIED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in USA. Price \$0.50 Available from the
Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Date of Issue: October 19, 1961

Report Number: K-1487

Subject Category: ENGINEERING
AND EQUIPMENT
(TID-4500, 16th Ed.)

BOILING OF FREON-11^{1/2} IN A THREE-FOOT STRAIGHT TUBE EVAPORATOR

Charles F. Allen

Technical Division
D. M. Lang, Superintendent

UNION CARBIDE NUCLEAR COMPANY
DIVISION OF UNION CARBIDE CORPORATION
Oak Ridge Gaseous Diffusion Plant
Oak Ridge, Tennessee

Report Number: K-1487

Title: BOILING OF FREON-11⁴ IN A
THREE-FOOT STRAIGHT TUBE
EVAPORATOR

Author: Charles F. Allen

A B S T R A C T

Experimental determinations of heat flux were made with Freon-11⁴ flowing by natural circulation through a steam-heated vertical tube with and without swirl promoters. The heated length of the 7/8-inch outside diameter copper tube was 35 inches, the saturation temperature of Freon-11⁴ at test-section flow exit 160°F., and the heat flux range from 7,000 to 70,000 Btu./hr./sq.ft. Heat flux measurements at specified conditions were compared to determine the degree of fouling and the effect of swirling flow on heat transfer efficiency.

Experimental data showed that the circulation of water-saturated Freon-11⁴ at 200°F. for 2-1/2 hours did not produce sufficient steel corrosion products to foul the surface of the evaporator. Swirl promoters were effective in reducing dry-wall vapor binding at the higher heat loads. The 50 per cent increase in maximum heat flux observed was limited by the low liquid-to-vapor ratio of the bulk Freon leaving the evaporator. An increase in input flow to the evaporator by forced circulation or increased liquid head should produce an additional increase in maximum heat flux.

BOILING OF FREON-114 IN A THREE-FOOT STRAIGHT TUBE EVAPORATOR

INTRODUCTION

This report covers two series of tests run on a Freon evaporator containing a vertical copper tube having an outside diameter of 7/8 inch, heated externally for a length of 35 inches by steam condensing in a concentric jacket.

The first series of tests deals with the sensitivity of the heat-transfer surface to fouling when water-saturated Freon coolant is subjected to high temperatures. A decrease in heat-transfer efficiency had been noticed in some plant operations where these conditions had existed for short intervals. Also, laboratory experiments had shown that the combination of Freon, water, and high temperatures produced increased corrosion rates on steel samples.¹ The present work was designed to measure the rate of heat transfer through the wall of a copper tube before and after water-saturated Freon-114 was circulated through the test loop at temperatures up to 215°F.

The second series of tests run on this evaporator was designed to evaluate the use of helical strip and wire coil swirl promoters to increase heat transfer. The maximum over-all heat flux in the nucleate-boiling range is limited by dry-wall vapor binding in a portion of the tube, and the swirl promoter was placed in the Freon stream inside the tube to expedite the movement of the heavier liquid to the evaporator surface. Results from six different swirl promoters are compared with the open-tube data.

SUMMARY

Data for the boiling of Freon-114 with natural circulation inside a short vertical tube are presented as a basis for determining the degree of fouling of the heat-transfer surface, and the effect of swirling flow on the rate of heat transfer to a boiling liquid.

Circulating water-saturated Freon-114 through the test loop at temperatures up to 215°F. did not change the heat-transfer characteristics of the evaporator.

The use of swirl promoters increased the maximum heat flux approximately 50 per cent and caused a marked decrease in the liquid-to-vapor ratio at the exit of the evaporator. At the lower temperature differences across the Freon film, the heat flux was essentially unaffected by the use of swirl promoters.

PROCEDURE

Original Open Tube Tests

High temperature Freon-114 fouling studies were made using a natural circulation heat-transfer test loop. The vertical straight-tube evaporator with insulated steam shell was installed inside the heated enclosure containing the loop components. Air inside the enclosure

was maintained at the Freon boiling temperature to minimize heat-loss corrections. Steel pipe was used to connect a high-pressure condenser to the evaporator in parallel with the test loop as shown in figure 1. Block valves protected the loop instrumentation during periods of high-pressure operation. The copper evaporator tube was 7/8-inch O.D. by 3/4-inch I.D. by 35 inches long. Five copper-constantan thermocouples were peened into the outside surface of the tube wall at the center of each 7-inch section of the tube. The average of these wall-temperature readings was used to determine the temperature differences across the Freon and the steam films. Heat transfer measurements were made at average temperature differences across the Freon film from 7 to 40°F. The Freon saturation temperature was maintained at 160°F. and the liquid head at 60 inches above the bottom of the evaporator.

Exposure to High Temperature

The high-pressure section of the loop consisting of steel pipe and steel condenser shell was exposed to water-saturated Freon-114 at elevated temperatures for a short period to see if corrosion products formed quickly and migrated to the evaporator surface to cause fouling. Approximately 10 cubic centimeters of water was placed in the loop with a small amount of Freon-114 present. An additional 3.3 liters of Freon-114 was added to fill the loop to the operating level. The amount of water required to saturate the Freon supply at 212°F. is 4 cubic centimeters. After circulating the Freon-water mixture for two hours at 200°F. with the steam shell pressure at 45 psia., the steam saturator was bypassed, and full steam-line pressure was used. The following conditions were used during a 30-minute period of circulating the mixture through the evaporator and the high-pressure section of the loop: steam shell pressure, 105 psia.; steam shell temperature, 330°F.; tube wall temperature, 315°F.; Freon feed temperature, 208°F.; and Freon outlet temperature, 215°F. The Freon-water mixture was removed from the loop and replaced with a normal supply of Freon-114 in preparation for heat-transfer tests to check for evidence of fouling.

Miscellaneous Test Conditions

Eleven tests were made at special operating conditions. These included subcooling of the Freon feed, reduction in liquid head, and reduced Freon saturation temperature.

Fabrication and Installation of Swirl Promoters

The helical strip swirl promoters were twisted to a given pitch by running a flat aluminum strip through a die. The aluminum wire coils were wound on a metal rod and stretched to the proper pitch and outside diameter. The swirl promoters reached the full length of the evaporator tube. Samples of both types are shown in figure 2. Each

time the loop was opened to change the swirl promoters, it was evacuated to a pressure less than one millimeter of mercury before being refilled with Freon-114.

RESULTS

Original Open Tube Data

The heat-transfer coefficient for Freon-114 increased from 900 Btu./hr./sq.ft./°F. at a temperature difference across the Freon film of 7.3°F. to a peak value of 2400 Btu./hr./sq.ft./°F. at 13.5°F. At average Freon film temperature differences greater than 13.5°F., the coefficient decreased in the manner shown in figure 3 as the increase in the amount of film boiling caused vapor binding in the upper portion of the tube.

Figure 4 shows the relationship of heat flux to temperature difference across the Freon film for this evaporator within the limits of the operating conditions used in these tests. A maximum heat flux of 42,000 Btu./hr./sq.ft. was reached at a temperature difference across the Freon film of 30°F.

Operating at a 60-inch Freon liquid head, the liquid-to-vapor ratio leaving the evaporator ranged from a value of six to two and one-half, depending on the rate of heat transfer. The ratios observed at other operating conditions varied with liquid head, because of the change in total flow entering the evaporator (figure 5).

The apparent temperature differences across the Freon film used in these correlations were determined by subtracting the temperature of bulk Freon-114 at the evaporator exit from the average of five wall-temperature measurements. The difference between the bulk steam temperature and the average wall temperature was used as the temperature difference across the steam film. The wall temperature was reasonably uniform over the full length of the tube up to an average Freon film temperature difference of 10°F. For an average temperature difference across the Freon film of 30.4°F., the wall temperature at the top of the evaporator exceeded the temperature at the bottom by more than 40°F. A range of characteristic wall-temperature profiles is shown in figure 6.

The scatter in the plot of steam film coefficient versus temperature difference across the steam film (figure 7) is probably due to contaminants in the steam and sensitivity to small errors in temperature measurements.²

Open Tube Data Following Exposure to High Temperature

Results from tests following the brief exposure of the loop to water-saturated Freon-114 at elevated temperatures showed no appreciable fouling of the heat-transfer surfaces. Exposure time was limited to approximately two hours to simulate periods of abnormal plant conditions

in order to determine the possibility of rapid fouling as opposed to a gradual loss in heat-transfer efficiency. Figure 4 shows the comparison of these data with the original heat flux measurements.

Miscellaneous Test Conditions

Results from eleven tests, 30 through 40, which incorporated variations in Freon feed subcooling, boiling temperature, and liquid head are listed in table 1 for comparison with other data. No major differences in total heat transfer were noted for reasonable variations in these conditions of operation.

The Effect of Swirling Flow on the Freon Film Heat-Transfer Coefficients for a Three-Foot Vertical Tube Evaporator

Even though a definite maximum heat flux for swirling flow was not established, all six swirl promoters tested at these conditions produced values at least 50 per cent greater than the maximum heat flux for vertical flow in the open tube. Heat flux was essentially unaffected at the lower temperature differences across the Freon film where nucleate boiling predominated over the full length of the tube. Figure 8 shows the effect of the different swirl promoters on heat flux within the limits of the conditions used in this investigation.

An indication of the relative efficiency of the various swirl promoters is shown in the plot of Freon film heat-transfer coefficient versus temperature difference across the film in figure 9. From 15- to 50-per cent increase in maximum Freon film heat-transfer coefficient was observed, depending upon the geometry of the swirl promoter used. The comparison plot of wall temperature profiles in figure 10 shows how swirling flow affected the dry-wall vapor binding and reduced the temperature difference across the Freon film in the upper portion of the evaporator.

The liquid-to-vapor ratio of the Freon leaving the evaporator was considerably reduced by the combined effects of increased evaporation, reduction in total flow resulting from increased frictional pressure drop, and increased impact surface for entrained liquid droplets (figure 11).

There was very little change in evaporator inlet and outlet pressures over the entire heat flux range for natural circulation with constant liquid head. The mass flow rate through the evaporator tube is controlled by an equilibrium condition in which the frictional pressure drop around the circulation loop is balanced by the difference in hydrostatic head existing between the saturated liquid in the return leg and the two-phase fluid in the evaporator tube. Pressure drop in the evaporator results from a combination of fluid acceleration, wall friction, and difference in hydrostatic head. The relative importance of these effects depends upon loop geometry and operating conditions.

CONCLUSIONS

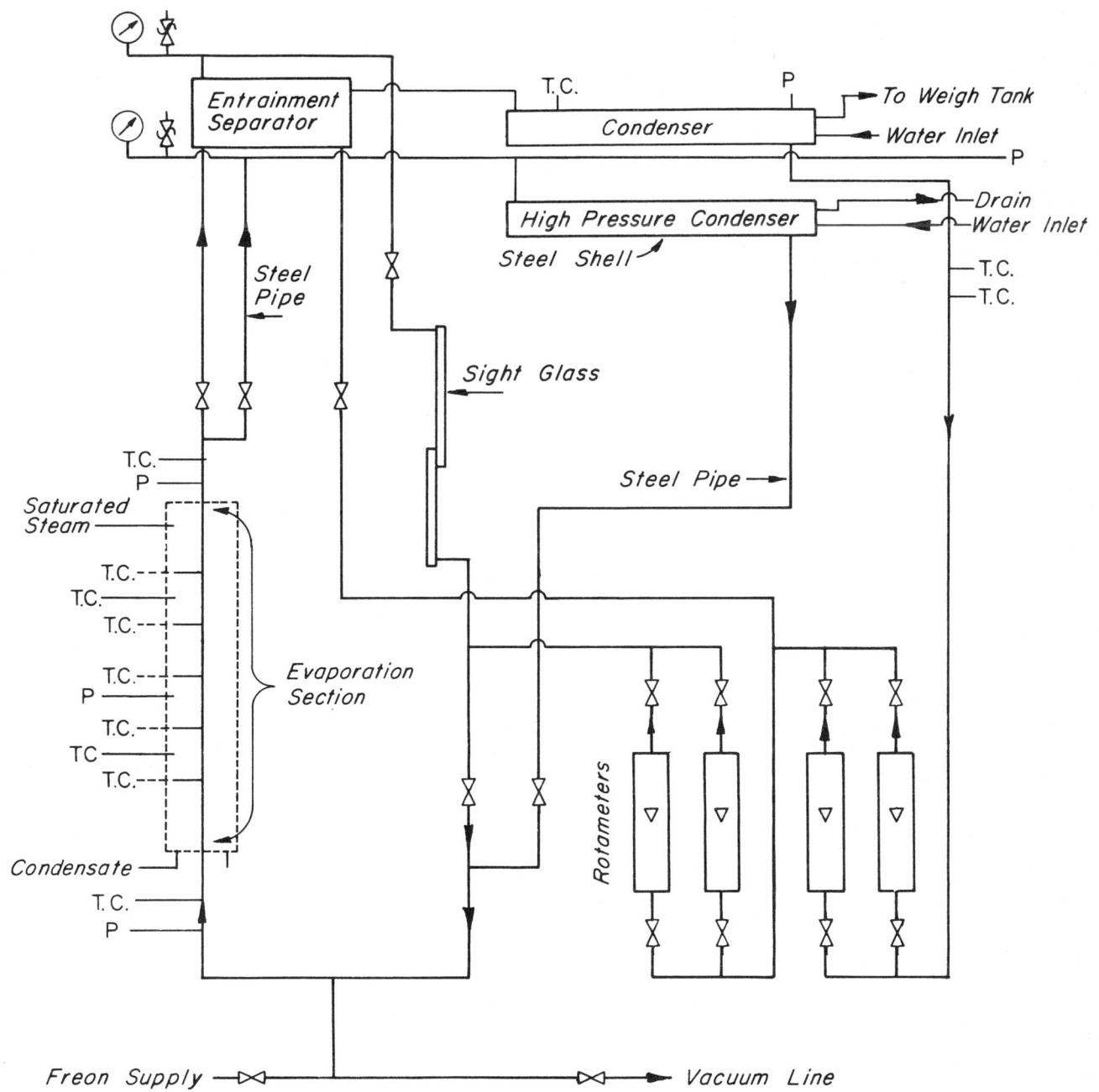
The conditions imposed on the loop during these studies were not sufficient to cause appreciable fouling of the evaporator surfaces.

Within the range of these experiments, subcooling of the Freon entering the evaporator reduced the amount of vapor leaving the evaporator but has very little effect upon the correlation of average heat flux versus apparent temperature difference across the Freon film in the nucleate boiling range. In one case, approximately one-third of the total heat transferred was required to bring the bulk Freon to the boiling temperature.

Swirling the flow of Freon-114 inside the evaporator tube produced heat-flux values at least 50 per cent greater than the maximum value observed for vertical flow in the open tube. For constant liquid head and a given temperature difference across the Freon film, the use of a swirl promoter produced a marked decrease in entrained liquid carry-over. The increase in maximum Freon heat-transfer coefficient and the average temperature difference across the Freon film at which it occurred for swirling flow were dependent upon the efficiency of the particular swirl promoter used.

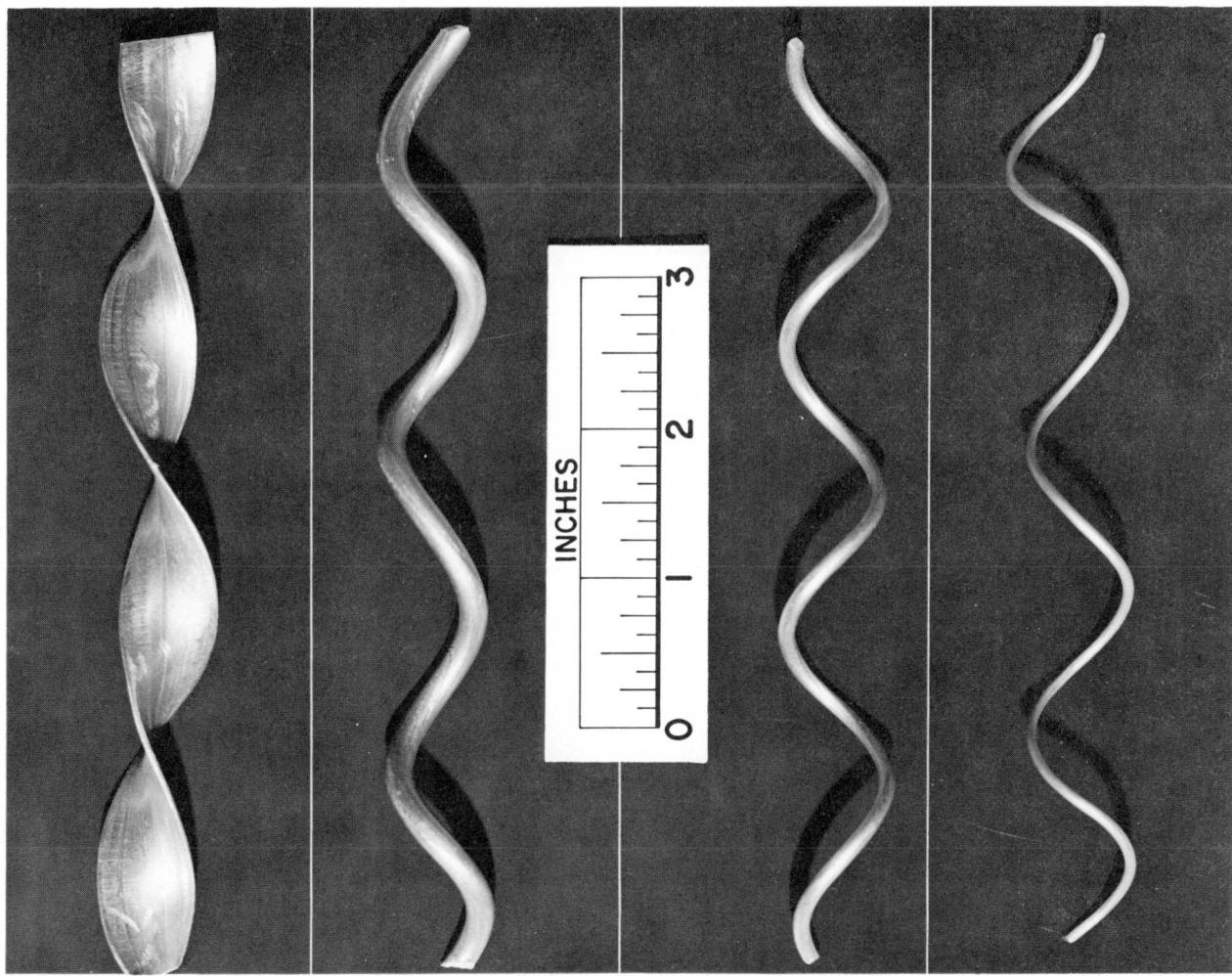
REFERENCES

1. Faloon, Albert V., and Farrar, R. Lynn, Jr., Hydrolysis of Water Saturated Chlorofluorocarbons in the Presence of Metals and the Associated Corrosion, Union Carbide Nuclear Company, Oak Ridge Gaseous Diffusion Plant, February 1, 1961 (K-1461)
2. McAdams, William H., Heat Transmission, Third Edition, New York, McGraw-Hill Book Company, Inc., 1954, p. 343


TABLE I
DATA FROM THE THREE-FOOT STRAIGHT TUBE EVAPORATOR

RUN NO.	STEAM TEMP., °F.	TUBE WALL TEMPERATURE, °F.					BULK FREON TEMPERATURE, °F.				LIQUID HEAD Inches	FREON FLOW, lb./hr. Total	LIQUID- TO-VAPOR RATIO	WATER IN CONDENSER Flow, lb./hr.	EVAPORATOR HEAT LOAD, Btu./hr.	HEAT FLUX, Btu./hr./sq.ft.	Δt ACROSS STEAM FILM, °F.	STEAM FILM COEFFICIENT, Btu./hr./sq.ft./°F.	Δt ACROSS FREON FILM, °F.	FREON FILM COEFFICIENT, Btu./hr./sq.ft./°F.	
		Distance From Evaporator Inlet 3.5 in.	10.5 in.	17.5 in.	24.5 in.	Average	Evap. Inlet	Evap. Outlet	Condenser Inlet	Condenser Drain											
ORIGINAL OPEN TUBE DATA																					
1	193.6	169.9*	169.9	171.2	172.3	181.2	172.9	159.8	157.5	156.5	59.5	1720	410	3.2	319.3	58.3	18,230	31,810	20.7	1318	13.3
2	179.2	169.2*	169.2	169.8	170.5	170.8	169.9	160.7	159.1	158.0	60.5	1345	198	5.8	148.8	63.4	9,270	16,180	9.3	1492	9.4
3	178.8	169.1*	169.1	169.9	170.5	170.6	169.8	160.7	159.1	158.0	60.5	1340	192	6.0	145.8	64.1	9,190	16,040	9.0	1529	9.4
4	182.9	170.1*	170.1	171.0	172.1	173.3	171.3	160.4	159.0	158.0	59.0	1530	292	4.2	228.9	59.0	13,290	23,190	11.6	1715	10.9
5	181.2	169.7*	169.7	170.7	171.2	172.2	170.7	160.5	160.3	158.9	63.5	1626	232	6.0	181.6	63.7	11,410	19,910	10.5	1626	10.4
6	172.5	167.7*	167.7	168.3	168.5	168.3	168.1	160.0	160.2	158.8	65.0	980	94	9.4	56.0	88.9	4,910	8,580	4.4	1672	7.9
7	174.6	167.6	168.0	168.8	169.1	168.8	168.5	160.0	160.3	158.7	59.0	950	139	5.8	82.6	79.0	6,420	11,210	6.1	1576	8.2
8	190.3	170.6	171.3	172.3	173.6	180.7	173.7	160.7	159.0	157.0	59.0	1622	392	3.1	315.8	57.2	17,650	30,800	16.6	1592	13.1
9	193.9	170.9	171.7	172.7	174.5	185.3	175.0	160.4	160.5	158.5	59.5	1711	446	2.8	358.2	55.3	19,290	33,660	18.9	1528	14.6
10	197.7	171.1	171.8	172.7	174.5	190.5	176.1	160.2	158.2	156.1	58.5	1701	475	2.6	388.6	54.7	20,700	36,120	21.6	1434	16.0
11	199.9	171.4	172.3	173.0	176.4	195.8	177.8	160.1	158.4	156.0	59.5	1785	490	2.6	400.0	55.3	21,510	37,540	22.1	1457	17.7
12	217.3	173.7	174.1	186.0	205.7	213.2	190.5	160.4	160.1	158.5	60.5	1907	537	2.6	379.9	64.8	24,180	42,190	26.8	1350	30.4
13	211.9	172.8	173.7	176.5	198.8	207.7	185.9	160.5	160.0	158.4	59.5	1850	529	2.5	369.2	65.5	23,780	41,504	25.9	1369	16.02
14	209.0	172.3	172.9	174.4	189.8	202.4	182.4	160.5	160.1	158.2	57.5	1772	522	2.4	359.1	66.2	23,370	40,780	26.6	1315	22.3
15	184.7	170.7*	170.7	171.2	171.9	171.9	171.3	160.0	160.3	159.0	60.0	1560	280	4.6	224.0	60.3	13,130	22,910	13.4	1467	11.0
16	174.7	168.8*	168.8	169.4	169.6	168.6	169.0	160.1	158.9	154.5	60.0	1058	143	6.4	100.0	69.5	6,720	11,720	5.7	1764	8.9
17	169.3	167.1*	167.1	167.8	168.0	167.1	167.4	160.0	160.1	158.5	60.5	485	72	5.7	59.0	66.2	3,770	6,590	1.9	2974	7.3
18	189.6	170.9	170.9	172.1	173.8	180.2	175.6	160.0	160.7	158.2	57.5	1524	369	3.1	247.0	69.1	16,780	29,280	16.0	1570	12.9
19	186.3	170.3	170.6	171.5	172.6	177.6	172.6	160.8	160.5	159.1	58.6	1630	328	4.0	220.2	69.8	15,170	26,470	13.8	1645	12.0
20	185.4	169.1	169.8	171.0	171.9	172.3	170.8	160.8	160.4	158.9	58.5	1403	258	4.9	158.8	72.2	11,320	19,770	14.6	1161	10.4
21	181.2	169.9*	169.9	170.9	172.0	173.6	171.3	160.0	160.3	158.9	61.0	1550	265	4.9	186.3	68.4	12,560	21,920	9.9	1899	11.0
22	175.6	168.5*	168.5	169.3	169.5	169.5	169.1	160.4	160.4	158.8	57.3	1275	136	8.4	79.0	87.1	6,750	11,770	6.5	1554	8.7
23	174.2	168.5*	168.5	169.5	169.6	169.5	169.1	160.4	160.7	158.9	61.5	1160	137	7.5	78.3	88.6	6,810	11,880	5.1	1997	8.4
24	172.0	167.7*	167.7	168.5	168.6	168.2	168.1	160.6	160.4	158.8	61.5	865	102	7.5	54.6	93.6	5,010	8,740	3.9	1940	7.6
CHECK FOR FOULING AFTER EXPOSURE TO FREON-WATER MIXTURE																					
25	192.7	171.5*	171.5	172.3	174.0	182.8	174.4	160.1	158.8	158.4	61.0	1720	411	3.2	259.0	72.4	18,470	32,230	18.3	1511	14.0
26	198.1	171.1*	171.1	171.9	173.6	180.7	173.7	160.0	158.3	158.1	60.5	1680	405	3.2	256.3	73.1	18,470	32,230	24.4	1133	13.7
27	179.8	169.9*	169.9	170.8	172.0	172.4	171.0	160.4	160.3	158.7	58.5	1440	250	4.8	160.7	76.7	12,170	21,250	8.8	2071	10.7
28	180.2	169.8*	169.8	170.9	171.5	172.6	170.9	159.9	160.4	158.9	61.5	1520	232	5.6	168.2	68.2	11,230	19,590	9.3	1807	10.5
29	178.9	169.4*	169.4	170.5	171																

TABLE I (Cont.)

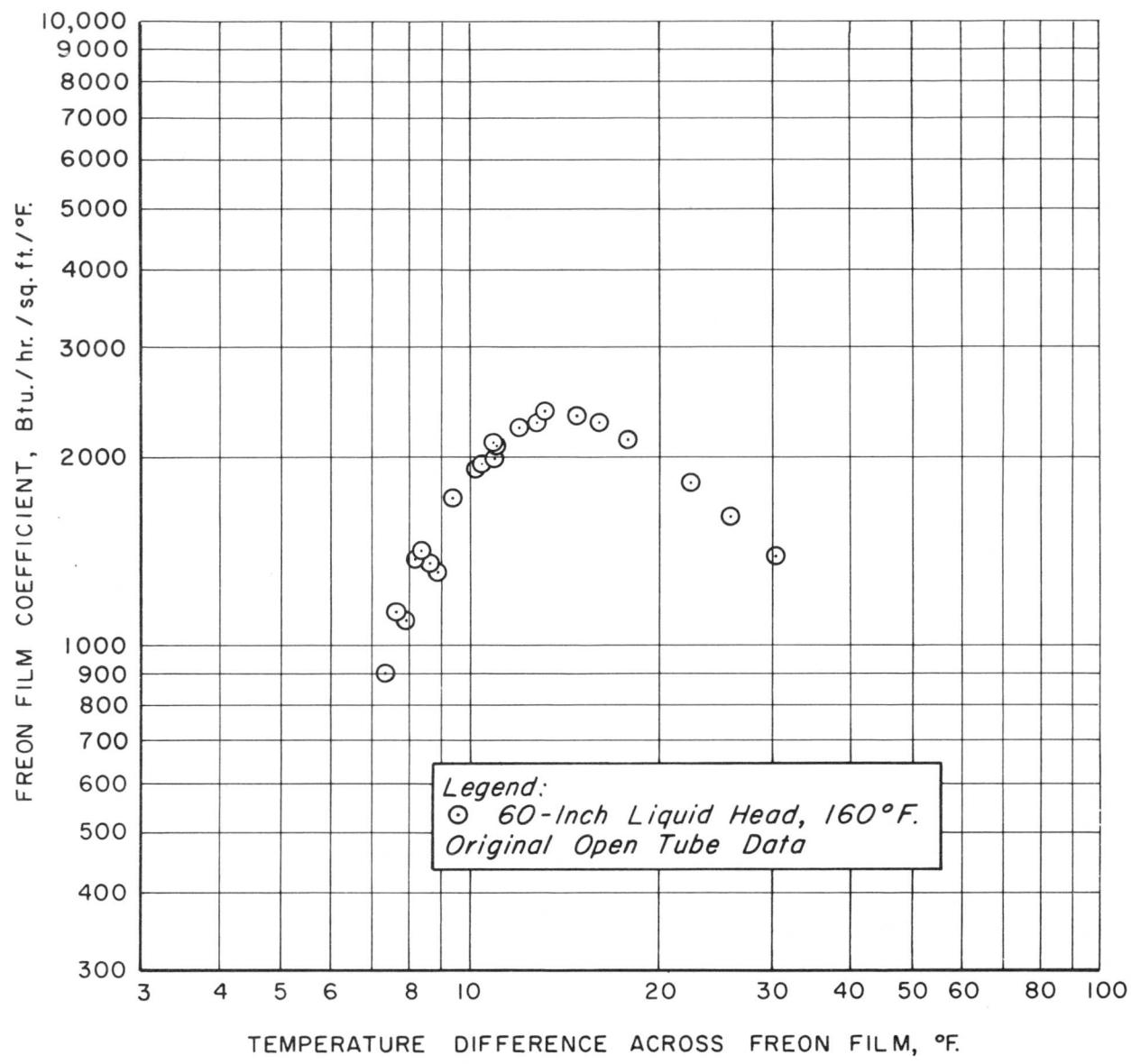

DATA FROM THE THREE-FOOT STRAIGHT TUBE EVAPORATOR

RUN NO.	STEAM TEMP., °F.	TUBE WALL TEMPERATURE, °F.					BULK FREON TEMPERATURE, °F.				LIQUID HEAD Inches	FREON FLOW, lb./hr.	LIQUID- TO-VAPOR RATIO	WATER IN CONDENSER Flow, lb./hr.	EVAPORATOR HEAT LOAD, Btu./hr.	HEAT FLUX, Btu./hr./sq.ft.	Δt ACROSS STEAM FILM, °F.	STEAM FILM COEFFICIENT, Btu./hr./sq.ft./°F.	Δt ACROSS FREON FILM, °F.	FREON FILM COEFFICIENT, Btu./hr./sq.ft./°F.			
		Distance From Evaporator Inlet 3.5 in.	10.5 in.	17.5 in.	24.5 in.	31.5 in.	Evap. Inlet	Evap. Outlet	Condenser Inlet	Condenser Drain													
HELICAL ALUMINUM STRIP SWIRL-PROMOTER, 6-INCH PITCH																							
50	181.2	170.4*	170.4	171.1	172.0	173.4	171.5	160.3	160.4	159.6	158.4	59.0	1120	287	2.9	240.0	54.5	12,910	22,520	9.7	1992	11.1	2029
51	193.4	172.4*	172.4	173.1	174.2	177.2	173.9	161.2	160.5	158.9	157.6	62.0	1262	501	1.5	422.5	50.4	20,750	36,220	19.5	1593	13.4	2703
52	203.2	173.7	173.7	174.3	177.2	184.8	176.7	160.8	160.4	158.9	157.2	65.5	1220	651	0.9	669.2	44.3	28,920	50,480	26.5	1634	16.3	3097
53	213.8	174.9*	174.9	175.2	178.4	189.6	178.6	160.7	160.3	159.0	156.9	61.5	1075	750	0.4	825.8	40.9	32,890	57,400	35.2	1400	18.3	3137
54	221.7	175.0*	175.0	176.4	180.2	201.2	181.6	160.3	160.2	158.8	156.4	61.0	1040	817	0.3	973.0	38.2	36,180	63,130	40.1	1351	21.4	2950
0.112-INCH DIAMETER ALUMINUM WIRE COIL, 1.9-INCH PITCH																							
55	194.4	172.5*	172.5	173.2	175.0	178.4	174.3	159.3	160.4	159.3	157.7	60.0	1186	469	1.5	390.2	53.5	20,600	35,950	20.1	1534	13.9	2586
56	189.8	171.7*	171.7	172.5	173.9	176.2	173.2	159.3	160.4	159.1	157.9	57.0	1130	398	1.8	321.4	55.3	17,560	30,650	16.6	1584	12.8	2394
57	208.4	174.6*	174.6	174.7	177.7	186.0	177.5	160.4	160.6	159.1	156.8	65.0	1154	700	0.7	714.3	45.5	31,760	55,440	30.9	1539	16.9	3280
58	212.4	175.0*	175.0	175.0	177.6	191.2	178.8	160.2	160.1	159.2	156.6	59.0	1030	761	0.4	814.6	43.2	34,360	59,970	33.6	1531	18.7	3207
59	223.6	176.3*	176.3	176.0	178.6	192.4	179.9	160.0	160.2	158.9	156.5	58.5	1020	805	0.3	873.9	42.5	36,270	63,300	43.7	1242	19.7	3213
60	230.2	177.2*	177.2	176.8	183.2	205.2	183.9	160.3	160.3	159.0	156.6	59.0	1005	844	0.2	955.4	40.7	37,970	66,260	46.3	1228	23.6	2808
OPEN TUBE TESTS TO CHECK ORIGINAL DATA																							
61	186.8	171.2*	171.2	172.1	173.4	176.4	172.9	160.4	160.5	159.2	158.1	63.0	1551	322	3.8	283.4	52.9	14,760	25,750	13.9	1589	12.4	2077
62	198.4	173.1*	173.1	173.9	176.5	190.0	177.3	161.0	160.5	159.5	157.9	61.5	1571	479	2.3	435.5	49.0	20,870	36,420	21.1	1482	16.8	2168
63	204.1	173.7*	173.7	174.9	183.7	200.0	181.2	160.9	160.6	159.0	157.9	61.0	1580	501	2.2	472.4	47.9	22,150	38,660	22.9	1448	20.6	1877
64	228.7	181.2*	181.2	208.3	220.7	225.6	203.4	161.2	160.8	159.2	158.0	--	1634	535	2.1	514.3	46.8	23,550	41,100	25.3	1393	42.6	965
0.188-INCH DIAMETER ALUMINUM WIRE COIL, 2-INCH PITCH																							
65	193.8	172.4*	172.4	173.1	174.4	177.4	173.9	160.3	160.4	159.2	157.8	66.5	1168	479	1.4	410.3	52.7	21,260	37,100	19.9	1600	13.5	2750
66	206.4	174.1*	174.1	174.4	176.9	185.2	176.9	160.6	160.4	159.1	157.1	60.0	923	701	0.3	706.7	45.2	31,190	54,420	29.5	1582	16.5	3298
67	220.0	176.1*	176.1	176.1	180.0	201.2	181.9	160.4	160.3	158.9	156.7	61.0	923	800	0.2	887.3	41.2	35,690	62,280	38.1	1402	21.6	2883
68	230.0	176.9*	176.9	176.9	177.6	183.2	184.7	160.2	160.2	159.0	156.2	61.5	910	855	0.1	1005.7	39.1	38,250	66,760	45.3	1264	24.5	2725
69	201.2	173.4*	173.4	173.8	175.6	179.7	175.2	160.5	160.3	158.9	157.2	76.5	1186	646	0.8	621.9	46.8	28,460	49,660	26.0	1638	14.9	3333
70	206.9	174.0*	174.0	174.5	177.0	184.2	176.7	160.9	160.2	159.0	156.7	60.5	935	700	0.3	717.1	45.2	31,580	55,310	30.2	1571	16.5	3352
71	206.8	174.1*	174.1	174.6	179.0	190.0	178.5	160.7	160.6	159.3	158.2	44.0	792	646	0.2	606.1	47.9	28,510	49,750	28.3	1508	17.9	2779
72	208.2	174.3*	174.3	174.9	181.6	196.8	180.4	160.4	160.5	159.4	158.5	28.0	635	623	0	552.2	49.5	26,940	47,020	27.8	1451	19.9	2363
73	208.4	175.6*	175.6	174.8	189.6	202.8	182.9	160.0	161.0	164.0	158.6	19.0	540	512									

TEST LOOP SCHEMATIC DIAGRAM

FIGURE 1

0.040-INCH THICK STRIP
3.5-INCH PITCH


0.188-INCH DIA. WIRE
2.0-INCH PITCH

0.112-INCH DIA. WIRE
1.9-INCH PITCH

0.070-INCH DIA. WIRE
1.8-INCH PITCH

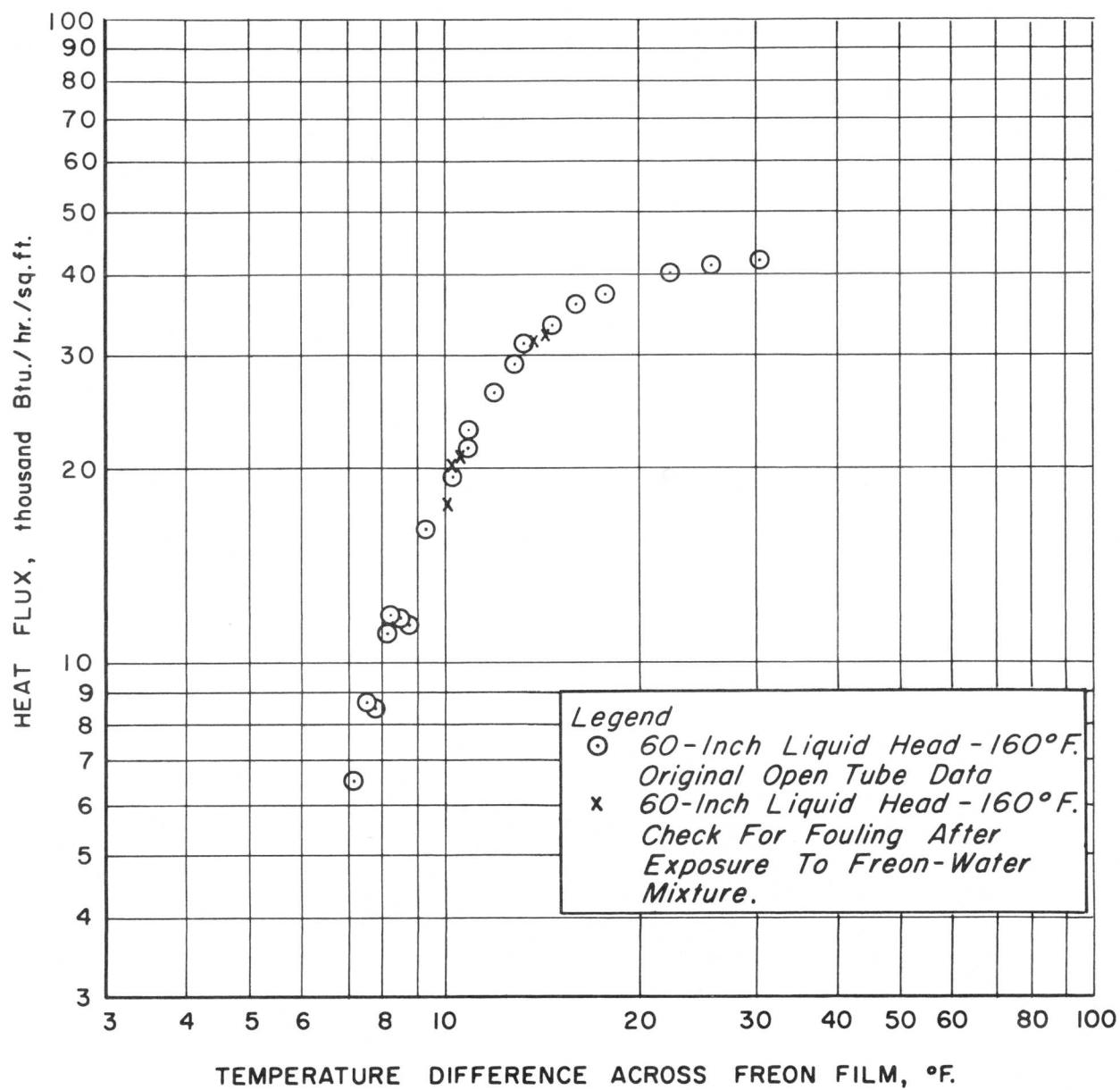

PHOTOGRAPHS OF HELICAL-STRIP AND
WIRE-COIL SWIRL PROMOTERS

FIGURE 2

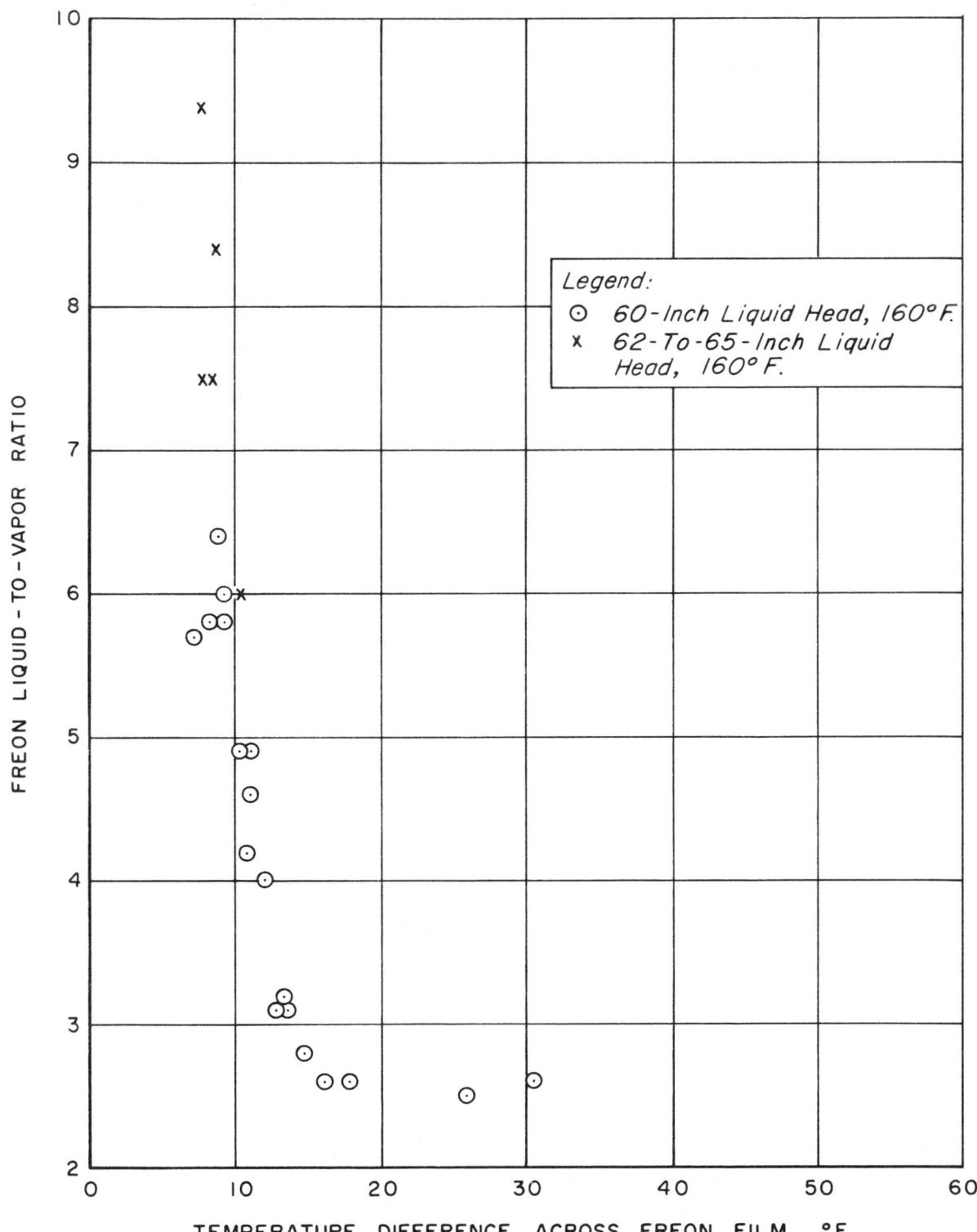

FREON FILM COEFFICIENT VS. TEMPERATURE
DIFFERENCE ACROSS FREON FILM

FIGURE 3

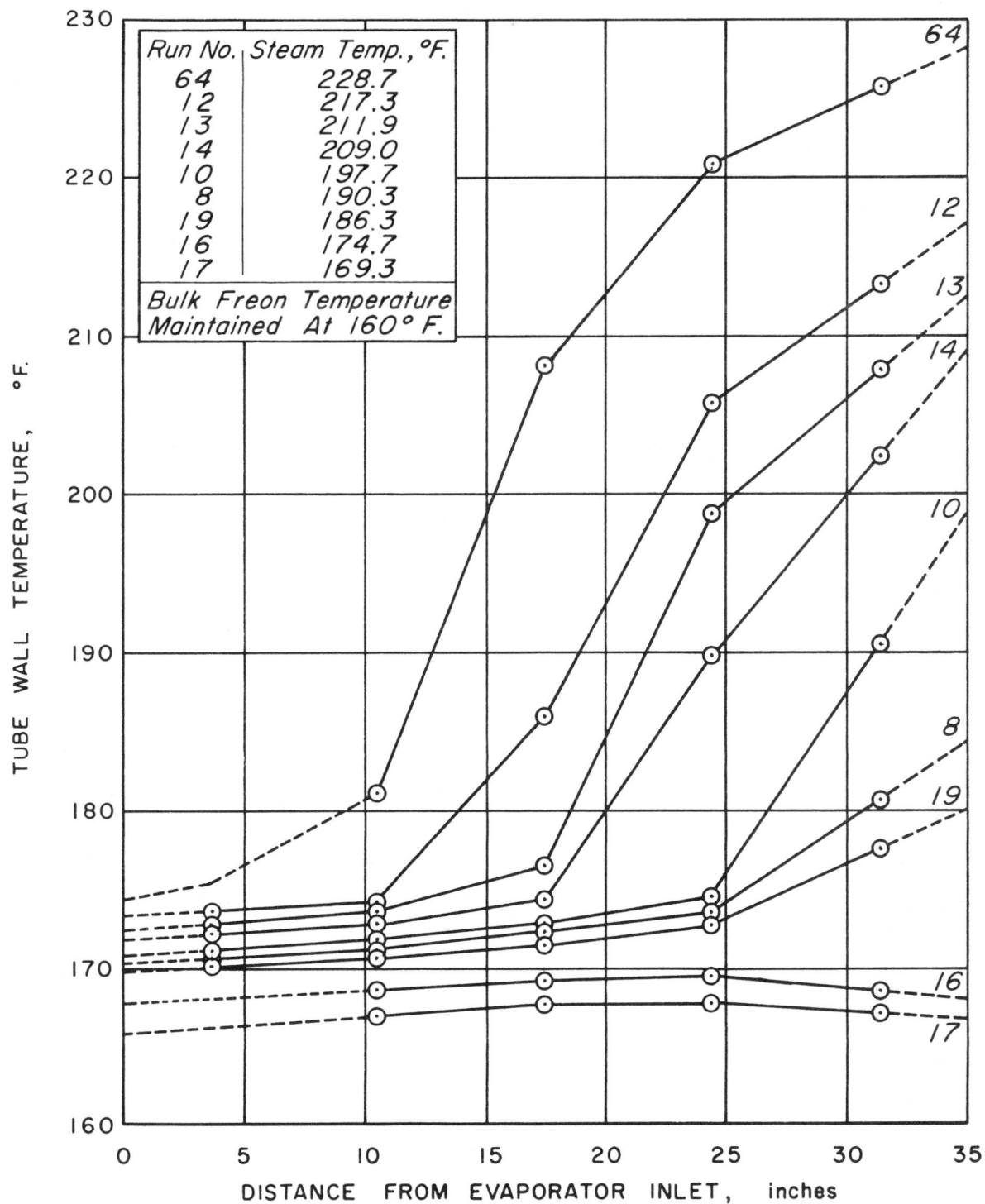
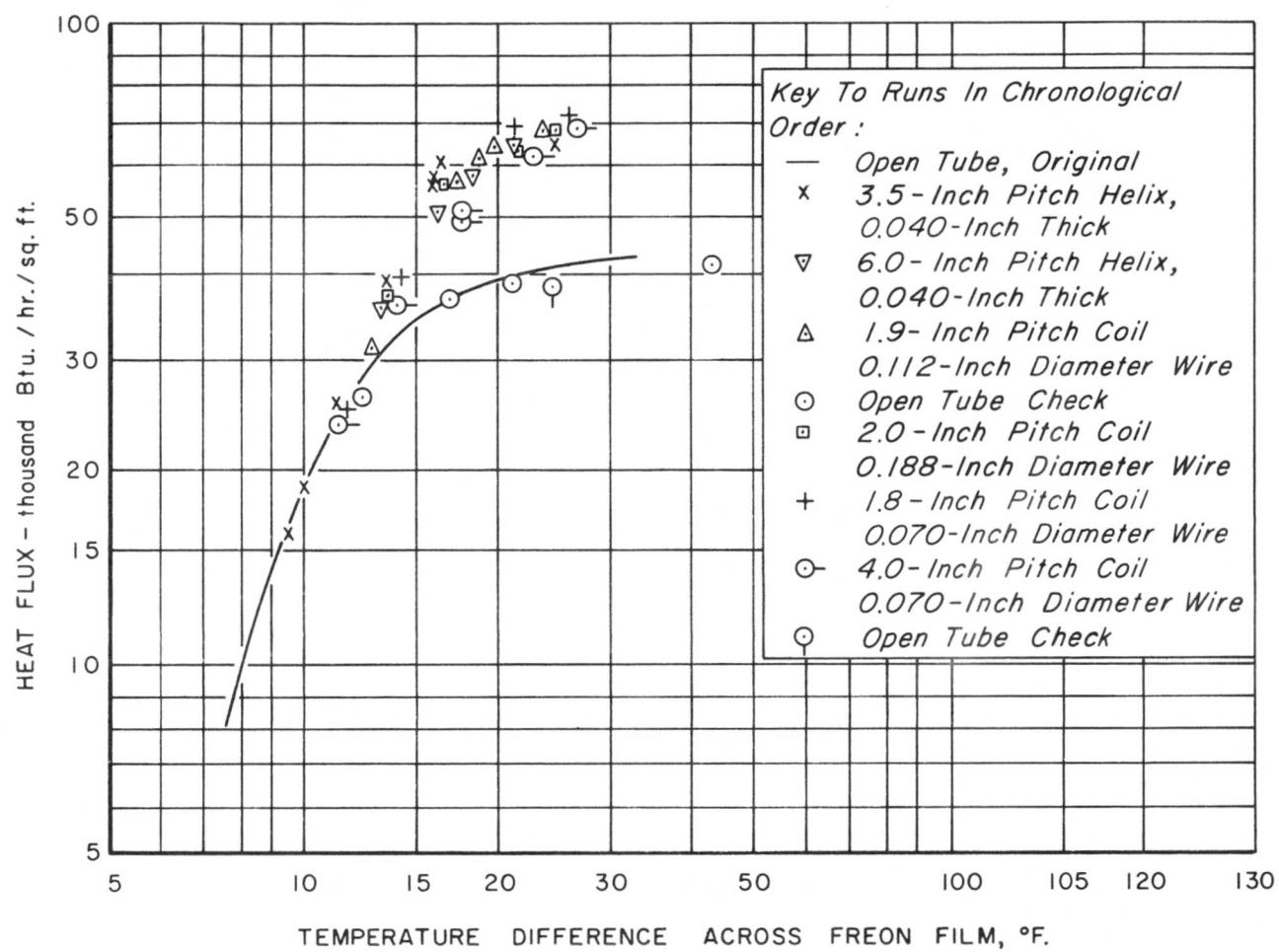

HEAT FLUX VS. TEMPERATURE DIFFERENCE
ACROSS FREON FILM

FIGURE 4

FREON LIQUID - TO - VAPOR RATIO
VS.
TEMPERATURE DIFFERENCE ACROSS FREON FILM

FIGURE 5



TUBE WALL TEMPERATURE
VS.
DISTANCE FROM EVAPORATOR INLET

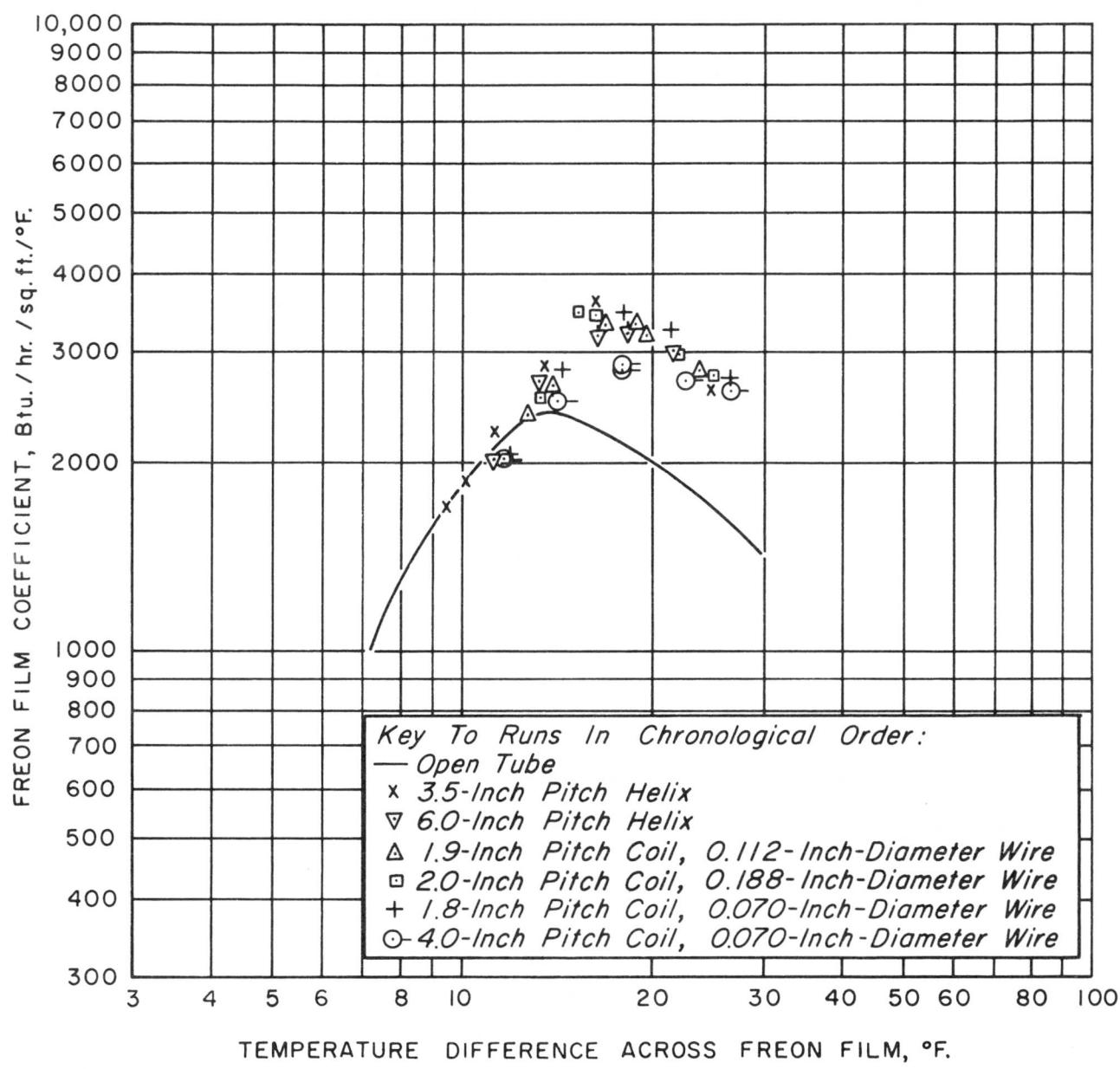

STEAM FILM COEFFICIENT VS. TEMPERATURE
DIFFERENCE ACROSS STEAM FILM

FIGURE 7

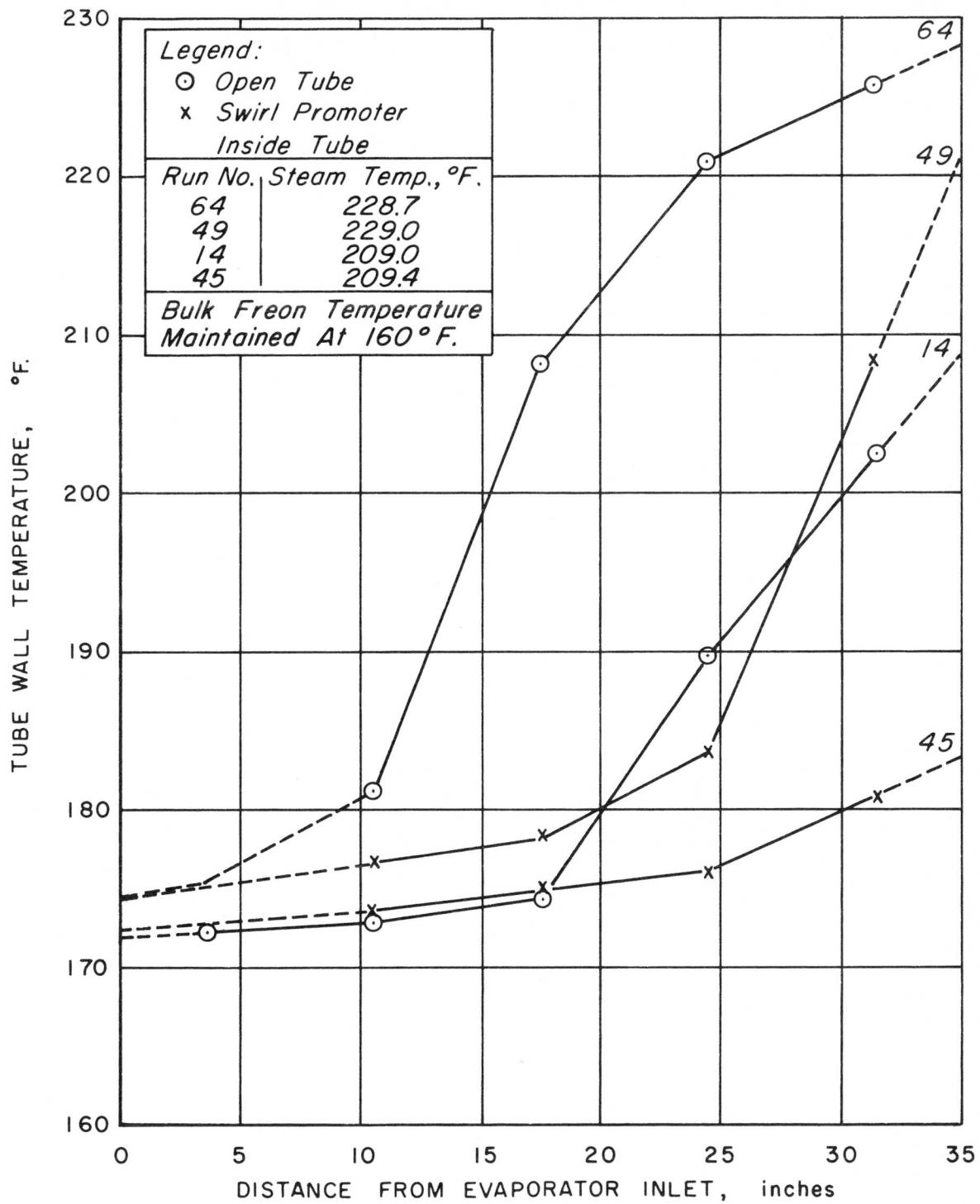

HEAT FLUX VS. TEMPERATURE DIFFERENCE
ACROSS FREON FILM

FIGURE 8

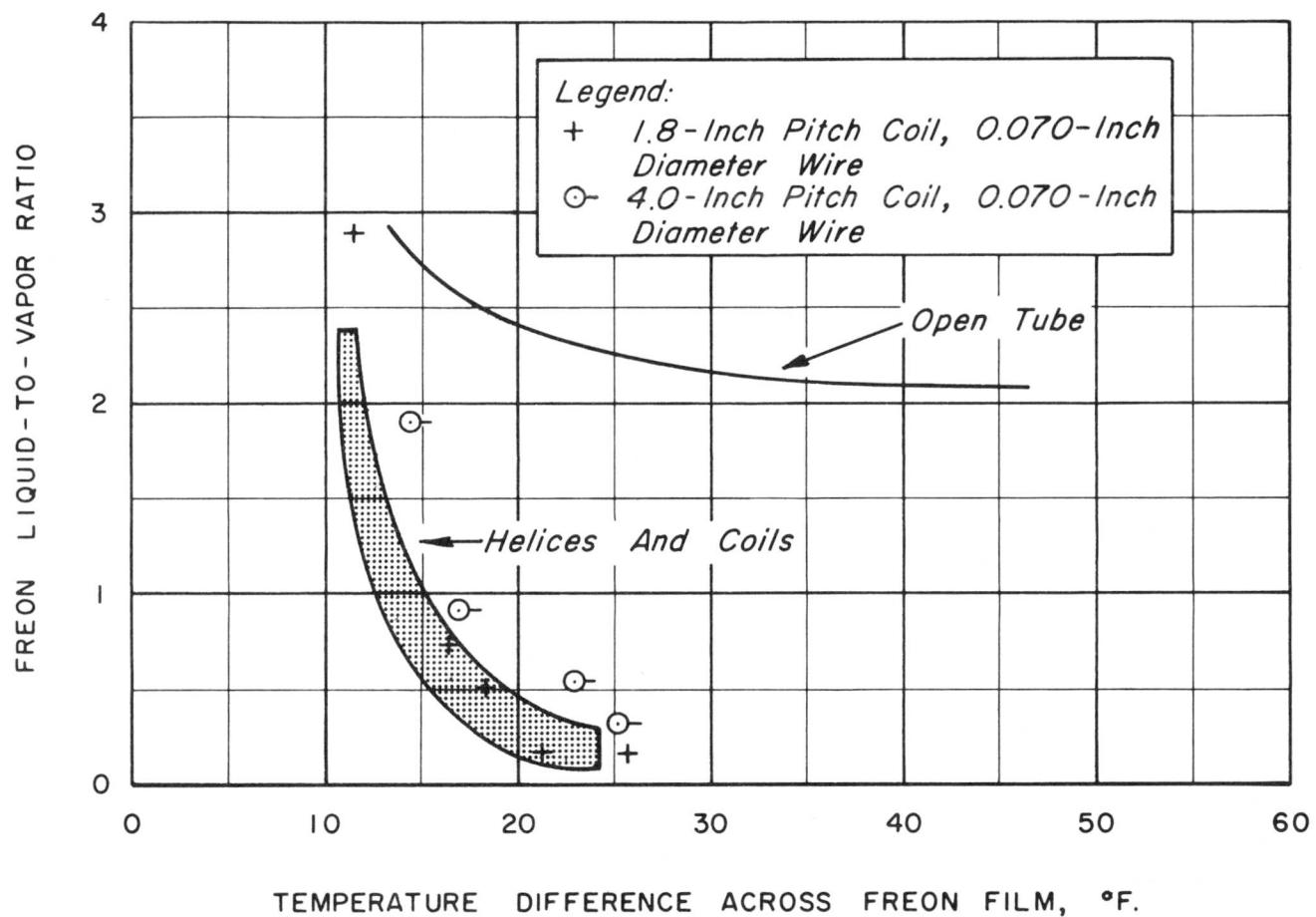

FREON FILM COEFFICIENT VS. TEMPERATURE
DIFFERENCE ACROSS FREON FILM

FIGURE 9

TUBE WALL TEMPERATURE
VS.
DISTANCE FROM EVAPORATOR INLET

FIGURE 10

FREON LIQUID-TO-VAPOR RATIO
VS.
TEMPERATURE DIFFERENCE ACROSS FREON FILM

FIGURE II